
Approximate Manifold Regularization:
Scalable Algorithm and Generalization Analysis

Jian Li1,2 , Yong Liu1 , Rong Yin1,2 and Weiping Wang1∗

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

{lijian9026, liuyong, yinrong, wangweiping}@iie.ac.cn

Abstract
Graph-based semi-supervised learning is widely
used and very successful under the circumstance of
a few labeled samples and lots of unlabeled sam-
ples. Unfortunately, it suffers from high time and
memory requirements that are at least O(n2) for n
training samples. In this paper, we propose a novel
graph-based semi-supervised learning framework,
substantially improving computational efficiency
and reducing memory requirements. Theoretical
analysis shows our framework achieves good sta-
tistical properties withO(n) memory andO(n

√
n)

time. Extensive empirical results reveal that our
method achieves the state-of-the-art performance in
a short time even with limited computing resources.

1 Introduction
Recently, the explosive growth of computing power and ap-
plications of the network makes data generation and acqui-
sition more easily. However, most of the collected data are
unlabeled, while data annotation is laborious. Further, semi-
supervised learning (SSL) methods are developed to esti-
mate specific learner from a few labeled samples together
with a significant amount of unlabeled data, such as trans-
ductive support vector machines [Joachims, 1999] and graph-
based methods [Belkin et al., 2006; Camps-Valls et al., 2007].
Graph-based manifold regularization methods draw wide at-
tention of SSL area due to their good performance and rela-
tive simplicity of implementation [Belkin et al., 2006]. De-
spite those advantages of manifold regularization, it remains
challenges to process gigantic datasets, for suffering high
computational complexity, typically kernel matrix related op-
erations at least O(n2) and construction of graph Laplacian
at least O(n log n), where n is total sample size.

To tackle those scalability issues, many approaches were
proposed [Liu et al., 2012; Jiang et al., 2017; Liu et al., 2019]:
(1) Accelerate construction of Laplacian graph. Methods
based on the fast spectral decomposition of Laplacian ma-
trix have been well-studied in [Talwalkar et al., 2013], which
use a few eigenvalues of graph Laplacian to represent man-
ifold structure. Graph sparsification approaches were de-
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vised to approximate Laplacian graph by a line or spanning
tree [Cesa-Bianchi et al., 2013] and improved by minimiz-
ing tree cut (MTC) in [Zhang et al., 2016]. (2) Acceler-
ate operations associated with kernel matrix. Several dis-
tributed approaches have been applied to semi-supervised
learning [Chang et al., 2017], decomposing a large scale
problem into smaller ones. Anchor Graph regularization
(Anchor) constructs an anchor graph with the training sam-
ples and a few anchor points to approximate Laplacian graph
[Liu et al., 2010]. The work of [McWilliams et al., 2013;
Rastogi and Sampath, 2017] applied random projections in-
cluding Nyström methods and random features into mani-
fold regularization. Gradient methods are introduced to solve
manifold regularization on the primal problem, such as pre-
conditioned conjugate gradient [Melacci and Belkin, 2011],
stochastic gradient descent [Wang et al., 2012].

In this paper, we focus on the latter scalability issue. With
sound theoretical guarantees, we devise a novel graph-based
SSL framework, substantially reducing computational time
and memory requirements. More precisely, our approach ap-
proximates Laplacian regularized least squares (LapRLS) by
Nyström methods and then accelerates the solution with pre-
conditioned conjugate gradient methods. It’s a non-trivial ex-
tension of FALKON [Rudi et al., 2017] to graph SSL with
technical challenges in algorithm design and theoretical anal-
ysis. Theoretical analysis demonstrates that O(

√
m) labeled

samples and O(logm) iterations (m is the number of labeled
samples) can guarantee good statistical properties. Complex-
ity analysis shows our method solve LapRLS with O(n

√
n)

time and O(n) space (n is the number of all samples).

2 Related Work
To overcome the computational and memory bottleneck of
LapRLS, practical algorithms were developed, including
Nyström methods [Williams and Seeger, 2001] of which
statistical properties are well studied in [Rastogi and Sam-
path, 2017], and preconditioned conjugate gradient (PCG)
which reduces the number of iterations [Cutajar et al., 2016].
FALKON approach combines Nyström methods and PCG in
supervised learning [Rudi et al., 2017]. Further, our work ex-
tends the combination to SSL with high computation gains
and sound statistical guarantees. The approach improves
computational efficiency fromO(n3) toO(n

√
n) and reduce

memory cost from O(n2) to O(n).



