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Abstract

Recently, research found that the documents retrieved from the
Retrieval-Augmented Generation (RAG) may contain conflicting
knowledge with each other, leading Large Language Models (LLMs)
to generate incorrect responses. To solve such a problem, existing
approaches usually only keep the most frequently mentioned knowl-
edge from these documents, since they assume that the most rep-
resentative knowledge aligns best with the true answer. Although
effective in certain scenarios, these approaches often underperform
when the most frequent knowledge is not the correct one. From the
voting perspective, these methods can be regarded as a Majority
Voting (MV) process, which chooses the most frequent candidates
among different candidate knowledge. However, we show that the
underperformance of such methods stems from that MV is only ef-
fective with a small number of candidates and binary voting scores.
In contrast, in the RAG scenario, the candidates (knowledge) are
very diverse, and the voting scores (document relevance scores) are
typically continuous. Simply adapting MV in RAG will result in
poor performance of LLMs. In voting theory, on the other hand, the
preference-based voting methods represented by the Borda Voting
(BV) consider the whole preference order of voters over all can-
didates, enabling the selection of candidates that better represent
the collective viewpoint. Inspired by such an insight, we propose
BordaRAG, a model designed to better select the most appropriate
documents from conflicting documents. Specifically, BordaRAG
first computes the preference scores of the documents over the
candidate answers. After that, a BV component is designed to select
the winning documents according to the preference scores. Finally,
the chosen documents are provided to LLMs, which will generate
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the final response. Experimental results on three open-domain QA
datasets show that BordaRAG can outperform all baselines.
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1 Introduction

Retrieval-Augmented Generation (RAG) [5, 56] aims to retrieve
documents from an external database to empower Large Language
Models (LLMs) [1, 17]. Although RAG has been proven to be an ef-
fective way, recent studies have revealed that conflicting knowledge
may exist among the retrieved external documents [8, 19, 51]. Sup-
plying LLMs with such conflicting content can lead to inaccurate
or unexpected answers [44, 51].

Recently, several approaches [29, 43, 49] have attempted to ad-
dress this issue by filtering out conflicting documents and retaining
only a single, presumably correct piece of knowledge. Typically,
they often retain the most frequent knowledge among all docu-
ments, assuming that the dominant view likely reflects the cor-
rect answer. While intuitive and effective in reducing noise, this
majority-based filtering strategy has a critical limitation: it equates
popularity with correctness. In practice, documents holding the
majority view may not necessarily be accurate, particularly in do-
mains where misinformation is prevalent, minority opinions are
underrepresented, or nuanced expertise is required. As a result, such
methods risk discarding valuable minority evidence and reinforcing
potentially biased or incorrect conclusions.
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Figure 1: The comparison between the process of the Majority
Voting and Borda Voting.

To better understand the limitations of existing methods, we
reframe the task of selecting non-conflicting documents as a vot-
ing process. Specifically, each document can be viewed as a voter
expressing preferences over possible answers (i.e., candidates). The
goal is to aggregate these preferences to identify the most reliable
answer. From such a voting perspective, previous methods can be
interpreted as applying Majority Voting (MV) [3, 6, 37]—a classi-
cal mechanism in voting that selects the answer supported by the
largest number of documents.

However, in voting research, MV often encounters the issue:
when the number of candidates is large and the voters express their
preferences in a non-extreme manner, it is often not very effec-
tive [10, 32]. Next, we will give an example to show such an insight.
In Figure 1, the retriever retrieves six documents according to the
query: “Who is the president of U.S.A?”. Among the six retrieved
documents, there exist three candidate answers: {Trump, Biden,
and Obamaj. Among these answers, Trump is the correct answer,
whereas the other two are incorrect. As shown in Figure 1, under
the MV rule, only the most preferred candidates receive a positive
score, while all others receive a score of zero. In such a way, the
incorrect answer Biden wins during the voting since it is the most
frequently preferred candidate answer. However, three documents
strongly reject such a result, showing it is not a good result. On
the other hand, Borda Voting (BV) takes into account the global
preference distribution by assigning varying scores to candidates
based on their ranked positions, thereby reflecting different levels
of support. In such a way, the Trump wins by 8 points under the
Borda voting mechanism, leading to a better voting result. Moving
back to RAG scenarios, the candidate knowledge sources are highly
diverse, and the voting scores (i.e., document relevance) are usually
continuous rather than binary. As a result, previous methods may
struggle to perform effectively in these settings.

