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Kernel Stability for Model Selection in
Kernel-Based Algorithms

Yong Liu , Shizhong Liao , Hua Zhang , Wenqi Ren, and Weiping Wang

Abstract—Model selection is one of the fundamental prob-
lems in kernel-based algorithms, which is commonly done by
minimizing an estimation of generalization error. The notion of
stability and cross-validation (CV) error of learning machines
consists of two widely used tools for analyzing the generaliza-
tion performance. However, there are some disadvantages to both
tools when applied for model selection: 1) the stability of learning
machines is not practical due to the difficulty of the estimation
of its specific value and 2) the CV-based estimate of generaliza-
tion error usually has a relatively high variance, so it is prone
to overfitting. To overcome these two limitations, we present a
novel notion of kernel stability (KS) for deriving the generaliza-
tion error bounds and variance bounds of CV and provide an
effective approach to the application of KS for practical model
selection. Unlike the existing notions of stability of the learning
machine, KS is defined on the kernel matrix; hence, it can avoid
the difficulty of the estimation of its value. We manifest the rela-
tionship between the KS and the popular uniform stability of the
learning algorithm, and further propose several KS-based gener-
alization error bounds and variance bounds of CV. By minimizing
the proposed bounds, we present two novel KS-based criteria that
can ensure good performance. Finally, we empirically analyze the
performance of the proposed criteria on many benchmark data,
which demonstrates that our KS-based criteria are sound and
effective.

Index Terms—AutoML, cross-validation (CV), generalization
error, kernel methods, kernel selection, model selection, stability.

I. INTRODUCTION

MODEL selection is a key issue in statistical learning [1],
and its target is to estimate the generalization error

and the choice of an appropriate hypothesis space [2]. In
kernel-based algorithms [3], [4], such as SVM [1], kernel
ridge regression (KRR) [5] and least squares SVM [6], the
reproducing kernel Hilbert spaces (RKHSs) are the candidate
hypothesis spaces which are determined on the choice of the
kernel function.
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The common approach to estimate the generalization error is
via testing on some unused data or via a theoretical bound [7].
To estimate the theoretical bound of generalization error of
learning machines, some measures of complexity of space are
introduced, such as cover number [8], [9]; VC dimension [1];
Rademacher complexity [10]; maximal discrepancy [11];
radius-margin bound [1], [12]; span bound [7], [13]; com-
pression coefficient [14]; Bayesian regularization (BR) [15];
influence function [16]; eigenvalues perturbation [12]; local
Rademacher complexity [17]–[20]; eigenvalues ratio [18],
spectral measure [21]; etc. Minimizing an empirical estimation
of the generalization error of learning machine is an alter-
native for model selection [22], [23]. Cross-validation (CV)
is the most widely used empirical estimation. However, the
CV-based estimates of generalization error have a relatively
high variance, that is, the estimates of performance are highly
variant, dependent on the training data. Thus, it is prone to
overfitting [15], [24]–[26].

In recent years, several notions of stability of learning algo-
rithm have been introduced for deriving theoretical generaliza-
tion bounds to estimate the generalization error. Algorithmic
stability was first introduced by Devroye and Wagner [27] for
analyzing of the leave-one-out CV error. Kearns and Ron [28]
studied it further and proposed a new notion of stabil-
ity, called error stability, to derive sanity-check bounds.
Bousquet and Elisseeff [29] introduced a stronger notion of
uniform stability, and manifested that it could be used to obtain
tight bounds. Moreover, they showed that it could be applied
to large classes of algorithms. The relationship between sta-
bility and consistency was studied by Poggio et al. [30].
Cortes et al. [31] introduced the algorithmic stability, and
further used it to prove generalization bounds. The stability-
based bounds for kernel approximation were proposed by
Cortes et al. [32], [33]. The connection between stabil-
ity, uniform convergence, and learnability was studied by
Shalev-Shwartz et al. [34]. Gao and Zhou [35] extended
the above results, and studied the relationship between
uniform convergence, stability, and learnability of ranking.
Unfortunately, the focus of these stabilities is to obtain the the-
oretical generalization bounds, and are hard to estimate their
specific values [36], making them unusable for practical model
selection.

In this paper, we present a model selection method via a
newly defined stability, called kernel stability (KS). Unlike
the existing notions of stability of the learning machine,
see [28]–[30], [32], [33], [36], [37], KS is defined via the
kernel matrix, which can be easily estimated according to the
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Fig. 1. Main work. We first establish the relationship between KS and
the popular uniform stability of the learning algorithm for LSSVM, KRR,
and SVM. Then, we derive several KS-based generalization error bounds and
variance bounds of CV. Finally, we propose two novel KS-based criteria by
minimizing the derived bounds.

available data. We manifest that KS can be used to prove upper
bounds of generalization error and variance of CV for SVM,
KRR, and LSSVM. Furthermore, we propose two novel KS-
based model selection criteria: 1) by minimizing the bounds
of generalization error, which can ensure good generalization
performance and 2) by controlling the bounds of CV, which
can avoid the high variance of CV.

Our proposed criteria have a sound theoretical foundation,
and can also be validated by experimental results. The main
work is shown in Fig. 1.

This paper is an extension of our previous work published
in ECML [38], compared with [38], this paper contains many
new contents, including:

1) a novel generalization theory with KS for kernel-based
algorithms;

2) novel KS-based generalization bounds for SVM, KRR,
and LSSVM;

3) a novel model selection criterion based on the general-
ization error bounds with KS;

4) the refined proofs of the theoretical results;
5) multiple experimental investigations of our KS-based

criteria.