3 Preliminaries
3.1 Problem Definition
Assume there is a fixed but unknown distribution ρ on X ×Y ,
where X = Rd and Y = R. Further, m labeled samples
{(x1, y1), · · · , (xm, ym)} ∈ X×Y are drawn i.i.d from ρ and
n − m unlabeled samples {xm+1, · · · ,xn} ∈ X are drawn
i.i.d according to the marginal distribution ρX of ρ.

3.2 Manifold Regularization
Manifold learning methods based on the spectral graph,
known as graph-based SSL, is a typical solution to semi-
supervised learning [Zhu et al., 2003; Belkin et al., 2006],
which is to find a smooth low-dimensional manifold embed-
ded in the high-dimensional vector space, based on sample
points. Correctly, Laplacian regularization [Belkin et al.,
2006] is extensively used in graph-based SSL.

For a Mercer kernelK : X×X → R, there is an associated
reproducing kernel Hilbert space (RKHS) H of functions f :
X → R with corresponding norm ‖ · ‖H. The following
optimization is considered in manifold regularization:

f̂λ = argmin
f∈H

m∑
i=1

`(yi, f(xi)) + λA‖f‖2H + λIf
TLf , (1)

where ` is loss function, L is Laplacian matrix by L =
D −W, f = [f(x1), · · · , f(xn)]T , λA controls the com-
plexity of the function in the ambient space, and λI controls
the complexity of the function in the intrinsic space. Here,
W ∈ Rn×n records undirected weight between points and
the diagonal matrix D is given by Dii =

∑n
j=1Wij .

The minimizer of the optimization problem (1) admits an
expansion in terms of both labeled and unlabeled data

f̂λ(x) =

n∑
i=1

αiK(xi,x).

3.3 Laplacian Regularized Least Squares
(LapRLS)

With squared loss function, the problem (1) becomes LapRLS

argmin
f∈H

m∑
i=1

(yi − f(xi))2 + λA‖f‖2H + λIf
TLf . (2)

Setting the derivative of the objective function be zero leads
a closed form solution

α̂ = (JK+ λAI+ λILK)−1yn, (3)
where Kij = K(xi,xj) is n× n kernel matrix on train data,
J = diag(1, · · · , 1, 0, · · · , 0) with the firstm diagonal entries
as 1 and the rest 0, and yn = [y1, y2, · · · , ym, 0, · · · , 0]T
with corresponding m labels and the rest filled by 0. Note
that when λI = 0, Equation (3) gives zero coefficients over
unlabeled data, thus the form reduces to the standard RLS.

4 Algorithm
We devise a fast and scalable graph-based semi-supervised
learning framework Nyström-PCG shown as Algorithm 1,
which consists of two steps: (1) Nyström with uniform sam-
pling on train data for the LapRLS problem, resulting in a
linear system Hα = z. (2) Define a preconditioner P to ap-
proximate H, and then solve P−1Hα = P−1z by PCG.

4.1 Nyström subsampling on LapRLS
We consider Nyström subsampling to reduce memory re-
quirement, which uses a smaller matrix obtained from ran-
dom column sampling to approximate the empirical kernel
matrix. Thus, a smaller hypothesis spaceHs is introduced

Hs = {f ∈ H|f =

s∑
i=1

αiK(xi, ·),α ∈ Rs},

where s ≤ n and xs = (x̃1, · · · , x̃s) are Nyström centers
selected by uniform subsampling from the training set. The
minimizer of LapRLS (2) over the spaceHs is in the form:

f̂sλ(x) =

s∑
i=1

αiK(xi,x), with

α = (KT
msKms + λAKss + λIK

T
nsLKns︸ ︷︷ ︸

H

)†KT
msy︸ ︷︷ ︸
z

,
(4)

where H† denotes the Moore-Penorse pseudoinverse of a ma-
trix H, (Kms)ij = K(xi, x̃j) with i ∈ {1, · · · ,m} and j ∈
{1, · · · , s}, (Kss)kj = K(x̃k, x̃j) with k, j ∈ {1, · · · , s}
and y = [y1, · · · , ym]T ∈ Rm.