In voting theory, the ineffectiveness of MV under a large num-
ber of candidates and continuous voting scores lies in its reliance
solely on each voter’s top-ranked choice, ignoring the full spectrum of
preferences. This property can result in suboptimal voting outcomes
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(i.e., retaining incorrect documents), which ultimately degrades the
performance of LLMs. In contrast, preference-based voting meth-
ods, which take into account the full preference distribution of each
voter, provide a more robust and effective solution for handling
knowledge conflicts in RAG scenarios. Our theoretical analysis in
Section 4.4 also confirms that the preference-based voting methods
exhibit superior theoretical performance compared to MV in RAG
scenarios.

Motivated by the strengths of the preference-based voting method,
Borda Voting [4, 6, 35], we introduce BordaRAG—a novel approach
designed to resolve knowledge conflicts in the RAG process. By
leveraging the global preference signals across all documents, Bor-
daRAG enables LLMs to generate more accurate responses. The
key components of BordaRAG include (1) Preference Collection:
we utilize LLMs to generate answers for each retrieved document
and then quantify the preference degree of each document toward
all candidate answers; and (2) Borda Voting: then we aggregate
document-level preferences through BV to filter out conflicting
documents and ultimately derive the final answer. Based on the two
components, BordaRAG can utilize the global preference of docu-
ments, leading to better performance under conflicting retrieved
documents.

In summary, our key contributions are threefold:

(1) We formulate the RAG process as a voting process, and point
out that the current MV-based methods will be ineffective under
complex RAG scenarios.

(2) Based on the preference-based voting methods, we propose
BordaRAG, a simple yet effective framework to select more repre-
sentative documents under the knowledge-conflict situation.

(3) Our experimental results show our BordaRAG can outperform
all the baselines under three widely used datasets.

2 Related Work

Retrieval-Augmented Generation. LLMs [1, 7, 17, 33, 40] per-
form well on tasks such as open-domain QA [30, 36, 55], but their
limited parametric knowledge can cause inaccurate answers [11, 50].
RAG [5, 23, 24, 36] addresses this by incorporating external retrieved
documents. A RAG system includes a retriever that selects relevant
documents and a generator (LLM) that uses them to produce re-
sponses. However, previous research [8, 19, 21, 31, 51] finds that the
retrieved documents may contain conflicting knowledge, leading
to incorrect outputs.

Knowledge conflict RAG. Although RAG enhances LLMs with
external documents, these may contain conflicting knowledge from
diverse sources [19, 51], termed inter-context conflict [51]. To ad-
dress this, some methods [46] apply query augmentation techniques
and exploit the confidence of generated answers to mitigate con-
flicts among retrieved documents. Other methods [9, 43, 49] adopt a
two-stage framework to handle conflicting knowledge in retrieved
documents. In the first stage, an LLM extracts a perspective from
each document independently. In the second stage, selection cri-
teria identify the most representative perspective, with strategies
differing across studies. For example, choosing the most frequent
perspective [9, 49] or the one with the highest confidence score [43].
However, our analysis reveals that these methods implicitly rely
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on an MV mechanism, which is only effective when the number of
candidates is small and the preference scores are binary.

Voting mechanisms. Voting is essential for democratic gover-
nance and collective decision-making [6, 34, 37, 42, 48]. A voting
process involves voters, candidates, and a mechanism, with MV
being the most common. MV selects the candidate that appears
most frequently as the top choice among voters. However, the Con-
dorcet paradox [15, 28, 41, 52] shows that MV can be suboptimal.
To address this, various methods have been proposed. According to
the classification of Insua and French [20], there are two main types
of methods to overcome the suboptimality of the MV mechanism.
The first type, originally proposed by Condorcet [52], primarily
focuses on pairwise comparisons between candidates and selects
the one that wins the most head-to-head matchups as the winner.
The second type, introduced by Borda [35], takes into account pref-
erence rankings of voters over all candidates and determines the
winner based on an aggregated scoring system derived from these
rankings.

In this paper, we adopt the second improved method (i.e., BV) to
address the issue of suboptimality encountered in RAG systems.

3 Formulation

In this section, we introduce the notations used in RAG and vot-
ing processes, and present the correspondence between different
symbols when formalizing RAG as a voting process.

