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Abstract
Recent studies have revealed a phenomenon known as source bias,
where PLM-based retrievers assign higher relevance scores to LLM-
generated content despite its semantic quality being comparable
to human-written content. As LLMs rapidly advance and become
more widely used, effectively counteracting source bias is crucial
for the sustainable development of the information retrieval (IR)
ecosystem. Existing methods primarily attempt to address source
bias from the retriever side, adopting a “passive defense” approach
that intervenes only after biased content has entered the retrieval
pipeline. These solutions are limited by frequent retriever updates
in industrial applications, high recurring costs, and their inability
to address the root cause of source bias.

In this paper, we propose a new perspective for mitigating source
bias by actively aligning LLM outputs at the data generation stage.
Specifically, we introduce LLM-SBM, a novel LLM alignment frame-
work for source bias mitigation. First, we construct high-quality
alignment datasets using an automatic preference data construc-
tion pipeline. This pipeline leverages LLMs to generate multiple
rephrasings of content and employs a PLM-based retriever to as-
sign corresponding specific preference values for each generated
document, thereby forming preference pairs according to these pref-
erences. Moreover, to fully utilize these scalar values of preference
and enhance the efficiency of the alignment process, LLM-SBM
incorporates these preference differences as weighting factors in
the loss function during policy training. Extensive experiments
across multiple datasets and PLM-based retrievers demonstrate
that LLMs aligned with LLM-SBM successfully reduce source bias
while preserving their general capabilities.
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1 Introduction
The recent emergence of large language models (LLMs) [41], which
have demonstrated remarkable capabilities in automatically gen-
erating human-like text at scale, has led to a significant influx of
AI-generated content on the Internet [1, 6, 35]. This surge has fun-
damentally reshaped information retrieval (IR) systems originally
designed to index and retrieve human-written content in response
to users’ queries. Now, these systems face the challenge of manag-
ing corpora that include both human-written and LLM-generated
content [5, 8, 39]. Amidst this new landscape, a critical issue termed
source bias has emerged, referring to the tendency of mainstream
pre-trained language model (PLM)-based retrievers to favor LLM-
generated content by often ranking it higher than human-written
content even when their semantic quality is comparable [6, 8, 39].

A significant concern arising from source bias is its potential
to destroy the content ecosystem of existing IR systems. Specifi-
cally, as shown in Figure 1(a), many users may rely on LLMs for
content creation–for example through prompts for paraphrasing
or rewriting, akin to content spinning or plagiarism. Due to source
bias, the LLM-rewritten content with similar semantics to original
human-written content is more likely to be ranked higher by the
platform’s retrieval algorithms, gaining increased exposure and
traffic. Over time, human-authored original content may become
less discoverable, discouraging human creators from creating new
material. Ultimately, the content creation platform risks becoming
inundated with AI-generated content, potentially leading to several
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Figure 1: Illustration of source bias and different perspectives for mitigating source bias.

issues, such as the loss of user experience, a decline in content
diversity, and the collapse of model performance [8, 25, 39].

To mitigate source bias, existing methods have predominantly
focused on debiasing from the retriever’s perspective [8, 39], aiming
to construct more robust retrieval models that ensure fair and un-
biased ranking results under the mixed corpora (Figure 1(b)). This
approach acts as a “passive defense”, addressing the issue only after
biased content has already entered the retrieval pipeline. While
effective to some extent, retriever-side methods often face prac-
tical challenges: they require frequent re-application as retrieval
models are updated—often daily or even hourly in industrial appli-
cations—leading to substantial recurring costs. Moreover, source
bias often arises unintentionally, as users rely on platform-provided
or open-source LLMs for tasks such as paraphrasing or rewriting
content. This generated content, when fed into IR systems, inadver-
tently amplifies source bias, favoring LLM-generated outputs over
human-written content. Given this scenario, addressing source bias
proactively at the source—the LLM—becomes both a practical and
fundamental approach. By “actively” aligning LLMs before their
release, we can ensure that the outputs they generate are less likely
to introduce or exacerbate source bias in downstream PLM-based
retrievers. Crucially, LLM-side solutions involve only a one-time
adjustment before the LLM’s release, reducing ongoing costs and
simplifying the mitigation process. Therefore, aligning LLMs to
counteract source bias represents a fundamental solution approach,
which is also unexplored and remains an open question.

To this end, we aim to align the outputs of LLMs to ensure
that texts generated by LLMs are no longer easily assigned higher
estimated relevance scores by PLM-based retrievers, thereby miti-
gating source bias at its origin, as shown in Figure 1(c). However,
directly applying existing LLM alignment methods, such as widely-
used Direct Preference Optimization (DPO) [23], to alleviate source
bias presents several challenges. First, since our objective is to
align LLM outputs with the preference values (relevance scores)
of IR models, we cannot rely on human annotators to label pref-
erence data as is common in typical alignment tasks. Therefore,
harnessing feedback from IR models to automate the construction
of alignment datasets poses a significant challenge. Second, unlike
human-annotated preference pairs, which only consider the ordinal
relationship (i.e., that the chosen response is preferred over the
rejected one) [16, 33], the preference values provided by IR models
are precisely quantifiable. Effectively leveraging these fine-grained
preferences is crucial for achieving better alignment.

Considering the above issues, we propose a preference-aware
LLM alignment framework for SourceBiasMitigation, named LLM-
SBM. Initially, we design an automatic preference data construction
pipeline tailored to collect high-quality alignment data using feed-
back from PLM-based retrievers. This pipeline comprises threemain

stages: leveraging LLMs with diverse rewriting prompts to generate
paraphrased texts, receiving preference values from IR models, and
constructing alignment pair samples based on the preference value.
Through this process, we develop a high-quality alignment dataset
specifically targeting source bias with fine-grained preference dif-
ferences. Furthermore, to better align LLMs with the constructed
fine-grained preference datasets, LLM-SBM incorporates these pref-
erence value differences as weights in the loss function during
policy training, thereby enhancing the efficiency during the LLM
alignment process. Gradient analysis demonstrates that LLM-SBM
can also effectively mitigate noise issues inherent in automatically
generated preference data. Notably, LLMs aligned with our LLM-
SBM framework effectively mitigate source bias in LLM-generated
content without compromising their general capabilities. Therefore,
we advocate for the widespread adoption of LLM-SBM as a general
post-training method by both open-source LLM providers and API
service providers before the LLM is released, providing a robust
solution to mitigate source bias without sacrificing original quality
and versatility.