4.2 Solving the linear system by preconditioning
Nyström subsampling for LapRLS problems resulting solu-
tion (4) is also a linear system, so we consider how to accel-
erate the solution by preconditioning that is

P−1Hα = P−1z.

As we all know, the number of iterations for precondition-
ing methods depends on the condition number cond(P−1H),
such that the preconditioner needs to be approximate to H. To
obtain a smaller condition number but also avoid inefficient
computation, we define the following preconditioners:

• m ≤
√
n

P = KT
msKms + λAKss +

λIn
2

s2
KssLssKss. (5)

• m >
√
n

P =
m

s
KT
ssKss + λAKss +

λIn
2

s2
KssLssKss. (6)

In each iteration of any PCG solver, calculation of Hα is
needed. To accelerate computation, Hα is decomposed into
a series of matrix-vector multiplications

Hα = KT
ms(Kmsα) + λAKssα+ λIK

T
ns(L(Knsα)). (7)

Remark 1. We use LU or QR decomposition to calculate
matrix inversion P−1 because they show significant improve-
ment in speed than Cholesky decomposition.

Remark 2. The storage of kernel matrix Kns needs at least
O(ns) memory, but it turns to be O(s2) when we perform
matrix multiplications in s× s blocks.



Algorithm 1 Nyström LapRLS with PCG (Nyström-PCG)

Input: m labeled samples {(xi, yi)}mi=1, n − m unlabeled
samples {xj}nj=m+1. Parameters: λA, λI , kernel method
K and subsampling size s.

Output: coefficients α
1: Construct Laplacian graph matrix L.
2: Select s Nyström centers with uniform sampling from

training set {x̃1, · · · , x̃s} ∈ {x1, · · · ,xn}.
3: Calculate inverse of the preconditioner (5) or (6) P−1 by

LU or QR decomposition.
4: Use any PCG solver to solve P−1Hα = P−1z with cal-

culating Hα by Eq. (7) and performing matrix multipli-
cation in blocks.

4.3 Complexity Analysis
Time complexity. Before the start of iterations, we need to
compute the preconditioner P, which needsO(ms2+s2+s3)
time for (5) and O(s3) time for (6). The inverse of precondi-
tioner P−1 needs O(s3) as well.

In each iteration of PCG, calculation of Hα and P−1v are
needed, where v represents a vector Hα or z. For P−1v, it
just needs O(s2) for matrix-vector multiplication. And com-
putation for Hα as in Eq. (7), it needsO(ms+s2+ns+nk)
where L is usually a sparse matrix which is almost at n × k
size. Thus, each iteration needs O(ns) time.

Combing calculation of P−1 and t iterations of PCG, total
time complexity is O(s3 + nst).
Space complexity. Main memory requirement comes from
storing Kns which is at O(ns) and L which is at O(nk).
Because k � s is a small constant, the space complexity is
stillO(ns). Indeed, matrix multiplications are performed in a
series of s× s blocks so that space complexity can be O(s2).

5 Theoretical Result
Define f̂sλ,t as the estimator of Nyström-PCG. The goal of
nonparametric regression is to minimize the excess risk:

E(f) =
∫
X×Y

(f(x)− y)2dρ(x, y).

Under some basic conditions in nonparametric learning, we
derive the excess risk bound for Nyström-PCG.
Assumption 1 (Basic assumptions). (1) There exists κ ≥ 1
such that K(x, x) ≤ κ2 for any x ∈ X . (2) There exists
fH ∈ H, such that E(fH) = inff∈H E(f).
Theorem 1. Let η ∈ (0, 1] and m0 ∈ N. Under Assumption
1 and assume |y| ≤ b, ∀b > 0, if m ≥ m0 and

λ =
8κ2√
m

log

(
4

η

)
, s ≥ 5(67 + 20

√
m) log

48κ2n

η

t ≥ 1

2
logm+ 2 log(2b+ 3κ) + 5,

then the following holds with probability at least 1− η,

E(f̂sλ,t)− E(fH) ≤
c0 log

2 24
η√

m
,

where the constant m0 is independent on λ, s,m, t and the
constant c0 is independent on λ, s,m, t, η.