3.1 Knowledge Conflict in RAG

A RAG system consists of two stages: retrieval and generation. In
the retrieval stage, a retriever R is utilized to retrieve documents Dy
from the document corpus according to the given query q: Dg =
R(q). Among the documents Dy, we abbreviate the number of re-
trieved documents |Dy| as n, which is a pre-defined number. Then
the retrieved documents can be denoted as Dy = {d1,d2," - - ,dn},
where d; is the i-th document retrieved by the retriever. In the
generation stage, we utilize a generator G, which is typically in-
stantiated as a LLM, to generate an answer a based on the retrieved
documents and the query: a = G(Dy, q).

However, the retrieved documents 9y may contain conflicting
knowledge about the query g, which can lead the generator G to
generating incorrect answers. We define the knowledge of each
document d; as: a; = G(g, d;), which denotes the answer supported
by the document d;. When different documents support different
answers, i.e., a; # aj for i # j, the generator G will encounter a
knowledge conflict problem when generating the final answer a.

To solve such a problem, previous methods may aggregate all
retrieved documents to construct a new document set D:I = F(Dy),
where F denotes the selecting function. F will select a new subset
Z)(’I = {d',dé, . ,d]'c} of original document set Dy, where k < n is
the pre-defined number. Ideally, the subset Z)(’] will only contain
the documents that have the knowledge related to the right answer.
Then the generator G will generate the final answer a only based
on the selected documents: a = G(DJ, q).

3.2 RAG as Voting

A voting process mainly consists of three components: voters, can-
didates, and a voting mechanism. We define voters as a set ‘V which
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Table 1: Mapping between fundamental RAG Components
and the corresponding Voting Elements.

RAG Components Voting Elements
Retrieved document d; Voter v;
Knowledge of document a; Candidate c;
Selection function F(Dg)  Voting function f(P)

contains n elements: V = {v1,0,- - ,v,}, where v; denotes the
i-th voter. We then define candidates as a set C which contains m
elements: C = {cy, ¢, -, cm }, where ¢ denotes the j-th candidate.

A voting process can be divided into two stages: preference rep-
resentation and preference aggregation. In the stage of preference
representation, we aim to construct a preference matrix P € R"*™,
where P; j denotes the preference degree of the i-th voter towards
the j-th candidate. In the stage of preference aggregation, we aim
to define a voting function f(P) = c¢* to select a candidate winner
c* based on the pre-defined preference matrix P.

For example, the voting function of MV can be denoted as:

n

fuv(P) =ck, k= argmax Zl[(j =argmaxP;;), (1)
Jje{1.2,--.m} =] k
where I(+) is the indicator function.

As shown in Eq. (1), the MV process counts the frequency of a
candidate c; being the top choice of voters V, and then selects the
candidate with the highest frequency to be the winner.

In this paper, we formulate the RAG process as a voting process.
As shown in Table 1, a retrieved document d; corresponds to a
voter v;, and its knowledge a; corresponds to a candidate c;. Since
knowledge may conflict, voters aim to select documents that best
answer the question g. The selection functions F(Dg) proposed by
previous methods can be regarded as the voting function, denoted
as f(P). Therefore, the RAG process can be regarded as a voting
process.

4 Method: BordaRAG

In this section, we aim to introduce our method for mitigating
the problem of knowledge conflict in RAG systems. Our method
mainly consists of two components: Preference Collection and
Borda Voting. We first introduce the overall framework and then
introduce the details of our proposed components.

4.1 Framework of BordaRAG

In order to mitigate the knowledge conflict in RAG systems, we
propose a two-stage framework to reduce the degree of conflict in
retrieved documents.

As shown in figure 2, the proposed BordaRAG consists of two
components: Preference Collection and Borda Voting. In the
stage of preference collection, we first prompt LLMs to generate
answers for each retrieved document, and then deduplicate the gen-
erated answers to get a set of candidate answers. Next, we prompt
LLMs to determine whether the document d; supports the candidate
answer a;, and then utilize the probability of LLMs outputting the
token “True” as the preference degree of voter v; towards candidate
cj. The probability serves as P; j in the preference matrix P. In the
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Figure 2: The overall framework of BordaRAG. The framework consists of two stages: preference collection, where retrieved
documents are used to generate candidate answers and estimate preferences; and Borda Voting, where preferences are aggregated

to generate the final answer.

