您所在的位置: 首页- 新闻公告- 学术讲座-

学术讲座

“AI之夏”学术沙龙系列讲座第2讲 :从数据中发现物理规律
日期:2022-06-02访问量:

孙浩.jpg

报告时间:2022年6月3日 16:00-17:00

腾讯会议:892-934-209

主讲人姓名:孙浩  长聘副教授

主讲人简介:孙浩,1988年生,中国人民大学高瓴人工智能学院“长聘副教授、博导”,国家高层次人才青年专家,麻省理工学院兼职研究员、美国东北大学兼职教授。2014年在美国哥伦比亚大学取得工程力学博士学位,随后在麻省理工学院从事博士后研究,曾任美国匹兹堡大学、美国东北大学终身序列助理教授、博导。主要从事科学智能、人工智能数理基础与理工交叉研究,包含可诠释性深度学习、基于物理信息的深度学习、符号强化学习与推理、数据驱动复杂动力系统建模与识别、控制方程找型、基础设施健康监测与智能化管理等方向。在国际一流SCI期刊(如《自然-通讯》)和计算机顶会等各类重要刊物上共发表论文50余篇;研究成果受到了几十家国际知名媒体的广泛报导(例如《福克斯新闻》、《麻省理工新闻》、《科学日报》、《麻省理工科技评论》等)。2018年入选福布斯美国“30位30岁以下精英榜(科学类)”,2019年当选“美国十大华人杰出青年”。

报告题目:从数据中发现物理规律

报告摘要:科学探索,也许是人工智能领域新兴而最具有星辰大海想象空间的方向之一。大到宇宙天体运动演化,小到混乱无序的分子运动,在过去几个世纪中,科学家们前赴后继,探寻简单、优雅、和谐的数学符号方程,来描述大千世界的普适规律。从经典力学、电磁学到量子力学,一个又一个被发现的规律,在人类科学发展进程中留下浓墨重彩。而世界如此之广袤,还有太多的科学奥秘,未被人类发掘和定义。当AI成长为挖掘海量数据信息的关键利器,它为探索科学问题开启了一扇新的大门。这个报告将介绍符号学习与推理基本概念和方法,讨论如何从数据中提取数理方程,进一步探索用于描述未知系统状态的数学方程或定律。

"AI之夏"学术沙龙系列讲座持续进行中,欢迎关注!

AI之夏 学术沙龙 总.jpg

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox