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Abstract

Fairness is an increasingly important factor in re-ranking tasks.
Prior work has identified a trade-off between ranking accuracy and
item fairness. However, the underlying mechanisms are still not
fully understood. An analogy can be drawn between re-ranking and
the dynamics of economic transactions. The accuracy-fairness trade-
off parallels the coupling of the commodity tax transfer process.
Fairness considerations in re-ranking, similar to a commodity tax
on suppliers, ultimately translate into a cost passed on to consumers.
Analogously, item-side fairness constraints result in a decline in
user-side accuracy. In economics, the extent to which commodity
tax on the supplier (item fairness) transfers to commodity tax on
users (accuracy loss) is formalized using the notion of elasticity. The
re-ranking fairness-accuracy trade-off is similarly governed by the
elasticity of utility between item groups. This insight underscores
the limitations of current fair re-ranking evaluations, which often
rely solely on a single fairness metric, hindering comprehensive
assessment of fair re-ranking algorithms.

Centered around the concept of elasticity, this work presents
two significant contributions. We introduce the Elastic Fairness
Curve (EF-Curve) as an evaluation framework. This framework
enables a comparative analysis of algorithm performance across dif-
ferent elasticity levels, facilitating the selection of the most suitable
approach. Furthermore, we propose ElasticRank, a fair re-ranking
algorithm that employs elasticity calculations to adjust inter-item
distances within a curved space. Experiments on three widely used
ranking datasets demonstrate its effectiveness and efficiency.
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1 Introduction

Over the past decade, fairness has become an increasingly important
and urgent topic on the information retrieval (IR) agenda [9, 20].
Previous work proposes diverse fairness objectives to ensure a
healthy ecosystem from economic or social perspectives [28, 38, 41].
However, fair re-ranking often entails a trade-off between ranking
accuracy and item fairness, where improving one typically comes
at the expense of the other [9, 20, 41]. Various methods [26, 28, 38]
have been proposed to mitigate this trade-off, but the underlying
mechanisms of this phenomenon remain insufficiently understood.

An economic perspective on accuracy-fairness trade-off. The
accuracy-fairness trade-off mirrors the coupling relationship of
the commodity tax transfer process [29]. In economics, promoting
fairness is achieved through taxation [27]. When a commodity tax
is imposed on a supplier, the tax rate is not entirely absorbed by
the supplier but is partially transferred to consumers. When we
relate re—ranking to economic transactions, we can view users as
suppliers, item groups as consumers, and the ranking scores as the
price; a more detailed correspondence can be seen in Table 1. In this
way, fairness in re-ranking functions like a commodity tax on the
item side [41], where the ranking scores adjusted by the fairness
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Figure 1: Parallels between (a) the commodity tax transfer
process and (b) the accuracy-fairness trade-off in re-ranking.

function (commodity tax for the supplier) transform into the cost
of accuracy loss (commodity tax transferred to users). We provide
a more detailed theoretical analysis of this analogy in Section 5.
We use the example in Figure 1 to visualize this insight. In the
economic transactions shown in Figure 1 (a), the imposition of a
commodity tax on the supplier triggers a partial transfer of this tax
burden to consumers in the form of a higher commodity price (a
detailed example is in Section 3.2). Similarly, in Figure 1 (b), users
will be exposed to certain items with high-ranking scores. When
promoting fairness among items, poor item groups are assigned
with higher ranking scores [41], which alters the utility for some
users. Consequently, part of the fairness cost is shifted to the users
as an accuracy loss. Given the parallels between the two processes,
we hypothesize that tools designed for analyzing taxation can be
applied to understand accuracy-fairness trade-offs in re-ranking.

Understanding re-ranking through elasticity. In economics,
elasticity theory [31] provides a framework for analyzing the trans-
fer of commodity tax burdens to consumers, with the degree of
transfer dependent on the elasticity of goods. Drawing an analogy,
we demonstrate in Section 4 that the fairness-accuracy trade-off in
re-ranking is similarly governed by the elasticity of utility between
item groups. This insight reveals a key limitation of current fair
re-ranking evaluations: their reliance on single fairness metrics,
which effectively assess tax transfers under only specific elasticity
assumptions, thereby hindering a comprehensive assessment of fair
re-ranking algorithms.

Grounded in elasticity theory, we introduce the Elastic Fairness
Curve (EF-Curve), a framework for evaluating fair re-ranking algo-
rithms. The EF-Curve visualizes algorithm performance across a
spectrum of elasticities, with each point representing performance
under a specific fairness metric. Intuitively, the EF-Curve illustrates
that different fairness metrics measure the degree of support for
item groups with varying levels of elasticity. This framework facili-
tates a comparative analysis of algorithms, enabling the selection of
the most suitable approach for diverse deployment scenarios. More-
over, the area enclosed by the EF-Curve and the axes, termed EF,
provides a quantitative measure of overall algorithm performance.
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Furthermore, we introduce ElasticRank, a fair re-ranking algo-
rithm designed to optimize the EF metric. Grounded in elasticity
theory, ElasticRank models the re-ranking space as curved, where
inter-group distances are dynamically adjusted based on their re-
spective elasticities. This approach intuitively prioritizes fairness
for item groups with higher elasticity, minimizing the associated ac-
curacy loss. Importantly, ElasticRank achieves this with comparable
complexity as standard ranking algorithms.

Main contributions. We summarize the major contributions:

(1) This research frames the re-ranking accuracy-fairness trade-
off as a commodity taxation transfer problem. By employing
elasticity theory from economics, we elucidate the intricate
relationship between these competing objectives.

