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Abstract
Recently, the personalization of Large Language Models (LLMs) to
generate content that aligns with individual user preferences has
garnered widespread attention. Personalized Retrieval-Augmented
Generation (RAG), which retrieves relevant documents from the
user’s history to reflect their preferences and enhance LLM genera-
tion, is one commonly used approach for personalization. However,
existing personalized RAG methods do not consider that the his-
tories of similar users can also assist in personalized generation
for the current user, meaning that collaborative information be-
tween users can also benefit personalized generation. Inspired by
the application of collaborative filtering in recommender systems,
we propose a method called CFRAG, which adapts Collaborative
Filtering to RAG for personalized text generation. However, this
presents two challenges: (1) how to incorporate collaborative infor-
mation without explicit user similarity labels? (2) how to retrieve
documents that support personalized LLM generation? For Chal-
lenge 1, we use contrastive learning to train user embeddings to
retrieve similar users and introduce collaborative information. For
Challenge 2, we design a personalized retriever and reranker to re-
trieve the top-𝑘 documents from these users’ histories. We take into
account the user’s preference during retrieval and reranking. Then
we leverage feedback from the LLM to fine-tune the personalized
retriever and reranker, enabling them to retrieve documents that
meet the personalized generation needs of the LLM. Experimental
results on the Language Model Personalization (LaMP) benchmark
validate the effectiveness of CFRAG. Further analysis confirms the
importance of incorporating collaborative information.

CCS Concepts
• Information systems→Personalization; •Computingmethod-
ologies → Natural language generation.
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1 Introduction
Personalizing Large Language Models (LLMs) [56] to generate
personalized outputs tailored to individual user preferences has
emerged as a significant and rapidly growing field [16, 23, 29,
31, 32, 37, 38, 58]. Personalized Retrieval-Augmented Generation
(RAG) [8] has become a commonly used approach for personalizing
LLMs [29, 31, 32, 58].

The process of existing personalized RAG methods typically
involves retrieving similar documents from the user’s historical
behaviors based on the user’s input query, then concatenating these
documents with the query as a prompt input to the LLM for gen-
eration. Although effective, this approach is limited to retrieving
only the current user’s history, neglecting collaborative informa-
tion. Users with similar histories tend to be more alike, and the
information from these similar users can also aid in personaliz-
ing generation for the current user. As shown in the example in
Figure 1, the upper part illustrates the results of the existing RAG
method, which retrieves documents from the current user’s history.
We can only infer from these results that “She” in the user’s input
refers to “Hillary Clinton”. In contrast, the lower part demonstrates
our method, which retrieves documents from the history of similar
users. In this case, we can further infer that “his” in the user’s input
refers to “Donald Trump”, leading to a better generation result.
From this example, we can see that incorporating collaborative in-
formation allows the retrieval of more diverse documents, helping
the LLM generate results that better meet the user’s needs.

Inspired by the application of collaborative filtering in recom-
mender systems [11, 41, 47], we propose to adapt collaborative
information into RAG to personalize LLMs. However, adapting col-
laborative filtering to personalized RAG presents two challenges.
Challenge 1: How to incorporate collaborative information. With-
out explicit labels indicating which users are similar, which users’
information should be selected to help personalize generation for
the current user? Challenge 2: How to retrieve documents that
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Text: I would not 

advocate …

Title: Ben Carson …

Text: Progressive and 

Muslim groups …

Title: Hillary Clinton …

Text: She called out the 

stances … 

Title: Hillary Clinton …

Text: She called his foreign policy "dangerously incoherent" and said he was 

"temperamentally unfit" to serve as president.

[Input] from user [10000041]

[History 1] from 

user [10000041]

[History 2] from 

user [10000041]

[History 3] from 

user [10000041]

Text: It turns out calling 

the president …

Title: … Donald Trump

Text: She also said 

"Bernie," …

Title: Hillary Clinton …

Text: He makes Cruz 

look sane … 

Title: Donald Trump …

[History 1] from 

user [10000041]

[History 2] from 

user [10000423]

[History 3] from 

user [10000275]

Hillary Clinton Criticizes 

Republican Rival's Foreign 

Policy and Temperament

Hillary Clinton Eviscerates 

Donald Trump In Her Best 

Speech Yet

Hillary Clinton Slams 

Donald Trump's Foreign 

Policy

Ground 

Truth

Rouge-1: 0.1905

Rouge-1: 0.4211

The historical profiles are as follows: [History 1]; [History 2]; [History 3]. 

Based on the historical profiles provided, please generate a title for the given user's input text. [Input]
Prompt

Llama3

Llama3

RAG

CFRAG

Figure 1: An example from the LaMP-4 dataset [32]. The task of LaMP-4 is to generate personalized news headlines based on
user input. This example illustrates the benefit of collaborative information for LLM personalization: (a) The top shows results
retrieved by the existing RAG method from the current user’s history, where we can only infer that “She” in the user’s input
refers to “Hillary Clinton’‘. (b) The bottom shows results retrieved by our method from similar users’ histories, allowing us to
infer further that “his” in the user’s input refers to “Donald Trump” thus enabling the generation of a more accurate result.

support personalized LLM generation, rather than relying on tradi-
tional semantic relevance? Pre-trained dense retrieval models [55]
only retrieve based on the semantic relevance between the query
and document. Directly using these models for retrieval may not
necessarily result in content that allows the LLM to generate out-
puts that meet the user’s needs [25, 36].

To address the above challenges, this paper proposes a method
named CFRAG which adapts Collaborative Filtering to personal-
izedRetrievalAugmentedGeneration. Firstly, to address Challenge
1, since there are no explicit user similarity labels, we use contrastive
learning [15, 45] to train user embeddings for retrieving similar
users to introduce collaborative information. Specifically, we apply
different data augmentation methods to the user’s history to obtain
different views, and then treat different views of the same user’s
history as positive samples for each other. Then we use contrastive
learning on different views to train the user embeddings. Secondly,
for Challenge 2, we designed a personalized retriever and reranker
to retrieve the top-𝑘 documents from the histories of the retrieved
users. In both retrieval and reranking, in addition to the semantic
relevance between the query and documents, we also considered
the user’s preferences for different documents to enable personal-
ized retrieval. Additionally, we further fine-tune the retriever and
reranker based on the feedback from the LLM to ensure that the
retrieved documents better support the personalized LLM genera-
tion. Finally, the top-𝑘 documents are concatenated with the user’s
input query to form a prompt, which is then fed into the LLM for
personalized generation.