A. Related Work

1) Variance of CV: The CV has been studied and used for
lots of years [24], [25], [39], [40], but exploring the variance
of CV is tricky. Blum et al. [41] proved that the variance of a
single holdout estimate is never smaller than that of the CV-
based estimate. Bengio and Grandvalet [39] asserted that there
exists no universal unbiased estimator of the variance of CV.
Cawley and Talbot [15] investigated the use of BR [42] in
model selection for reducing the effects of the high variance
of leave-one-out CV for LSSVM. Kumar et al. [43] extended
the result of [41], and used the algorithm stability to quantify
the variance reduction. Different from the above works, we
consider estimating the variance of CV via an appropriately
defined stability on kernel matrix for model selection.

2) Stability: Most of the notions of stability, defined on
learning machines, have been introduced to derive the gen-
eralization error bounds, though theoretically appealing, are
not practical for model selection. Liu et al. [12] introduced
a notion, called eigenvalues perturbation, which measures the
difference between the eigenvalues of the integral operator and
those of kernel matrix. Different from the notions of stability
of the learning machine, eigenvalues perturbation is defined

via the eigenvalues of integral operator induced by the kernel
function. However, the eigenvalues of the integral operator
are also hard to be estimated as the probability distribution
is unknown. Liu and Liao [44] investigated it further and gave
a notion of spectral perturbation stability (SPS). However, the
eigenvalues of kernel matrix are very sensitive to the dataset.
Moreover, it needs to calculate the eigenvalues of all the per-
turbed kernel matrices to estimate the value of SPS, which has
a high computational cost. In this paper, we introduce a novel
notion of stability, defined on kernel matrix, which has high
computational efficiency and are practical for model selection.

3) Outlines: Preliminaries and some notations are given
in Section II. In Section III, we introduce the notion of KS
and establish the relationship between KS and popular uni-
form stability. In Section IV, we use the notion of KS to
prove the generalization bounds for SVM, KRR, and LSSVM.
In Section V, we obtain the variance bounds of CV with
KS. In Section VI, we propose two novel model selection
criteria. The comparison of our criteria with the state-of-the-
art model selection criteria is proposed in Section VII. In
Section VIII, we give the discussion of this paper. We conclude
in Section IX. Most of the proofs are given in the Appendix.

II. PRELIMINARIES AND NOTATIONS

Let X ⊂ R
d be the input space and Y the output space. For

classification, Y = {+1,−1}, for regression Y ⊆ R

S = (z1 = (x1, y1), z2 = (x2, y2), . . . , zn = (xn, yn))

is the training set of size n drawn independent identically dis-
tributed (i.i.d) from a probability distribution P on Z = X×Y .
The ith removed set, i ∈ {1, 2, . . . , n}, is denoted as

Si = S\zi = (z1, . . . , zi−1, zi+1, . . . , zn).

A symmetric continuous function K : X × X → R is a
kernel if ∀{xi}n

i=1 ∈ X n, the kernel matrix

K = [K(xi, xj)
]n

i,j=1

is positive semidefinite. The RKHS HK induced by K is the
span of {K(x, ·) : x ∈ X }, where the inner product satisfying

〈
K(x, ·), K

(
x′, ·)〉K = K

(
x, x′).

Assume that |y| ≤ M and ∀x ∈ X , K(x, x) ≤ κ . In
classification case, M = 1.

The learning machines, we focus on, are the kernel-based
regularized algorithms [45]

fS := arg min
f ∈HK

⎧
⎨

⎩
1

|S|
∑

z∈S

�(f (x), y) + λ‖f ‖2
K

⎫
⎬

⎭
(1)

where |S| is the size of the dataset S, � : R × R → R+ is a
loss function, and λ is a tradeoff parameter.

1) For KRR and LSSVM: �(t, y) = (t − y)2.

2) For SVM: �(t, y) = max(0, 1 − yt).
The performance of the kernel-based regularized algorithms

is commonly measured by the generalization error

R(fS) :=
∫

X×Y
�(fS(x), y)dP(x, y) (2)
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where fS is the solution of the kernel-based regularized
algorithm on S. The empirical error of fS is denote as

Remp(fS) = 1

|S|
∑

z∈S

�(fS(x), y). (3)

Let S1, . . . , Sk be the folds of S, that is a random k-parts
equipartition of S. We assume that n mod k for simplicity (note
that for an arbitrary n and k, S can always be partitioned into
k subdatasets, each with either �(n/k)� or 
(n/k)�). Let fS\Si

be the hypothesis learned on S\Si

fS\Si := arg min
f ∈HK

⎧
⎨

⎩
1

|S\Si|
∑

z∈S\Si

�(f (x), y) + λ‖f ‖2
K

⎫
⎬

⎭
.

Definition 1 (Uniform Stability [29]): An algorithm f is of
β uniform stability with respect to the loss function �(·, ·) if
the following holds: ∀S ∈ Zn, i ∈ {1, . . . , n}, z = (x, y) ∈ Z

∣∣�(fS(x), y) − �
(
fSi(x), y

)∣∣ ≤ β.

