海报

刘勇海报.png


工作经历

中国人民大学高瓴人工智能学院,长聘副教授,2024年8月至今

中国人民大学高瓴人工智能学院,准聘副教授,2021年7月-2024年8月

中国人民大学高瓴人工智能学院,准聘助理教授, 2020年8月-2021年7月

中国科学院信息工程研究所,副研究员,2018年10月-2020年7月

中国科学院信息工程研究所,助理研究员,2016年7月-2018年10月

研究方向

总方向为机器学习算法与理论,具体聚焦以下几个方面:

--1)大模型学习算法与理论

--2)Agent:大模型推理、Agent应用

--3)推荐检索:基于大模型推荐算法研究

学生要求

努力且有激情的学生

毕业学生:

李健(2020毕业),北京师范大学 副教授;

殷荣(2020毕业),中科院信工所 副研究员;

李少杰 (2024毕业,博士),新加坡国立博士后;

胡啸林 (2025毕业,博士),厦门大学讲师;

胡羽蓝(2025毕业,博士),阿里;

杨杰超(2025毕业,博士),移动研究院;

杨智睿(2025毕业,硕士),快手

教授课程

神经网络与深度学习,研究生课程

海量数据挖掘,研究生课程

深度学习导论,本科课程

科研项目

面向高效计算与推理的大模型新型范式设计与优化,150万,北京市交叉融通重点项目,2025-2028,项目负责人

大模型记忆和生成机理合作研究,105万,国家重点研发计划,2025.1-2027.12,任务负责人

基于分布式强化学习的稠密奖励组相对策略优化研究,30万,腾讯AI Lab犀牛鸟专项研究计划,2025.7-2026.6 负责人

大语言模型上下文学习的数学机理分析和设计, 50万, 自然科学基金面上项目, 2025.1-2028.12 负责人

Prompt中引导示例自动构建与选择 75万,华为联合项目, 2024.9--2025.9, 负责人

基于ReAct Agent与检索知识增强的大模型营销场景下的对话应用研究, 30万, 阿里妈妈, 2024.8--2025.8 负责人

端侧大模型的个性化高效微调关键技术研究, 20万, 小米,2024.7--2025.7 负责人

电网企业专利价值量化评估关键技术研究 80万,国家电网, 2023-2025, 课题负责人,

面向多类型多模态图数据的通用大模型技术与药物发现应用研究, 北京市科技计划(中央引导地方专项),2023.9-2025.08 子课题负责人

面向多场景的大规模异配图表征,58.9万,华为,2023.3-2024.3,负责人

2022年联通研究院面向深度模型的自动机器学习研究技术服务,80万,联通,2022.12-2023.12,负责人

非凸随机优化理论与算法研究, 12万,CCF-华为胡杨林基金,2022.10--2023.9,负责人

基于图神经网络的反事实欺诈检测算法研究 30万,腾讯微信支付犀牛鸟专项, 2022.5-2023.5,负责人

大规模半监督核学习的模型选择理论与算法研究 20万,北京市自然科学基金面上项目,2022.1-2024.12, 负责人

大规模实时用户表征,40万,华为,2022.1-2023.1,负责人

面向联通应用场景的自动机器学习,20万,联通,2021.11-2022.3,负责人

大规模深度核学习的理论与算法研究 59万,国家自然科学基金面上项目,2021.1-2024.12,负责人

大规模核方法积分算子谱分析的模型选择方法,国家自然科学基金青年项目,24万,2018.1-2020.12,负责人

深度神经网络结构自动搜索理论与算法研究,90万,中国科学院基础前沿科学研究计划,2019.9-2024.9,负责人

大规模机器学习模型选择算法研究,中国科学院“青促会”人才项目,80万,2019.1-2022.12,负责人

基于积分算子谱分析的核方法模型选择,中国科学院信息工程研究所 引进优秀青年人才,40万,2017.1-2019.12,负责人

基于贝叶斯优化的DNN模型结构自动机器学习,2019.10-2020.9,15万,腾讯犀牛鸟基金 (获得优秀),负责人

大数据和人工智能发展现状及趋势,保密局战略研究项目子课题,40万,2017.9-2020.12,子课题负责人

学术论文

2025

Chemical knowledge-informed framework for privacy-aware retrosynthesis learning

Guikun Chen, Xu Zhang, Xiaolin Hu,Yong Liu,Yi Yang,Wenguan Wang

Nature Communications


Revisiting Chain-of-Thought Prompting: Zero-shot Can Be Stronger than Few-shot

Xiang Cheng, Chengyan Pan, Minjun Zhao, Deyang Li, Fangchao Liu, Xinyu Zhang, Xiao Zhang, Yong Liu

