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Abstract
Recently, research found that the documents retrieved from the

Retrieval-Augmented Generation (RAG) may contain conflicting

knowledge with each other, leading Large Language Models (LLMs)

to generate incorrect responses. To solve such a problem, existing

approaches usually only keep themost frequentlymentioned knowl-

edge from these documents, since they assume that the most rep-

resentative knowledge aligns best with the true answer. Although

effective in certain scenarios, these approaches often underperform

when the most frequent knowledge is not the correct one. From the

voting perspective, these methods can be regarded as a Majority

Voting (MV) process, which chooses the most frequent candidates

among different candidate knowledge. However, we show that the

underperformance of such methods stems from that MV is only ef-

fective with a small number of candidates and binary voting scores.

In contrast, in the RAG scenario, the candidates (knowledge) are

very diverse, and the voting scores (document relevance scores) are

typically continuous. Simply adapting MV in RAG will result in

poor performance of LLMs. In voting theory, on the other hand, the

preference-based voting methods represented by the Borda Voting

(BV) consider the whole preference order of voters over all can-

didates, enabling the selection of candidates that better represent

the collective viewpoint. Inspired by such an insight, we propose

BordaRAG, a model designed to better select the most appropriate

documents from conflicting documents. Specifically, BordaRAG

first computes the preference scores of the documents over the

candidate answers. After that, a BV component is designed to select

the winning documents according to the preference scores. Finally,

the chosen documents are provided to LLMs, which will generate
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the final response. Experimental results on three open-domain QA

datasets show that BordaRAG can outperform all baselines.
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1 Introduction
Retrieval-Augmented Generation (RAG) [5, 56] aims to retrieve

documents from an external database to empower Large Language

Models (LLMs) [1, 17]. Although RAG has been proven to be an ef-

fective way, recent studies have revealed that conflicting knowledge

may exist among the retrieved external documents [8, 19, 51]. Sup-

plying LLMs with such conflicting content can lead to inaccurate

or unexpected answers [44, 51].

Recently, several approaches [29, 43, 49] have attempted to ad-

dress this issue by filtering out conflicting documents and retaining

only a single, presumably correct piece of knowledge. Typically,

they often retain the most frequent knowledge among all docu-

ments, assuming that the dominant view likely reflects the cor-

rect answer. While intuitive and effective in reducing noise, this

majority-based filtering strategy has a critical limitation: it equates

popularity with correctness. In practice, documents holding the

majority view may not necessarily be accurate, particularly in do-

mains where misinformation is prevalent, minority opinions are

underrepresented, or nuanced expertise is required. As a result, such

methods risk discarding valuable minority evidence and reinforcing

potentially biased or incorrect conclusions.
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Figure 1: The comparison between the process of theMajority
Voting and Borda Voting.

To better understand the limitations of existing methods, we

reframe the task of selecting non-conflicting documents as a vot-

ing process. Specifically, each document can be viewed as a voter

expressing preferences over possible answers (i.e., candidates). The

goal is to aggregate these preferences to identify the most reliable

answer. From such a voting perspective, previous methods can be

interpreted as applying Majority Voting (MV) [3, 6, 37]—a classi-

cal mechanism in voting that selects the answer supported by the

largest number of documents.

However, in voting research, MV often encounters the issue:

when the number of candidates is large and the voters express their

preferences in a non-extreme manner, it is often not very effec-

tive [10, 32]. Next, we will give an example to show such an insight.

In Figure 1, the retriever retrieves six documents according to the

query: “Who is the president of U.S.A?”. Among the six retrieved

documents, there exist three candidate answers: {Trump, Biden,
and Obama}. Among these answers, Trump is the correct answer,

whereas the other two are incorrect. As shown in Figure 1, under

the MV rule, only the most preferred candidates receive a positive

score, while all others receive a score of zero. In such a way, the

incorrect answer Biden wins during the voting since it is the most

frequently preferred candidate answer. However, three documents

strongly reject such a result, showing it is not a good result. On

the other hand, Borda Voting (BV) takes into account the global

preference distribution by assigning varying scores to candidates

based on their ranked positions, thereby reflecting different levels

of support. In such a way, the Trump wins by 8 points under the

Borda voting mechanism, leading to a better voting result. Moving

back to RAG scenarios, the candidate knowledge sources are highly

diverse, and the voting scores (i.e., document relevance) are usually

continuous rather than binary. As a result, previous methods may

struggle to perform effectively in these settings.

In voting theory, the ineffectiveness of MV under a large num-

ber of candidates and continuous voting scores lies in its reliance

solely on each voter’s top-ranked choice, ignoring the full spectrum of
preferences. This property can result in suboptimal voting outcomes

(i.e., retaining incorrect documents), which ultimately degrades the

performance of LLMs. In contrast, preference-based voting meth-

ods, which take into account the full preference distribution of each

voter, provide a more robust and effective solution for handling

knowledge conflicts in RAG scenarios. Our theoretical analysis in

Section 4.4 also confirms that the preference-based voting methods

exhibit superior theoretical performance compared to MV in RAG

scenarios.

Motivated by the strengths of the preference-based votingmethod,

Borda Voting [4, 6, 35], we introduce BordaRAG—a novel approach

designed to resolve knowledge conflicts in the RAG process. By

leveraging the global preference signals across all documents, Bor-

daRAG enables LLMs to generate more accurate responses. The

key components of BordaRAG include (1) Preference Collection:
we utilize LLMs to generate answers for each retrieved document

and then quantify the preference degree of each document toward

all candidate answers; and (2) Borda Voting: then we aggregate

document-level preferences through BV to filter out conflicting

documents and ultimately derive the final answer. Based on the two

components, BordaRAG can utilize the global preference of docu-

ments, leading to better performance under conflicting retrieved

documents.

In summary, our key contributions are threefold:

(1) We formulate the RAG process as a voting process, and point

out that the current MV-based methods will be ineffective under

complex RAG scenarios.

(2) Based on the preference-based voting methods, we propose

BordaRAG, a simple yet effective framework to select more repre-

sentative documents under the knowledge-conflict situation.

(3) Our experimental results show our BordaRAG can outperform

all the baselines under three widely used datasets.

2 Related Work
Retrieval-Augmented Generation. LLMs [1, 7, 17, 33, 40] per-

form well on tasks such as open-domain QA [30, 36, 55], but their

limited parametric knowledge can cause inaccurate answers [11, 50].

RAG [5, 23, 24, 36] addresses this by incorporating external retrieved

documents. A RAG system includes a retriever that selects relevant

documents and a generator (LLM) that uses them to produce re-

sponses. However, previous research [8, 19, 21, 31, 51] finds that the

retrieved documents may contain conflicting knowledge, leading

to incorrect outputs.

Knowledge conflict RAG. Although RAG enhances LLMs with

external documents, these may contain conflicting knowledge from

diverse sources [19, 51], termed inter-context conflict [51]. To ad-

dress this, somemethods [46] apply query augmentation techniques

and exploit the confidence of generated answers to mitigate con-

flicts among retrieved documents. Other methods [9, 43, 49] adopt a

two-stage framework to handle conflicting knowledge in retrieved

documents. In the first stage, an LLM extracts a perspective from

each document independently. In the second stage, selection cri-

teria identify the most representative perspective, with strategies

differing across studies. For example, choosing the most frequent

perspective [9, 49] or the one with the highest confidence score [43].

However, our analysis reveals that these methods implicitly rely
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on an MV mechanism, which is only effective when the number of

candidates is small and the preference scores are binary.

Voting mechanisms. Voting is essential for democratic gover-

nance and collective decision-making [6, 34, 37, 42, 48]. A voting

process involves voters, candidates, and a mechanism, with MV

being the most common. MV selects the candidate that appears

most frequently as the top choice among voters. However, the Con-

dorcet paradox [15, 28, 41, 52] shows that MV can be suboptimal.

To address this, various methods have been proposed. According to

the classification of Insua and French [20], there are two main types

of methods to overcome the suboptimality of the MV mechanism.

The first type, originally proposed by Condorcet [52], primarily

focuses on pairwise comparisons between candidates and selects

the one that wins the most head-to-head matchups as the winner.

The second type, introduced by Borda [35], takes into account pref-

erence rankings of voters over all candidates and determines the

winner based on an aggregated scoring system derived from these

rankings.

In this paper, we adopt the second improved method (i.e., BV) to

address the issue of suboptimality encountered in RAG systems.

3 Formulation
In this section, we introduce the notations used in RAG and vot-

ing processes, and present the correspondence between different

symbols when formalizing RAG as a voting process.

3.1 Knowledge Conflict in RAG
A RAG system consists of two stages: retrieval and generation. In

the retrieval stage, a retriever 𝑅 is utilized to retrieve documentsD𝑞

from the document corpus according to the given query 𝑞: D𝑞 =

𝑅(𝑞). Among the documents D𝑞 , we abbreviate the number of re-

trieved documents |D𝑞 | as 𝑛, which is a pre-defined number. Then

the retrieved documents can be denoted as D𝑞 = {𝑑1, 𝑑2, · · · , 𝑑𝑛},
where 𝑑𝑖 is the i-th document retrieved by the retriever. In the

generation stage, we utilize a generator 𝐺 , which is typically in-

stantiated as a LLM, to generate an answer 𝑎 based on the retrieved

documents and the query: 𝑎 = 𝐺 (D𝑞, 𝑞).
However, the retrieved documents D𝑞 may contain conflicting

knowledge about the query 𝑞, which can lead the generator 𝐺 to

generating incorrect answers. We define the knowledge of each

document 𝑑𝑖 as: 𝑎𝑖 = 𝐺 (𝑞, 𝑑𝑖 ), which denotes the answer supported

by the document 𝑑𝑖 . When different documents support different

answers, i.e., 𝑎𝑖 ≠ 𝑎 𝑗 for 𝑖 ≠ 𝑗 , the generator 𝐺 will encounter a

knowledge conflict problem when generating the final answer 𝑎.

To solve such a problem, previous methods may aggregate all

retrieved documents to construct a new document setD′𝑞 = 𝐹 (D𝑞),
where 𝐹 denotes the selecting function. 𝐹 will select a new subset

D′𝑞 = {𝑑′
1
, 𝑑′

2
, · · · , 𝑑′

𝑘
} of original document set D𝑞 , where 𝑘 ≤ 𝑛 is

the pre-defined number. Ideally, the subset D′𝑞 will only contain

the documents that have the knowledge related to the right answer.

Then the generator 𝐺 will generate the final answer 𝑎 only based

on the selected documents: 𝑎 = 𝐺 (D′𝑞, 𝑞).

3.2 RAG as Voting
A voting process mainly consists of three components: voters, can-

didates, and a voting mechanism. We define voters as a setV which

Table 1: Mapping between fundamental RAG Components
and the corresponding Voting Elements.

RAG Components Voting Elements

Retrieved document 𝑑𝑖 Voter 𝑣𝑖
Knowledge of document 𝑎𝑖 Candidate 𝑐𝑖
Selection function 𝐹 (D𝑞) Voting function 𝑓 (P)

contains 𝑛 elements: V = {𝑣1, 𝑣2, · · · , 𝑣𝑛}, where 𝑣𝑖 denotes the
i-th voter. We then define candidates as a set C which contains𝑚

elements: C = {𝑐1, 𝑐2, · · · , 𝑐𝑚}, where 𝑐 𝑗 denotes the j-th candidate.

A voting process can be divided into two stages: preference rep-

resentation and preference aggregation. In the stage of preference

representation, we aim to construct a preference matrix P ∈ R𝑛×𝑚
,

where P𝑖, 𝑗 denotes the preference degree of the i-th voter towards

the j-th candidate. In the stage of preference aggregation, we aim

to define a voting function 𝑓 (P) = 𝑐∗ to select a candidate winner

𝑐∗ based on the pre-defined preference matrix P.
For example, the voting function of MV can be denoted as:

𝑓𝑀𝑉 (P) = 𝑐𝑘 , 𝑘 = argmax

𝑗∈{1,2,· · · ,𝑚}

𝑛∑︁
𝑖=1

I( 𝑗 = argmax

𝑘

P𝑖,𝑘 ), (1)

where I(·) is the indicator function.
As shown in Eq. (1), the MV process counts the frequency of a

candidate 𝑐 𝑗 being the top choice of votersV , and then selects the

candidate with the highest frequency to be the winner.

In this paper, we formulate the RAG process as a voting process.

As shown in Table 1, a retrieved document 𝑑𝑖 corresponds to a

voter 𝑣𝑖 , and its knowledge 𝑎𝑖 corresponds to a candidate 𝑐𝑖 . Since

knowledge may conflict, voters aim to select documents that best

answer the question 𝑞. The selection functions 𝐹 (D𝑞) proposed by

previous methods can be regarded as the voting function, denoted

as 𝑓 (P). Therefore, the RAG process can be regarded as a voting

process.

4 Method: BordaRAG
In this section, we aim to introduce our method for mitigating

the problem of knowledge conflict in RAG systems. Our method

mainly consists of two components: Preference Collection and

Borda Voting. We first introduce the overall framework and then

introduce the details of our proposed components.

4.1 Framework of BordaRAG
In order to mitigate the knowledge conflict in RAG systems, we

propose a two-stage framework to reduce the degree of conflict in

retrieved documents.

As shown in figure 2, the proposed BordaRAG consists of two

components: Preference Collection and Borda Voting. In the

stage of preference collection, we first prompt LLMs to generate

answers for each retrieved document, and then deduplicate the gen-

erated answers to get a set of candidate answers. Next, we prompt

LLMs to determine whether the document𝑑𝑖 supports the candidate

answer 𝑎 𝑗 , and then utilize the probability of LLMs outputting the

token “True” as the preference degree of voter 𝑣𝑖 towards candidate

𝑐 𝑗 . The probability serves as P𝑖, 𝑗 in the preference matrix P. In the
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Figure 2: The overall framework of BordaRAG. The framework consists of two stages: preference collection, where retrieved
documents are used to generate candidate answers and estimate preferences; and Borda Voting, where preferences are aggregated
to generate the final answer.

Borda Voting stage, we first utilize the BV mechanism to select

the winner according to the preference matrix. Then, we rerank

the retrieved documents according to their preference degrees for

the winner, and feed the top-k reranked documents to the LLM to

generate the final answer.

Algorithm 1 illustrates the detailed steps of BordaRAG.

Algorithm 1 Algorithmic procedure of BordaRAG

Require: Query 𝑞, Retrieved Documents D𝑞 , Generator 𝐺

Ensure: Final Answer 𝑎

– Preference Collection –
1: Initialize Candidate Answer Set A ← ∅
2: for 𝑖 = 1 to 𝑛 do
3: 𝑎𝑖 ← 𝐺 (𝑑𝑖 , 𝑞), A ← A ∪ {𝑎𝑖 }
4: end for
5: A ← Deduplicate(A),𝑚 ← |A|
6: Initialize Preference Matrix P ∈ R𝑛×𝑚

7: for 𝑖 = 1 to 𝑛 do
8: for 𝑗 = 1 to𝑚 do
9: P𝑖 . 𝑗 ←

Pr[𝐺 (𝑞,𝑑𝑖 ,𝑎 𝑗 )=True]
Pr[𝐺 (𝑞,𝑑𝑖 ,𝑎 𝑗 )=True]+Pr[𝐺 (𝑞,𝑑𝑖 ,𝑎 𝑗 )=False]

10: end for
11: end for

– Borda Voting –
12: Initialize Borda Score Vector S ∈ R𝑚 ← 0
13: for 𝑖 = 1 to 𝑛 do
14: p̃𝑖 ← softmax(p𝑖 ), 𝜎𝑖 ← argsort(p̃𝑖 )
15: for 𝑗 = 1 to𝑚 do
16: S𝑗 ← S𝑗 − 𝜎𝑖 ( 𝑗) +𝑚
17: end for
18: end for
19: 𝑗∗ ← argmax𝑗∈[𝑚] S𝑗
20: D′𝑞 = {𝑑𝑢 | 𝑢 ∈ argmax𝑆⊂[𝑛], |𝑆 |=𝑘

∑
𝑖∈𝑆 P𝑖, 𝑗∗ }

21: 𝑎 ← 𝐺 (D′𝑞, 𝑞)
22: return 𝑎

4.2 Preference Collection
Table 1 shows the mapping between RAG components and voting

elements. However, the retrieved knowledge and preference matrix

P are not explicitly represented. To address this, we propose a pref-

erence collection stage with two steps: (1) constructing candidate

answers as voting candidates, and (2) constructing the preference

matrix, which reflects the preference of voters.

Candidate answer construction. In the process of construct-

ing the candidate answers set, we first prompt LLMs to generate

answers for each retrieved document and remove duplicates. In this

stage, semantically similar answers need not to be merged. In MV,

such similar candidates (often referred to as clone entities in voting

theory [12–14, 39]) may lead to vote splitting: since each voter can

only cast one vote, some similar candidates may split the vote of

voters who support this type of candidate. In contrast, preference-

based voting mechanisms are less susceptible to this issue: similar

candidates tend to appear close to each other in the rankings of the

voters. As a result, clone entities tend to receive similar scores and

may not cause the problem of vote splitting observed in MV.