(2) Inspired by elasticity theory, we propose a novel evaluation
framework for fair re-ranking algorithms, the EF-Curve. This
framework facilitates comprehensive comparisons between dif-
ferent algorithms by visualizing their performance across a
spectrum of fairness constraints.

(3) To optimize EF-Curve, we introduce ElasticRank, a novel fair
re-ranking algorithm designed to optimize the EF-Curve. Rig-
orous empirical evaluation on three publicly available ranking
datasets demonstrates that ElasticRank consistently surpasses
state-of-the-art baselines.

2 Related Work

Fair re-ranking. Over the past decade, work on fair ranking tasks
has rapidly grown in volume, driven by the need for a responsi-
ble and trustworthy ecosystem [9, 21, 23, 39]. Previous research
often categorizes fair-aware methods into three categories based on
ranking phases: pre-processing [7, 37], in-processing [34], and post-
processing (i.e., re-ranking tasks) [28, 38]. The re-ranking phase
is regarded as the most easily adaptable and practical stage in op-
timizing ranking systems [28]. During the re-ranking phase, the
concept of fairness in re-ranking depends on the stakeholders in-
volved [1, 2]. Prior work has examined user-oriented fairness [3, 19]
and item-oriented fairness [15, 28, 33, 38, 41, 43]. In this paper, we
focus on item group fairness in re-ranking tasks.

Metrics and algorithms in fair re-ranking. Fairness metrics
vary widely across works, with different studies optimizing distinct
metrics. For instance, some work [28, 43] employs proportional
fairness, Do and Usunier [11] focuses on the Gini Index, other
work [38] prioritizes MMF, and TaxRank [41] optimizes a-fairness.
However, these approaches rely on single fairness metrics, which
limits their ability to provide a comprehensive evaluation.
Previous work on re-ranking methods to improve item fairness
can be divided into (i) regularized methods, which use a multi-
task optimization approach with a linear combination of accuracy
and fairness loss functions, incorporating a trade-off coefficient
A [11, 26, 38], and (ii) constraint-based methods, which formulate
the task as a constrained optimization problem to ensure that fair-
ness metrics do not exceed a specified threshold [5, 28, 36, 46].
Despite achieving notable performance improvements, existing
fairness intervention methods are often designed to optimize spe-
cific fairness metrics and typically involve high computational costs,
making them challenging to adapt to real-world industrial systems.
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Table 1: Correspondence between taxation elements in eco-
nomics and fair re-ranking.

Economics

Consumer (buy product)
Supplier (sell product)
Commodity tax

Tax subsidies for the poor
Selling price (tax objective)
Elasticity on price E,

Fair re-ranking

Users U (click items)

Item groups G (provide items)
Fairness constraint

Increase ranking score for the poor
Ranking scores (fairness objective)
Elasticity on utilities of item group E; p

An economic perspective on fair re-ranking. In economics, re-
source allocation typically occurs through processes of distribution
and re-distribution [17]. Previous work [32] regards fair ranking as
a resource allocation problem and formulated the problem related
to Nash Social Welfare in economics, see also Biswas et al. [5], Patro
et al. [28]. TaxRank [41] regards fair re-ranking as a taxation pro-
cess, which often serves as a key mechanism in the re-distribution
process, enabling wealth reallocation and addressing income in-
equality [13, 27]. However, they merely use economic objectives
to define different fairness metrics, without understanding how
fairness-accuracy trade-offs occur under different metrics.

3 Problem Formulation

We begin by defining the fair re-ranking task, followed by intro-
ducing the concept of elasticity in economics.

3.1 Fair re-ranking

In re-ranking tasks, let U denote the set of users, 7 the set of items,
and each item i € J belongs to a unique group g € G. The set of
items within a specific group g is represented as Z;. When a user
u € U accesses the re-ranking system, the system will re-rank
items more fairly according to a given candidate ranked list of size
K, denoted as Lg (u) € TX. In each ranked list Lx (1), we will get
the ranking scores s ;, i € Lx(u) generated by ranking models. The
ranking score can usually be regarded as the probability of a user
clicking on an item (i.e., click-through-rate (CTR) value [24, 44]).

Then, we will define the user and item utilities for a certain group
in re-ranking tasks. The item group utility v5 and user utility w;, in
re-ranking tasks is typically defined as the accumulated utilities of
item group g across all ranked lists:

vy = Z Z suil(i € Ig), wy = Z Su,is

ueUicLlyg(u) i€Lg (u)

1

where I(+) is the indicator function.

The goal of fair re-ranking f is to maximize the overall user util-
ities (2, ¢/ Wu), while simultaneously striving to equalize utilities
across item groups (v ~ v, Vi € 1,,Vj € Ip)

3.2 Elasticity theory

In this section, we will first introduce elasticity theory from eco-
nomics. Then we relate elasticity theory to re-ranking tasks.

3.2.1 Elasticity in economics. Elasticity is a measure of the respon-
siveness of one variable to changes in another variable [31]. In
economics, the price elasticity of demand is defined as:

_99/Q

E, = ,
¢~ oP/P
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where Q is the user demand quantity of an item and P is the item
price. Elastic E, reflects how sensitive consumers are to changes in
price or other variables, like the price of related goods. Specifically,
Elastic E, measures the percentage decrease in the quantity Q
of items users are willing to purchase when the current price P
increases by 1%.