In ENNLP 2025


Reward Mixology: Crafting Hybrid Signals for Reinforcement Learning Driven In-Context Learning

Changshuo Zhang, Ang Gao, Xiao Zhang, Yong Liu, Deyang Li, Fangchao Liu, Xinyu Zhang

In ENNLP 2025


SPPD: Self-training with Process Preference Learning Using Dynamic Value Margin

Hao Yi, Qingyang Li, Yulan Hu, Fuzheng Zhang, Di ZHANG, Yong Liu

In ENNLP 2025


Exploring the Limitations of Mamba in COPY and CoT Reasoning

Ruifeng Ren, Zhicong Li, Yong Liu

In ENNLP 2025


Revisiting Weak-to-Strong Generalization in Theory and Practice: Reverse KL vs. Forward KL

Wei Yao, Wenkai Yang, Ziqiao Wang, Yankai Lin, Yong Liu

In ACL 2025


Towards Reward Fairness in RLHF: From a Resource Allocation Perspective

Sheng Ouyang, Yulan Hu, Ge Chen, Qingyang Li, Fuzheng Zhang, Yong Liu

In ACL 2025


The Tug of War Within: Mitigating the Fairness-Privacy Conflicts in Large Language Models

Chen Qian, Dongrui Liu, Jie Zhang, Yong Liu, Jing Shao

In ACL 2025


Do not Abstain! Identify and Solve the Uncertainty

Jingyu Liu, JingquanPeng, xiaopeng Wu, Xubin Li, Tiezheng Ge, Bo Zheng, Yong Liu

In ACL 2025


Theoretical Insights into Fine-Tuning Attention Mechanism: Generalization and Optimization

Xinhao Yao ,Hongjin Qian,Xiaolin Hu,Gengze Xu,Wei Liu,Jian Luan,Bin Wang,Yong Liu

In IJCAI 2025


Towards Improved Risk Bounds for Transductive Learning

Bowei Zhu, Shaojie Li, Yong Liu

In IJCAI 2025


Rethinking External Slow-Thinking: From Snowball Errors to Probability of Correct Reasoning

Zeyu Gan, Yun Liao, Yong Liu

In ICML 2025


Understanding Model Ensemble in Transferable Adversarial Attack

Wei Yao, Zeliang Zhang, Huayi Tang, Yong Liu

In ICML 2025


Towards Auto-Regressive Next-Token Prediction: In-context Learning Emerges from Generalization

Zixuan Gong, Xiaolin Hu, Huayi Tang, Yong Liu

In ICLR 2025


Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective

Zeyu Gan, Yong Liu

In ICLR 2025


ADePT: Adaptive Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning

Pengwei Tang, Xiaolin Hu, Yong Liu

In ICLR 2025


Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization

Wenkai Yang, Shiqi Shen, Guangyao Shen, Wei Yao, Yong Liu, Gong Zhi, Yankai Lin, Ji-Rong Wen

In ICLR 2025


REEF: Representation Encoding Fingerprints for Large Language Models

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, Jing Shao

In ICLR 2025


2024

Information-Theoretic Generalization Bounds for Transductive Learning and its Applications

Huayi Tang, Yong Liu

JMLR


PATNAS: A Path-Based Training-Free Neural Architecture Search

Jiechao Yang, Yong Liu*, Wei Wang, Haoran Wu, Zhiyuan Chen, Xibo Ma*

IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI)


Enhancing In-Context Learning Performance with just SVD-Based Weight Pruning: A Theoretical Perspective

Xinhao Yao , Xiaolin Hu , Shenzhi Yang , Yong Liu∗

In NeurIPS 2024

下载: 论文文档


Towards Understanding How Transformers Learn In-context Through a Representation Learning Lens