Our main contributions are summarized as follows:
• To the best of our knowledge, this is the first work that pro-

poses mitigating source bias from the perspective of aligning LLMs,
providing a fundamental solution from the data generation side
that complements existing retriever-side methods.

•We propose LLM-SBM, a novel framework tailored for mitigat-
ing source bias, which includes an automatic preference data con-
struction pipeline and a preference-aware policy training method.

• Extensive experiments verify the effectiveness of the proposed
LLM-SBM framework in mitigating source bias in LLM-generated
content across various IR datasets, PLM-based retrievers, and LLMs.

2 Related Work
Source Bias in Information Retrieval. The rapid advancement
of large language models (LLMs) has fueled the expansion of AI-
generated content (AIGC) on the internet, leading information
retrieval (IR) systems to increasingly handle corpora that encom-
pass both human-written and AI-generated content [1, 5–7, 35].
Dai et al. [8] first revealed that mainstream neural retrievers based
on pre-trained language models (PLMs) exhibit a preference for
LLM-generated content, a phenomenon referred to as source bias.
Beyond document retrieval, other works further discovered that this
bias also exists in text-image retrieval [39] and video retrieval [10],
where retrieval models prefer AI-generated images and videos.
These studies attribute the cause of source bias to the complex cou-
pling between LLMs and retrievers—such as similar Transformer-
based architectures and pretraining paradigms—which leads to
neural retrievers capturing specific patterns embedded in LLM-
generated content [8, 10, 39, 44]. Subsequent research has further
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explored source bias in other IR scenarios, including question an-
swering (QA) [27], retrieval-augmented generation (RAG)[2], and
recommender systems (RS) [44]. These works further emphasize
the widespread existence of source bias and highlight the impor-
tance and urgency of addressing this emerging issue in this LLM era.
Moreover, Wang et al. [31] provided a causal explanation for source
bias, showing that PLM-based retrievers favor LLM-generated con-
tent due to the positive correlation between language modeling
and retrieval objectives. To counteract source bias, recent studies
have introduced various debiasing constraints into the training
objectives of neural retrieval models [8, 39, 44]. These methods
aim to correct the skewed estimated relevance score of PLM-based
retrievers that favor LLM-generated content, thereby ensuring that
the results are not biased toward LLM-generated content. Different
from the above approaches that focus on mitigating source bias
from the retriever side, our work is the first to address source bias by
actively aligning LLMs, which offers a more fundamental solution
than passively defending from the retriever side.

Large Language Models Alignment. Empowering LLMs to
better understand and follow human instructions—thereby pro-
ducing responses that align more closely with human expecta-
tions—has garnered significant attention in the research commu-
nity [16, 17, 33]. Early efforts in this direction include OpenAI’s
exploration of Supervised Fine-Tuning (SFT), resulting in represen-
tative works such as InstructGPT [22]. To further enhance align-
ment with human preferences, a prominent approach named Re-
inforcement Learning from Human Feedback (RLHF) has been in-
troduced [3, 22, 26, 45], which involves training a reward model on
human-annotated outputs and subsequently using it to fine-tune
LLMs through reinforcement learning. Despite the remarkable effec-
tiveness of RLHF in aligning LLMs with human preferences, its com-
plex training pipeline can lead to optimization instability [40, 42].
To address these challenges, methods represented by Direct Pref-
erence Optimization (DPO) [23] enable the direct optimization of
preferences without the need for training a separate reward model,
thereby significantly reducing training complexity. This approach
has shown practical success and has been widely adopted in new-
generation LLMs, such as Llama3 [9]. In our work, we aim to apply
DPO to align the outputs of LLMs with the preference values from
IR models, thereby addressing the source bias problem. Unlike
alignment using human-annotated preference pairs, we focus on
designing alignment strategies that leverage fine-grained prefer-
ence data obtained from IR models, especially for the source bias
mitigation problem.

3 Preliminary
3.1 Retrieval with Mixed-Source Corpora
In the LLM era, both human-written and LLM-generated documents
coexist within the corpus. Formally, let C𝐻 represent the set of
human-written documents and C𝐺 denote the set of LLM-generated
documents, where each document 𝑑𝐺 ∈ C𝐺 is generated by a
LLM while preserving nearly the same semantic information as
its human-written counterpart 𝑑𝐻 ∈ C𝐻 . Given a query 𝑞 ∈ Q,
the goal of a retriever is to return the top-𝐾 relevant documents
{𝑑 (1) , 𝑑 (2) , . . . , 𝑑 (𝐾 ) } from the mixed-source corpora C = C𝐻 ∪C𝐺 .
Specifically, the retriever evaluates each query-document pair (𝑞, 𝑑)

by assigning an estimated relevance score 𝑟 (𝑞, 𝑑) and ranks the
documents accordingly, from highest to lowest score.

Then, we define source bias: given a query 𝑞, and two documents
𝑑𝐻 and 𝑑𝐺 that are semantically similar, PLM-based retrievers
exhibit source bias by assigning a higher estimated relevance score
to the LLM-generated document, i.e., 𝑟 (𝑞, 𝑑𝐺 ) > 𝑟 (𝑞, 𝑑𝐻 ).