For example, bread has low elasticity since bread is a necessity
for most people. If the price of bread increases slightly, consumers
are unlikely to stop buying it. This small change in demand despite
a large price change illustrates low elasticity. On the other hand,
diamonds are not a necessity and there are many alternatives. If
the price of a pair increases slightly, consumers might decide not
to buy it and instead look for a cheaper option. This large change
in demand with a small price change demonstrates high elasticity.

This transfer rate of commodity tax burden depends on the price
elasticity of demand E; in taxation theory [13]. If consumers are
less sensitive to price changes, a larger share of the commodity tax
burden will fall on consumers because they will continue buying
the product even if the price increases due to the tax. On the other
hand, if consumers are highly sensitive to price changes, a larger
share of the tax burden falls on suppliers because consumers will
significantly reduce purchases if prices rise.

Therefore, when imposing commodity tax, it is generally more
effective to tax products with high elasticity, as this minimizes the
extent to which the tax burden is transferred to users.

3.2.2 Elasticity in re-ranking. When we relate re-ranking to the
economic transaction process, we can relate the re-ranking ele-
ments to taxation elements in Table 1. Then the utility elasticity of
different two groups (group r and group p) of ranking is defined as:

vy

o @

Erp=
The elasticity term E, , quantifies the sensitivity of item group r’s
utility to changes in item group p’s utility, capturing the interde-
pendence between the two items in the ranking system. !
Intuitively, applying the economics analogy of bread and dia-
monds to re-ranking, we find a striking similarity: for a relatively
rich item group r; and a less “rich” item group ry, they resemble
diamonds and bread (with the former having higher elasticity and
the latter lower elasticity compared to same group p). Suppose we
slightly reduce the exposure of r; to subsidize the poor item group
p, then p’s utility would increase significantly with minimal accu-
racy loss. In contrast, reducing some exposure from r, to subsidize
p would lead to a smaller increase in p’s utility but would transfer
most of the “tax” to users, resulting in more accuracy loss.
Therefore, in fair re-ranking, we should reduce more exposure
from item groups with higher elasticity to subsidize the poorer
groups. Detailed theoretical analysis can be seen in the next section.

4 Fairness Evaluation in Re-ranking

We first analyze the fairness objectives of fair re-ranking using
elasticity theory. Then, we propose a new fairness evaluation metric
EF by introducing the EF-Curve.

!Note that in ranking systems, we focus more on the absolute value rather than the
percentage value; thus, the elastic derivation differs slightly from economic elasticity.
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4.1 Analysis of fairness metrics

We aim to demonstrate that different fairness objectives fundamen-
tally alter the elasticity of different item groups, reflecting their
varying adaptability to fairness constraints.

Firstly, we define the fairness objective. Let v = [v1, 02, .. .,v|g|]
be the utility vector of different item groups. The fairness objec-
tive involves defining a function f(v), where the output represents
a fairness metric that quantifies the inequity among item group
utilities. The function f(v) should increase when different utilities
become more equal. f(v) usually has many different forms in pre-
vious work, such as max-min fairness [38], entropy fairness [8],
a-fairness [41], proportional fairness [35], p-norm [4] and Renyi
Entropy [30]. Previous studies often adopted different fairness op-
timization objectives and evaluation metrics without fully under-
standing the distinctions between these metrics.

4.1.1  General form of fairness metric. From the perspective of tax-
ation [41], fairness in re-ranking objectives imposes taxes on richer
item groups and redistributes these as subsidies to poorer item
groups. Given the requirements of the taxation [27], the fairness
function f(v) should be: (i) continuous on R; (ii) scale-invariant:
f(@) = f(cv),Yec > 0; and (iii) independent of number of item
groups. Also, given the requirements of ranking systems, the fair-
ness optimization objective should be distributed [40], allowing
the data to be partitioned across different servers and aggregated
results to ensure scalability and efficiency.

According to these requirements, let 3, be the normalized utility:

o =vg/ Zlgg 1' vy, then fairness metrics have a general form:

I g
f(vst) =sign(1 —t) Z —;—t ’

g=1

®)

where sign(+) is the symbolic function and ¢ is the tax base, illus-
trated in the following theorem:

THEOREM 1. The f(v;t) is the unique form of f (v). When t takes
on different values, as shown in Figure 2(b), f (v; t) will be generalized
to different fairness metrics, especially, lim; g f (v; 1) = e (®) where

H(9) is the entropy fairness: H(0) = — zlgfll 04logo,.

A detailed proof of Theorem 1 is provided in Appendix A. Eq. (3)
presents a general form of fairness metric, where the parameter
t can be adapted to represent various fairness metrics, as illus-
trated in Figure 2(b). The parameter ¢ can be understood as the tax
base, which will be further interpreted through the elastic theory
described in the next section. Intuitively, as the absolute value |¢| in-
creases, the fairness metric places greater emphasis on item groups
with lower utility values.

4.1.2  Elasticity theory for analyzing the general form. In this sec-
tion, we apply the elasticity theory introduced in Section 3.2 to
analyze the general form of the fairness metric described in Eq. (3)
through the following theorem:

THEOREM 2. The parameter t in Eq. (3) represents the tax base,
where, upon adding the next item to the ranked list, the rich group r
compared to the poor group p will be subjected to a commodity tax
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aUp _

B vy

Erp (4)

Gl 1-¢
g=1Y%

the group g is a rich group, otherwise, it will be a poor group.

A detailed proof can be found in Appendix B. Theorem 2 means
that different fairness metrics change the elasticity between the
poor item group and the rich item group.