Ruifeng Ren, Yong Liu*

In NeurIPS 2024

下载: 论文文档


Concentration and Moment Inequalities for General Functions of Independent Random Variables with Heavy Tails

Shaojie Li, Yong Liu*

In JMLR


Hybrid federated learning with brain-region attention network for multi-center Alzheimer's disease detection

Baiying Lei, Yu Liang, Jiayi Xie, You Wu, Enmin Liang, Yong Liu, Peng Yang, Tianfu Wang, Chuan-Ming Liu, Jichen Du, Xiaohua Xiao, Shuqiang Wang

Pattern Recognition


Unbiased and augmentation-free self-supervised graph representation learning

Ruyue Liu, Rong Yin, Yong Liu, Weiping Wang

Pattern Recognition


A survey on model compression for large language models

Xunyu Zhu, Jian Li, Yong Liu*, Can Ma, Weiping Wang

In TACL (CCF A)


Reimagining Graph Classification from a Prototype View with Optimal Transport: Algorithm and Theorem

Chen Qian, Huayi Tang, Hong Liang, Yong Liu*

In KDD


Towards Tracing Trustworthiness Dynamics: Revisiting Pre-training Period of Large Language Models

Chen Qian, Jie Zhang, Wei Yao, Dongrui Liu, Zhenfei Yin, Yu Qiao, Yong Liu*, Jing Shao*

In ACL

下载: 论文文档


ETAS: Zero-Shot Transformer Architecture Search via Network Trainability and Expressivity

Jiechao Yang, Yong Liu*

In ACL

下载: 论文文档


Algorithmic Stability Unleashed: Generalization Bounds with Unbounded Losses

Shaojie Li, Bowei Zhu, Yong Liu*

In ICML 2024

下载: 论文文档


Concentration Inequalities for General Functions of Heavy-Tailed Random Variables

Shaojie Li, Yong Liu

In ICML 2024

下载: 论文文档


Perfect Alignment May be Poisonous to Graph Contrastive Learning

Jingyu Liu, Huayi Tang, Yong Liu*

In ICML 2024

下载: 论文文档


IdmMAE: Importance-Inspired Dynamic Masking for Graph Autoencoders

Ge Chen, Yulan Hu, Sheng Ouyang, Zhirui Yang, Yong Liu, Cuicui Luo

In SIGIR


Advancing Latent Representation Ranking for Masked Graph Autoencoder

Yulan Hu, Ge Chen, Sheng Ouyang, Zhirui Yang, Junchen Wan, Fuzheng Zhang, Zhongyuan Wang, Shangquan Wu, Zhao Cao, Yong Liu

In DASFAA 2024


Towards Sharper Risk Bounds for Minimax Problems

Bowei Zhu, Shaojie Li, Yong Liu

In IJCAI


On the Consistency and Large-Scale Extension of Multiple Kernel Clustering

Weixuan Liang, Chang Tang, Xinwang Liu, Yong Liu*, Jiyuan Liu, En Zhu, Kunlun He

IEEE TPAMI


High-dimensional analysis for Generalized Nonlinear Regression: From Asymptotics to Algorithm

Jian Li, Yong Liu*, Weiping Wang

In AAAI


ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised Graph Neural Network

Ruyue Liu, Rong Yin, Yong Liu,Weiping Wang

In AAAI


WaveNet: Tackling Non-Stationary Graph Signals via Graph Spectral Wavelets

Zhirui Yang, Yulan Hu, Sheng Ouyang, Jingyu Liu,Shuqiang Wang, Xibo Ma, Wenhan Wang, Hanjing Su, Yong Liu*

In AAAI

下载: 论文文档


FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning

Jian Li , Yong Liu*, Wei Wang , Haoran Wu, Weiping Wang

In AAAI

下载: 论文文档


GFMAE: Self-Supervised GNN-Free Masked AutoEncoders

Yulan Hu, Sheng Ouyang, Zhirui Yang, Yi Zhao, Junchen Wan, Fuzheng Zhang, Zhongyuan Wang, Yong Liu

ICASSP


2023

Theoretical analysis of divide-and-conquer ERM: From the perspective of multi-view