Estimators Time Space
RLS-Direct O(m3) O(m2)
LapRLS-Direct O(n3) O(n2)
LapRLS-CG O(n2.5) O(n2)
LapRLS-PCG O(n2) O(n2)
Nyström-Direct O(n2) O(n)
Nyström-CG O(n1.75) O(n)
Nyström-PCG O(n1.5) O(n)

Table 1: Summary of time complexity and space complexity in terms
of various methods. Here, we omit logarithmic terms.

The above result provides the desired bound and proof de-
tails are deferred in the appendix. Under basic assumptions,
the obtained learning rate is the same as the full KRR es-
timator and is optimal in a minmax sense [Caponnetto and
De Vito, 2007]. Theorem 1 shows that O(

√
m) Nyström la-

beled points and O(logm) iterations can obtain O(1/
√
m)

learning rate. In practical, we sampled uniformlyO(
√
m) la-

beled points and O(
√
n−m) unlabeled points, thus the size

of sampled examples is s = O(
√
m +

√
n−m) = O(

√
n).

Therefore, with omitting logarithmic terms, the proposed ap-
proach needs O(n1.5) time and O(n) space.

6 Compared methods
In this part, we introduce compared methods including the
standard RLS, LapRLS and Nyström LapRLS. Results in Ta-
ble 1 show that the proposed approach Nyström LapRLS with
PCG (Nyström-PCG) can remarkably reduce memory re-
quirements and improve computational efficiency.
Standard RLS (RLS) To predict labels on unseen data, a
simple way is to use standard RLS only with labeled data

f∗(x) =

m∑
i=1

α∗iKmm(xi,x), α
∗ = (Kmm + λI)−1y,

where Kmm is the empirical kernel matrix on labeled data
and y is corresponding labels. The computation cost is stan-
dard, requiring O

(
m3) time and O

(
m2) memory.

Laplacian Regularized Least Squares (LapRLS) The
linear system of LapRLS has been derived in (3) is

f̂λ(x) =

n∑
i=1

α̂iK(xi,x), α̂ = (JK+ λAI+ λILK)−1yn.

In terms of LapRLS, the space complexity is O(n2),
but time complexity depends on optimization algorithms,
O(n3) for matrix inversion andO(n2t) for gradient methods.
Specifically, the number of iterations is t = O(

√
n log n) for

CG and t = O(log n) for PCG [Rudi et al., 2017].
LapRLS with Nyström subsampling (Nyström) The lin-
ear system of LapRLS with Nyström subsampling to over-
come memory bottleneck has been given in (4). Accord-
ing to Theorem 1, we set the number of Nyström centers
be s = O(

√
n). Space complexity of Nyström LapRLS is

O(s2) by matrix blocks multiplications, that is O(n). For di-
rect methods, time complexity depends on computing H with
O(ns2), that is O(n2). For CG methods, time complexity is
O(nst) where t = O(

√
s log s), that is O(n1.75).



dataset sample size RLS-CG LapRLS-CG LapRLS-PCG Nyström-CG Nyström-PCG

madelon 2000 1.036±0.009 0.990±0.007 0.990±0.007 0.991±0.009 0.991±0.009
space ga 3107 1.251±0.004 1.210±0.004 1.210±0.004 1.210±0.004 1.210±0.004
abalone 4177 4.55±0.2×103 4.17±0.1×103 4.17±0.1×103 4.18±0.1×103 4.18±0.1×103
phishing 11055 0.426±0.049 0.294±0.005 0.273±0.007 0.295±0.005 0.275±0.008
a8a 22696 0.702±0.002 0.664±0.002 0.664±0.002 0.664±0.002 0.664±0.002
w7a 24692 0.291±0.002 0.283±0.002 0.283±0.002 0.284±0.002 0.284±0.002
a9a 32561 0.698±0.005 0.664±0.000 0.664±0.002 0.664±0.000 0.664±0.002
ijcnn1 49990 0.434±0.005 0.389±0.002 0.389±0.002 0.393±0.001 0.463±0.001
cod-rna 59535 0.686±0.002 / / 0.614±0.001 0.614±0.001
connect-4 67757 0.781±0.015 / / 0.739±0.002 0.739±0.002
skin nonskin 245057 3.119±0.023 / / 2.620±0.043 2.620±0.043
YearPrediction 463715 0.198±0.001 / / 0.187±0.001 0.187±0.001

Table 2: Comparison of average root mean square error between Nyström-PCG and RLS-CG, LapRLS-CG, LapRLS-PCG, Nyström
LapRLS-CG. We bold the best results and underline the results of the other methods which are not significantly worse than the best one.