The major contributions of the paper are summarized as follows:
•We analyzed the necessity of introducing collaborative filtering
into RAG for LLM personalization and identified the challenges:
how to introduce collaborative information and how to retrieve
documents that support personalized LLM generation.

• We proposed a method called CFRAG, which uses contrastive
learning to train user embeddings for retrieving similar users and
incorporating collaborative information. It leverages LLM feedback
to train the personalized retriever and reranker, enabling them to
retrieve documents that support personalized LLM generation.
• Experimental results on the Language Model Personalization
(LaMP) [32] benchmark validate the effectiveness of CFRAG. The
experimental analysis also demonstrates the importance of leverag-
ing collaborative information.

2 Related Work
Personalization of LLMs. Large Language Models (LLMs) [56]
have demonstrated remarkable capabilities in various fields, such
as text generation [22], information retrieval [57], recommender
systems [5, 42], and so on. However, since LLMs are typically de-
signed to serve all tasks with a single model and are trained on
broad, domain-agnostic data, they face challenges in adapting to
the personalized needs of individual users [4, 32]. Therefore, LLM
personalization has attracted widespread attention [16, 31, 58].

Existing works on LLM personalization mainly include the fol-
lowing types of methods: (1) Fine-tuning a personalized LLM for
each user [37, 38, 43]; Tan et al. [38] fine-tuned the LLM using
LoRA [12] to get personalized LoRA parameters for each user.
(2) Aligning LLMs with user-specific preferences through Rein-
forcement Learning from Human Feedback (RLHF) [16, 23, 44];
Jang et al. [16] first trained different parameters for various objec-
tives using RLHF, then merged these parameters based on users’
personalized needs. (3) Incorporating user-specific context into the
prompt [21, 27, 29, 31, 32, 58]. Richardson et al. [29] used instruction-
tuned LLMs to summarize user history and then incorporated it
into prompts for generation. Salemi et al. [31, 32] used RAG to
retrieve relevant documents from user history based on the input
query and incorporated them into the prompt.
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Encoder𝑑

Encoder𝑞

Encoder𝑢User 𝑢

Doc 𝑑

Query 𝑞

Cross

Encoder

User 𝑢

Doc 𝑑

Query 𝑞

Encoder𝑢

Retriever

…

𝑑11 𝑑1𝑘

…

𝑑𝑚1 𝑑𝑚𝑘

Retriever

…

𝑢1

𝑢𝑚

Reranker …

𝑑1

𝑑𝑘

User 

Retrieval

Query 𝑞User 𝑢 Query 𝑞User 𝑢

Retrieved Documents

Reranked 

Documents

… …

LLM

User 𝑢

User Set

(1) User Retrieval (2) Document Retrieval (3) Document Rerank

Retrieved 

Users

Generated

Results

Figure 2: The architecture of CFRAG. From left to right: (a) User Retrieval retrieves similar users (Section 4.1); (b) Retriever
retrieves the top-𝑘 documents from each user’s history (Section 4.2); (c) Reranker reranks the 𝑚 × 𝑘 documents to get the
final top-𝑘 documents, which are then concatenated with the query and input into the LLM for personalized text generation
(Section 4.3).

This paper further introduces collaborative filtering for person-
alization based on the RAG framework. Collaborative filtering has
already been applied in fields such as recommender systems [33–
35, 39, 49–53] and has been proven effective. It assumes that users
who have interacted with similar items share similar preferences,
and recommending items from similar users to the current user can
meet their needs. Some works [11, 47] learn the collaborative infor-
mation between users and items through matrix factorization [19],
while others [10, 41] further explore higher-order collaborative
information between users and items using graph neural networks.
The application of collaborative filtering in LLM personalization
remains under-explored.
Retrieval Augmented Generation. Retrieval Augmented Gen-
eration [7, 8] introduces external knowledge through document
retrieval, alleviating issues such as LLM hallucinations [54], and en-
hancing LLMs’ capabilities in knowledge-intensive tasks [17] such
as open-domain question answering [14, 20]. Some works [3, 13]
encode retrieved documents using separate encoders, and then fuse
the results with the language model using cross-attention. A more
common approach is to directly include the retrieved documents
in the prompt of the LLM [2, 9, 20, 25, 36]. In recent years, this
in-context RAG framework has also been applied to LLM person-
alization, which is personalized by retrieving documents from the
user’s history [31, 32, 58]. This paper introduces collaborative filter-
ing by retrieving similar users’ histories for better personalization.

3 Problem Formulation
LetU = {𝑢1, 𝑢2, . . . , 𝑢𝑀 } denotes the set of all users, where𝑀 is the
number of users. Each user 𝑢 ∈ U has a chronologically ordered
history H𝑢 = [𝑑1, 𝑑2, . . . , 𝑑𝑁 ] which includes all her historical
documents, where 𝑁 is the number of documents in the history.
The personalized text generation dataset is D = {(𝑢, 𝑞,𝑦)𝑖 } |D |

𝑖=1 . For
each instance, 𝑞 is the query input by the user 𝑢 to the LLM, and
𝑦 is the target output. Our goal is first to introduce collaborative

information by retrieving the top-𝑚 most similar users for user 𝑢:

Uretrieved = {𝑢1, 𝑢2, . . . , 𝑢𝑚}.
Then, we use a retriever to retrieve the top-𝑘 documents from each
of the𝑚 users’ histories, resulting in a total of𝑚 × 𝑘 documents.

Dretrieved = {𝑑𝑖, 𝑗 |𝑖 ∈ {1, . . . ,𝑚}, 𝑗 ∈ {1, . . . , 𝑘}}.
Finally, we use a reranker to rerank these𝑚 × 𝑘 documents and
obtain the final top-𝑘 documents:

Dreranked = {𝑑𝑖 |𝑖 ∈ {1, . . . , 𝑘}}.
These top-𝑘 documents will be concatenated with the user’s query
𝑞 as a prompt and input into the LLM, enabling it to generate a
response that aligns with the target output 𝑦.