Yun Liao, Yong Liu*, Shizhong Liao, Qinhua Hu, Jianwu Dang

Information Fusion


Optimal Rates for Agnostic Distributed Learning

Jian Li, Yong Liu*, Weiping Wang

IEEE Transactions on Information Theory


Optimal Convergence for Agnostic Kernel Learning With Random Feature

Jian Li, Yong Liu*, Weiping Wang

IEEE Transactions on Neural Networks and Learning Systems


In-context Learning with Transformer Is Really Equivalent to a Contrastive Learning Pattern

Ruifeng Ren, Yong Liu

Arxiv

下载: 论文文档


Morphological Feature Visualization of Alzheimer's Disease via Multidirectional Perception GAN

Wen Yu, Baiying Lei, Shuqiang Wang, Yong Liu, Zhiguang Feng, Yong Hu, Yanyan Shen, Michael K. Ng

IEEE Transactions on Neural Networks and Learning Systems


Semantic-Aware Dehazing Network With Adaptive Feature Fusion

Shengdong Zhang, Wenqi Ren, Xin Tan, Zhi-Jie Wang, Yong Liu, Jingang Zhang, Xiaoqin Zhang, Xiaochun Cao

IEEE Transactions on Cybernetics


Improving Differentiable Architecture Search via Self-Distillation

Xunyu Zhu, Jian Li, Yong Liu, Weiping Wang

Neural Networks


Towards practical differential privacy in data analysis: Understanding the effect of epsilon on utility in private ERM

Yuzhe Li, Yong Liu, Bo Li, Weiping Wang, Nan Liu

Computers & Security


High Probability Analysis for Non-Convex Stochastic Optimization with Clipping

Shaojie Li, Yong Liu*

In ECAI 2023


Optimal Convergence Rates for Distributed Nystrom Approximation

Jian Li, Yong Liu*, Weiping Wang

Journal of Machine Learning Research

下载: 论文文档


Towards Understanding the Generalization of Graph Neural Networks

Huayi Tang and Yong Liu*

In ICML 2023

下载: 论文文档


Distribution-dependent McDiarmid-type Inequalities for Functions of Unbounded Interaction

Shaojie Li, Yong Liu*

In ICML 2023

下载: 论文文档


Optimal Convergence Rates for Agnostic Nystrom Kernel Learning

Jian Li, Yong Liu*, Weiping Wang

In ICML 2023

下载: 论文文档


Consistency of Multiple Kernel Clustering

Weixuan Liang, Xinwang Liu, Yong Liu, Chuan Ma, Yunping Zhao, Zhe Liu, En Zhu

In ICML 2013


Fair Scratch Tickets: Finding Fair Sparse Networks without Weight Training

Penwei Tang, Wei Yao, Zhicong Li, Yong Liu*

In CVPR 2023

下载: 论文文档


HOTNAS: Hierarchical Optimal Transport for Neural Architecture Search

Jiechao Yang, Yong Liu*

In CVPR 2023

下载: 论文文档


Learning Rates for Nonconvex Pairwise Learning

Shaojie Li, Yong Liu*

IEEE Transactions on Pattern Analysis and Machine Intelligence (CCF A)

下载: 论文文档


Generalization Bounds for Federated Learning: Fast Rates, Unparticipating Clients and Unbounded Losses

Xiaolin Hu, Shaojie Li, Yong Liu*

In ICLR

下载: 论文文档


Semi-supervised Vector-valued Learning: Improved Bounds and Algorithms

Jian Li, Yong Liu*, Weiping Wang

Pattern Recognition


Understanding the Generalization Performance of Spectral Clustering Algorithms

Shaojie Li, Sheng Ouyang, Yong Liu*

In AAAI 2023 (CCF A)

下载: 论文文档


2022

Scalable Kernel k-Means with Randomized Sketching: From Theory to Algorithm

Rong Yin, Yong Liu*, Xueyan Wang, Weiping Wang, Dan Meng

IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022 (CCF A)

下载: 论文文档


Non-IID Federated Learning with Sharper Risk Bound

Bojian Wei, Jian Li, Yong Liu and Weiping Wang

IEEE Transactions on Neural Networks and Learning Systems (SCI 一区)

下载: 论文文档


Convolutional Spectral Kernel Learning with Generalization Guarantees

Jian Li, Yong Liu*, and Weiping Wang

Artificial Intelligence (CCF A)