3.2 Task Formulation
In this paper, our objective is to mitigate source bias of text gen-
erated by LLMs, ensuring that the rewritten texts do not receive
preferential treatment in PLM-based retrieval systems. Formally,
given a human-written document𝑑𝐻 , a target LLM 𝜋𝜃 , and a rewrit-
ing prompt 𝑥 , the LLM can be prompted to generate a document
𝑑𝐺 := 𝜋𝜃 (𝑥, 𝑑𝐻 ). Our goal is to achieve the following:
• Mitigate Source Bias: The generated document 𝑑𝐺 should be
ranked comparably or lower than the original document 𝑑𝐻 by
PLM-based retrievers.

• Maintain Quality: The generated document 𝑑𝐺 should pre-
serve the semantic integrity and overall quality of the original
document 𝑑𝐻 , ensuring that the general capabilities of the LLM
are not compromised.

In this way, we seek to align the outputs of LLMs with the inversed
feedback (lower relevance scores) from retrieval models, thereby
effectively counteracting the tendency for LLM-generated content
to be favored by PLM-based retrievers.

3.3 Direct Preference Optimization (DPO)
Direct Preference Optimization (DPO) is an offline reinforcement
learning approach designed to directly optimize a policy using pref-
erence data without the need for reward models or online sampling.
In essence, DPO seeks to maximize the margin between the log-
likelihoods of preferred responses and rejected ones while ensuring
that the model remains close to its initial policy.

DPO consists of two core components:
• Preference Data: The training process utilizes a preference
datasetD, where each element (𝑥,𝑦𝑐 , 𝑦𝑟 ) consists of a prompt 𝑥 ,
a chosen (preferred) response 𝑦𝑐 , and a rejected (non-preferred)
response 𝑦𝑟 . Each element is also associated with a preference
ranking indicating that 𝑦𝑐 is preferred over 𝑦𝑟 (i.e., 𝑦𝑐 ≻ 𝑦𝑟 | 𝑥 ),
based on evaluations from human annotators.

• Policy Training: The objective function for DPO is defined by
minimizing the empirical binary cross entropy (BCE) loss over
the preference dataset:

LDPO (𝜋𝜃 , 𝜋ref ,D) =

−
∑︁

(𝑥,𝑦𝑐 ,𝑦𝑟 ) ∈D
log𝜎

(
𝛽 log

𝜋𝜃 (𝑦𝑐 | 𝑥)
𝜋ref (𝑦𝑐 | 𝑥) − 𝛽 log

𝜋𝜃 (𝑦𝑟 | 𝑥)
𝜋ref (𝑦𝑟 | 𝑥)

)
,
(1)

where 𝜎 (·) denotes the sigmoid function, 𝛽 is a scaling factor
that adjusts the influence of the preference feedback. The term
𝜋𝜃 (𝑦 |𝑥 )
𝜋ref (𝑦 |𝑥 ) represents an implicit reward defined by current pol-
icy 𝜋𝜃 and referenced policy 𝜋ref. This loss function allows for
effective discrimination between preferred and non-preferred
actions, ultimately enhancing the quality of the generated re-
sponses in alignment with human expectations without deviat-
ing significantly from the reference policy 𝜋ref.
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Figure 2: An overview of the automatic alignment data construction pipeline. (a) Data Collection and Generation: we simulate
user interactions with LLMs for rewriting tasks multiple times with diverse instructions to generate several semantically
similar documents. (b) Preference Assignment: we employ a specific PLM-based retriever to assign preference scores to all the
documents after filtering. (c) Preference Pair Construction: we construct preference pairs for alignment data by identifying
documents that are ranked below and above human-written content according to the assigned preference.

4 Our Approach: LLM-SBM
4.1 Overview
As illustrated in Figure 1, source bias arises from the complex cou-
pling between LLMs and PLM-based retrievers. Addressing this
issue from the retriever side serves only as a passive defense and
has several drawbacks. Therefore, we adopt a different perspective
to counteract source bias by aligning the outputs of LLMs with the
inverse preference values of IR models, representing a more funda-
mental approach. In this way, we aim to reduce the likelihood that
LLM-generated texts are ranked higher by PLM-based retrievers
without sacrificing the general capabilities of LLMs.

To achieve this, we design a novel LLM alignment framework
for source bias mitigation, consisting of two key components:

• Automatic Preference Data Construction Pipeline: This
pipeline automatically generates high-quality alignment datasets
by leveraging LLMs to rewrite human-written content with
diverse rephrasing instructions and assigning fine-grained pref-
erence values to these rewrites using PLM-based retrievers. By
constructing preference pairs based on these values, the pipeline
produces alignment data that captures nuanced differences in
alignment targets.

• Preference-Aware Policy Training: With the constructed
alignment data, we propose a preference-aware optimization
method that incorporates fine-grained preference differences
as weights in the training loss. This approach allows the model
to prioritize reliable data samples while mitigating the impact
of noisy or ambiguous data, resulting in robust alignment.

In the following sections, we first detail how our proposed au-
tomatic preference data construction pipeline can generate high-
quality alignment data with fine-grained preference differences.
Subsequently, we introduce the preference-aware policy training
method, accompanied by gradient analysis to highlight its effective-
ness in leveraging fine-grained preferences and mitigating noise.

4.2 Automatic Alignment Data Construction
To effectively mitigate source bias by aligning LLM outputs, we
require high-quality alignment data. Note that our alignment goal
is to align with the preference value of the IR model rather than
human values. Consequently, we need to construct alignment data
based on feedback from IR models rather than human annotations.
To achieve this, we propose an automatic data construction pipeline
designed to generate this alignment data efficiently. As illustrated
in Figure 2, our pipeline comprises three key components: data
collection and generation, preference assignment, and preference
pair construction. In the following, we provide the details of each
stage of the construction pipeline.

4.2.1 Data Collection and Generation. To construct alignment data,
we first collect a representative human-written corpus and then sim-
ulate real user interactions with LLMs to generate multiple seman-
tically similar LLM-generated documents. These LLM-generated
documents are subsequently used for constructing preference pairs.