RLS-CG LapRLS-CG LapRLS-PCG Nyström-CG Nyström-PCG
iter time iter time iter time iter time iter time

madelon 32 0.003 13 0.029 6 0.032 12 0.043 1 0.006
space ga 11 0.004 23 1.220 5 0.569 23 0.113 2 0.016
abalone 64 0.053 98 26.50 4 0.903 94 0.363 2 0.067
phishing 74 0.031 300 24.20 56 8.210 300 2.470 3 0.045
a8a 100 0.068 50 189.1 3 20.98 50 44.71 1 4.370
w7a 13 0.072 32 143.2 2 9.683 213 107.7 1 2.252
a9a 300 0.529 64 1699 3 30.30 65 70.40 1 4.034
ijcnn1 242 8.204 57 2154 9 72.41 53 108.8 5 4.186
cod-rna 96 7.178 / / / / 55 134.6 7 8.154
connect-4 103 11.07 / / / / 154 186.5 10 4.220
skin nonskin 43 91.39 / / / / 65 1490 3 40.05
YearPrediction 37 236.5 / / / / 94 2479 2 116.1

Table 3: Comparison of average number of iterations and running time (seconds).

7 Empirical Study
In this section, we conduct empirical experiments of some
SSL methods on a range of datasets. We compare five ap-
proaches, including standard RLS using CG, LapRLS and
Nyström LapRLS in terms of CG and PCG. Nyström LapRLS
using PCG is our proposed method, named Nyström-PCG.

Scalable datasets from thousand to hundreds of thousand
are used. We apply 8-NN to construct adjacency matrix
with weight Wij = exp−‖xi−xj‖2/4 as using in many litera-
tures. For each dataset, we use Gaussian kernel K(xi,xj) =
exp(−‖xi − xj‖/2σ2). We choose kernel parameter σ and
regular parameters (λ in standard RLS and λA, λI in LapRLS
methods) in 2i, i ∈ {−15,−14, · · · , 14, 15}, by minimizing
test error via 10-folds cross-validation.

7.1 Accuracy and Speed
Using the chosen parameters determined by 10-folds cross-
validation, we run all methods 30 times with randomly se-
lect 70% for training and 30% for testing on each dataset.
Meanwhile, we randomly select 10% samples (m = 0.1n) as
labeled data and 10% samples (s = 0.1n) as Nyström cen-
ters. The use of multiple training/testing partitions allows an

estimate of statistical significance between best one and the
remainder referring to 95% level of significance under t-test.

Table 2 reports the average root mean square error (RMSE)
and Table 3 reports the number of iterations and running time,
can be summarized as follows: (1) RLS is defended by other
methods using Laplacian regularization on all datasets, while
LapRLS-CG or LapRLS-PCG gives the best results almost on
all datasets. (2) There is no significant difference in error rate
between LapRLS methods and Nyström LapRLS methods.
(3) LapRLS-CG and LapRLS-PCG failed on large datasets
because of memory limitation. (4) CG and PCG always result
in the same accuracy, but PCG need much smaller iterations
thus cost less time. (5) Our method Nyström-PCG achieves
similar accuracy as LapRLS methods with tens to hundreds
of times speeding up.

7.2 Influence of label proportion
To explore influence of different label proportions, we let m
vary from n × {1%, 2%, 4%, 8%, 16%, 32%, 64%} and fix
sample size as s = 0.1n. Despite different convergence
speed, CG and PCG lead similar accuracies thus we merge
them in the graph related accuracy. By repeating the proce-
dure 20 times for different labeled/unlabeled splits on eight
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Figure 1: Average RMSE for different labeled data proportion.

datasets, we report results in Figure 1. We can see that: (1)
LapRLS methods are always better than the RLS method,
but the difference becomes smaller when labeled partition
m becomes larger. (2) Average accuracies of LapRLS and
Nyström LapRLS are close when the partition of labeled data
is big enough. (3) The standard deviation of all methods be-
comes smaller as the increase of labeled samples.