This paper primarily focuses on how to retrieve Uretrieved to
introduce collaborative information, and how to train the retriever
and reranker so that they can effectively retrieve documents that
support the personalized LLM generation.

4 Our Approach
This section introduces our method CFRAG. CFRAG’s overall archi-
tecture is shown in Figure 2. As mentioned in Section 1, to address
Challenge 1, i.e., how to introduce collaborative information, we
first train user embeddings using contrastive learning to retrieve the
top-𝑚 most similar users (see Section 4.1). For Challenge 2, which
involves retrieving documents that support personalized LLM gen-
eration, we fine-tune the personalized retriever and reranker using
LLM feedback. The retriever first retrieves the top-𝑘 documents
from the history of each of the𝑚 users, resulting in𝑚 × 𝑘 docu-
ments (see Section 4.2). The reranker then reranks these documents
to obtain the final top-𝑘 documents as input for the LLM (see Sec-
tion 4.3).

4.1 User Retrieval
First, we perform user retrieval to get the top-𝑚 most similar users
for user 𝑢 to introduce collaborative information. However, we do
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not have labels indicating which users are similar to each other. To
address this, we employ a contrastive learning [15, 45] approach.
We apply different data augmentation methods to the user history
H𝑢 to obtain different views of the user’s history. We treat different
views of the same user as positive samples and the histories of other
users as negative samples, and then we use the InfoNCE [28] loss to
train user embeddings for retrieval. Figure 3 illustrates the process
of training user embeddings using contrastive learning.

4.1.1 User Encoder. Specifically, we first use an embedding model
(such as BERT [6], RoBERTa [26], BGE [46] etc.) Emb(·) to en-
code each document in the user’s history H𝑢 to obtain E𝑢 =

[e1, e2, . . . , e𝑁 ]⊺ ∈ R𝑁×𝑑 , where e𝑖 = Emb(𝑑𝑖 ) and 𝑑 is the em-
bedding dimension. To model the sequential relationships between
different documents in the user’s history, we introduce positional
embedding P ∈ R𝑁×𝑑 . Afterward, the history H𝑢 ’s embedding
becomes Ê𝑢 = E𝑢 + P. Then, we apply a transformer [40] as the
user encoder to encode the user’s history Ê𝑢 and average the trans-
former’s output to obtain the user’s embedding:

e𝑢 = Encoder𝑢 (𝑢) = MEAN(Trm(Ê𝑢 )) ∈ R𝑑 , (1)

where Encoder𝑢 (·) → R𝑑 denotes the user encoder, Trm(·) denotes
a transformer encoder. Next, we train the transformer encoder using
contrastive learning.

4.1.2 Data Augmentation. We generate different views ofH𝑢 using
the following three data augmentation methods:

DocumentCrop.We randomly select a continuous sub-sequence
of length 𝐿𝑐 = ⌊𝜂𝑐𝑁 ⌋ fromH𝑢 , where 𝜂𝑐 is a hyper-parameter con-
trolling the crop ratio. The history after cropping is as follows:

H crop
𝑢 = [𝑑𝑐 , 𝑑𝑐+1, . . . , 𝑑𝑐+𝐿𝑐−1] .

Document Mask. For the historyH𝑢 , we randomly mask out
𝐿𝑚 = ⌊𝜂𝑚𝑁 ⌋ documents Imask = {𝑖1, 𝑖2, . . . , 𝑖𝐿𝑚 }, where Imask is
the set of indices corresponding to the masked documents and 𝜂𝑚
is a hyper-parameter that controls the mask ratio. The masked
documents are replaced with a special token [mask]. The history
after masking is as follows:

Hmask
𝑢 = [𝑑1, 𝑑2, . . . , 𝑑𝑁 ],

𝑑𝑖 =

{
𝑑𝑖 , 𝑖 ∉ Imask,

[mask], 𝑖 ∈ Imask .

Document Reorder. We randomly select a sub-sequence [𝑑𝑟 ,
𝑑𝑟+1, . . . , 𝑑𝑟+𝐿𝑟 −1] of length 𝐿𝑟 = ⌊𝜂𝑟𝑁 ⌋ from H𝑢 , where 𝜂𝑟 is a
hyper-parameter controlling the reorder ratio, and then randomly
shuffle the order of the documents within the sub-sequence to
obtain [𝑑𝑟 , 𝑑𝑟+1, . . . , 𝑑𝑟+𝐿𝑟 −1]. The history after reordering is as
follows:

H reorder
𝑢 = [𝑑1, 𝑑2, . . . , 𝑑𝑟 , . . . , 𝑑𝑟+𝐿𝑟 −1, . . . , 𝑑𝑁 ] .

4.1.3 Contrastive Loss. Each time, we randomly select two data
augmentation methodsA′ andA′′ to generate two different views
of H𝑢 , denoted as H ′

𝑢 and H ′′
𝑢 . Then, using the encoder described

in Section 4.1.1, we obtain the user embeddings e′𝑢 and e′′𝑢 cor-
responding to the different views. Since e′𝑢 and e′′𝑢 are obtained
through data augmentation of H𝑢 , they are more similar to each
other. Therefore, we treat them as positive samples for each other

…

𝑑1

𝑑𝑁

𝒜′

…

𝑑1
′

𝑑𝑁
′

Emb Trm

𝒜′′

…

𝑑1
′′

𝑑𝑁
′′

Emb Trm

Encoder𝑢
Contrastive 

Learning

Data

Augmentation

Figure 3: Contrastive learning for user embedding training.

and use the views generated from the augmented histories of other
users in the same batch as negative samples. We then perform
contrastive learning using the InfoNCE [28] loss as follows:

LCL = −
[
log

exp(cos(e′𝑢 , e′′𝑢 )/𝜏1)∑
𝑢−∈Uneg exp(cos(e′𝑢 , e′′𝑢− )/𝜏1)

+ log
exp(cos(e′𝑢 , e′′𝑢 )/𝜏1)∑

𝑢−∈Uneg exp(cos(e′𝑢− , e′′𝑢 )/𝜏1)

]
,

(2)

where 𝜏1 is the temperature coefficient, Uneg are the set of ran-
domly sampled in-batch negative samples, and cos(·) denotes the
cosine similarity.