Intuitively, different fairness metrics in re-ranking tasks are deter-
mined by adjusting the elasticity between groups. From a taxation
perspective, these metrics impose Ey,, times more commodity tax
to the rich groups r and subsidy to the poor group p.

4.2 EF-Curve and EF metric

After analyzing fairness metrics from an economic perspective, we
observe that previous fair re-ranking evaluations rely on single
fairness metrics (a single t value), which assesses tax transfers only
under specific elasticity conditions.

To provide a comprehensive fair re-ranking evaluation, we use
the general form f(v;t) in Eq. (3) to design the EF-curve (shown
in Figure 2 (a)). On the EF-curve, each point on the horizontal axis
corresponds to a different tax base t, and each point on the vertical
axis reflects the fairness metric f(v;t) under the respective metric.

Comparing the EF-Curve of different algorithms reveals their
performance across varying elasticities, helping to identify the
most suitable algorithm for online deployment based on specific
application requirements. Meanwhile, we propose to utilize the
area enclosed by the EF-curve (shown in Figure 2 (a)) and the axes
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(called EF):

1+M
_ f(vst)
EF = /1 Tz dt (5)

where Z = 2M|@G]| is the normalized factor for the area computation
(i.e., the Norm operation in Figure 2 (a)), M > 0 is used to ap-
proximate infinity integral values. Intuitively, Eq. (5) measures the
averaged fairness performances across different fairness metrics.

5 Accuracy-Fairness Optimization

We first analyze the accuracy-fairness ranking trade-off objective
from an economic perspective. Then we propose a new fair re-
ranking algorithm named ElasticRank.

5.1 Analysis of the accuracy-fairness trade-off

Given the general form of the fairness metric in Theorem 1, this sec-
tion aims to analyze the objective of maximizing ranking accuracy
while balancing the trade-off with the fairness function. We aim
to show that the trade-off is just like the commodity tax transfer
process in economics, using elasticity theory.

In ranking tasks [26, 38], previous work often adapts a linear
trade-off between the fairness and accuracy function:

Y= argmax Z wy + Af(v),
uel
where the wy, is defined as Eq. (1) and A € [0, o) is the trade-off co-
efficient and the first part is the accuracy part while the second part
is the fairness objective. Next, we will use the following theorem
to rewrite and analyze the trade-off function.

(©)

THEOREM 3. Eq. (6) can equivalently be optimized as:

0" = argmax L = arg max f (v; [t - a(w)' =1,
v v

™
where a(w) = Y, cqy Wy is the accuracy function.

Letn = 1 — 0 be the gradient direction of nearest fairness (moving
to the averaged utility) and a = V,w be the gradient of accuracy func-
tion. The transfer ratio between fairness (commodity tax on groups)
and accuracy (commodity tax transferred to users) is:

_ (VoL,m) . 1
(VoL ) 1+k(Erp)

1-|t
2peG LrpYp "IE,p

1t
PG Yp

B k(Er,p) =

®
The transfer ratio y is determined by the elasticity between any two
item groups, where the ratio can also be interpreted as the extent to
which the commodity tax is transferred to the users.

A detailed proof is provided in Appendix C.

In Figure 3 (a), we give a more intuitive example to understand
how elasticity works for the commodity tax transfer. For example,
Jain’s index can naturally be regarded as changing the elasticity
Erp = 1 (w/o fairness) of two different item groups as (Z—; '
Suppose there are two item groups, p with a utility of 1 and r with
a utility of 3. In that case, Jain’s index indicates that adding the
next item from group p to the ranked list, compared to group r, will
have its utility weighted three times more to support the poorer
group (changing elasticity Eyp = 3).

From a taxation perspective, as shown in Figure 3 (b), Jain’s index
will give three times more commodity tax to the rich groups than
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Figure 3: (a) The Elasticity curve when optimizing Jain’s index
and objective without fairness constraint. (b) Illustration of
how the commodity tax (item fairness) is being transferred
to users (accuracy loss).

to the poor group. However, the commodity tax (item fairness) will
inevitably be transferred to accuracy loss. Intuitively, when E;. p is
small, poor items act like necessities, adding exposure yields limited
systemic utility and maximizes accuracy loss (lower commodity
tax transfer rate). When E,, is large, poor items resemble luxu-
ries, adding exposure greatly boosts systemic utility but increases
accuracy loss (higher commodity tax transfer rate).

5.2 ElasticRank

Inspired by the aforementioned analysis, we propose an efficient
and effective re-ranking algorithm, ElasticRank.

From the proof of Theorem 3, we observe that the fairness func-
tion influences the optimal gradient direction, steering it to balance
the trade-off between fairness and accuracy. Moreover, we can ob-
serve that as the elasticity value increases, the ratio of commodity
tax transfer also rises, reflecting a stronger responsiveness of the tax
structure to changes in elasticity. From an optimization perspective,
the elasticity in economics essentially curves the optimization space,
increasing the separation between two item groups, as represented
by their geodesic distance [6]. Therefore, we propose ElasticRank,
which measures item distances in the elasticity-curved space.

The overall workflow can be seen in Algorithm 1. Formally, the
ElasticRank re-ranked list for each user u can be defined as

Lg (u) = arg max Z [Su,i +d (g(i), a)] ,

ierk i1

©)

where ¢(i) is the group of item i and d(g(i), a) represents the addi-
tional distance in the curved space between the group g(i) and an
anchor group a. The anchor group a can be any group in order to
reduce the computational complexity. In our algorithm, a is chosen
as the group that has the last 7% utility when the user u arrives in
the systems: a = argsort(v) [b], b = n%|G|.