Remark 1: According to the above definition, one can see
that the notion of uniform stability is defined on the learning
algorithm. Therefore, if we want to estimate its value from the
available empirical data, we should train the learning machine
many times. Specifically, from Definition 1, one can see that

β̂ = max
i,j∈{1,...,n}

∣∣�
(
fS
(
xj
)
, yj
)− �

(
fSi
(
xj
)
, yj
)∣∣

is an empirical estimation of β from available empirical data
S. To compute the empirical β̂, we need to train the learn-
ing machine n2 times, which is impracticable for kernel-based
algorithms. To address this problem, we will introduce a novel
stability defined on the kernel matrix in the next section for
practical model selection.

III. KERNEL STABILITY

In this section, we will give the definition of KS first,
and then manifest the relationship between KS and uniform
stability.

A. Definition of KS

The way of making the definition of KS is to start from the
goal: to get bounds on generalization error or the variance of
CV and want these bounds to be tight when the kernel function
satisfies the KS.

It is well known that the kernel matrix contains most of the
information needed by kernel methods. Therefore, we intro-
duce a new notion of stability to quantify the perturbation of
the kernel matrix with respect to the changes in the training
set for kernel selection.

To this end, we let the ith removed kernel matrix Ki be
{

[Ki]jk = 0 if j or k = i,
[Ki]jk = K

(
xj, xk

)
if j and k �= i

(4)

that is, the elements of the ith row and column of Ki are 0,
the other elements of Ki are the same as those of the kernel
matrix K.

Definition 2 (KS): A kernel function K is called a β-KS
kernel if ∀{xi}n

i=1 ∈ X n,∀i ∈ {1, . . . , n}
∥∥K − Ki

∥∥
2 ≤ β

where K is the kernel matrix, Ki is the ith removed kernel
matrix defined in (4), and ‖ · ‖2 is the 2-norm of matrix.

One can see that the notion of KS is used to quantify the
perturbation of the kernel matrix when an arbitrary data point
is removed. While for the popular uniform stability, it is used
to quantify the perturbation of the learning machine when an
arbitrary data point is removed. Therefore, loosely speaking,
KS can be considered as an extension of the uniform stability
to kernel matrix. Moreover, KS is defined on the kernel matrix;
thus, we can estimate its value from empirical data easily (see
Theorem 7 for detail), which makes this stability usable for
model selection in practice.

Remark 2: In the definition of KS, we use the ‖ · ‖2 to
quantify the difference of K and Ki. It is also feasible to use
other matrix norm, such as trace norm ‖ · ‖∗ or Frobenius
norm (also called Hilbert–Schmidt norm) ‖ · ‖F, but the upper
bounds based on ‖ · ‖∗ or ‖ · ‖F are looser than those of ‖ · ‖2.
Thus, we only consider ‖ · ‖2 in this paper.

B. KS and Uniform Stability

In this section, we will give the relationship between KS
and uniform stability for KRR, LSSVM, and SVM.

1) KRR and LSSVM:
Theorem 1: If K is a β-KS kernel, then the KRR and

LSSVM algorithms are both of O(β/n)-uniform stability.
The above theorem shows that the KS can measure the

stability of KRR and LSSVM, which demonstrates the effec-
tiveness of the application of KS.

Remark 3: In Theorem 1, for simple, the λ is considered
as a constant, and is ignored. But, in fact, from the proof in
the Appendix, we can find that uniform stability is inversely
proportional to parameter λ.

2) SVM:
Theorem 2: If K is a β-KS kernel, then the SVM is O(β)-

uniform stability.
Remark 4: Uniform stability is a strong notion of stabil-

ity [29]; therefore, if a learning algorithm is of β uniform
stability, it is also of other weaker stability, such as hypothesis
stability and pointwise hypothesis stability.

IV. GENERALIZATION BOUNDS WITH KS

In this section, we will use the notion of KS to obtain the
generalization bounds for SVM, KRR, and LSSVM.

Theorem 3: If K is a β-KS kernel, then for the KRR and
LSSVM, δ ∈ (0, 1), with probability at least 1 − δ, we have

R(fS) ≤ Remp(fS) + O
(

β

n
+ β

√
ln(1/δ)

n

)

where R(fS) is the generalization error defined in (2) and
Remp(S) is the empirical error defined in (3).

Remark 5: One can see that the convergence rate of R(fS)−
Remp(fS) of our bound using KS is related to

√
ln(1/δ). While
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for the other popular notions of stability, such as hypothesis
stability and pointwise hypothesis stability [29], the conver-
gence rate of R(fS) − Remp(fS) is related to

√
1/δ: if an

algorithm f is of β1 hypothesis stability or β2 pointwise
hypothesis stability, then with probability 1 − δ, we have

R(fS) ≤ Remp(fS) +
√

β1

δ

and

R(fS) ≤ Remp(fS) +
√

β2

δ
.

Note that the value of δ is usually very small, such as 0.01
or 0.005, thus

√
ln(1/δ) is much smaller than

√
1/δ, which

demonstrates that our generalization bound is tighter than
those of hypothesis stability and pointwise hypothesis stability.

For uniform stability, the convergence rate is related to
ln(1/δ) [29]: if an algorithm f is of β3 uniform stability then
with probability 1 − δ, we have

R(fS) ≤ Remp(fS) + nβ3

√
ln(1/δ)

n
.

From the relationship between the uniform stability and KS
(see Theorem 1), we can find that the convergence rates of KS
is the same as the uniform stability.