下载: 论文文档


Fine-Grained Analysis of Stability and Generalization for Modern Meta Learning Algorithms

Jiechao Guan, Yong Liu and Zhiwu Lu

In NeurIPS 2022 (CCF A)

下载: 论文文档


Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel

Weixuan Liang, Xinwang Liu,Yong Liu,Sihang zhou, Jun-Jie Huang, Siwei Wang, Jiyuan Liu, Yi Zhang, En Zhu

In NeurIPS 2022 (CCF A)

下载: 论文文档


Randomized Sketches for Clustering: Fast and Optimal Kernel $k$-Means

Rong Yin, Yong Liu, Weiping Wang and Dan Meng

In NeurIPS 2022 (CCF A)

下载: 论文文档


Sharper Utility Bounds for Differentially Private Models: Smooth and Non-smooth

康艺霖,刘勇*,李健,王伟平

In CIKM 2022 (CCF B)


基于稳定性分析的非凸在线点对学习的遗憾界

郎璇聪,李春生,刘勇,王梅

计算机研究与发展(第九界中国数据挖掘会议最佳论文)


Non-IID Distributed Learning with Optimal Mixture Weights

Jian Li, Bojian Wei, Yong Liu, Weiping Wang

In ECML 2022 (CCF B)

下载: 论文文档


High Probability Guarantees for Nonconvex Stochastic Gradient Descent with Heavy Tails

Shaojie Li, Yong Liu*

In ICML 2022 (CCF A)

下载: 论文文档


Deep Safe Incomplete Multi-view Clustering: Theorem and Algorithm

Huayi Tang and Yong Liu*

In ICML 2022 (CCF A)

下载: 源代码 论文文档


Ridgeless Regression with Random Features

Jian Li , Yong Liu*, Yingying Zhang

In IJCAI 2022 (CCF A)

下载: 论文文档


Deep Safe Multi-view Clustering: Reducing the Risk of Clustering Performance Degradation Caused by View Increase

Huayi Tang, Yong Liu*

CVPR 2022 (CCF A)

下载: 论文文档


High Probability Generalization Bounds for Minimax Problems with Fast Rates

Shaojie Li, Yong Liu*

ICLR 2022

下载: 论文文档


Distributed Randomized Sketching Kernel Learning

Rong Yin, Yong Liu*, Dang Men

AAAI (CCF A)

下载: 论文文档


2021

Improved Learning Rates of a Functional Lasso-type SVM with Sparse Multi-Kernel Representation

Shaogao lv, Junhui Wang, Jiankun Liu, Yong Liu*

In: Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), CCF A, Spotlights (accept rate < 3%))

下载: 论文文档


Towards Sharper Generalization Bounds for Structured Prediction

Shaojie Li, Yong Liu*

In: Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), CCF A

下载: 论文文档


Refined Learning Bounds for Kernel and Approximate $k$-Means

Yong Liu

In: Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), CCF A, Spotlights (accept rate < 3%))

下载: 论文文档


Morphological feature visualization of Alzheimer's disease via Multidirectional Perception GAN

Wen Yu, Baiying Lei, Yong Liu, Zhiguang Feng, Yong Hu, Yanyan Shen, Shuqiang Wang, Michael K. Ng

IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021 (SCI 一区) (To Appear)

下载: 论文文档


Operation-level Progressive Differentiable Architecture Search

Xunyu Zhu, Jian Li, Yong Liu*, Weiping Wang

ICDM 2021

下载: 论文文档


Federated Learning for Non-IID Data: From Theory to Algorithm (Best Student Paper)

Bojian Wei, Jian Li, Yong Liu*, Weiping Wang

Proceedings of the 18th Pacific Rim International Conference on Artificial Intelligence (PRICAI)

下载: 论文文档


General Approximate Cross Validation for Model Selection: Supervised, Semi-supervised and Pairwise Learning

Bowei Zhu, Yong Liu*

Proceedings of The 29th ACM International Conference on Multimedia (ACM MM) (CCF A)

下载: 论文文档


Weighted distributed differential privacy ERM: Convex and non-convex

Yilin Kang, Yong Liu*, Ben Niu, Weiping Wang

Computers & Security (CCF B)