Preference matrix construction. Constructing the prefer-

ence matrix that captures document preferences over candidate

answers is crucial for voting. Given a query 𝑞, a set of retrieved

documents D𝑞 = {𝑑1, · · · , 𝑑𝑛}, and a set of candidate answers

A = {𝑎1, · · · , 𝑎𝑚}, we define the preference score of retrieved

document 𝑑𝑖 for candidate answer 𝑎 𝑗 as 𝑠 (𝑑𝑖 , 𝑎 𝑗 ).
In order to estimate the preference score 𝑠 (𝑑𝑖 , 𝑎 𝑗 ), we construct

a set of query-document-answer triples (𝑞, 𝑑𝑖 , 𝑎 𝑗 ). For each triple,

we prompt LLMs to evaluate whether the document 𝑑𝑖 supports

the answer 𝑎 𝑗 under the context of the query 𝑞, and LLMs return a

binary judgement: True (supports) or False (does not support). The

prompt template can be found in Appendix B. The preference score

of document 𝑑𝑖 for answer 𝑎 𝑗 can be denoted as:

𝑠 (𝑑𝑖 , 𝑎 𝑗 ) =
Pr[𝐺 (𝑞, 𝑑𝑖 , 𝑎 𝑗 ) = True]

Pr[𝐺 (𝑞, 𝑑𝑖 , 𝑎 𝑗 ) = True] + Pr[𝐺 (𝑞, 𝑑𝑖 , 𝑎 𝑗 ) = False] . (2)

The preference score 𝑠 (𝑑𝑖 , 𝑎 𝑗 ) can qualify how likely the document

𝑑𝑖 supports the candidate answer 𝑎 𝑗 according to the judgement of

LLMs. Then, the preference of 𝑑𝑖 over all candidate answers can be

formulated as a preference vector p𝑖 = [𝑠 (𝑑𝑖 , 𝑎1), · · · , 𝑠 (𝑑𝑖 , 𝑎𝑚)] ∈
R𝑚 . For 𝑛 retrieved documents, we construct a preference matrix

according to the preference vector of these documents. The prefer-

ence matrix can be formulated as: P = [p1, p2, · · · , p𝑛]⊤ ∈ R𝑛×𝑚
.
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4.3 Borda Voting
In this section, we aim to utilize the BV mechanism to select the

winner 𝑎 𝑗∗ . Based on the preference matrix P = [p1, · · · , p𝑛]⊤ in

Section 4.2, where P𝑖, 𝑗 denotes the preference of document 𝑑𝑖 over

answer 𝑎 𝑗 , the BV method selects the candidate with the highest

score as the winner:

𝑎 𝑗∗ = 𝑓𝐵𝑉 (P), 𝑗∗ = argmax

𝑗∈[𝑚]
S𝑗 ,

where [𝑚] = {1, 2, · · · ,𝑚}, S ∈ R𝑚 is a score vector, and S𝑗 denotes
the overall score of candidate 𝑎 𝑗 . The score S𝑗 is computed as:

S𝑗 =
𝑛∑︁
𝑖=1

𝑚 − 𝜎𝑖 ( 𝑗),

where𝑚 is the total number of candidates, and𝜎𝑖 ( 𝑗) : {1, · · · ,𝑚} →
{1, · · · ,𝑚} denotes the rank of candidate answer 𝑎 𝑗 in the prefer-

ence order induced by document 𝑑𝑖 .

After selecting the winning answer 𝑎 𝑗∗ , we sort the 𝑛 retrieved

documentsD𝑞 in descending order based on their preference scores

P𝑖, 𝑗∗ , 𝑖 ∈ [𝑛]. Then we obtain the subset D′𝑞 by selecting the

documents that crosspond to the top-k largest elements of the

preference scores P𝑖, 𝑗∗ , that is:

D′𝑞 = {𝑑𝑢 | 𝑢 ∈ argmax

𝑆⊂[𝑛], |𝑆 |=𝑘

∑︁
𝑖∈𝑆

P𝑖, 𝑗∗ },

where 𝑘 is a pre-defined number which denotes the number of

selected documents. Then, we feed the documents in D′𝑞 into gen-

erator 𝐺 to generate the final answer:

𝑎 = 𝐺 (D′𝑞, 𝑞).

4.4 Theoretical Analysis
We provide a theoretical analysis of the upper bounds of expected

distortion for MV and BV when selecting the most representative

candidate answer in RAG.

Firstly, we use the expected distortion EA∼𝜃 [𝐷] to compare MV

and BV. Formally, EA∼𝜃 [𝐷] is defined as:

EA∼𝜃 [𝐷] = EA∼𝜃

[
𝑐 (𝑤 (A))
𝑐 (𝑜 (A))

]
,

where 𝜃 is the distribution of voters in the space by a density

function and 𝑐 (𝑎 𝑗 ) denotes the degree of dissatisfaction of all voters

towards candidate 𝑎 𝑗 .𝑤 (A) deonotes the winner of candidates A
selected by the voting mechanism𝑤 (·), 𝑜 (A) denotes the optimal

candidate of A: 𝑜 (A) = argmin𝑗∈[1,𝑚] 𝑐 (𝑎 𝑗 ).
Expected distortion is usually used to measure the degree of

deviation of a voting mechanism from efficiency. It reflects the gap

between voting results and social optimal results, that is, the degree

to which collective decision-making deviates from the optimal

choice due to imperfect mechanisms or incomplete information.

Then, we derive the following theorem:

Theorem 1. The expected distortion of MV is upper bounded by
super-constant:

EA∼𝜃

[
𝑐 (𝑤𝑀𝑉 (A))
𝑐 (𝑜 (A))

]
∈ 𝜔 (1),

while the expected distortion of BV is upper bounded by a constant:

EA∼𝜃

[
𝑐 (𝑤𝐵𝑉 (A))
𝑐 (𝑜 (A))

]
∈ O(1) .