Remark 6: From the definition of KS, one can see that β is
irrelevant to λ. However, to obtain the generalization bound,
we use the uniform stability as a bridge. Since the uniform sta-
bility is inversely proportional to λ (see Remark 3), it is easy
to verify that the second term of the generalization bound is
proportional to β and irrelevant proportional to λ. Generally
speaking, the more stable the algorithm is, the more likely
underfitting it is. So, the empirical error (the first term of gen-
eralization bound) is usually a positive correlation to λ and
negative correlation to β. Thus, only appropriate β and λ (not
too big or too small) can lead better generalization bound,
which shows that the derived bound is not trivial.

The above theorem demonstrates the effectiveness of the
applying of KS to estimate the generalization error. Thus, to
ensure good generalization performance, we can choose the
kernel function from the following criterion:

K∗ = arg min
K∈K

Remp(S) + η

n
β

where K is a candidate set of kernel functions and η is the
tradeoff parameter.

Theorem 4: If K is a β-KS kernel, then for the SVM, with
probability 1 − δ, we have

R(fS) ≤ Remp(fS) + O
⎛

⎝

√
β

1
2

δ

⎞

⎠.

One can see that the bound for SVM is weaker than the
bounds for LSSVM and KRR, which is due to the difference
in loss functions defining the optimization problems of these
algorithms.

Remark 7: The performance of stability is very important
to the learning algorithm, but most of the existing stability
is defined on learning algorithm, making them unusable for

practical model selection. Thus, the motivation of this paper
is to design another notion of stability, which is simple and
elegant, and can be used for practical model selection. Based
on this motivation, we introduce the notion of KS. In [29], they
adopted the tool of McDiarmid’s concentration inequality to
establish the relationship between uniform stability and gen-
eralization bound. Thus, to derive generalization bounds with
KS, we first show the relationship between KS and uniform
stability, and further derive KS-based generalization bounds.
Although the proposed measure may bare similarity to the con-
dition in McDiarmid’s concentration inequality with bounded
variation, which has been used extensively in the kernel com-
munity, such as [46]–[48], the motivation this paper is totally
different from the above papers. Moreover, we prove the
bound of the variance of CV, the McDiarmid’s concentration
inequality is not used to the proof of upper bound.

V. VARIANCE BOUNDS OF CV WITH KS

In this section, we will consider the use of KS to bound the
variance of k-fold CV.

The k-fold CV hypothesis fkcv and the (empirical) loss of
fkcv are defined as

fkcv = 1

k

k∑

i=1

fS\Si, �fkcv(S) = 1

k

k∑

i=1

1

|Si|
∑

z∈Si

�
(
fS\Si(x), y

)

respectively. The variance of k-fold CV hypothesis is defined
as [43]

var
S

(
�fkcv(S)

) = E
S∼Zn

[
�fkcv(S) − E

S∼Zn

[
�fkcv(S)

]]2

where ES∼Zn is the expectation when S = {zi}n
i=1 is sampled

according to P.
The CV is the popular criterion for model selection, but it

is known to exhibit a relatively high variance. Thus, k-fold
CV is prone to overfitting [15], [24]–[26]. To address this
problem, we can choose the appropriate kernel function via
the following criterion:

K∗ = arg min
K∈K

�fkcv(S) + η · var
S

(
�fkcv(S)

)

where �fkcv(S) can be considered as the bias of R(fS), and the
second part varS(�fkcv(S)) of this criterion is used to restrict the
high variance of CV. Since probability distribution is unknown,
varS(�fkcv(S)) is not directly computable, In the following, we
will give the upper bound of varS(�fkcv(S)) with KS.

Theorem 5: If K is a β-KS kernel, then for KRR and
LSSVM

var
S

(
�fkcv(S)

) ≤ O
(

β2

m2

)

where m = ((k − 1)n/k).
This theorem manifests that we can apply the β to con-

trol the value of varS(�fkcv(S)). Therefore, it is reasonable to
choose the appropriate kernel function that has a small β to
prevent the high variance

K∗ = arg min
K∈K

�fkcv(S) + η

n
β

where β is used to restrict the high variance.
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Theorem 6: If K is a β-KS kernel, then for SVM

var
S

(
�fkcv(S)

) ≤ O(β).

VI. MODEL SELECTION

In this section, we will show how to use KS for practical
model selection.

From the generalization error bounds and the upper bounds
of the variance derived in the above sections, to guarantee
good generalization performance, it is reasonable to consider
the use of the following criteria:

arg min
K∈K

Remp(S) + η

n
β and arg min

K∈K
�fkcv(S) + η

n
β.

However, from the definition of KS, we should try all the
possibilities of the S drawn from the probability distribution P

to obtain β, which is impracticable. Thus, we should estimate
its value from the available empirical data. One can see that

β̂ = max
i∈{1,...,n}

∥∥K − Ki
∥∥

2

is an empirical estimate of β. Therefore, we consider the use
of the following KS-based criteria in practice:

RKS(K) = arg min
K∈K

Remp(S) + η

n
β̂ (5)

and

CVKS(K, k) = arg min
K∈K

�fkcv(S) + η

n
β̂. (6)

One can see that these two criteria includes two parts: 1) bias
and 2) variance. Remp(S) or �fkcv(S) can be considered as the
bias of generation error, and β̂ considered as the variance.

To apply these two criteria, we need to calculate the ‖K −
Ki‖2, that is, the largest eigenvalue of [K − Ki], i = 1, . . . , n,
which has a high computational cost. Fortunately, the closed
form of ‖K − Ki‖2 exists, and can be effectively computed.