4.1.4 Top-𝑚 User Retrieval. After training with contrastive learn-
ing, we can use the encoder from Section 4.1.1 to obtain the user
embedding e𝑢 . We then calculate the cosine similarity between each
pair of user embeddings and retrieve the top-𝑚 most similar users
Uretrieved = {𝑢1, 𝑢2, . . . , 𝑢𝑚} for user 𝑢. Subsequently, the histories
of these𝑚 users will be used for further document retrieval.

4.2 Document Retrieval
After retrieving the top-𝑚 users, we design a personalized retriever
to retrieve the top-𝑘 documents from each user’s history, result-
ing in a total of𝑚 × 𝑘 candidate documents Dretrieved = {𝑑𝑖, 𝑗 |𝑖 ∈
{1, . . . ,𝑚}, 𝑗 ∈ {1, . . . , 𝑘}}. This section introduces how the re-
triever is designed and how it’s trained to retrieve documents that
better align with the requirements of personalized LLM generation.

4.2.1 Retriever. First, we use a pre-trained dense retrieval model
(such as BGE retriever [46]) to compute the semantic relevance
between the query and the candidate documents:

𝑆retriever
𝑞,𝑑

= cos(Encoder𝑞 (𝑞), Encoder𝑑 (𝑑)), (3)

where Encoder𝑞 (·) → R𝑑 and Encoder𝑑 (·) → R𝑑 are the encoders
for the query and the document in the retrieval model, respectively.
Pre-trained retrieval models typically use 𝑆retriever

𝑞,𝑑
directly for re-

trieval. However, 𝑆retriever
𝑞,𝑑

only considers the semantic relevance
between the query and the document. Since different users might
input the same query but expect different outputs due to their vary-
ing preferences, we further account for user personalization by
calculating the preference score of the user for the document as
follows:

𝑆retriever
𝑢,𝑑

= cos(MLP1 (e𝑢 ), Encoder𝑑 (𝑑)), (4)
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Figure 4: The method of training the retriever and reranker
using LLM feedback.

where MLP1 : R𝑑 → R𝑑 is a multi-layer perceptron that maps
the user embedding to the space where the cosine similarity is
computed. e𝑢 is the embedding obtained in Section 4.1.1. The total
score for retrieval is computed as follows:

𝑆retriever
𝑢,𝑞,𝑑

= (1 − 𝛼)𝑆retriever
𝑞,𝑑

+ 𝛼𝑆retriever
𝑢,𝑑

, (5)

where 𝛼 is a hyper-parameter that controls the weight of personal-
ization.

4.2.2 Training. Since the pre-trained dense retrieval model is not
fine-tuned for our specific task, the retrieved results may not nec-
essarily lead to LLM responses that better match the target output
𝑦 [25, 36]. However, there is no ground truth indicating which doc-
uments are better. Therefore, we evaluate the difference between
the LLM’s output and the target output 𝑦, using this as a label to
train the retrieval model. Figure 4 shows the process of training the
retriever using LLM feedback.

Specifically, we first use the pre-trained retrieval model to re-
trieve the top-𝑘 documents from each of the 𝑚 users’ histories
based on 𝑆retriever

𝑞,𝑑
in Eq. (3), resulting in a total of𝑚 × 𝑘 candidate

documents. These documents are then concatenated with the query
one by one and used as prompts for the LLM, producing 𝑚 × 𝑘

outputs:

{𝑂𝑞,𝑑𝑖,𝑗 = LLM(𝑞, 𝑑𝑖, 𝑗 ) |𝑖 ∈ {1, . . . ,𝑚}, 𝑗 ∈ {1, . . . , 𝑘}},

where LLM(𝑞, 𝑑𝑖, 𝑗 ) represents the output generated by inputting the
concatenated query 𝑞 and document 𝑑𝑖, 𝑗 into the LLM. Then, based
on the quality of these outputs, we can calculate the distribution of
these candidate documents as follows:

𝑝LLM (𝑑𝑖, 𝑗 |𝑞,𝑦) =
exp(eval(𝑦,𝑂𝑞,𝑑𝑖,𝑗 ))∑𝑚

𝑖=1
∑𝑘

𝑗=1 exp(eval(𝑦,𝑂𝑞,𝑑𝑖,𝑗 ))
, (6)

where eval(·) measures the difference between the target output
𝑦 and the LLM’s output, using metrics such as ROUGE [24] score.
A larger value returned by eval(·) indicates a better-generated
result. Similarly, we can also calculate the score distribution of the
candidate documents by the retrieval model based on 𝑆retriever

𝑢,𝑞,𝑑
in

Eq. (5):

𝑝retriever (𝑑𝑖, 𝑗 |𝑞,𝑢) =
exp(𝑆retriever

𝑢,𝑞,𝑑𝑖,𝑗
)∑𝑚

𝑖=1
∑𝑘

𝑗=1 exp(𝑆retriever𝑢,𝑞,𝑑𝑖,𝑗
)
. (7)

We aim for the retrieval model to retrieve documents that lead to
better LLM-generated results, which means making the distribution
𝑝retriever (𝑑 |𝑞,𝑢) in Eq. (7) closer to the distribution 𝑝LLM (𝑑 |𝑞,𝑦) in

Eq (6). Therefore, we compute the KL divergence between the two
distributions as the loss to optimize the retriever:

Lretriever = KL(𝑝retriever (𝑑 |𝑞,𝑢) | | 𝑝LLM (𝑑 |𝑞,𝑦)). (8)

4.3 Document Rerank
After retrieving Dretrieved through the retriever, in this section, we
further refine the results by reranking Dretrieved to obtain the final
top-𝑘 ranked results Dreranked = {𝑑𝑖 |𝑖 ∈ {1, . . . , 𝑘}}.