The detailed proof of Theorem 1 can be found in Appendix A.

Theorem 1 shows that with the increase of the number of candi-

date answers (i.e., conflicting knowledge in retrieved documents),

the expected distortion of prior MV-based methods grows super-

constantly. In contrast, the expected distortion of BordaRAG admits

a constant upper bound.

Therefore, Theorem 1 shows that MV is only effective when

the number of candidates is small. As the number of candidates

increases, the expected distortion of MV, which relies on binary

scores to select candidates, grows rapidly. In contrast, BV assigns

continuous scores to candidates and provides a more comprehen-

sive selection, resulting in a constant upper bound on the expected

distortion. Therefore, BV emerges as a superior method for address-

ing the issue of knowledge conflict.

5 Experiments
In this section, we demonstrate the effectiveness of BordaRAG in

addressing the problem of knowledge conflict. We begin by intro-

ducing the detailed experimental settings. Then, we compare the

performance of BordaRAG with several baselines across multiple

QA datasets. Finally, we provide an in-depth analysis of the experi-

mental results. Our code can be found in https://github.com/RUC-

YuxinLi/BordaRAG.

Table 2: Statistical information of three QA datasets.

Dataset #Queries Domain

NQ 91k General knowledge (Google queries)

PopQA 14k Popular entities (Wikipedia)

TriviaQA 174k Web and Wikipedia

5.1 Experimental Settings
Datasets. We conduct our experiments on three QA task datasets:

NQ, PopQA, and TriviaQA.

• NQ [25] is constructed from real anonymized Google Search

queries. NQ is considered challenging due to its realistic question

distribution and significant lexical variation between questions

and answers.

• PopQA [27] targets factual questions about popular entities and

is designed to evaluate long-tail and open-domain factual knowl-

edge in LLMs.

• TriviaQA [22] contains complex questions that require reasoning

over multiple pieces of evidence.

Table 2 summarizes the statistics of the three datasets. Follow-

ing [43], we utilize the Google Search API [16] to retrieve the top

10 results for each query, extracting titles and snippets to build the

retrieval corpus. Previous work [19, 43] has shown that conflict-

ing knowledge often exists in retrieved documents, even within a

single source. Our analysis in Section 5.3 confirms that documents

retrieved from Google Search frequently contain multiple candidate
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Table 3: Comparison of different methods on NQ, PopQA, and TriviaQA. Experimental results are reported in terms of accuracy
on each dataset. Bold indicates the best performance, while underlined values denote the second-best. The results marked with
∗ indicate the improvements are statistically significant (𝑝 < 0.05). Our BordaRAG outperforms baselines across all datasets.

Type Baseline Llama3-8B-Instruct Qwen2-7B-Instruct Mistral-7B-Instruct

NQ PopQA TriviaQA NQ PopQA TriviaQA NQ PopQA TriviaQA

No-RAG LLM [17] 0.269 0.250 0.659 0.262 0.221 0.597 0.310 0.274 0.697

GenRead [53] 0.374 0.327 0.740 0.307 0.248 0.640 0.375 0.317 0.725

Prompt-based InstructRAG [45] 0.490 0.395 0.838 0.480 0.400 0.830 0.497 0.413 0.824

DAA [18] 0.437 0.370 0.739 0.484 0.404 0.822 0.485 0.398 0.823

MV-based
RobustRAG [49] 0.467 0.411 0.841 0.471 0.394 0.824 0.444 0.390 0.827

AstuteRAG [43] 0.459 0.439 0.817 0.329 0.307 0.633 0.451 0.378 0.751

USC [9] 0.477 0.409 0.842 0.483 0.404 0.825 0.495 0.410 0.839

Ours BordaRAG 0.535∗ 0.458∗ 0.865∗ 0.502∗ 0.417 0.852∗ 0.522∗ 0.420 0.850
Improvement +9.2% +4.3% +2.7% +3.7% +3.2% +2.6% +5.0% +1.7% +1.3%

answers for a single query. Due to computational constraints, we

sample 1000 queries from each dataset for experimentation.

Metrics. Following [43, 45, 49], we consider an answer to be

correct if it contains the ground-truth answer. Formally, let G𝑞 be

the set of ground truth answers for 𝑞. The accuracy is:

Acc =
1

|Q|
∑︁
𝑞∈Q

𝑡 (𝑎,G𝑞),

where 𝑡 (𝑎,G𝑞) checks whether there exists an 𝑎𝑔 ∈ G𝑞 such that

the generated answer 𝑎 contains the ground-truth answer 𝑎𝑔 . It

returns 1 if such an 𝑎𝑔 exists, and 0 otherwise.

Settings of LLMs. We adapt LLaMA3-8B-Instruct [17], Qwen2-

7B-Instruct [38] and Mistral-7B-Instruct-v0.3 [2] as generators in

RAG. All models are served via the vLLM inference engine [26],

with the decoding temperature set to 0 and top-p set to 0.8 to ensure

deterministic generation with moderate sampling flexibility.

Baselines.We compare BordaRAG with methods aimed at im-

proving robustness and reducing the impact of conflicting external

knowledge to generate more reliable responses.

• GenRead [53] utilizes the internal knowledge of LLMs instead

of external documents to enhance the RAG system.

• USC [9] samples multiple responses from the LLM and then ag-

gregates them based on majority consensus. We set the sampling

temperature to 0.7 during repeated sampling in USC.

• InstructRAG [45] prompts LLMs to generate responses accord-

ing to the retrieved documents.

• DAA [18] prompts LLMs to evaluate the conflicting degree of

the retrieved documents and ignore the noisy documents during

the generation process.

• RobustRAG [49] aggregates the keywords of individually gener-

ated responses of each retrieved document, and prompts LLMs to

answer the query using the filtered keywords, aiming to produce

robust and trustworthy responses.