Borda Voting stage, we first utilize the BV mechanism to select
the winner according to the preference matrix. Then, we rerank
the retrieved documents according to their preference degrees for
the winner, and feed the top-k reranked documents to the LLM to
generate the final answer.

Algorithm 1 illustrates the detailed steps of BordaRAG.

Algorithm 1 Algorithmic procedure of BordaRAG

Require: Query g, Retrieved Documents Dy, Generator G
Ensure: Final Answer a
— Preference Collection -
: Initialize Candidate Answer Set A « 0
. fori=1tondo
ai — G(di,q), A «— AU {a;}
: end for
A « Deduplicate(A), m « |A|
. Initialize Preference Matrix P € R™"*™
: fori=1tondo
for j =1tomdo

[ NN N, BTN SR RN

Pr[G(q.d;,a;)=True]
Pr[G(q.di,a;)=True]+Pr[G(q.d;,a;)=False]

9: Plj «—
end for
end for
- Borda Voting —
Initialize Borda Score Vector S € R™ « 0
fori=1tondo
pi < softmax(p;), o; « argsort(p;)
for j =1tomdo
Sj — Sj —O'i(j) +m
end for
end for
J* e argmax e, S;
Dy = {du | u € argmaxgc ) |s|=k Zies Pij'}
a—G(Dgq)
return a

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

4.2 Preference Collection

Table 1 shows the mapping between RAG components and voting
elements. However, the retrieved knowledge and preference matrix
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P are not explicitly represented. To address this, we propose a pref-
erence collection stage with two steps: (1) constructing candidate
answers as voting candidates, and (2) constructing the preference
matrix, which reflects the preference of voters.

Candidate answer construction. In the process of construct-
ing the candidate answers set, we first prompt LLMs to generate
answers for each retrieved document and remove duplicates. In this
stage, semantically similar answers need not to be merged. In MV,
such similar candidates (often referred to as clone entities in voting
theory [12-14, 39]) may lead to vote splitting: since each voter can
only cast one vote, some similar candidates may split the vote of
voters who support this type of candidate. In contrast, preference-
based voting mechanisms are less susceptible to this issue: similar
candidates tend to appear close to each other in the rankings of the
voters. As a result, clone entities tend to receive similar scores and
may not cause the problem of vote splitting observed in MV.

Preference matrix construction. Constructing the prefer-
ence matrix that captures document preferences over candidate
answers is crucial for voting. Given a query g, a set of retrieved
documents Dy = {d1,---,dn}, and a set of candidate answers
A = {a1,---,am}, we define the preference score of retrieved
document d; for candidate answer a; as s(d;, a;).

In order to estimate the preference score s(d;, aj), we construct
a set of query-document-answer triples (g, d;, a;). For each triple,
we prompt LLMs to evaluate whether the document d; supports
the answer a; under the context of the query g, and LLMs return a
binary judgement: True (supports) or False (does not support). The
prompt template can be found in Appendix B. The preference score
of document d; for answer a; can be denoted as:

Pr[G(q, d;,aj) = True]
G(q.di, aj) = True] + Pr[G(q, d;, a;) = False]

s(di,aj) = Bl @

The preference score s(d;, aj) can qualify how likely the document
d; supports the candidate answer a; according to the judgement of
LLMs. Then, the preference of d; over all candidate answers can be
formulated as a preference vector p; = [s(dj, a1), -+ ,s(di, am)] €
R™. For n retrieved documents, we construct a preference matrix
according to the preference vector of these documents. The prefer-
ence matrix can be formulated as: P = [p1,pz, -+ ,pn]’ € R™™,
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4.3 Borda Voting

In this section, we aim to utilize the BV mechanism to select the
winner aj+. Based on the preference matrix P = [py,---,pn] " in
Section 4.2, where P; ; denotes the preference of document d; over
answer aj, the BV method selects the candidate with the highest
score as the winner:

aj = fpv(P), j* = argmax$;,
jelm]
where [m] = {1,2,---,m},S € R™ is a score vector, and S; denotes
the overall score of candidate a;. The score S; is computed as:

n
S; = Zm—o'i(j),
i=1

where m is the total number of candidates, and o3 (j) : {1,---,m} —
{1,---,m} denotes the rank of candidate answer a; in the prefer-
ence order induced by document d;.