4.3.1 Reranker. We use a pre-trained cross-encoder (such as the
BGE reranker [46]) to encode the query and document, obtaining
the hidden state corresponding to the [CLS] token from the last
layer:

h𝑞,𝑑 = CrossEncoder(𝑞, 𝑑), (9)

where h𝑞,𝑑 ∈ R𝑑 . Similarly, when reranking, in addition to consid-
ering the semantic relevance between query and document, we also
take into account the user’s personalized preferences. However,
since the cross-encoder does not encode documents separately, it
cannot compute the cosine similarity between users and documents
as shown in Eq. (4) to express the user preference score. Therefore,
we directly concatenate the user embeddings to the output of the
cross-encoder to account for the influence of user preferences. The
overall score used for reranking is calculated as follows:

𝑆reranker
𝑢,𝑞,𝑑

= MLP3 (CONCAT(h𝑞,𝑑 ,MLP2 (e𝑢 ))), (10)

where MLP2 : R𝑑 → R𝑑 and MLP3 : R2𝑑 → R are two multi-layer
perceptions. CONCAT(·) denotes the concatenation operation.

4.3.2 Training. Similar to the retriever’s training in Section 4.2.2,
we also want the reranker to assign higher scores to the documents
that lead to better LLM-generated results. Therefore, we train the
reranker using a similar approach.

We use the trained retrieval model from Section 4.2.2 to retrieve
top-𝑘 documents from the history of each of the𝑚 users, result-
ing in a total of 𝑚 × 𝑘 candidate documents. These documents
are concatenated with the query 𝑞 and used as prompts for the
LLM, producing𝑚 × 𝑘 outputs. Similar to Eq.(6), we can obtain the
distribution 𝑝LLM (𝑑 |𝑞,𝑦) of these candidate documents. Based on
𝑆reranker
𝑢,𝑞,𝑑

in Eq. (10), we can also get the score distribution of the
candidate documents by the reranker:

𝑝reranker (𝑑𝑖, 𝑗 |𝑞,𝑢) =
exp(𝑆reranker

𝑢,𝑞,𝑑𝑖,𝑗
)∑𝑚

𝑖=1
∑𝑘

𝑗=1 exp(𝑆reranker𝑢,𝑞,𝑑𝑖,𝑗
)
. (11)

We compute the KL divergence between distributions 𝑝reranker (𝑑 |𝑞,𝑢)
and 𝑝LLM (𝑑 |𝑞,𝑦) as the loss to optimize the reranker:

Lreranker = KL(𝑝reranker (𝑑 |𝑞,𝑢) | | 𝑝LLM (𝑑 |𝑞,𝑦)) . (12)

The loss allows the reranker to assign higher scores to documents
that enable better personalized generation by the LLM.

4.4 Discussion
Computational Efficiency. CFRAG comprises three modules. The
User Encoder is a lightweight, single-layer Transformer with inputs
derived from a frozen BGE embedding (dimension 768), resulting in
minimal parameter overhead. The retriever and reranker are com-
parable in size to BERT (approximately 100M parameters). Overall,
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Table 1: Statistics of the datasets used in this paper.

Dataset LaMP-1 LaMP-2 LaMP-3 LaMP-4 LaMP-5 LaMP-7

#Users 6,542 929 20,000 1,643 14,682 13,437
#Train 6,542 5,073 20,000 12,500 14,682 13,437
#Dev 1,500 1,410 2,500 1,500 1,500 1,498
#Test 1,500 1,557 2,500 1,800 1,500 1,500

the training cost is low due to the modest parameter size. During
inference, user and document embeddings can be precomputed,
requiring only similarity calculations for retrieval, ensuring min-
imal computational cost. This efficiency enables our method to
generalize quickly to new datasets.

5 Experiments
We conducted experiments to evaluate the performance of CFRAG.
The source code is available. 1

5.1 Experimental Setup
5.1.1 Dataset. We conducted experiments on the Language Model
Personalization (LaMP) [32] benchmark, which consists of seven
personalized text generation tasks. We excluded LaMP-6 because
its data is not publicly available. The remaining tasks include:
LaMP-1 (Personalized Citation Identification); LaMP-2 (Person-
alized Movie Tagging); LaMP-3 (Personalized Product Rating);
LaMP-4 (Personalized News Headline Generation); LaMP-5 (Per-
sonalized Scholarly Title Generation); LaMP-7 (Personalized Tweet
Paraphrasing). We used the time-based split provided by LaMP to
divide the data into training, validation, and test sets. The statistics
of these datasets are shown in Table 1.

5.1.2 Evaluation Metrics. Following previous works [31, 32], we
evaluate Accuracy and F-1 score for LaMP-1 and LaMP-2, mean
absolute error (MAE) and rootmean squared error (RMSE) for LaMP-
3, ROUGE-1 and ROUGE-L [24] for LaMP-4, LaMP-5 and LaMP-7.

5.1.3 Baselines. In this work, we compare CFRAG with the follow-
ing methods.

No Personalization: We directly input the user’s query into
the LLM without retrieving from user history, using this as the
non-personalized baseline. We refer to this method as Zero Shot.

Personalized Baselines: We compared CFRAG with methods
that personalize by retrieving from user history using different
retrieval models, including: (1) Random selects 𝑘 items randomly
from the user’s history; (2) Recency selects the most recent 𝑘 items
from the user’s history; (3)BM25 [30] retrieves top-𝑘 items from the
user’s history using BM25; (4) BGE [46] retrieves top-𝑘 items from
the user’s history using BGE retriever; (5) ROPG [31] optimizes the
dense retrieval model based on the results generated by the LLM.