Theorem 7: ∀ S ∈ Zn and i ∈ {1, . . . , n}

β̂ = max
i∈{1,...,n}

Kii +
√

K2
ii + 4

∑n
j=1,j�=i K2

ji

2
.

Proof: According to the definitions of K and Ki, one can
see that its characteristic polynomial can be written as

det
(
tI − (K − Ki)) = tn−2

⎛

⎝t2 − Kiit −
n∑

j=1,j�=i

K2
ji

⎞

⎠.

Therefore, the eigenvalues of K − Ki can be written as

σ
(
K − Ki) =

⎧
⎨

⎩

Kii ±
√

K2
ii + 4

∑n
j=1,j�=i K2

ji

2
,

n−2︷ ︸︸ ︷
0, . . . , 0

⎫
⎬

⎭
.

Thus, the biggest eigenvalue is

Kii +
√

K2
ii + 4

∑n
j=1,j�=i K2

ji

2

which completes the proof.

Theorem 7 manifests that we only need O(n2) computa-
tional time to compute β̂.

Remark 8: In this paper, we estimate the β based on the
training data, and further uses it to model selection, which
seems that it might lead to overfitting. In the following,
we will consider the use of the popular polynomial kernel
K(x, x′) = (1 + xTx)d as an example to clarify that our cri-
terion can mitigate the overfitting of kernel-based algorithms
(the similar analysis can easily be extended to the popular
Gaussian kernel). Note that the larger value the d is, the more
likely to be overfitting the kernel-based algorithm is. We can
also find that when d increases, the estimation of β increases
rapidly (see Theorem 7). Therefore, our criteria can avoid
the large value of d, which can mitigate the overfitting of
kernel-based algorithms.

Time Complexity: The time complexity of RKS(K) and
CVKS(K, k) are O(n2+J) and O(n2+kF), respectively, where
n is the size of the data, J and F are the time complexity of
Remp(fS), and the training on the size of k − 1 folds of data.

In our previous work [22], [23], [49], we proposed a
method to approximate the k-fold CV via Bouligand influ-
ence function [50]. The proposed approximate method requires
training the algorithm only once. Therefore, the time complex-
ity of CVKS(K, k) can be reduced to O(F + n2). Some other
approximate methods, such as Nyström method [51], modified
Nyström method [52], and random sample method, can be also
used to reduce the computational complexity of Remp(fS).

Remark 9: From Theorem 7, we know that we need O(n2)

computational time to compute β̂, the time cost is too high for
large-scale problems. Therefore, for large-scale problems, we
should approximate the β̂. Nyström method and random pro-
jection are two available methods to approximate the β̂. In this
paper, we mainly want to verify the effectiveness of our KS
criterion, thus we do not consider the use of the approximate
KS for the large-scale problem.

VII. EXPERIMENTS

We will give the empirical analysis of the performance of
our proposed KS-based criteria in this section.

Eighteen public available benchmark datasets are used from
LIBSVM Data1 seen in Table I. We consider the use of the
popular Gaussian kernel

K
(
x, x′) = exp

(

−‖x − x′‖2
2

2τ

)

and polynomial kernel

K
(
x, x′) = (1 + xTx

)d

as our candidate kernels, τ ∈ {2i, i = −15,−14, . . . , 15} and
d ∈ {1, 2, . . . , 10}. We will compare our proposed RKS and k-
CVKS (k is the fold of CV) with four popular model selection
criteria:

1) k-fold CV (k-CV), k = 5, 10;
2) efficient leave-one-out CV (ELOO) [53];
3) BR [15];

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm
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Fig. 2. Test errors of 5-CVKS (black line), 10-CVKS (blue line), and RKS (red line) with different η. In this experiment, we set λ = 1/n (in Table II,
we know that nλ = 1 can achieve good results on most datasets. Therefore, we only set nλ = 1). (a) sonar. (b) diabetes. (c) heart. (d) ionosphere. (e) a2a.
(f) german.numer. (g) breast-cancer. (h) australian. (i) liver-disorders.

TABLE I
SUMMARY OF THE DATASETS

4) SPS [44]

SPS(K) = Remp(S) + δ
1

m2

m∑

j=1

m∑

i=1

∣∣σj(K) − σj
(
Ki)∣∣

where σj(K) is the eigenvalue of K (see detail in [44])
and δ is the tradeoff parameter.

We run all the algorithms 50 times with randomly selected
70% of data for training and the other 30% for testing on
each dataset. All statements of statistical significance in the
remainder refer to a 95% level of significance of t-test. The
learning machine we considered for classification is SVM and
for regression is KRR.

A. Classification

For each training set, we select the kernel parameter τ

with each model selection criterion for each fixed regularized
parameter nλ ∈ {0.1, 1, 10, 100}, and then we compute the test
error on the testing set with the chosen optimal parameters.

The optimal parameters η ∈ {2i, i = −5, 0, 5, 10} of CVKS
and RKS, and the parameter δ ∈ {2i, i = −5, 0, 5, 10} of SPS
are determined by threefold CV on the training set.

The test errors are shown in Table II that can be summarized
as follows.

1) On most datasets, k-CVKS gains better accuracy results
than k-CV, k = 5, 10. In particular, for nλ = 1, k-KS is
significantly better than k-CV on 4 out of 9 sets without
being worse on the other five datasets. The results of the
other values of nλ are similar with that of nλ = 1. These
results indicate that using the KS to control the high
variance of CV can improve generalization performance.