We first collect queries and corresponding human-written docu-
ments from the MS MARCO dataset [21] to simulate a real-world
IR environment. MS MARCO is a widely used benchmark in the IR
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field [19, 28], containing a large number of real user search queries
derived from Bing search logs and documents from diverse do-
mains. Many open-source PLM-based retrievers are trained on this
dataset [13, 36, 38]. To ensure data quality, we utilize the filtered
and processed MS MARCO dataset provided by the Cocktail bench-
mark1 [5], which includes approximately 540K human-written doc-
uments. We denote this human-written corpus as C𝐻 .

To generate LLM-generated documents, we employ one of the
most advanced open-source large language models, Llama32, with
various rephrasing instructions to rewrite each human-written
document in C𝐻 , ensuring that the semantic content remains un-
changed. Inspired by recent studies highlighting the importance of
instruction diversity [4, 32, 34], we construct 𝑁 (e.g., 𝑁 = 6 in our
experiments 3) different common rephrasing instructions, exam-
ples of which are shown in Figure 2(a). These instructions enhance
the diversity of the generated data and better simulate real-world
scenarios where users employ LLMs for text rewriting. Using these
𝑁 instructions, we obtain LLM-generated corpora {C𝐺1 , · · · , C

𝐺
𝑁
},

where C𝐺
𝑖

is the corpus generated using the 𝑖-th instruction.

4.2.2 Preference Assignment. With the multiple LLM-generated
corpora {C𝐺1 , · · · , C

𝐺
𝑁
}, we then filter out low-quality data and

utilize a PLM-based retriever to assign preference scores.
Specifically, to ensure that the rewritten content maintains se-

mantic equivalence with the original human-written text and to
avoid introducing noise or bias, we employ a widely adopted sen-
tence embedding model BGE4 [37] to compute the semantic simi-
larity between each human-written document 𝑑𝐻 and its different
corresponding LLM-generated documents 𝑑𝐺

𝑖
. As shown in Fig-

ure 2(b), the similarity distribution indicates that the majority of
similarities exceed 0.9. To further enhance data quality, we set a
higher filtering threshold of 0.92 to exclude low-quality rewrit-
ten texts. This filtering process results in a refined LLM-generated
corpus, denoted as C𝐺 .

With the mixed-source corpus C = C𝐻 ∪ C𝐺 , we proceed to
construct preference data based on the estimated relevance scores
assigned by a specific PLM-based retriever. Specifically, we utilize
SBERT [24] checkpoint from Cocktail benchmark [5], to evaluate
each query-document pair (𝑞, 𝑑) and assign an estimated relevance
score 𝑟 (𝑞, 𝑑) as the preference value. Despite the presence of source
bias causing the retriever to generally favor LLM-generated content,
the sensitivity of LLMs to different instructions results in some LLM-
generated documents receiving lower relevance scores than their
human-written counterparts. This variability allows us to construct
meaningful preference pairs that reflect the nuanced differences in
relevance as determined by the PLM-based retriever.

4.2.3 Preference Pair Construction. Using the preference scores
assigned to LLM-generated documents by the PLM-based retriever,
we compare these scores with those of the corresponding human-
written documents to construct the final preference pairs.

1https://huggingface.co/datasets/IR-Cocktail/msmarco
2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
3We utilize similar rephrasing instructions from https://github.com/kevinamiri/
Instructgpt-prompts to construct the alignment data for fine-tuning.
4https://huggingface.co/BAAI/bge-base-en-v1.5

Table 1: Statistics of the final constructed alignment data.
Avg. Chosen Doc and Avg. Rejected Doc represents the av-
erage chosen LLM-generated documents and rejected LLM-
generated documents per human-written doc, respectively.

# Sample # Human Doc Avg. Chosen Doc Avg. Rejected Doc

10,830 627 1.70 1.87

Specifically, as seen in Figure 2(c), we construct preference pairs
based on the following criterion: For a given query 𝑞 and human-
written document 𝑑𝐻 , if there exist two LLM-generated rewrites
𝑑𝐺
𝑖

and 𝑑𝐺
𝑗
such that 𝑟 (𝑞, 𝑑𝐺

𝑖
) < 𝑟 (𝑞, 𝑑𝐻 ) < 𝑟 (𝑞, 𝑑𝐺

𝑗
), we form a

preference quadruple (𝑑𝐻 , 𝑑𝐺
𝑖
, 𝑑𝐺
𝑗
, 𝛿), where 𝑑𝐺

𝑖
is the preferred

response, 𝑑𝐺
𝑗
is the non-preferred response, and 𝛿 = 𝑟 (𝑞, 𝑑𝐺

𝑗
) −

𝑟 (𝑞, 𝑑𝐺
𝑖
) represents the preference difference. Our goal is to align

the LLM to generate outputs similar to 𝑑𝐺
𝑖
, which are less favored

by the retriever, thereby mitigating source bias.
Considering the implementation of 𝑁 rephrasing instructions

designed to produce semantically equivalent outputs, we further
expand the alignment dataset by pairing each instruction with the
constructed preference quadruples, thereby rapidly increasing the
dataset size by a factor of 𝑁 . This approach not only increases
the volume of the alignment data but also enhances its diversity
and the generalization ability of the alignment method to unseen
instructions out of the training alignment data.

4.2.4 Data Statistics. Based on our proposed pipeline, we finally
constructed 6 (i.e., 𝑁 = 6) different rephrasing instructions to per-
form the rewriting tasks on the human-written documents from
MS MARCO. This resulted in generating about 6 × 540K LLM-
generated documents. After filtering and utilizing the validation set
of MS MARCO along with a PLM-based retriever, we constructed
6 × 1, 805 = 10, 830 alignment data samples for LLM alignment
training, each of which is quadruples (𝑥,𝑦𝑐 , 𝑦𝑟 , 𝛿), where 𝑥 is the
rephrasing instruction concatenated with the human-written con-
tent to be rewritten, 𝑦𝑐 is the chosen (preferred) response, 𝑦𝑟 is the
rejected (non-preferred) response, and 𝛿 is the fine-grained prefer-
ence difference provided by the IR model. Note that 𝛿 is normalized
to a range of 0 to 1 using min-max normalization.