7.3 Influence of sample proportion
To explore influence of different sample proportions, we let s
vary from n× {1%, 2%, 4%, 8%, 16%, 32%, 64%} and fixed
labeled sample as m = 0.1n. After repeating experiments on
three different optimizations 20 times on different sample size
but same labeled/unlabeled splits on eight datasets, we report
results in Figure 2. We can see that: (1) RLS and LapRLS
methods always give the same results because they are run
on the same labeled/unlabeled splits. (2) Average accuracies
Nyström LapRLS become closer to LapRLS as increase with
sample size. (3) Nyström methods can achieve good approx-
imation when the sampled proportion is larger than 10%.

8 Conclusion
In this paper, with sound theoretical guarantee, we use
Nyström subsampling on LapRLS and solve the linear sys-
tems with PCG, substantially reducing memory and compu-
tational costs. More precisely, the theoretical analysis pro-
vides good convergence rates for Nyström subsampling and
Nyström subsampling with PCG, suggesting that O(

√
m)

sample size and O(logm) iterations can achieve O(1/
√
m)

error bound. Then complexity analysis show our method
achieve good statistical accuracy with O(n

√
n) time and

O(n) space. Empirical results show our method achieves
similar prediction accuracy to LapRLS with higher compu-
tational efficiency and less memory requirement.
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Figure 2: Average RMSE for different sample proportion.

9 Proof
Based on integral operator framework and common assump-
tions, we firstly derive the excess risk bound for LapRLS with
Nyström E(f̃sλ) − E(fH). And then we prove the excess risk
bound E(f̂sλ,t)− E(fH) for Nyström-PCG in Theorem 1.

Firstly, we introduce definition of the integral operator and
standard assumptions in statistical learning [Caponnetto and
De Vito, 2007; Liu et al., 2014; Li et al., 2018] and approxi-
mation theory [Rudi et al., 2015; Rastogi and Sampath, 2017;
Liu et al., 2018].
Definition 1 (Integral operator and the effective dimension).
Let LK : L2(X , ρX)→ L2(X , ρX) be integral operator

(LKg)(x) =

∫
X
K(x, z)g(z)dρX(z), ∀g ∈ L2(X , ρX),

where L2(X , ρX) = {f : X → R | ‖f‖2ρ =
∫
|f(x)|2dρX <

∞} and the effective dimension is defined as

N (λ) = Tr
(
(LK + λI)−1LK

)
.

The effective dimension N (λ) measures the size of H and
there exists Q > 0 such that always holds N (λ) ≤ Q2λ−1.
The following Assumption 2 is satisfied when y is bounded,
sub-gaussian or sub-exponential.
Assumption 2 (Moment assumption). Assume there exists
M > 0 and σ > 0, such that for all l ≥ 2 with l ∈ N,∫

R
|y|ldρ(y|x) ≤ 1

2
l!M l−2σ2.

Assumption 3 (Regularity assumption). Assume there exists
r ∈ [1/2, 1] and g ∈ L2(X , ρX), such that

fH(x) = (Lrg)(x) and ‖g‖H ≤ R.



Assumption 3 controls the regularity of fH and is common
in statistical learning [Caponnetto and De Vito, 2007]. It is
always satisfied with r = 1/2.

We consider a more general multi-penalty regularization
scheme for Nyström subsampling LapRLS:

f̃sλ = argmin
f∈Hs

1

m

m∑
i=1

||f(xi)− yi||2Y

+ λ||f ||2H +

p∑
j=1

λj ||Bjf ||2H,

where Bj : H → H (1 ≤ j ≤ p) are bounded operators,
λ > 0, λj (1 ≤ j ≤ p) are non-negative real numbers.

Theorem 2 (Excess risk bound for Nyström LapRLS). Let
η ∈ [0, 1]. Assume there exists some constants M,σ. Un-
der Assumption 1, 2 and 3, for sufficiently large sample ac-
cording to λ ≥ 8κ2

√
m
log
(

4
η

)
and for subsampling according

to s ≥ max
{
67 log

(
12κ2

λη

)
, 2κ2 log

(
12κ2

λη

)}
, the conver-

gence rate of f̃sλ holds with probability at least 1− η[
E(f̃sλ)−E(fH)

]1/2
≤ c1λr + c2

Bλ
λ

+

{
8κM

m
√
λ
+ 8σ

√
N (λ)

m

}
log

(
6

η

)
,

(8)

where the constant c1 and c2 do not depend on λ, s,m, t, η,
Bλ = ||

∑p
j=1 λjB

∗
jBj ||, s is the sample size on labeled data.