2) RKS is significantly better than SPS on most datasets.
For nλ = 1, RKS significant outperforms SPS on 7
out of 9 datasets. The results of the other values of nλ

are similar with that of nλ = 1. This can possibly be
explained by the fact that SPS is defined based on the
eigenvalues, which is very sensitive to the dataset and
only includes a part information of kernel matrix, thus
the model chosen by this criterion may not ensure good
performance.

3) k-CVKS outperforms BR. In particular, for nλ = 1,
k-CVKS is significantly better than BR on 4 (or more)
out of 9 sets without being significantly worse on any
of the remaining datasets. For other values of nλ, the
results are similar with that of nλ = 1. Thus, it indi-
cates that using the KS as the regularization term for
restricting the high variance is better than that of BR.

4) On most datasets, BR is comparable or better than
ELOO which manifests that using the BR can ameliorate
the high variance of leave-one-out CV.

5) The 5-CVKS, 10-CVKS, and RKS give comparable
results.

In this experiment, we explore the influence of η for
CVKS and RKS. The test errors with different η is plotted
in Fig. 2. On each fixed η, we select the τ by 5-CVKS,
10-CVKS, and RKS on the training set, and obtain the test
errors with the chosen kernel parameters on the testing set.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: KS FOR MODEL SELECTION IN KERNEL-BASED ALGORITHMS 7

TABLE II
COMPARISON OF MEAN TEST ERRORS (%) AMONG OUR KS CRITERIA: 5-CVKS, 10-CVKS, RKS, AND OTHER POPULAR ONES,

INCLUDING ELOO, 5-CV, 10-CV, BR, AND SPS. WE BOLD THE BEST METHOD AND UNDERLINE THE

OTHER METHODS THAT ARE NOT SIGNIFICANTLY WORSE THAN THE BEST ONE

One can see that the performance is stable with respect to
η ∈ [2−3, 21] and η ∈ [2−4, 2−1] on most datasets for
CVKS and RKS, respectively. Moreover, it turns out that
η ∈ [2−3, 21] and η ∈ [2−4, 2−1] are good choices for CVKS

and RKS, respectively. The robustness property of the param-
eter η shows that we can randomly select η ∈ [2−3, 21] and
η ∈ [2−4, 2−1] for CVKS and RKS without sacrificing much
accuracy.
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TABLE III
COMPARISON OF THE TEST MEAN SQUARE ERRORS AMONG OUR KS CRITERIA: 5-CVKS, 10-CVKS, RKS, AND

OTHER POPULAR ONES, INCLUDING ELOO, 5-CV, 10-CV, BR, AND SPS. WE BOLD THE BEST METHOD, AND

UNDERLINE THE OTHER METHODS THAT ARE NOT SIGNIFICANTLY WORSE THAN THE BEST ONE

B. Regression

The test mean square errors reported in Table III. From this
table we can find the following.

1) CVKS gains better accuracy results than CV. In particu-
lar, CVKS significantly outperforms KS on 4 (or more)

out of 9 sets for each λ without being significantly worse
on the other datasets.

2) CVKS and RKS are significant better than SPS on
almost all datasets.

3) On most datasets, CVKS outperforms CV, LOO, and
BR. For each λ, KS is significant better than LOO and
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BR on 3 (or more) out of 9 sets, and outperforms CV
on 4 out of 9 sets.

4) RKS is comparable to CVKS.
The above results demonstrate that KS-based criteria are good
choices for model selection.

VIII. DISCUSSION

In this part, we will discuss the relationship between this
paper with the existing work.

A. Stability

The notion of stability is an important tool for studying
the generalization performance of learning machines [54].
The uniform stability [29] is the most popular notion of sta-
bility, and the generalization bound for kernel methods is
established. However, the uniform stability is defined on the
learning machine, so it is difficult to estimate its value (see
Remark 1). Unlike the uniform stability, KS is defined on the
kernel matrix, and it is easy to compute its value according
to empirical data (see in Theorem 7). Moreover, we show the
relationship between KS and uniform stability for SVM, KRR,
and LSSVM, so we can also use KS to establish exponential
generalization bounds.

In our previous work [44], we give a notion of SPS that
defined on the eigenvalues of the kernel matrix. Although the
SPS is not defined on learning machines, the estimation of this
stability is also difficult, and the generalization error bounds
for LSSVM and SVM are not established. Moreover, the
experimental results also imply that the proposed criteria are
better than the SPS-based criterion (see in Tables II and III).

B. Cross-Validation

The CV is the most popular model selection method, but
it usually exhibits a high variance. Cawley and Talbot [15]
investigated the use of BR to model selection to ameliorate
the high variance of leave-one-out CV for LSSVM. However,
this method is only usable for leave-one-out CV on LSSVM,
and the relationship between BR and the variance of leave-one-
out CV is not established. Kumar et al. [43] introduced a new
stability of learning machine called loss stability, and showed
that this notion serves as an additive factor to the optimal
variance reduction obtained by CV. Different from the above
works, in this paper, we derive variance bounds of CV with
KS for model selection. Furthermore, our method can be used
for general k-fold CV on several kernel-based machines.

IX. CONCLUSION

We developed a novel stability-based model selection
method via a newly defined stability (KS) from a new perspec-
tive of the kernel matrix. We manifested that the generalization
error and variance of CV of SVM, LSSVM, and KRR can
be bounded with KS, so we can apply this stability for
model selection to guarantee the generalization performance.
Our model selection criteria are theoretically justified and
experimentally validated.