From the statistics shown in Table 1, we can observe that the Avg.
Rejected Doc is greater than the Avg. Chosen Doc, which indicates
that in the LLM-generated documents (from unaligned LLM), there
are more documents ranked higher than the corresponding human-
written documents. This observation further verifies the existence
of source bias.

4.3 Preference-aware Policy Training
4.3.1 Preference-aware Loss. With the constructed dataset D con-
taining fine-grained preference differences, the standardDPOmethod
cannot distinguish between preference pairs based on the degree
of their preference differences. Treating all pairs equally may re-
sult in suboptimal performance, as it ignores the varying degrees
to which one response is preferred over another. To better align
LLMs with the constructed fine-grained preference datasets, our
proposed LLM-SBM introduces a simple yet effective modification
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policy training method of DPO, which utilizes the preference dif-
ference 𝛿 as weights in the loss function, allowing the model to
prioritize adjustments based on the degree of the difference.

Formally, let 𝛿 quantify the preference difference for the pair
𝑦𝑐 ≻ 𝑦𝑟 , indicating the degree to which the preferred response 𝑦𝑐
is better than the non-preferred response 𝑦𝑟 . We incorporate 𝛿 as a
coefficient for each response pair in the standard DPO loss function:

LLLM−SBM (𝜋𝜃 , 𝜋ref ,D) =

−
∑︁

(𝑥,𝑦𝑐 ,𝑦𝑟 ,𝛿 ) ∈D
𝛿𝛼 · log𝜎

(
𝛽 log

𝜋𝜃 (𝑦𝑐 | 𝑥)
𝜋ref (𝑦𝑐 | 𝑥) − 𝛽 log

𝜋𝜃 (𝑦𝑟 | 𝑥)
𝜋ref (𝑦𝑟 | 𝑥)

)
,

(2)
where 𝛼 ≥ 0 is a hyper-parameter that controls the influence of
the preference difference on the LLM-SBM loss. By adjusting 𝛼 ,
we can control the extent to which larger preference differences
influence the model’s learning process. In particular, when 𝛼 = 0,
the preference difference 𝛿 has no effect on the loss function, and
LLM-SBM loss in Eq. (2) reduces to the standard DPO loss in Eq. (1).

4.3.2 Gradient Analysis of LLM-SBM Loss. To gain a deeper under-
standing of the mechanics of LLM-SBM, it is insightful to analyze
the gradient of its loss function LLLM−SBM with respect to the pa-
rameters 𝜃 . Following the derivation in Appendix A.4 in DPO [23],
the gradient of our LLM-SBM can be written as
∇𝜃LLLM−SBM =

−
∑︁

(𝑥,𝑦𝑐 ,𝑦𝑟 ,𝛿 ) ∈D
𝑤𝜃

[
∇𝜃 log𝜋𝜃 (𝑦𝑐 | 𝑥)︸                ︷︷                ︸

increase likelihood of 𝑦𝑐

− ∇𝜃 log𝜋𝜃 (𝑦𝑟 | 𝑥)︸                ︷︷                ︸
decrease likelihood of 𝑦𝑟

]
,

(3)
where the weights𝑤𝜃 are defined as

𝑤𝜃 = 𝛽 · 𝛿𝛼︸︷︷︸
(𝑎)

·
[
𝜎

(
𝛽 log

𝜋𝜃 (𝑦𝑟 | 𝑥)
𝜋ref (𝑦𝑟 | 𝑥) − 𝛽 log

𝜋𝜃 (𝑦𝑐 | 𝑥)
𝜋ref (𝑦𝑐 | 𝑥)

)
︸                                                  ︷︷                                                  ︸

(𝑏 )

]
. (4)

Intuitively, this formulation of LLM-SBM gradient can be dis-
sected into three key components:
• Direction of Improvement: In Eq. (3), similar to standard DPO,
the gradient of the loss function increases the likelihood of
the preferred responses 𝑦𝑐 and decreases the likelihood of the
non-preferred responses 𝑦𝑟 .

• Preference Signal Magnitude: In Eq. (4), the part (b) of the
weighting term𝑤𝜃 amplifies gradient contributions when the
current predictions of the policy deviate from the desired pref-
erence ordering.

• Preference-aware Weighting: The key difference in our method
lies in part (a) of the weighting term 𝑤𝜃 in Eq. (4), where we
introduce the additional preference-aware factor 𝛿𝛼 (𝛼 > 0).
Here, 𝛿 = 𝑟 (𝑥,𝑦𝑟 ) − 𝑟 (𝑥,𝑦𝑐 ) > 0 represents the preference
difference learned from the retriever model. A larger preference
differences indicates the preferred response is clearly better
than the non-preferred one, suggesting a more reliable (less
noisy) sample. Conversely, smaller differences suggest that the
preference signal is weaker and potentially noisy.
In standard DPO (𝛼 = 0), every sample contributes equally, in-

creasing the risk of overfitting to noisy examples. In contrast, by

incorporating 𝛿𝛼 , our LLM-SBM effectively leverages the external
preference value differences from the IR model (i.e., the alignment
target), which allows the model to assign higher weights to samples
with larger preference differences (i.e., cleaner samples where the
preferred response is significantly better than the non-preferred
one) and lower weights to samples with smaller preference differ-
ences (which may be noisy samples). As a result, LLM-SBM focuses
more on learning from reliable data, thereby reducing the risk of
overfitting to noisy samples in alignment data.

5 Experiments
In this section, we conduct experiments to evaluate the effectiveness
of the LLM-SBM framework. The constructed alignment data and
code are available in https://github.com/KID-22/LLM-SBM.