The additional distance d (g(i), a) is computed through the curve
distance:

d(g(i),a) = z)g(l)\/l+ dx~(l t)vg(z)(UI r_ g()) (10)

where the term % measures the variation in the slope of the
curve (i.e., the elasticity E, 4(;) of group a with respect to group

g(i) moves along the curve). Intuitively, if the utility of group g(i)
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Algorithm 1: Learning algorithm of ElasticRank

Input: User set U, item set 7, group set G, ranking size K, tax

rate ¢, anchor group index b = n%|G|, user-item ranking score

sui,Vu e UNie T
1: Setvg =1,Vg € G
2: foru € U do
3. Choose anchor group a = argsort(v) [b]

' P S i
4 d(gi)a) = (1= ;) (0a " —v )

5. Lg(u) = argmax;c 7k Djer [su,i +d (g(i), a)]
6: Ug =0g+ ZiEIg Su,i» Vg €G
7: end for

has a huge gap with the anchor group a, then the distance d (¢(i), a)
will be larger to close the utility of such two groups.

Intuitively, taxing higher elasticity item groups minimizes ac-
curacy loss. ElasticRank leverages elasticity calculations to adjust
item distances in a curved space, boosting fairness scores for high-
elasticity groups and reducing accuracy loss. Meanwhile, as shown
in Algorithm 1, ElasticRank does not introduce additional compu-
tational overhead, ensuring that its complexity aligns with that of
standard ranking algorithms.

6 Experiments

We evaluate ElasticRank using three publicly available ranking
datasets, and the source code is shared at GitHub https://github.
com/XuChen0427/ElasticRank.

6.1 Experimental settings

Dataset. Our experiments are based on three large-scale, publicly
available ranking applications, including:

e Steam [16]: a ranking dataset for games on the Steam platform.
We use the data for games played for more than 10 hours in our
experiments. The publishers of games are considered item groups.
It has 169,030 samples, which contains 4,446 users, 1,238 items, and
43 item groups.2

e Amazon-Digital-Music [14]: a subset (digital music domains)
of Amazon Product dataset. After the pre-processing steps, it has
11,320 samples, with 3,175 users, 3,766 items, and 26 item groups.3

o Yelp: a large-scale businesses recommendation dataset. The
categories of items are considered as item groups. After the pre-
processing steps, it has 702,457 samples, which contains 8,198 users,
6,429 items, and 64 item groups.*

During the pre-processing step, users and items that have in-
teractions with fewer than L items or users are excluded from the
entire dataset to mitigate the issue of extreme sparsity. For Yelp,
we set L = 10 and for the other two datasets, we set L = 5. Follow-
ing Xu et al. [40], we consider groups with fewer than 10 items as
a single group, which we name the “infrequent group”.

Following [26, 38], we sort all interactions by time and use the
first 80% of the interactions as data to train the base ranking model

Zhttp://cseweb.ucsd.edu/~wckang/Steam_games.json.gz.
3http://jmcauley.ucsd.edu/data/amazon/.
4https://www.yelp.com/dataset.

544

Chen Xu et al.

(i.e., MF ranking model [42]). The remaining 20% of interactions
are used as the test data for re-ranking tasks.

Evaluation. The performance of the models is evaluated from
two aspects: re-ranking accuracy and fairness degree. For the accu-
racy, following [36, 38], we use NDCG@K and Loss@K:

ZieLIi(u) swi/log(rank! + 1)

1
NDCG@K = —- , 11
|U| =, YieLy (u) Sui/log(rank; + 1) (1)
Zuel DieLy (u) Sui ~ Zuel ZieLﬁ(u) Su,i
Loss@K = (12)

UK ’

where L (u;) is the original ranked list and Lﬁ(ut) is the fair-aware
re-ranked list, and rank; and rankf are the ranking positions of the
item i in Lg (u;) and LIF<(ut), respectively. The improved re-ranking
accuracy results in a higher NDCG@K value and a lower Loss@K
value, indicating better re-ranking quality.

For the fairness degree, we use the EF metric defined in Eq. (5).
The improved fairness results in a higher EF@K value.

Baselines. The following representative item fairness re-ranking
models were chosen as baselines: FairRec [28] and FairRec+ [5]
propose to ensure Max-Min Share of exposure for different items.
We also compare Welf [10], which uses the Frank-Wolfe algo-
rithm to optimize two-sided fairness. CPFair [26] formulates the re-
ranking problem as a knapsack problem and solves it greedily. min-
regularizer [38]: adds a regularizer that penalizes the exposure
gaps between the target provider and the groups that have worst-off
utilities. P-MMF [38] uses the mirror gradient descent method to
improve the worst-off item group’s utility. Tax-Rank [41]° solves
the re-ranking utilizing the optimal transportation (OT) techniques.

Implementation details. Our experiments are implemented
using Python 3.9. All experiments are conducted on a server with
Ubuntu 18.04. As for the hyper-parameters in all models, the anchor
group radio 1% is tuned among [50%, 95%]. The tax base t is tuned
among [1, 2]. The range of the integral bounds, denoted as M, is set
to 50. The ranking base model is the most commonly used MF [42].

6.2 Experimental results

We report on the performance of ElasticRank and other baselines.