• AstuteRAG [43] clusters retrieved documents by underlying

knowledge and selects the answer with the highest LLM-assigned

confidence. As a CoT-based method, it may fail to identify the fi-

nal answer as instructed, so we use Llama3-8B-Instruct to extract

the final answer for fair comparison.

To ensure a fair comparison, we do not include variants of these

methods that involve additional training or in-context learning.

5.2 Main Results
We evaluate our method on three datasets (NQ, PopQA, TriaviaQA)

and three LLMs (Llama3-8B-Instruct, Qwen2-7B-Instruct, Mistral-

7B-Instruct), using identical retrieval results for fairness. The ex-

perimental results are shown in Table 3, where bold indicates the

best performance, while underlined values denote the second-best.

Firstly, we can observe that our method can outperform the

baselines that utilize the internal knowledge of LLMs. More impor-

tantly, we find that our method can consistently outperform all the

baselines that aim to select the appropriate documents/knowledge,

including both MV-based methods and Prompt-based methods for

LLMs under all datasets. This is because our method can select more

appropriate documents/knowledge using the Borda voting process.

While most other baselines only adapts the majority voting process,

which only effective under a small number and binary voting scores,

and the Prompt-based method DAA, which also cannot select the

knowledge related to the right answer well.

Secondly, the improvements of our method are more substantial

on NQ and PopQA, whereas the performance gains on TriviaQA

are not that surprising. This is because in NQ and PopQA, most

queries are associated with retrieved documents containing more

than six candidate answers, reflecting a high degree of knowledge

conflict. Our method shows notable improvements on such datasets.

However, in TriviaQA, most queries correspond to documents with

at most three candidate answers, indicating limited conflict, where

the performance gains of BordaRAG are less pronounced.

5.3 Experimental Analysis
In this section, we analyze how the degree of conflict in retrieved

documents relates to the characteristics of NQ and TriviaQA when

using Llama3-8B-Instruct. Similar patterns are observed across

other datasets and LLMs.

We compare BordaRAG with the best-performing baselines, In-

structRAG and USC, across varying numbers of candidate answers
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Figure 3: Query distribution and accuracy comparison of
BordaRAG against top-performing baselines under varying
numbers of candidate answers. In both panels, the x-axis
indicates the number of candidate answers, the left y-axis
shows the number of corresponding queries, and the right
y-axis presents the average accuracy under each setting.

in the retrieved documents, and then present a case study highlight-

ing its differences from MV-based methods in candidate selection.

Analysis on candidate numbers. Figure 3 illustrates the query
distribution by candidate answer count in retrieved documents and

compares our method with top baselines on NQ and TriviaQA. In

both panels, the x-axis denotes the number of candidate answers.

The left y-axis shows the number of queries with the corresponding

candidate size, while the right y-axis reports the average accuracy of

BordaRAG and the strongest baseline on those queries. We consider

queries with no more than 3 candidate answers among the 10

retrieved results as having a low level of conflict, those with 4 to 6

candidate answers as medium conflict, and those with 7 or more as

high conflict.

As shown in Figure 3 (a), most queries in NQ have more than six

candidate answers, indicating a high conflicting level. This likely

arises because NQ questions come from real Google queries, in-

cluding both objective ones with low conflict and subjective ones

with higher conflict. Figure 3 (a) also shows that accuracy drops as

conflict increases, but our method consistently outperforms Instruc-

tRAG. This advantage stems from its ability to generate concise

answers under low-conflict settings and to effectively filter docu-

ments in high-conflict scenarios.

Figure 3 (b) shows that the retrieval results of TriviaQA have

lower conflict than that of NQ, since TriviaQA mainly involves

fact-based questions that yield more consistent knowledge across

documents. The accuracy results in Figure 3 (b) exhibit a similar

trend to those in Figure 3 (a), showing a decline as conflict increases.

At low conflict levels, BordaRAG performs comparably to USC, but

its advantage over the baseline grows with higher conflict. These

findings highlight the effectiveness and robustness of our method.

Comparison of expected distortion between MV and BV.
In this section, to verify our theoretical analysis in Section 4.4, we

aim to measure the expected distortion of utilizing BV and MV.

In Figure 4, we compare the expected distortion of MV and BV.

Subfigure (a) shows the results on NQ, and subfigure (b) on Trivi-

aQA. The x-axis indicates the number of candidates, and the y-axis

the expected distortion, with the yellow and blue lines representing

MV and BV, respectively.
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Figure 4: Comparison of expected distortion between MV
and BV.

In this experiment, we define distortion as the gap between each

method’s performance and the upper bound, i.e., the proportion

of queries whose context contains the ground truth. The expected

distortion is the mean distortion over queries with fewer candi-

date answers than the current value. MV results are obtained by

replacing the BV function in our method with MV.

As shown in Figure 4, the expected distortion of MV is consis-

tently higher than the distortion of BV among queries with different

candidate numbers on two datasets, which means BV achieves bet-

ter performance than MV under various conflicting levels. There-

fore, the experimental results verify our theoretical analysis in

Section 4.4.

Case study. To demonstrate BordaRAG in complex cases, Fig-

ure 5 shows a case study comparing BordaRAG with MV-based

methods on the query “rosie and the originals angel baby release
date?”, where ten documents are retrieved and candidate answer

frequencies are derived using Llama3-8B-Instruct.

As shown in Figure 5, the answer “1964” appears most frequently

(4 times) but it is a hallucination, while the correct answer “1960”
(including “November 1960” ) appears only twice. MV-basedmethods

may select “1964” as the winner and prioritize documents support-

ing this incorrect answer, potentially reinforcing irrelevant or false

knowledge. In contrast, BordaRAG selects “1960” based on global

preference distribution and reranks documents by their support for

it. As a result, BordaRAG identifies the correct answer and avoids

the failure cases of MV-based methods.

MV selection

BV selection

Album re-release date

Spotify release date

Irrelated knowledge

Hallucination of LLMs

Hallucination of LLMs

Correct but verbose

Correct Answer

Query: rosie and the originals angel baby release date?