5.1 Experimental Settings
5.1.1 Datasets. Following previous works [5, 8, 31], we conduct
experiments on three widely-used IR datasets from varying do-
mains, including SciFact [30], NQ [18], and TREC-COVID [29]. For
all datasets, we use the filtered and processed corpus provided by
the Cocktail benchmark [5].

5.1.2 Evaluation Protocols and Metrics. Following standard prac-
tices [5, 8, 39], we adopt the RelaDiff to quantify source bias, which
represents the relative percentage difference in NDCG scores be-
tween human-written and LLM-generated content:

RelaDiff =
NDCGHuman − NDCGLLM

(NDCGHuman + NDCGLLM)/2 × 100%,

where the NDCGHuman and NDCGLLM denote the NDCG scores cor-
responding to human-written and LLM-generated content, respec-
tively [8, 39]. RelaDiff > 0 implies that the given IR model ranks
human-written content higher than LLM-generated content, while
RelaDiff < 0 indicates the opposite trend. The RelaDiff metric
ranges from −200% to 200%, with smaller values indicating a more
severe source bias favoring LLM-generated content. Therefore, our
goal is to increase the RelaDiff value to reduce source bias.

Note that our work aims to align LLMs so that the rewritten texts
are less likely to introduce source bias when ranked by PLM-based
retrievers. As a result, the evaluation of source bias depends on the
specific PLM-based retrievers employed. To verify the generaliza-
tion capability of our proposedmethod, we evaluate its performance
not only on SBERT—the PLM-based retriever used in our auto-
matic data construction pipeline (in-domain evaluation)—but also
on several other mainstream PLM-based retrieval models (out-of-
domain evaluation). For the out-of-domain evaluation, we employ
the officially released checkpoints of the following state-of-the-art
PLM-based retrieval models trained on MS MARCO: (1) ANCE [38];
(2) TAS-B [13]; (3) Contriever [15]; (4) coCondenser [11]; (5) Retro-
MAE [36]; (6) DRAGON [20]. For more details of these models,
please refer to the Cocktail benchmark [5].

5.1.3 Baseline Methods. As we are the first to address source bias
from the LLM side5 , there are no existing baselines directly com-
parable to our approach. Therefore, we adapt several common
alignment methods to serve as baselines for comparison:

5Note that retriever-side methods are not directly comparable to LLM-side methods.
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Table 2: Performance of different alignment methods evaluated by various PLM-based retrievers on three datasets. The original
LLM without alignment (denoted as “Raw”) corresponds to 0%, and their absolute value of RelaDiff are provided in parentheses.
The best result for each dataset and PLM-based retriever is highlighted in bold.

Dataset Method Evaluator (PLM-based Retrieval Model)
SBERT ANCE TAS-B Contriever Cocondenser RetroMAE DRAGON Avg.

SciFact

Raw 0.0%(−29.0) 0.0%(−53.3) 0.0%(−37.4) 0.0%(−38.0) 0.0%(−36.1) 0.0%(−20.2) 0.0%(−47.3) 0.0%(−37.3)
+SFT +0.9% +6.6% +33.6% +6.7% +8.3% +20.2% +15.4% +13.1%
+DPO −9.7% +41.0% +18.3% +4.6% +28.1% +26.5% +25.9% +19.2%
+LLM-SBM (Ours) +2.9% +67.9% +59.9% +53.0% +45.7% +80.1% +55.8% +52.2%

NQ

Raw 0.0%(−17.4) 0.0%(−13.1) 0.0%(−27.7) 0.0%(−21.8) 0.0%(−12.1) 0.0%(−13.1) 0.0%(−47.7) 0.0%(−21.8)
+SFT +15.0% +20.0% +14.0% +14.5% +6.9% +17.8% +18.5% +15.2%
+DPO +52.1% +54.2% +48.6% +49.2% +47.6% +59.6% +60.6% +53.1%
+LLM-SBM (Ours) +59.5% +67.2% +57.3% +56.3% +52.1% +65.7% +70.5% +61.2%

TREC-COVID

Raw 0.0%(−95.4) 0.0%(−68.8) 0.0%(−137.7) 0.0%(−98.2) 0.0%(−89.9) 0.0%(−78.5) 0.0%(−74.0) 0.0%(−91.8)
+SFT +14.2% +13.2% +55.0% +40.6% −20.4% +30.2% +32.1% +23.6%
+DPO +30.9% +36.4% +43.3% +24.9% +5.1% +63.9% +45.4% +35.7%
+LLM-SBM (Ours) +79.0% +36.9% +56.2% +77.5% +33.2% +59.9% +71.4% +59.2%

(1) Supervised Fine-Tuning (SFT) [22]: We perform supervised
fine-tuning using the chosen responses from our constructed paired
alignment dataset, paired with the corresponding instructions, to
create the SFT dataset.

(2) Direct Preference Optimization (DPO) [23]:We apply the stan-
dard DPO loss function (i.e., Eq. (1)) to our constructed alignment
dataset for fine-tuning. This serves as an ablation study for our pro-
posed LLM-SBM alignment framework, allowing us to assess the
effectiveness of incorporating fine-grained preference differences.

5.1.4 Implementation Details. We use the LLaMA-Factory [43]
framework6 to implement both the baseline methods and our pro-
posed LLM-SBM framework. To ensure fairness in evaluation, most
of the training hyper-parameters are kept at their default settings.
Due to computational resource limitations, we employ LoRA [14]
for all experiments involving fine-tuning of LLMs and set the low
rank to 8. Each experiment is trained for a total of 3 epochs, with
a batch size of 4 and gradient accumulation steps set to 8. If not
specified, we use Llama-3-8B-Instruct for experiments and set the
𝛼 in LLM-SBM to 2.