6.2.1 Fairness performance comparison. To enable fair compar-
isons, we conduct experiments to show the performance of Elasti-
cRank and other baselines by tuning the accuracy (NDCG@K) close
to 99% to test the accuracy-fairness trade-off performances in re-
ranking tasks. Since an accuracy loss within 1% can be considered
acceptable for ranking models, as the platform’s profit fluctuation
remains within a normal range [45]. Testing fairness improvements
within this range is more meaningful and instructive for real-world
applications. Table 2 presents the experimental outcomes for our
ElasticRank model and the baseline methods across all datasets and
all ranking sizes K = 5, 10, 20.

From Table 2, we first observe that FairRec [28], FairRec+ [5],
and TaxRank [41], as item-level fairness methods, struggle to effec-
tively balance accuracy and group-level fairness, often resulting in

Note that the evaluation of Tax-Rank employs a probability sampling method for
re-ranking, whereas we only adopt one sample operation for fairly comparison.
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Table 2: Performance comparison between ElasticRank and the baselines on Steam, Amazon, and Yelp, where we tuned various
re-ranking models to achieve accuracy performances (NDCG) close to 99%, and evaluated fairness across three cut-offs K to
assess effectiveness. Bold numbers mean the best fairness performance for the models controlling NDCG close to 99% (except
for FairRec, FairRec+, and TaxRank); T and | indicate whether a higher or lower value of the metric is better, respectively.
indicates that the improvements over the baselines are statistically significant (t-tests and p-value < 0.05).

Top-K K=5 K=10 K=20
Models Loss@5] NDCG@5T EF@57 Loss@10| NDCG@10T EF@10T Loss@20| NDCG@20T EF@207
FairRec 0.1724 0.9395 -2.0529  0.0833 0.9670 -1.9659  0.0740 0.9653 -2.2483
FairRec+ 0.1500 0.9470 -2.1579  0.0836 0.9668 -1.9799  0.0785 0.9632 -2.2416
TaxRank 0.1105 0.9468 -1.2284  0.1183 0.9374 -1.0655  0.1236 0.9249 -0.7544
Steam  Welf 0.0491 0.9760 -1.1725  0.0409 0.9776 -1.0188  0.0283 0.9812 -0.8818
CPFair 0.0251 0.9891 13717  0.0174 0.9911 -1.5670  0.0109 0.9938 -1.3234
P-MMF 0.0286 0.9875 -1.0435  0.0222 0.9890 -0.9228  0.0221 0.9879 -0.7744
min-regularizer 0.0219 0.9903 14547  0.0368 0.9797 -1.3490  0.0374 0.9747 -0.9249
ElasticRank (Ours) 0.0174 0.9924 -0.9147*  0.0112 0.9948 -0.8283°  0.0136 0.9931 -0.7310"
FairRec 0.0000 1.0000 -26.5456  0.0000 1.0000 -12.9110  0.0012 0.9990 -7.7857
FairRec+ 0.0000 1.0000 -26.5456  0.0000 1.0000 -12.9110  0.0013 0.9990 -8.1340
TaxRank 0.2827 0.7098 -0.8586  0.1526 0.7992 -0.9156  0.0508 0.9150 -1.1968
Amazon Welf 0.0315 0.9734 -3.6578  0.0326 0.9679 -0.9395  0.0096 0.9902 -0.8497
CPFair 0.0112 0.9910 27632 0.0064 0.9942 -1.1135  0.0068 0.9929 -0.8907
P-MMF 0.0107 0.9916 24519 0.0092 0.9917 -1.0574  0.0091 0.9907 -0.8741
min-regularizer 0.0108 0.9906 -2.9959  0.0380 0.9543 -1.0571  0.0147 0.9813 -0.8615
ElasticRank (Ours)  0.0102 0.9905 -2.4391°  0.0061 0.9940 -1.0370*  0.0095 0.9898 -0.8334"
FairRec 0.0413 0.9715 75726 0.0176 0.9883 -7.6010  0.0145 0.9905 -7.5270
FairRec+ 0.0064 0.9962 -14.2024  0.0048 0.9972 -11.4978  0.0047 0.9971 -10.0469
TaxRank 0.0665 0.9331 05671 0.0363 0.9588 -0.6460  0.0319 0.9657 -0.7348
Yelp Welf 0.0147 0.9870 -0.5316  0.0086 0.9932 -0.4623  0.0123 0.9906 -0.4011
CPFair 0.0173 0.9885 -0.5281  0.0091 0.9927 -0.4584  0.0128 0.9901 -0.3951
P-MMF 0.0085 0.9933 -0.5302  0.0098 0.9923 -0.4379  0.0159 0.9876 -0.3350
min-regularizer 0.0122 0.9888 -0.5544 0.0110 0.9900 -0.4438 0.0158 0.9876 -0.3357
ElasticRank (Ours) 0.0116 0.9908 -0.5257*  0.0108 0.9918 -0.4211*  0.0154 0.9901 -0.3046"
either insufficient accuracy or inadequate fairness. For the remain- =
. . . = -05
ing baselines, the experimental results clearly demonstrate that o
. . . . -0
ElasticRank achieves superior fairness performance at the same 210 -
. . . . o —— Welf T \\ £=1.05 915 . ey
accuracy level, highlighting the effectiveness of our model. @ crrar ~EN cPFai
. . 15 PMMF A -20 PMMF
Next, we test the performance of ElasticRank and the baselines +- min-reguiarizer N\ + minreguarizer

for different accuracy-fairness trade-off degrees and various fairness
metrics by conducting experiments on the Steam dataset. Similar
trends can be observed in the other two datasets.