In our future work, we will extend our method to other
kernel based methods, and using some approximate methods to

reduce the computational complexity of our proposed criteria
for large-scale data.

APPENDIX A
PROOF OF THEOREM 1

We first give the following theorem to prove Theorem 1.
Theorem 8: If K is a β-KS kernel, then for the KRR and

LSSVM, ∀S ∈ Zn,∀i ∈ {1, . . . , n},∀x ∈ X , we have
∣∣fS(x) − fSi(x)

∣∣ ≤ C1β + C2

n − 1

where C1 = (κM/λ2) and C2 = (2κM/λ).
Proof: Note that the solutions of KRR (or LSSVM) on S

and Si can be written as

fS(x) = kT(K + nλI)−1y

fSi(x) = kT
i (Ki + (n − 1)λIi)

−1yi

where

k = (K(x, x1), K(x, x2), . . . , K(x, xn))
T

ki = (K(x, x1), . . . , K(x, xi−1), K(x, xi+1), . . . , K(x, xn))
T

yi = (y1, . . . , yi−1, yi+1, . . . , yn)
T

Ki = [K(xj, xk
)]

j,k, xj, xk ∈ Si

Ii is the (n − 1) × (n − 1) identity matrix.

Let Hi = Ki + (n − 1)λI, Hi = Ki + (n − 1)λIi, H = K + nλI,
Ki is the ith removed matrix defined in (4). Without loss of
generality, we assume i = n. Taking into account the block
matrix inversion formula, we have

Hi−1 =
[

H−1
i 0

0T 0

]
+ Ai (7)

where Ai is the diagonal matrix, the ith diagonal element is
(1/(n − 1)λ), others 0. So the fSi can be represented as

fSi(x) = kT
i H−1

i yi = kT
(

Hi−1 − Ai

)
y.

Therefore, we can obtain that

fS(x) − fSi(x) = kTH−1y − kTHi−1
y + kTAiy

= kT
(

H−1 − Hi−1
)

y + kTAiy (8)

where H = K + nλI.
For any invertible matrices M, M′, M′−1 − M−1 =

−M′−1(M′ − M)M−1 is valid, so we can obtain that

H−1 − Hi−1 = −H−1(K − Ki + λI
)
Hi−1

. (9)

From (9), it is easy to verity that
∥∥∥kT
(

H−1 − Hi−1
)

y
∥∥∥

≤ ∥∥kT
∥∥
∥∥∥H−1

∥∥∥
2

∥∥K − Ki + λI
∥∥

2

∥∥∥Hi−1
∥∥∥

2
‖y‖

=
∥∥kT
∥∥∥∥K − Ki + λI

∥∥
2‖y‖

λmin(H) · λmin
(
Hi
) (10)

where λmin(H) and λmin(Hi) are the smallest eigenvalue of H
and Hi, respectively. Since K and Ki are positive semidefinite,
we have

λmin(H) ≥ nλ, λmin
(
Hi) ≥ (n − 1)λ. (11)
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According to (8), (10), and (11), we have
∣∣fS(x) − fSi(x)

∣∣

≤
∥∥kT
∥∥(∥∥K − Ki

∥∥
2 + ‖λI‖2

)‖y‖
n(n − 1)λ2

+ ∣∣kTAiy
∣
∣

=
∥∥kT
∥∥(∥∥K − Ki

∥∥
2 + λ

)‖y‖
n(n − 1)λ2

+ |K(xi, xi)yi|
λ(n − 1)

.

Taking into account that ‖y‖ ≤ √
nM and ‖k‖ ≤ √

nκ , we
have
∣∣fS(x) − fSi(x)

∣∣ ≤ κM

(n − 1)λ2

∥∥K − Ki
∥∥

2 + 2κM

(n − 1)λ
. (12)

By the definition of β-KS (see Definition 2 for detail), we
know that

∥∥K − Ki
∥∥

2 ≤ β. (13)

Plugging (13) to (12), we have
∣∣fS(x) − fSi(x)

∣∣ ≤ κMβ

(n − 1)λ2
+ 2κM

(n − 1)λ
.

Proof of Theorem 1: One can see that

|fS(x)| ≤ ‖k‖
∥∥∥H−1

∥∥∥
2
‖y‖ ≤ nκM

λmin(H)
≤ κM

λ
∣∣fSi(x)

∣∣ ≤ ‖ki‖
∥∥∥H−1

i

∥∥∥
2
‖y‖ ≤ (n − 1)κM

λmin(Hi)
≤ κM

λ
. (14)

So, according to Theorem 8 and (14), we have
∣∣�(fS(x), y) − �

(
fSi(x), y

)∣∣

=
∣∣∣(y − fS(x))2 − (y − fSi(x)

)2∣∣∣

= ∣∣fS(x) − fSi(x)
∣∣ · ∣∣2y − fS(x) − fSi(x)

∣∣

≤ C1β + C2

n − 1
(2M + 2κM/λ). (15)

The above equation shows that the KRR (or LSSVM)
with β-KS is [(C1β + C2)/n − 1](2M + 2κM/λ) uniform
stability.

APPENDIX B
PROOF OF THEOREM 2

Note that fS(x) and fSi(x) are the hypothesis returned
by SVM with K and Ki, respectively. Thus, according to
[32, Proposition 2]

∣∣fS(x) − fSi(x)
∣∣

≤ κ
3
4√
2λ

∥∥Ki − K
∥∥

1
4
2

⎡

⎣1 +
[∥∥Ki − K

∥∥
2

4κ

] 1
4
⎤

⎦

≤ κ
3
4√
2λ

β
1
4

[

1 +
[

β

4κ

] 1
4
]

.