5.2 Experimental Results
5.2.1 Evaluation of Mitigating Source Bias. We first test the source
bias of content generated by Llama3 with different alignment meth-
ods on three datasets. The source bias results, assessed using various
PLM-based retrievers, are reported in Table 2. Based on the results,
we can draw the following observations and conclusions:

(1) The initial models without alignment (denoted as “Raw”) ex-
hibit significant source bias towards LLM-generated content across
all datasets and most retrievers. Notably, on the TREC-COVID
dataset, the average RelaDiff across all neural models exceeds −70%.
These findings confirm the widespread presence of source bias in
different PLM-based retrieval models [8], highlighting the urgent
need to address this issue.

(2) Compared to the unaligned models, all models fine-tuned
using our constructed alignment data demonstrate a significant
reduction in source bias across the three datasets. Importantly,

6https://github.com/hiyouga/LLaMA-Factory

Table 3: Human evaluation for the quality of LLM-generated
documents before and after alignment. Human annotators
are asked to select which document exhibits higher quality
based on language fluency and semantic completeness.

Dataset Choice
Raw +SFT + DPO + Ours Equal

SciFact 2.0% 2.0% 6.0% 4.0% 86.0%
NQ 2.0% 0.0% 2.0% 4.0% 92.0%
TREC-COVID 0.0% 0.0% 4.0% 6.0% 90.0%
Avg. 1.3% 0.7% 4.0% 4.7% 89.3%

this improvement is observed not only on SBERT—the PLM-based
retriever used in our data construction pipeline (in-domain eval-
uation)—but also on other PLM-based retrievers (out-of-domain
evaluation). This outcome validates the effectiveness of our align-
ment data in providing valuable guidance to LLMs.

(3) The DPO method consistently outperforms SFT, which can
be attributed to its explicit alignment of the model’s outputs with
preference pairs rather than only the positive responses (i.e., pre-
ferred responses), thereby achieving better generalization ability.
Our proposed LLM-SBM takes this a step further by assigning dif-
ferent weights to preference samples based on their fine-grained
preference differences, enabling the model to focus more on the
“more reliable” preference pairs during alignment. As a result, our
method shows substantial improvements across almost all cases,
effectively eliminating source bias.

5.2.2 Evaluation of Maintaining GenerationQuality. To further val-
idate that the alignment process does not compromise the quality of
LLM-generated responses in rewriting tasks, we randomly sample
50 documents for each dataset to conduct a human evaluation. Hu-
man annotators, comprising the authors and their highly educated
colleagues, are tasked with evaluating the quality of the documents
based on language fluency and semantic completeness. The experi-
mental results in Table 3 indicate that, after alignment, the quality of
LLM-generated documents did not decrease and even demonstrated
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Table 4: General capabilities evaluation across different do-
mains on the MMLU dataset.

Domain STEM Social Sciences Humanities Other Avg.

Raw 54.73 75.53 61.27 71.19 65.28
+SFT 54.17 74.58 60.32 70.94 64.58
+DPO 54.37 75.56 61.30 71.53 65.30
+Ours 54.67 75.50 61.25 71.69 65.37

SBERT ANCE TAS-B Contriever CocondenserRetroMAE DRAGON
PLM-based Retriever
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Figure 3: Reduction of source bias in Llama2 and Qwen2 after
applying our proposed LLM-SBM alignment framework.

slight improvements, possibly due to the enhancing instruction-
following capabilities during the alignment. This demonstrates that
our alignment method effectively mitigates source bias without
sacrificing the inherent quality of the generated content.

5.2.3 Evaluation of Maintaining General Capabilities. Moreover, to
assess whether fine-tuning the LLM with our constructed source
bias alignment dataset affects its general capabilities, we conduct
experiments with various alignment methods on the MMLU bench-
mark [12], which is widely used for LLM general capabilities eval-
uation [9, 43]. The results across different domains are reported
in Table 4. As observed, all alignment methods, including SFT, DPO,
and our proposed LLM-SBM, effectively preserve the general capa-
bilities of the original LLM. The variations in accuracy are minimal,
indicating that the alignment process does not lead to catastrophic
forgetting of previously acquired knowledge. This result demon-
strates that our source bias alignment task can significantly reduce
source bias without compromising the LLM’s general capabilities.

5.3 Further Analysis
Due to the high training and inference costs of LLMs, we further
conduct more in-depth analyses on SciFact dataset.

5.3.1 Applying Alignment Data to Other LLMs. One of the key
contributions is the constructed alignment data for counteracting
source bias. In this part, we investigate whether the alignment
data constructed using Llama3 can also be effectively applied to
other LLMs to eliminate source bias. Specifically, we conduct exper-
iments on two other commonly used open-source LLMs: Llama27
and Qwen28, utilizing our constructed alignment datasets for align-
ment. As shown in Figure 3, after applying our alignment method,
7https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
8https://huggingface.co/Qwen/Qwen2-7B-Instruct

Table 5: Analysis of generalization of our proposed method
to other commonly used rephrasing instructions.

Instruction Method Avg. RelaDiff

Paraphrase the provided text while maintaining its meaning. Raw 0.0%(−21.1)
+Ours +46.1%

Rephrase the given text using alternative expressions. Raw 0.0%(−34.8)
+Ours +39.4%

Summarize the following passage in a concise manner. Raw 0.0%(−30.5)
+Ours +36.8%

Reword the passage below to make it more succinct. Raw 0.0%(−47.9)
+Ours +21.2%
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Figure 4: Reduction of source bias after aligning with differ-
ent amounts of data.

the source bias in both LLMs is substantially reduced. These ex-
perimental results further underscore the effectiveness of our con-
structed alignment data, demonstrating its applicability in aligning
other LLMs to eliminate source bias. Combined with the previous
experiments verifying that LLMs aligned through LLM-SBM retain
general capabilities—and even show slight improvements—while
greatly reducing source bias, we suggest that LLM-SBM can be
widely adopted as a general post-training framework before releas-
ing the checkpoint or providing the API service. By doing so, the
LLM service providers can ensure that their LLMs or API services
do not contribute to source bias in downstream applications.