下载: 论文文档

链接: 链接


Distributed Nystrom Kernel Learning with Communications

Rong Yin, Yong Liu, Weiping Wang, Dan Meng

In: Proceedings of the 28th International Conference on Machine Learning (ICML), (CCF A)

下载: 论文文档


Sharper Generalization Bounds for Clustering

Shaojie Li, Yong Liu*

In: Proceedings of the 28th International Conference on Machine Learning (ICML), (CCF A)

下载: 论文文档


Effective Distributed Learning with Random Features: Improved Bounds and Algorithms

Yong Liu, Jiankun Liu, Shuqiang Wang

In: Proceedings of the 9th International Conference on Learning Representations (ICLR)

下载: 论文文档


2020

Extremely sparse Johnson- Lindenstrauss transform: From Theory to Algorithm

Rong Yin, Yong Liu*, Weiping Wang, Dang Men

In: Proceedings of the 20th IEEE International Conference on Data Mining (ICDM), 2020:1376-1381 (CCF B)

下载: 论文文档


Sketch Kernel Ridge Regression using Circulant Matrix: Algorithm and Theory.

Rong Yin, Yong Liu*, Weiping Wang, et al

IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 31(9): 3512-3524, 2020 (SCI 一区)

下载: 论文文档


Approximate Kernel Selection via Matrix Approximation.

Lizhong Ding, Shizhong Liao, Yong Liu, Li Liu, Fan Zhu, Yazhou Yao, Ling Shao, Xin Gao

IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2020. (CCF B)

下载: 论文附件


Automated Spectral Kernel Learning.

Jian Li, Yong Liu*, Weiping Wang

In: Proceedings of 34th Conference on Artificial Intelligence (AAAI), 2020: 4618-4625. (CCF A)

下载: 论文文档


Divide-and-Conquer Learning with Nyström: Optimal Rate and Algorithm

Rong Yin, Yong Liu*, Lijing Lu, Weiping Wang, Dan Meng

Proceedings of 34th Conference on Artificial Intelligence (AAAI), 2020: 6696-6703. (CCF A)

下载: 论文文档


Fast Cross-Validation for Kernel-based Algorithms

Yong Liu, Shizhong Liao, Shali Jiang, Lizhong Ding, Hailun Lin, Weiping Wang

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020,42(5):1083-1096. (CCF A)

下载: 论文附件


2019

Kernel Stability for Model Selection in Kernel-based Algorithms.

Yong Liu, Shizhong Liao, Hua Zhang, et al

IEEE Transactions on Cybernetics (TCYB), 2019. Online, DOI: 10.1109/TCYB.2019. 2923824. (SCI一区)

下载: 论文附件


Approximate Kernel Selection with Strong Approximate Consistency.

Lizhong Ding, Yong Liu, Shizhong Liao, Yu Li, Peng Yang, Yijie Pan, Chao Huang, Ling Shao, Xin Gao

In: Proceedings of 33th Conference on Artificial Intelligence (AAAI), 2019: 3462-3469.

下载: 论文附件


Linear Kernel Tests via Empirical Likelihood for High-Dimensional Data.

Lizhong Ding, Zhi Liu, Yu Li, Shizhong Liao, Yong Liu, Peng Yang, Ge Yu, Ling Shao, Xin Gao

In: Proceedings of 33th Conference on Artificial Intelligence (AAAI), 2019:3454-3461.

下载: 论文附件


Learning Structural Representations via Dynamic Object Landmarks Discovery for Sketch Recognition and Retrieval.

Hua Zhang, Peng She, Yong Liu, Jianhou Gan, Xiaochun Cao, Hassan Foroosh

IEEE Transactions on Image Processing (TIP), 2019, 28(9):4486-4499. (CCF A)

下载: 论文附件


Approximate Manifold Regularization: Scalable Algorithm and Generalization Analysis.

Jian Li, Yong Liu*, Rong Yin, et al

In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019:2887-2893. (CCF A)

下载: 论文文档


Multi-Class Learning using Unlabeled Samples: Theory and Algorithm.

Jian Li, Yong Liu*, Rong Yin , Weiping Wang

Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019: 2880-2886. (CCF A))

下载: 论文文档


Two Generator Game: Learning to Sample via Linear Goodness-of-Fit Test.