Since the hinge loss � is 1-Lipschitz, we have

∣
∣�(fS(x), y) − �

(
fSi(x), y

)∣∣ ≤ κ
3
4√
2λ

β
1
4

[

1 +
[

β

4κ

] 1
4
]

. (16)

Thus, the SVM with β-KS is [(κ(3/4))/(
√

2λ)]β(1/4)[1 +
[β/4κ](1/4)] uniform stability.

APPENDIX C
PROOF OF THEOREM 3

Note that

�(fS(x), y) = (fS(x) − y)2

≤ 2f 2
S (x) + 2|y|2 ≤ 2κ2M2

λ2
+ 2M2. (17)

Thus, according to [29, Th. 11] with

γ = (C1β + C2)(2M + 2κM/λ)

n − 1
, Q = 2κ2M2

λ2
+ 2M2

we have

R(S) ≤ Remp(S) + C3(C1β + C2)

n − 1

+
(

2C3n(C1β + C2)

n − 1
+ Q

)√
ln 1/δ

2n

where C3 = 4M + (4κM/λ) and Q = [(2κ2M2)/λ2] + 2M2.

APPENDIX D
PROOF OF THEOREM 4

Taking into account that

fS(x) =
n∑

j=1

αjK
(
xj, x
)
, 0 ≤ αi ≤ 1

λn
.

Therefore,

�(fS(x), y) = max(0, 1 − yfS(x)) ≤ |1 − yfS(x)| ≤ 1 + λκ.

Using [29, Th. 11] with γ = [(κ(3/4))/(
√

2λ)]β(1/4)[1 +
[β/4κ](1/4)] and Q = 1 + λκ , the proof is completed.

APPENDIX E
PROOF OF THEOREM 5

Let T = {xi}m
i=1 and m = ((k − 1)n/k). The (empirical) loss

of the hypothesis fT on a set Q is defined as

�fT (Q) = 1

|Q|
∑

z∈Q

�(fT(x), y).

Let KT be the kernel matrix respect to dataset T with elements
[KT ]i,j = K(xi, xj), xi, xj ∈ T . Ki

T is the m × m ith removed
kernel matrix with

{[
Ki

T

]
jk = K

(
xj, xk

)
if j �= i and k �= i

[
Ki

T

]
jk = 0 if j = i or k = i.

Definition 3 (Loss Stability [43]): The loss stability of a
learning algorithm f trained on m examples and with respect
to a loss � is defined as

lsm,�(f ) = ET:|T|=m,z′,z
[(

�(fT(x), y) − �′(fTz′ (x), y
))2]

where �′(fT(x), y) = �(fT(x), y) − Ez[�(fT(x), y)], Tz′ denote
the set of examples obtained by replacing an example chosen
uniformly at random from T by z′. A learning algorithm f is
γ -loss stable if lsm,�(f ) ≤ γ .
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Proof of Theorem 5: From Theorem 7, we know that

∥∥KT − Ki
T

∥∥
2 =

Kii +
√

K2
ii + 4

∑m
j=1,j�=i K2

ji

2

∥∥K − Ki
∥∥

2 =
Kii +

√
K2

ii + 4
∑n

j=1,j�=i K2
ji

2
.

Taking into account that T is a subset of S
∥∥KT − Ki

T

∥∥
2 ≤ ∥∥K − Ki

∥∥
2 ≤ β.

From (15), one can see that
∣
∣�(fT(x), y) − �

(
fTi(x), y

)∣∣ ≤ C1β + C2

m − 1
(2M + 2κM/λ).

According to [43, Lemma 2], we know that

lsm,�(f ) ≤ ET:|T|=m,z′,z
[(

�
(
fT(x, y) − �

(
fTz′ (x), y

))2)]
.

Thus,

lsm,�(f ) ≤
(

C1β + C2

m − 1

(
2M + 2κM

λ

))2

= γ. (18)

From [43, Lemma 5], it is easy to verify that

var
S

(
�fS\S1

(S1)
)

= cov
S

(
�fS\S1

(S1), �fS\S1
(S1)
)

= ES\S1,z′1,z2

⎡

⎣

(

�′
fS\S1

(z2) − �′
f
(S\S1)

z′1
(z2)

)2
⎤

⎦

= lsm,�(f )

≤
(

C1β + C2

m − 1

(
2M + 2κM

λ

))2

= γ
[
According to (18)

]
. (19)

Substituting (18) and (19) into [43, Th. 1]

var
S

(
�fkcv(S)

) ≤ 1

k
γ +
(

1 − 1

k

)
γ = γ.

APPENDIX F
PROOF OF THEOREM 6

From (16), one can see that

∣
∣�(fS(x), y) − �

(
fSi(x), y

)∣∣ ≤ κ
3
4√
2λ

β
1
4

[

1 +
[

β

4κ

] 1
4
]

.

Unlike the proofs of (18) and (19), we have

lsm,�(fT) ≤
(

κ
3
4√
2λ

β
1
4

[

1 +
[

β

4κ

] 1
4
])2

= γ

and

var
S

(
�fS\S1

(S1)
)

≤
(

κ
3
4√
2λ

β
1
4

[

1 +
[

β

4κ

] 1
4
])2

= γ.

Substituting the above two equations into [43, Th. 1], we
complete the proof.
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