Figure 5: A case study comparing BV and MV in terms of
their ability to identify the most representative knowledge.
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5.4 Ablation Study
In this section, we analyze different BordaRAG components on

NQ and TriviaQA with Llama3-8B-Instruct, and examine the effi-

ciency–accuracy trade-off under varying 𝑘 .

Methods of constructing candidate answers. To determine

which method is more effective for constructing the candidate

answer set, we experiment with three approaches using Llama3-8B-

Instruct: (1) Independent Generation with Deduplication (IGD) [49]:
generates an answer for each retrieved document and deduplicates

the results; (2) Joint Contextual Generation (JCG) [43]: inputs all
retrieved documents together and generates candidate answers in

one pass; (3) Filtering Answer Set (FAS): applies LLMs to filter

unlikely answers from the set produced by IGD.

Figure 6 (a) compares answer coverage of IGD (blue), JCG (green),

and FAS (orange) on NQ (left) and TriviaQA (right). Coverage is

defined as containing the ground-truth answer within the candi-

date set. As shown in Figure 6 (a), IGD achieves the best perfor-

mance on NQ and TriviaQA. We attribute this to the fact that, when

confronted with conflicting knowledge, LLMs tend to ignore less

frequently mentioned knowledge. However, the ignored knowledge

may be factually correct. Both JCG and FAS rely on LLMs to gen-

erate the candidate answer set, whereas IGD utilizes a rule-based

approach to construct the answer set. This rule-based strategy pre-

vents the less frequently mentioned but factually correct knowledge

from being ignored by LLMs.

Methods of estimating preference scores.To determinewhich

method can produce high-quality preference vectors, we experi-

mentwith three approaches: (1) Average Log-Probability (ALP) [47]:
uses the average log-probability that a document assigns to a

candidate answer as the preference score. (2) Confidence Scoring

(CS) [43]: prompts the LLM to produce a confidence score for an

answer given a document, which is used as the preference score.

(3) Binary Support Probability (BSP) [54]: asks the LLM whether

a document supports a candidate answer, using the probability of

generating a "True" token as the preference score.

To evaluate the quality of generated preference vectors, we define

a metric to measure the uniformity of a preference vector, named

extremeness. In the context of voting, if all preferences are extremely

skewed (e.g., only one candidate is strongly supported while all

others receive low scores), the system is prone to bias. On the other

hand, if all preferences are equal, it is hard to select a winner. A
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Figure 6: Evaluation of different methods for constructing
candidate answers and estimating preference scores.
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Figure 7: Trade-off between accuracy and efficiency.

high-quality preference vector should reflect differences among

candidates in a smooth and balanced manner.

Given a preference vector of the i-th voter: p𝑖 = [𝑝1, 𝑝2, · · · , 𝑝𝑚],
where 𝑝 𝑗 describes the preference of the voter of the j-th candi-

date answer. The preference vector p𝑖 satisfies the normalization

condition:

∑𝑚
𝑗=1 𝑝 𝑗 = 1. we define the extremeness of p𝑖 as:

Ext(p𝑖 ) = 1 − 𝐻 (p𝑖 )
log𝑚

,

where 𝐻 (p) = −∑𝑚
𝑗=1 𝑝 𝑗 log𝑝 𝑗 is the Shannon entropy.

The value of extremeness ranges from 0 to 1. Extremeness equaling
to 0 indicates that the voter has equal preference for all candidates,

and extremeness equaling to 1 indicates that the voter only supports
one candidate while completely disregarding other candidates.

In Figure 6 (b), we present the comparison of the extremeness of
three methods. The blue bars denote the results of ALP, the green

bars denote the results of BSP, and the orange bars denote the

results of CS. The left bars denote the results of the three methods

on NQ, and the right bars denote the results on TriviaQA.

As shown in Figure 6 (b), the extremeness of ALP is close to 1

on both datasets, indicating that its preference vectors are overly

sharp, meaning that each voter supports only one candidate and

ignores the others. In contrast, CS exhibits an extremeness value
near 0, indicating that its vectors are overly smooth, in the sense

that each voter shows nearly equal preference for all candidates.

From a voting perspective, both methods fail to capture meaningful

distinctions in vector preferences. BSP, with extremeness around
0.5, offers a balanced representation, making it more suitable for

estimating preference scores.

Trade-off between accuracy and efficiency. We study the

efficiency–accuracy trade-off by varying the number of Top-𝑘 re-

ranked documents in BordaRAG. As shown in Figure 7, the x-axis

indicates the number of input documents 𝑘 , the blue line shows

average accuracy, and the yellow line shows average inference time,

measured using the vLLM engine [26].

Figure 7 (a) shows the relationship between inference time and

accuracy with varying 𝑘 on NQ, while Figure 7 (b) shows the re-

sults on TriviaQA. Both figures exhibit a similar trend: as 𝑘 in-

creases, both accuracy and inference time rise. This highlights a

trade-off: more retrieved documents improve answer quality but

lead to longer inputs and lower efficiency.
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6 Conslusion
In this paper, we formulate the methods that aims to solve the

knowledge conflict in RAG as a voting process, where the retrieved

documents are treated as voters and the knowledge they contain as

candidates. Then previous methods aiming to address knowledge

conflict can be viewed as utilizing the MV strategy, which is not

effective under complex RAG scenarios. To address this, we pro-

pose BordaRAG, which utilizes the BV to select more appropriate

documents to avoid the knowledge conflict. We provide both theo-

retical and empirical evidence showing that BordaRAG outperforms

previous methods.

In the future, we plan to explore more effective voting strategies

for resolving knowledge conflict in RAG, aiming to ensure that the

selected winners are optimal.
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Appendix
A Proof of Theorem 1
In this section, we prove that when RAG is formalized as a voting

system, the upper bound of the expected distortion for BV is less

affected by the number of candidates compared to that for MV.