Lizhong Ding, Mengyang Yu, Li Liu, Fan Zhu, Yong Liu, Yu Li, Ling Shao

Advances in Neural Information Processing Systems 32 (NeurIPS), 2019:11257-11268. (CCF A)

下载: 论文附件


2018

Randomized Kernel Selection With Spectra of Multilevel Circulant Matrices.

Lizhong Ding, Shizhong Liao, Yong Liu, Peng Yang, Xin Gao

Proceedings of 32rd Conference on Artificial Intelligence (AAAI), 2018: 2910-2917.


Fast Cross-Validation.

Yong Liu, Hailun Lin, Lizhong Ding, et al

In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2910-2917, 2018. (CCF A)

下载: 论文附件


Multi-Class Learning: From Theory to Algorithm.

Jian Li, Yong Liu*, Rong Yin, et al

Advances in Neural Information Processing Systems 31 (NeurIPS), 1593-1602, 2018. (CCF A)

下载: 论文文档


2017

Granularity selection for cross-validation of SVM.

Yong Liu, Shizhong Liao

Information Sciences, 2017, 475-483. ( CCF B)

下载: 论文附件


Efficient Kernel Selection via Spectral Analysis.

Jian Li, Yong Liu, Hailun Lin

In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), 2017: 2124-2130. (CCF A)

下载: 论文附件


Infinite Kernel Learning: Generalization Bounds and Algorithms.

Yong Liu, Shizhong Liao, Hailun Lin, et al

In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), 2017, 2280-2286. (CCF A)

下载: 论文附件


Generalization Analysis for Ranking Using Integral Operator,

Yong Liu, Shizhong Liao, Linhai Lun, et al

In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), 2017: 2273-2279. (CCF A)

下载: 论文附件


2016

基于积分算子空间显示描述的框架核选择方法

刘勇,廖士中

中国科学: 信息科学, 2016, 46(2), 165–178. (CCF A 中文期刊)

下载: 论文附件


2015

Eigenvalues ratio for kernel selection of kernel methods

Yong Liu, Shizhong Liao

In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), 2015: 2814–2820. (CCF A)

下载: 论文附件


2014

Preventing Over-Fitting of Cross-Validation with Kernel Stability

Yong Liu, Shizhong Liao

In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML), 2014:290–305. (CCF B)

下载: 论文附件


基于近似高斯核显式描述的大规模 SVM 求解.

刘勇,江沙里,廖士中

计算机研究与发展,2014, 51(10):2171-2177. (CCF A 中文期刊)

下载: 论文附件


Kernel selection with spectral perturbation stability of kernel matrix

Yong Liu, Shizhong Liao

Science China Information Sciences, 2014, 57: 112103(10) (CCF B)

下载: 论文附件


Efficient Approximation of Cross-validation for Kernel Methods using Bouligand Influence Function

Yong Liu, Shali Jiang, Shizhong Liao

In: Proceedings of The 31st International Conference on Machine Learning (ICML). 2014, 324-332. (CCF A)

下载: 论文附件


2013

Eigenvalues Perturbation of Integral operator for Kernel Selection

Yong Liu, Shali Jiang, Shizhong Liao

In: Proceedings of the 22nd ACM International Conference on Information and Knowledge management (CIKM), 2013:2189-2198. (CCF B)

下载: 论文附件


2011

Learning kernels with upper bounds of leave-one-out error

Yong Liu*, Shizhong Liao, Yuexuan-Hou

In: Proceedings of the 20th ACM International Conference on Information and Knowledge management (CIKM), 2011:2205-2208. (CCF B)

下载: 论文文档

荣誉奖励

2021年 Best Student Paper PRICAI 2021

2019年中国科学院“青促会”人才称号

2017年中国科学院信息工程研究所“引进优秀人才”称号

2012年博士研究生国家学术新人奖

Best Paper Award of The 2nd PAKDD Doctoral Symposium on Data Mining

社会兼职

AAAI 2021 高级程序委员

IJCAI 2020,IJCAI 2019 高级程序委员

NeurIPS 2020 2021 程序委员

AAAI 2020,程序委员

ICML 2019 2020 2021,程序委员

ICLR 2021,程序委员

联系

邮箱:liuyonggsai@ruc.edu.cn

个人网页:https://iie-liuyong.github.io/