Proof. Following proof details of Theorem 3.1 in [Rastogi
and Sampath, 2017], there holds

||ψ(LK)(fsz,λ − fH)||H ≤ ψ(λ)
{
c1φ(λ) + c2

Bλ
λ3/2

+
(8κM
mλ

+ 8σ

√
N (λ)

mλ

)
log
(4
η

)}
,

where c1 = 6R+(5+cψ)(3+cφ)R, c2 = (5+cψ)||fH||ρ and
Bλ = ||

∑p
j=1 λjB

∗
jBj ||. Assumption 3 is always satisfied

with fH(x) = (Lrg)(x) thus φ(λ) = λr−1/2, ψ(λ) = λ1/2

and ψ(LK) = L
1/2
K . There holds

||L1/2
K (fsz,λ − fH)||H ≤ c1λr + c2

Bλ
λ

+
{ 8κM
m
√
λ
+ 8σ

√
N (λ)

m

}
log
(6
η

)
.

Using the fact ε(f)−ε(fH) = ||L1/2
K (f−fH)||2H for any f ∈

H [Caponnetto and De Vito, 2007], we obtain the result.

Proof of Theorem 1. The proof is mainly following proof
techniques of Theorem 8 and Theorem 3 in [Rudi et al.,
2017]. Let f̃sλ,t

be the estimator in Nyström LapRLS opti-
mization after t ∈ N iterations. Theorem 8 of [Rudi et al.,
2017] gives the connection between E(f̃sλ,t) − E(fH) and

E(f̃sλ)−E(fH). Following proof steps in Theorem 8 of [Rudi
et al., 2017], there holds[

E(f̃sλ,t)− E(fH)
]1/2

≤c3λr + c2
Bλ
λ

+

{
8κM

m
√
λ
+ 8σ

√
N (λ)

m

}
log

(
24

η

)
when the Nyström centers are uniformly sampled and

s ≥ 70

[
1 +

κ2

λ

]
log

48κ2

λη
, t ≥ 2 log

8(b+ κ||fH||H)
Rλr

where c3 = 10R+(5+ cψ)(3+ cφ)R, c2 = (5+ cψ)||fH||ρ,
Bλ = ||

∑p
j=1 λjB

∗
jBj ||.

Assumption 3 is satisfied with r = 1/2. From Theorem
3.2 of [Rastogi and Sampath, 2017], we set λj = λr+1, thus
Bλ ≤ cpλ

r+1, where cp > 0 only depends on the number
of penalty terms. Applying N (λ) ≤ Q2λ−1, r = 1/2 and
λ = cλm

−1/2 where cλ = 8κ2 log
(

4
η

)
, we have[

E(f̃sλ,t)− E(fH)
]1/2

≤c3λr + c2
Bλ
λ

+

{
8κM

m
√
λ
+ 8σ

√
N (λ)

m

}
log

(
24

η

)
≤c3c1/2λ m−1/4 + c2cpc

1/2
λ m−1/4

+(8κMc
−1/2
λ m−3/4 + 8σQc

−1/2
λ m−1/4) log

(24
η

)
≤(c3c1/2λ + c2cp + 8κM + 8σQ) log

(24
η

)
m−1/4.

Therefore, the excess risk bound of Nyström-PCG holds

E(f̃sλ,t)− E(fH) ≤
c0 log2 24

η√
m

, (9)

where c0 = (c3c
1/2
λ +c2cp+8κM+8σQ)2. With conditions

m ≥ max
( 1

‖LK‖
+ 82κ2 log

373κ2
√
η

)2
,

s ≥ 5(67 + 20
√
m) log

48κ2n

η
, λ =

8κ2√
m

log

(
4

η

)
,

(10)

satisfying conditions required by Theorem 8 of [Rudi et al.,
2017] and Assumption 2 is satisfied by M = σ = 2b, thus

t ≥ 1

2
logm+ 2 log(2b+ 3κ) + 5. (11)

Combining (9), (10) and (11), we complete the proof.
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