6.2.2  Performance on different tax base t. Figure 4 presents the
Pareto frontiers [41] for the accuracy metric NDCG@K) and fair-
ness metric (EF@K) at K = 10 and K = 20. These Pareto fron-
tiers [25] are derived by systematically adjusting different model
parameters and selecting the points that optimize both NDCG@K
and EF@K, thus achieving an ideal trade-off between item fair-
ness and total utility. Note that we only compare the best trade-off
baselines, excluding FairRec, FairRec+, and TaxRank.

Firstly, it is evident that a trade-off exists between re-ranking
accuracy metrics (NDCG@K) and item fairness metrics (EF@K)
with respect to the tax base t. When the tax base ¢ is small, FairTax
prioritizes ranking accuracy (where item distances are computed in
the flat space). Still, when the tax base t increases, ElasticRank em-
phasizes item fairness by boosting fairness scores for high-elasticity
groups while minimizing accuracy loss.

Moreover, compared to the baseline methods, it is evident that
the proposed ElasticRank method consistently outperforms them,
as indicated by the ElasticRank curves occupying the upper right
corner of the Pareto front. This Pareto dominance demonstrates that,
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Figure 4: Pareto frontier with different size K under Steam.

for a given NDCG@K level, ElasticRank achieves superior EF@K
values, and for a given EF@K level, it delivers better NDCG@K
performance. These results highlight the significant advantage of
ElasticRank over the baseline methods.

6.2.3  Performances on EF-Curve. Figure 5 presents the EF-Curve
described in Section 4 on Steam under K = 10. The experiments
were also conducted for controlling NDCG close to 99% (see Table 2).
Intuitively, each point on the EF-Curve represents a fairness metric
that evaluates the level of fairness, with these metrics reflecting
the varying degrees of support provided to different item groups,
each characterized by different elasticity. When t approaches —co,
the function f(v;t) measures the utility of the richest groups while
when t approaches +oo, the function f(v;t) measures the utility of
the poorest groups.

Firstly, we observe that different fair re-ranking algorithms en-
hance fairness from distinct perspectives. For instance, P-MMF
often aims to support the poor groups (as indicated by the highest
EF-curve of baselines when ¢ < 0), while struggling to restrict the
utility of the rich groups (as shown by the lowest EF-curve when
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Figure 5: EF-Curve for different models with cut-off size
K = 10 under Steam.
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Figure 7: (a) Inference speed comparison between Elasti-
cRank and two best-performing baselines. (b) NDCG@K and
EF@K performance w.r.t. the anchor group radio 1%.

t < 0). Similarly, we can observe that CPFair is good at restricting
the utility of the rich groups but fails to support the poor groups.
Through the EF-Curve, we can observe how each algorithm impacts
fairness, allowing us to select the most suitable algorithm based on
the specific requirements of different applications.

Moreover, compared to the baseline methods, it is clear that
ElasticRank consistently outperforms them at every point on the
EF-curve. These results demonstrate that ElasticRank not only ef-
fectively restricts the utility of the rich groups (as shown by the
highest curve when t > 0), but also better supports the poor groups
(indicated by the highest EF-curve when ¢t > 0). These findings
highlight the significant advantage of ElasticRank over the baseline
methods across all fairness metrics.

6.3 Experimental analysis

We also conduct experiments to analyze ElasticRank on the Steam
dataset under K = 10. Similar phenomena can be observed in the
other two datasets and other K values.

6.3.1 Visualization of distances between different groups. In this
section, we investigate how ElasticRank manages the accuracy-
fairness trade-off by visualizing the curved distances between dif-
ferent groups. Figure 6 presents the group utility v, and distance
d(g, a) w.r.t. the user u arriving numbers, where g is one rich group
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r and poor group p. The experiments also are conducted on the
Steam dataset with K = 10. Intuitively, the distance d(g,a) can
be interpreted as a fairness score: smaller distances indicate that
the system is less likely to provide exposure to the group, whereas
larger distances suggest a higher likelihood of exposure for that
group. The anchor radio 7% is 90%.

From Figure 6, we can first observe that the rich group r exhibits
a higher utility than the poor group p, which helps ensure the
accuracy performance of the system. However, to preserve fairness,
the group r is assigned smaller distances (fairness scores) relative
to the anchor group a, indicating that ElasticRank is less likely to
expose r during the re-ranking process. Conversely, the group p
is assigned larger distances (fairness scores) relative to the anchor
group a, highlighting ElasticRank’s support for such a group.

6.3.2 Inference speed. In Figure 7 (a), we compare the inference
time of the two best-performing baseline models, Welf and P-MMF
(see performances in Figure 4), with our model, ElasticRank, by
testing the inference time across all users.

From Figure 7 (a), we can observe that ElasticRank is an order of
magnitude faster than the Welf model in re-ranking and two orders
of magnitude faster than P-MMF. This is because our model uses
elasticity to dynamically compute fairness scores, rather than using
optimization algorithms to compute gradients. This approach not
only yields better results but also provides a significant improve-
ment in efficiency, enabling rapid deployment in any industrial-
level IR system. The computational complexity is the same as the
standard sorting algorithms.

6.3.3 Ablation study on choosing anchor group. In this section, we
conduct an ablation study for the anchor group setting radio %
(Eq. (10) and Figure 7 (b)) illustrates how the ranking accuracy
(NDCG) and fairness metric (EF) w.r.t. % from 50%-95%.