5.1.4 Implementation Details. We conducted experiments on two
LLMs: Llama3-8B-Instruct [1] and Qwen2-7B-Instruct [48]. In this
paper, we do not fine-tune the LLM because fine-tuning is costly
and could cause the LLM to retain user information, potentially
compromising user privacy. To ensure a fair comparison, we use
greedy search for text generation. The dense retrieval model used

1https://github.com/TengShi-RUC/CFRAG

in all methods is bge-base-en-v1.52 [46]. The cross-encoder used
for reranker in Section 4.3.1 is bge-reranker-base3 [46]. All hyper-
parameters for the baselines are searched according to the set-
tings in the original papers. The embedding dimension 𝑑 is set to
768. The number of retrieved documents 𝑘 is set to 5, and the
number of retrieved users 𝑚 is tuned among {2, 3, 4, 5, 6}. The
Trm(·) encoder in Eq. (1) has 1 layer and 2 heads. The hyper-
parameters 𝐿𝑐 , 𝐿𝑚 , and 𝐿𝑟 used for data augmentation in Sec-
tion 4.1.2 are set to 0.7, 0.3, and 0.3, respectively. The temperature
parameters 𝜏1 in Eq. (2) is tuned among {0.01, 0.1, 1}. The weight
𝛼 in Eq. (5) is tuned among [0.01, 1.0]. The learning rate is tuned
among {1𝑒-3, 1𝑒-4, 1𝑒-5}. Adam [18] is used to conduct the optimiza-
tion. The data input and output formats are provided in Appendix A.

5.2 Experimental Results
Experimental results are shown in Table 2. From the results, we
can find that:
• Firstly, compared to existing methods, CFRAG achieved the best
results across six datasets in the LaMP benchmark. This demon-
strates the effectiveness of introducing collaborative information
between users into RAG and using LLM feedback to tune the re-
triever and reranker to ensure that they can retrieve the documents
that support the personalized LLM generation.
• Secondly, we can observe that even randomly selecting user his-
tory outperforms the zero-shot method without any user history.
This highlights the importance of incorporating user history to
reflect user preferences for personalized generation. Additionally,
we observe that retrieval methods perform better than simply se-
lecting the most recent user history, underscoring the importance
of retrieval.
• Thirdly, we also observe that, in most cases, RAG and ROPGmeth-
ods using dense retrieval models outperform BM25. Additionally,
CFRAG, which fine-tunes the retriever based on LLM feedback,
achieves better results. This shows, on the one hand, that the better
the retriever, the better the generation results, and on the other
hand, fine-tuning the retriever based on LLM feedback to ensure it
can retrieve the documents that meet the personalized generation
needs of LLM is crucial.

5.3 Ablation Study
We conducted an ablation study to investigate the effectiveness of
differentmodules in CFRAG, as shown in Table 3. CFRAG consists of
three modules: User Retrieval, Document Retrieval, and Document
Rerank. We removed different modules from CFRAG one by one to
verify the effectiveness of each module.

5.3.1 User Retrieval. First, we validated the effectiveness of intro-
ducing collaborative information by retrieving similar users, as
shown in row (1) of Table 3. It can be seen that without retrieving
similar users and only retrieving from the current user’s history,
the performance is worse than that of CFRAG, highlighting the
importance of collaborative information.

We also validated the effectiveness of training user embeddings
using contrastive learning. For comparison, we directly averaged

2https://huggingface.co/BAAI/bge-base-en-v1.5
3https://huggingface.co/BAAI/bge-reranker-base
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Table 2: Comparison of the performance of CFRAG with other approaches on the LaMP benchmark. ↑ indicates that a higher
value for the corresponding metric is better, while ↓ indicates that a lower value is better. The best and the second-best methods
are highlighted in bold and underlined fonts, respectively. “*” indicates improvements over the second-best methods are
statistically significant (𝑡-test, 𝑝-value< 0.05).

LLMs Retrievers LaMP-1 LaMP-2 LaMP-3 LaMP-4 LaMP-5 LaMP-7

Accuracy ↑ F1 ↑ Accuracy ↑ F1 ↑ MAE ↓ RMSE ↓ ROUGE-1 ↑ ROUGE-L ↑ ROUGE-1 ↑ ROUGE-L ↑ ROUGE-1 ↑ ROUGE-L ↑

Llama3

Zero Shot 0.4993 0.2497 0.2993 0.0200 0.5024 0.7904 0.1406 0.1228 0.4417 0.3650 0.3079 0.2593
Random 0.5740 0.2870 0.3929 0.0262 0.4104 0.7833 0.1787 0.1571 0.4533 0.3875 0.3137 0.2508
Recency 0.6040 0.3020 0.3993 0.0266 0.3980 0.7491 0.1856 0.1650 0.4573 0.3928 0.3325 0.2686
BM25 [30] 0.6240 0.3120 0.4255 0.0284 0.4060 0.7666 0.1803 0.1591 0.4637 0.3978 0.3449 0.2780
BGE [46] 0.6327 0.3163 0.4574 0.0305 0.3528 0.6969 0.1811 0.1611 0.4638 0.3958 0.3391 0.2742
ROPG [31] 0.6440 0.3220 0.4681 0.0312 0.3456 0.6922 0.1838 0.1634 0.4638 0.3956 0.3530 0.2881
CFRAG 0.6533* 0.3267* 0.5340* 0.0356* 0.2812* 0.5997* 0.1957* 0.1745* 0.4810* 0.4153* 0.3752* 0.3055*

Qwen2

Zero Shot 0.5000 0.2500 0.2908 0.0194 0.4444 0.7805 0.1264 0.1081 0.4144 0.3468 0.3972 0.3229
Random 0.5633 0.2817 0.3284 0.0219 0.4000 0.7621 0.1581 0.1377 0.4580 0.3921 0.4291 0.3564
Recency 0.5773 0.2887 0.3326 0.0222 0.3912 0.7563 0.1581 0.1369 0.4562 0.3913 0.4247 0.3525
BM25 [30] 0.5987 0.2993 0.3532 0.0235 0.4228 0.8027 0.1580 0.1374 0.4613 0.3950 0.4290 0.3570
BGE [46] 0.6080 0.3040 0.3674 0.0245 0.3696 0.7211 0.1613 0.1398 0.4571 0.3910 0.4347 0.3605
ROPG [31] 0.6093 0.3047 0.3830 0.0255 0.3672 0.7332 0.1617 0.1401 0.4600 0.3946 0.4345 0.3610
CFRAG 0.6133 0.3067 0.3957* 0.0264 0.3536* 0.7071* 0.1621 0.1412 0.4703* 0.4029* 0.4425* 0.3708*

Table 3: Ablation Study of CFRAG on LaMP based on Llama3. “MEAN” represents using the average of user history document
embeddings as the user embedding. “w/o” indicates the corresponding module in CFRAG is removed.