5.3.2 Generalization to Unseen Rephrasing Instructions. Consid-
ering that users in real-world scenarios may employ a variety of
instructions when using LLMs for text rewriting, we aim to verify
whether LLMs aligned by our LLM-SBM framework can effectively
eliminate source bias across different rephrasing instructions. To
this end, we select unseen instructions during alignment 9 and
report the average results across seven PLM-based retrievers on Ta-
ble 5. We observe that these common prompts can readily trigger
source bias in LLM-generated content, further emphasizing the
necessity of addressing this issue. Notably, after applying our LLM-
SBM alignment framework, the source bias in the texts generated
under these different prompts is significantly reduced. This demon-
strates that our solution from the LLM side can fundamentally mit-
igate source bias, effectively resisting malicious users who might
exploit source bias to attack neural retrieval models in today’s
search engines.

5.3.3 Analysis of the Amount of Alignment Data. In this set of ex-
periments, we aim to explore the impact of the amount of alignment
data on the performance of our proposed method. We trained our

9https://github.com/kevinamiri/Instructgpt-prompts#rephrase-a-passage
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Figure 5: Illustration and analysis of the hyper-parameter 𝛼
in weight. (a): The weight curves with different 𝛼 values. (b):
Reduction of source bias w.r.t different 𝛼 values.

model using varying proportions of the alignment data and eval-
uated its performance after each training iteration. The average
results across seven PLM-based retrievers are presented in Figure 4.
As expected, the performance of both DPO and our LLM-SBM im-
proves with increasing amounts of training data, indicating that
alignment methods benefit from a larger alignment dataset, leading
to more effective mitigation of source bias. Furthermore, as the data
volume increases, the debiasing performance of DPO declines at
full data, indicating that larger datasets may introduce more noise.
However, our approach effectively mitigates this issue and outper-
forms DPO, as analyzed in Section 4.3.2. These results validate the
necessity of the data expansion strategy employed in our data con-
struction pipeline for automatically constructing alignment data
at scale, demonstrating that increasing the amount of alignment
data enhances overall alignment performance and underscores the
efficacy of our LLM-SBM optimization method.

5.3.4 Analysis of the Hyper-Parameter𝛼 . As described in Section 4.3.1,
our LLM-SBM introduces a hyper-parameter 𝛼 in Eq (2) to control
the effect of the preference difference on the alignment loss. Specif-
ically, Figure 5(a) illustrates the weighting curves with respect
to the preference difference for varying values of 𝛼 in the range
{0, 0.1, 0.3, 1, 2, 5}. In particular, when 𝛼 = 0, LLM-SBM reduces to
the standard DPO formulation, assigning equal loss weights to all
preference pairs regardless of their preference differences.

Figure 5(b) presents the experimental results with different val-
ues of 𝛼 . From these results, we observe that LLM-SBM generally
outperforms DPO, especially when 𝛼 = 2.We attribute this improve-
ment to the weight mechanism of LLM-SBM: samples with smaller
preference differences receive lower weights when 𝛼 is greater
than zero. Such samples indicate that, according to the specific
PLM-based retriever (i.e., SBERT in our experiments), the chosen
document is not significantly better than the rejected document.
Consequently, when evaluated with other PLM-based retrievers
(i.e., out-of-domain evaluation setting), the preference might be
reversed, making these samples more likely to be noisy. By setting
𝛼 = 2, the weight curve becomes concave downward, further dimin-
ishing the influence of samples with small preference differences.
This allows the model to focus more on samples with larger and
more reliable preference differences, thereby enhancing the overall
alignment performance and reducing the source bias.

Table 6: Statistics of data count and performance of bias
reduction for different values of N.

Method Raw N = 2 N = 4 N = 6

Data Count - 77 × 2 = 154 671 × 4 = 2, 683 1, 805 × 6 = 10, 830
Bias Reduction 0.0% (-37.3) -9.5% +33.2% +52.2%

5.3.5 Analysis of the Hyper-Parameter 𝑁 . Note that increasing 𝑁
can directly amplify the amount of alignment data by enabling more
pairwise combinations between chosen and rejected responses, thus
facilitating a more comprehensive alignment process. We further
conduct experiments to analyze the effect of varying the number
of 𝑁 on both the quantity of alignment data constructed and the
resulting bias reduction. The results are summarized in the Table 6.

From these results, we observe that increasing 𝑁 significantly
boosts the amount of alignment data, which in turn leads to more
effective bias reduction. Specifically, as 𝑁 increases from 2 to 6,
the bias reduction improves from -9.5% to +52.2%, highlighting
the importance of 𝑁 in enhancing the alignment process. These
findings suggest that a larger 𝑁 provides a richer and more diverse
set of alignment examples, which strengthens the model’s ability
to counteract source bias. While it is possible to create additional
rephrasing instructions to generate more alignment data, we find
that 𝑁 = 6 is sufficient to achieve significant bias reduction. There-
fore, we did not explore higher values of 𝑁 , as the current results
already demonstrate significant effectiveness.

6 Conclusion
This paper introduces the LLM-SBM framework to align LLMs for
mitigating source bias from the data generation side. The LLM-SBM
framework encompasses an automatic preference data construction
pipeline that generates high-quality alignment samples by lever-
aging multiple rewrites from LLMs and assigned preferences from
the retriever. Furthermore, LLM-SBM incorporates fine-grained
preference differences as weights in the loss function, enhancing
the efficiency of policy training. Extensive experiments across three
diverse IR datasets and seven different PLM-based retrievers demon-
strate that LLMs aligned by LLM-SBM effectively reduce source
bias while maintaining their general capabilities.

In future work, we will further explore strategies to address
source bias simultaneously from both the LLM side and the retriever
side, thereby better jointly promoting the sustainable development
of the entire information content ecosystem.
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