From Figure 7 (b), we found that 7 can trade off accuracy and
fairness, as increasing 5 often improves fairness performance while
reducing accuracy. Upon further investigation, we discovered that a
larger anchor group ratio increases the gap between poorer groups
and the anchor (richer) group, which results in more support for the
poorer group to improve fairness. However, this approach tends to
harm accuracy. Therefore, in practical applications, it is important
to select different anchor group ratios based on specific needs to
balance accuracy and fairness.

7 Conclusion and Discussion

Conclusion. In this paper, we understand accuracy-fairness trade-
offs in re-ranking by framing them as a commodity taxation transfer
problem. By leveraging elasticity theory from economics, we reveal
that these trade-offs are determined by the elasticity between inter-
groups. Inspired by elasticity theory, we introduce the EF-Curve, a
evaluation framework for fair re-ranking, alongside ElasticRank, an
algorithm that consistently outperforms state-of-the-art baselines
in both efficiency and effectiveness.

Discussion. Although we leverage the elasticity theory to ana-
lyze fairness in re-ranking, there are significant differences between
them. In economics, the commodity tax transfer problem is inher-
ently more complex because the tax revenue is often allocated to
public goods, benefiting all users collectively. Additionally, savings
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mechanisms can restrict the impact of commodity taxes on users. In
contrast, re-ranking corresponds to a simpler, static setup, making
it less intricate than its economic counterpart. In the future, the
concept of commodity transfer could be extended to analyze and
design more complex fair-aware IR applications.
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Appendix
A Proof of Theorem 1

ProOF. First, we can use the normalized utility 4 = 04/ Z‘gg 1' vg
to make the function f(-) meet the second requirements scale-
invariants: g, = cvy/ Z‘g ! vg.

Then, since f(-) should meet the third requirement, we can
write: f(1,/n) = f(1;,/m),¥n,m > 0 where the 1,, means the n-th
dimensional vector with all 1 elements. Therefore, we can write

lim fQnu/(n+1) -1 (13)
n—>e f(1n/n)

Then, to meet the requirements for fairness and optimization
objectives that should be distributed, we can make any data x € R™
partition into [x1, X3, - - ,xp], where n is the partition number.
Then f(x) canbe aggregated as: f(x) = h(f(x1), f(x2), -, f(xn)),
where h is a Kolmogorov-Nagumo mean function [12] and com-
bining the requirements and the Equation (13) into the Theorem 2
of [18], we can write has h = k™1 (Z‘ggll k(ag)), where the function
k(-) should only be the power family logarithm or power generator
function: k(x) = log x or k(x) = x’.

Therefore, the function is generated by the power function:

1
|G| ’
flost) =sign(1-1) | > 557"
g=1
When t — 0, the function f becomes logarithm:

G| i [ |G| 1z]
t Z 7
i ) = 1 -t 9=1%
pye )= i 3,017 | = i =
|G| |G|
= hm Z(logvg)ul t= —Zug log oy = H(9),
g=1

which will be reduced to the entropy fairness H(v). Therefore, we
have lim; 0 f(v;t) = ef(®) When t — o, the fairness formula-
tion simplifies to the infinity norm, effectively reducing to max-min
fairness, while other types of fairness can be easily mapped to their
corresponding relationships. O
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B Proof of Theorem 2

PRrROOF. According to elasticity definition in Equation (2):

1

1G] ¢

of (w;t)  [1—t|__, -t

T, T T 0| (9
g=1

Then, the elasticity can be measured through:

If (v5t) -
. z%p o0, _(or [t]
SANFTNTICIR N
vy

where the absolute value of 1 — ¢ means the fairness metric typically
taxes the rich group and subsidizes the poor group to ensure proper
redistribution.

of (v By

gn(l1-1¢) > 0. (15)

Since let t; > t, > 1, ¢(y) = yH is concave, we have:

6] i e
floit) === > ¢(3,")| =~ ¢<Z s M| = floin),
g=1

where the third step follows from Jensen’s inequality.
Next, we will prove how to distinguish the poor and rich item

groups. we check the m

af<v D

SARY:
= Ohasasingle root of vy = ( S ? ) ,
Ygli %

where for ¢t # 1, afa(:;t) <0
9

> 0, if vg > 0, otherwise, [m]

C Proof of Theorem 3

Proor. First, we re-write the Equation (6) as L1 = Yyeg vg +
Af (v). Then we can write:

L= @il - atn)! 1] o 37 op7M,
9eG

Let l(v51) = Yyeg U;_’, r > 0, then Ly = I(v;0) + I(v; |t]). Since
I(v; r) is continuous w.r.t. r and the feasible region of v is convex and
continuous (because v is the linear transformation over a simplex
space [22]), there exists a constant number A > 0 s.t. deg vg +
Af (v;]t]) = L. Therefore, the arg max,, L1 = argmax,, L.

Then, we define the accuracy gradient & = 1 and fairness gradi-
ent 7 = 1/|G| — 9. Then we can write:

B . _ ~ltl g %9
(VUL,(1>—Z”g ,(VUL,U)—Z(Ug (1 Zg”g))A

geG 9eG
Therefore,
_ —|t
_ VoL _ Zg ””gl |
-\t
(VoL ) % Ug‘ \
1-|¢] 1-|t]
o 2% =1- 29%
S 0g Y, v |t| S v 1 |t|+2 3 U_MU
9Y9 Lig? g9 g Lr#tg =g r
=1 1 =1 ! [m}
Zpeg Zr#p ;;MEr,p 1+k(Er,p)
1+ ﬁ
peG ?;
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