Variants LaMP-1 LaMP-2 LaMP-3 LaMP-4 LaMP-5 LaMP-7

# Model Accuracy ↑ F1 ↑ Accuracy ↑ F1 ↑ MAE ↓ RMSE ↓ ROUGE-1 ↑ ROUGE-L ↑ ROUGE-1 ↑ ROUGE-L ↑ ROUGE-1 ↑ ROUGE-L ↑
(0) CFRAG 0.6533 0.3267 0.5340 0.0356 0.2812 0.5997 0.1957 0.1745 0.4810 0.4153 0.3752 0.3055
(1) w/o User Retrieval 0.6400 0.3200 0.4936 0.0329 0.3444 0.6925 0.1914 0.1689 0.4642 0.3963 0.3566 0.2903
(2) User Retrieval (MEAN) 0.6420 0.3210 0.5064 0.0338 0.3412 0.6867 0.1847 0.1639 0.4779 0.4113 0.3722 0.3022
(3) w/o Retriever Tuning 0.6453 0.3227 0.4979 0.0332 0.2852 0.6070 0.1916 0.1704 0.4742 0.4048 0.3599 0.2940
(4) w/o 𝑆retriever

𝑢,𝑑
in Eq. (5) 0.6333 0.3167 0.5113 0.0341 0.3324 0.6861 0.1895 0.1696 0.4750 0.4088 0.3732 0.3039

(5) w/o Reranker Tuning 0.6307 0.3153 0.4695 0.0313 0.3696 0.7392 0.1766 0.1550 0.4714 0.4068 0.3432 0.2775
(6) w/o e𝑢 in Eq. (10) 0.6313 0.3157 0.4993 0.0333 0.3420 0.6925 0.1887 0.1672 0.4772 0.4123 0.3731 0.3030
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Figure 5: Results of using differentmethods to select users for
introducing collaborative information. “random” indicates
randomly selecting𝑚 users; “top-(𝑚-2𝑚)” represents selecting
users whose similarity to the current user ranks between𝑚

and 2𝑚; “top-𝑚” indicates selecting the most similar𝑚 users.

the document embeddings from the user’s history to create user
embeddings for retrieval, as shown in row (2) of Table 3. It can be
seen that CFRAG, which uses user embeddings trained with con-
trastive learning, achieves better results. This is because contrastive
learning constructs user similarity labels through data augmenta-
tion and uses the InfoNCE loss to help the embeddings learn which
users are similar. In contrast, using mean pooling directly cannot
capture user similarity.

5.3.2 Document Retrieval. We also validated the effectiveness of
the personalized retriever we designed, as shown in Table 3, rows

(3) and (4). First, in row (3), we can see that without fine-tuning
based on LLM feedback, using a pre-trained dense retrieval model
leads to worse performance. This indicates that retrieval cannot
be based solely on semantic relevance, ensuring that the retrieved
documents support personalized LLM generation is crucial. Addi-
tionally, we analyzed the impact of removing 𝑆retriever

𝑢,𝑑
from Eq. (4)

and only using 𝑆retriever
𝑞,𝑑

from Eq. (3) for retrieval, as indicated in
row (4). The results decreased, demonstrating that users’ personal-
ized preferences should also be considered during retrieval, rather
than solely focusing on the semantic relevance between the query
and documents.

5.3.3 Document Rerank. We also validated the effectiveness of the
personalized reranker we designed, as shown in Table 3, rows (5)
and (6). First, in row (5), it can be seen that using a pre-trained
reranker leads to worse results, highlighting the importance of
fine-tuning based on LLM feedback. We also observed the effect of
removing e𝑢 from Eq. (10) and only using h𝑞,𝑑 to calculate 𝑆reranker

𝑞,𝑑

for ranking, as indicated in row (6). The results decreased in this
case, highlighting the importance of considering users’ personalized
preferences in the reranker.

5.4 Experimental Analysis
As mentioned in Section 1, adapting collaborative filtering into
personalized RAG faces two challenges. Challenge 1: How to in-
troduce collaborative information? Challenge 2: How to retrieve
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Figure 6: Results using different retrievers and rerankers.
“BM25” indicates using BM25 as both the retriever and
reranker, while “w/o Tuning” refers to using pre-trained re-
trievers and rerankers without LLM feedback fine-tuning.

0 1 2 3 4 5
#Doc from current user

0.600

0.612

0.624

0.636

0.648

0.660

Ac
cu

ra
cy

Accuracy

0.300

0.306

0.312

0.318

0.324

0.330

F1

F1

(a) LaMP-1

0 1 2 3 4 5
#Doc from current user

0.460

0.465

0.470

0.475

0.480

0.485

RO
UG

E-
1

ROUGE-1

0.390

0.396

0.402

0.408

0.414

0.420

RO
UG

E-
L

ROUGE-L

(b) LaMP-5

Figure 7: Performance under different numbers of retrieved
documents from the current user 𝑢’s history in the top-𝑘
documents.

documents that support personalized LLM generation? In this sec-
tion, we conduct experimental analysis to further demonstrate the
effectiveness of our method in addressing these two challenges. Ad-
ditionally, we provide further analysis of the results of CFRAG and
the impact of hyper-parameters. Due to space limitations, we con-
ducted experimental analysis on the LaMP-1 and LaMP-5 datasets.