First, we define a voting system with properties analogous to those

of RAG. Then, inspired by [10], we deduce the properties of this

voting system, which in turn lead to the proof of Theorem 1.

As shown in Table 1, retrieved documents D𝑞 = {𝑑1, · · · , 𝑑𝑛}
serve as votersV , and candidate answers A = {𝑎1, 𝑎2, · · · , 𝑎𝑚} as
candidates C. We define the embedding model of LLMs as 𝑒 (·), and
the embedding of 𝑑𝑖 and 𝑎 𝑗 can then be denoted as 𝑒 (𝑑𝑖 ), 𝑒 (𝑎 𝑗 ).

We define 𝑒 (𝑑𝑖 ), 𝑒 (𝑎 𝑗 ) in the same vector space Ω, a metric space

(Ω, 𝑑) with 𝑑𝜔1,𝜔2 denoting the distance between 𝜔1, 𝜔2 ∈ Ω. The
voter distribution in this space is given by a density function 𝜃 .

Based on the definition in Section 4.4, we have:

Definition 1. A RAG system can be formalized as a non-strategic,
representative, positional voting system.

To better understand this definition, we provide further explana-

tions of the three core properties:

• Non-strategic: As the LLM estimates preferences based on a

single voter-candidate pair at a time, the process is inherently

non-strategic.

• Representative: Since candidates are extracted from documents

(voters), they can be viewed as representative of the voters.

• Positional voting: Both MV and BV are positional voting meth-

ods, where voters rank candidates by non-decreasing distance.

Inspired by [10], we construct a scoring function for such a

non-strategic, representative, positional voting system:

Definition 2. LetV be a voting system with𝑚 candidates and
𝑛 voters, the total score 𝜎 of 𝑎 𝑗 is: 𝜎 (𝑎 𝑗 ) =

∫
𝜔
𝑔𝑚 (𝜋𝜔 (𝑎 𝑗 ))𝜃𝜔d𝜔 ,

where 𝑔𝑚 : {0, · · · ,𝑚− 1} → [0, 1] is a non-increasing function with
𝑔𝑚 (0) = 1 and 𝑔𝑚 (𝑛 − 1) = 0, 𝜋𝑑𝑖 (𝑎 𝑗 ) denots the rank of 𝑎 𝑗 by 𝑑𝑖 .

For positional voting systems, the winning candidate is the one

with the highest total score:𝑤 (A) ∈ argmax𝑗∈[1,𝑚] 𝜎 (𝑎 𝑗 ).
Inspired by [10], we define the limit scoring rule:

Definition 3. LetV be a positional voting system with𝑚 candi-
dates, if exists a threshold𝑚0 satisfying:

∀𝑥 ∈ [0, 1],∀𝑚 > 𝑚0,∀𝜖 > 0, 𝑔𝑚 (⌊𝑥 (𝑚 − 1)⌋) ≥ 𝑔(𝑥) − 𝜖,

∀𝑥 ∈ [0, 1],∀𝑚 > 𝑚0,∀𝜖 > 0, 𝑔𝑚 (⌈𝑥 (𝑚 − 1)⌉) ≤ 𝑔(𝑥) + 𝜖.

then 𝑔 : Q ∩ [0, 1] → [0, 1] is the limit scoring rule ofV .

Based on Corollary 3.2 in [10] and our Definition 1,3, we derive

the following lemma:

Lemma 2. LetV be a non-strategic, representative positional vot-
ing system with limit scoring rule 𝑔, then:

(1) ∃𝑥1, 𝑥2 ∈ (0, 1), 𝑔(𝑥1) ≠ 𝑔(𝑥2) ⇒ EA∼𝜃

[
𝑐 (𝑤 (A))
𝑐 (𝑜 (A))

]
∈ O(1),

(2) ∀𝑥 ∈ (0, 1), 𝑔(𝑥) ≡ 𝑐, 𝑐 ≠ 1⇒ EA∼𝜃

[
𝑐 (𝑤 (A))
𝑐 (𝑜 (A))

]
∈ 𝜔 (1) .

where𝜔 (1) indicates that the original expression has a super-constant
upper bound, while O(1) indicates that it has a constant upper bound.

Based on the above, the proof of Theorem 1 is derived as follows:

Proof. Based on Definition 1–3, we obtain the following speci-

fications of 𝑔𝑚 and 𝑔:

• In MV with 𝑚 candidates, ∀𝑘 > 0, 𝑔𝑚 (0) = 1, 𝑔𝑚 (𝑘) = 0, and

∀𝑥 > 0, 𝑔(𝑥) = 0, 𝑔(0) = 1.

• In BV with 𝑚 candidates, ∀𝑘 ≥ 0, 𝑔𝑚 (𝑘) = 𝑘
𝑚−1 , and ∀𝑥 >

0, 𝑔(𝑥) = 1 − 𝑥 .
By Lemma 2, we obtain:

EA∼𝜃

[
𝑐 (𝑤𝑀𝑉 (A))
𝑐 (𝑜 (A))

]
∈ 𝜔 (1),EA∼𝜃

[
𝑐 (𝑤𝐵𝑉 (A))
𝑐 (𝑜 (A))

]
∈ O(1),

and therefore Theorem 1 is proved. □

B Prompt Template for Estimating Preference
In this section, we present the prompt for estimating preferences,

in which the question corresponds to the query, the context to the

document 𝑑𝑖 , and the answer to the candidate 𝑎 𝑗 .

Preference Estimation

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert fact-checking assistant. Your task is to
determine whether the given answer is factually supported
by the provided context.
You must answer "True" only if the answer is directly
supported by the context. If the answer is not explicitly
stated in the context you must answer "False".
Do not include any explanation. Output only one word:
"True" or "False".<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Question: {question}

Context:
{context}

Answer:
{answer}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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