5.4.1 Effectiveness of User Retrieval using Contrastive Learning
(Challenge 1). As described in Section 1, to address Challenge 1, we
train user embeddings using contrastive learning to retrieve the
top-𝑚 most similar users for introducing collaborative information.
To validate the effectiveness of this approach, we compared it with
randomly selecting𝑚 users and selecting users from top-𝑚 to 2𝑚,
as shown in Figure 5. First, we can see that randomly selecting
users yields the worst performance, indicating that collaborative
information cannot be introduced indiscriminately. Secondly, the
results show that retrieving users from the range of top-𝑚 to 2𝑚
performs worse than using the top-𝑚 users, suggesting that infor-
mation from users who are more similar to the current user 𝑢 is
more important. These highlight the importance of retrieving the
most similar top-𝑚 users

5.4.2 Effectiveness of Document Retrieval using LLMFeedback (Chal-
lenge 2). As mentioned in Section 1, to address Challenge 2, we
fine-tune the retriever and reranker using feedback from the con-
tent generated by the LLM, enabling them to retrieve documents
that better meet personalized LLM generation needs. To validate its
effectiveness, we compared the results with those using retrievers
and rerankers without LLM feedback fine-tuning, as well as using
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Figure 8: Performance under different numbers of retrieved
users. The performance is the worst since no collaborative
information is introduced when𝑚 = 1.
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Figure 9: Performance under different numbers of retrieved
documents per user.

BM25 as the retriever and reranker, as shown in Figure 6. It can be
observed that CFRAG performs the best, highlighting the impor-
tance of fine-tuning with LLM feedback rather than relying solely
on semantic relevance.

5.4.3 Impact of the Number of Documents from the Current User.
To further validate that CFRAG enhances personalization by incor-
porating collaborative information, we observed the impact of the
number of documents from the current user in the final top-𝑘 doc-
uments on the results, as shown in Figure 7. We varied the number
of documents retrieved from the current user’s history in the top-𝑘
documents from 0 to 5, with the remaining documents retrieved
from similar users’ histories. The results indicate that retrieving
only from the current user’s history leads to poor performance,
while appropriately retrieving documents from similar users’ histo-
ries significantly improves the results. This verifies the importance
of incorporating collaborative information.

5.4.4 Impact of the Number of Retrieved Users. Since we enhance
personalized text generation by introducing collaborative filtering,
we further explored how much collaborative information to intro-
duce, specifically the impact of the number of retrieved users on
the results, as shown in Figure 8. In LaMP-1, retrieving too few or
too many users leads to poorer performance, with the best results
at 4 users. In LaMP-5, the performance improves as the number of
users increases. This highlights the importance of introducing col-
laborative filtering, but it also indicates that excessive introduction
can lead to decreased effectiveness.

5.4.5 Impact of the Number of Retrieved Documents. We also ana-
lyzed the impact of the number of retrieved documents, 𝑘 , on the
results, as shown in Figure 9. It can be observed that as the number
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Table 4: The format of input, output, and user history for different datasets in the LaMP [32] benchmark. In the input, {history𝑖 }
will be replaced by the retrieved 𝑖-th history, and each history is represented as shown in the “User History” column. The other
italicized text in the input is replaced with the user’s input. For text generation tasks, to ensure that the LLM does not generate
irrelevant information, we instruct the LLM in the input to generate in JSON format, and then we extract the LLM’s prediction
from the JSON-formatted output.

Task Input Output User History

LaMP-1

The historical profiles are as follows: {history1} . . . {history𝑘 }.
Based on the historical profiles provided, please choose one of
the following two references that is more relevant to the user’s
input title: [1] {reference1}; [2] {reference2}. Please just answer
with “[1]” or “[2]” without explanation. “title”: {title}.

[1] “title”: {title}
“abstract”: {abstract}

LaMP-2

The historical profiles are as follows: {history1} . . . {history𝑘 }.
Based on the historical profiles provided, please select the tag
from [sci-fi, based on a book, comedy . . . ] that is most relevant
to the user’s input description. Please just answer with the tag
name without explanation. “description”: {description}; “tag”:

comedy “description”: {description};
“tag”: {tag}

LaMP-3

The historical profiles are as follows: {history1} . . . {history𝑘 }.
Based on the historical profiles provided, what is the score of the
following review on a scale of 1 to 5? just answer with 1, 2, 3, 4, or 5
without further explanation. “review”: {review}; “score”:

5 “review”: {review}
“score”: {score}

LaMP-4

The historical profiles are as follows: {history1} . . . {history𝑘 }.
Based on the historical profiles provided, please generate a title
for the given user’s input text. Please generate it in the following
format: {“title”: “generated title”} without explanation, and use
only English. “text”: {text}; “title”:

{“title”: Finding Happiness
After Divorce – It Can Happen}

“text”: {text}
“title”: {title}

LaMP-5

The historical profiles are as follows: {history1} . . . {history𝑘 }.
Based on the historical profiles provided, please generate a title
for the given user’s input abstract. Please generate it in the
following format: {“title”: “generated title”} without explanation,
and use only English. “abstract”: {abstract}; “title”:

{“title”: Link-Reliability Based
Two-Hop Routing for
Wireless Sensor Networks.}

“abstract”: {abstract}
“title”: {title}

LaMP-7

The historical profiles are as follows: {history1} . . . {history𝑘 }.
Based on the style pattern of the historical tweets provided,
please paraphrase the user’s input tweet without any explanation
before or after it. Please generate it in the following format:
{“tweet”: “generated tweet”} without explanation, and use only
English. “tweet”: {tweet}.

{“tweet”:lilxcutiesworld the
danny picture is GOOD!!
I really like it.}

“tweet”: {tweet}

of retrieved documents increases, performance improves, indicating
the importance of retrieving user history to reflect user preferences
for enhancing LLM-generated results. Since more documents lead
to longer prompts and slower LLM generation, we chose 𝑘 = 5 for
our experiments.

6 Conclusion
In this paper, we propose CFRAG, which adapts collaborative fil-
tering into RAG to personalize LLMs. To introduce collaborative
information without explicit user labels and retrieve documents
that support personalized LLM generation, we first train user em-
beddings through contrastive learning to retrieve similar users.
Then, we design the personalized retriever and reranker that con-
siders user preferences during retrieval and fine-tune them using
LLM feedback. The results on the Language Model Personalization

(LaMP) benchmark validate the effectiveness of CFRAG. The ex-
perimental analysis also confirms the effectiveness of each module
within CFRAG.

A Appendix: Prompts
We provide detailed formats for the inputs, outputs, and user histo-
ries for the LLM across different datasets, as shown in Table 4.
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