After selecting the winning answer aj+, we sort the n retrieved
documents Dy, in descending order based on their preference scores
P;j+,i € [n]. Then we obtain the subset D’y by selecting the
documents that crosspond to the top-k largest elements of the
preference scores P; j+, that is:

Z),; ={dy, |u € argmax ZPU*},
sclnl.|S|=k &2

where k is a pre-defined number which denotes the number of
selected documents. Then, we feed the documents in Z)C’I into gen-
erator G to generate the final answer:

a=G(Dy q).

4.4 Theoretical Analysis

We provide a theoretical analysis of the upper bounds of expected
distortion for MV and BV when selecting the most representative
candidate answer in RAG.

Firstly, we use the expected distortion E g [D] to compare MV
and BV. Formally, E #..g[D] is defined as:

C(W(ﬂ))]

Esn-g[D] =Eg-p [ (0(A))

where 6 is the distribution of voters in the space by a density
function and c(a;) denotes the degree of dissatisfaction of all voters
towards candidate a;j. w(A) deonotes the winner of candidates A
selected by the voting mechanism w(-), o(A) denotes the optimal
candidate of A: o(A) = argmin e[y, c(a;).

Expected distortion is usually used to measure the degree of
deviation of a voting mechanism from efficiency. It reflects the gap
between voting results and social optimal results, that is, the degree
to which collective decision-making deviates from the optimal
choice due to imperfect mechanisms or incomplete information.

Then, we derive the following theorem:

THEOREM 1. The expected distortion of MV is upper bounded by
super-constant:

c(wpy (A))

ol | <@

Ea-o [
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while the expected distortion of BV is upper bounded by a constant:

o B < o1

The detailed proof of Theorem 1 can be found in Appendix A.
Theorem 1 shows that with the increase of the number of candi-
date answers (i.e., conflicting knowledge in retrieved documents),
the expected distortion of prior MV-based methods grows super-
constantly. In contrast, the expected distortion of BordaRAG admits
a constant upper bound.

Therefore, Theorem 1 shows that MV is only effective when
the number of candidates is small. As the number of candidates
increases, the expected distortion of MV, which relies on binary
scores to select candidates, grows rapidly. In contrast, BV assigns
continuous scores to candidates and provides a more comprehen-
sive selection, resulting in a constant upper bound on the expected
distortion. Therefore, BV emerges as a superior method for address-
ing the issue of knowledge conflict.

5 Experiments

In this section, we demonstrate the effectiveness of BordaRAG in
addressing the problem of knowledge conflict. We begin by intro-
ducing the detailed experimental settings. Then, we compare the
performance of BordaRAG with several baselines across multiple
QA datasets. Finally, we provide an in-depth analysis of the experi-
mental results. Our code can be found in https://github.com/RUC-
YuxinLi/BordaRAG.

Table 2: Statistical information of three QA datasets.

Dataset  #Queries Domain
NQ 91k General knowledge (Google queries)
PopQA 14k Popular entities (Wikipedia)
TriviaQA 174k Web and Wikipedia

5.1 Experimental Settings

Datasets. We conduct our experiments on three QA task datasets:

NQ, PopQA, and TriviaQA.

e NQ [25] is constructed from real anonymized Google Search
queries. NQ is considered challenging due to its realistic question
distribution and significant lexical variation between questions
and answers.

o PopQA [27] targets factual questions about popular entities and
is designed to evaluate long-tail and open-domain factual knowl-
edge in LLMs.

o TriviaQA [22] contains complex questions that require reasoning
over multiple pieces of evidence.

Table 2 summarizes the statistics of the three datasets. Follow-
ing [43], we utilize the Google Search API [16] to retrieve the top
10 results for each query, extracting titles and snippets to build the
retrieval corpus. Previous work [19, 43] has shown that conflict-
ing knowledge often exists in retrieved documents, even within a
single source. Our analysis in Section 5.3 confirms that documents
retrieved from Google Search frequently contain multiple candidate
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Table 3: Comparison of different methods on NQ, PopQA, and TriviaQA. Experimental results are reported in terms of accuracy
on each dataset. Bold indicates the best performance, while underlined values denote the second-best. The results marked with
* indicate the improvements are statistically significant (p < 0.05). Our BordaRAG outperforms baselines across all datasets.

Llama3-8B-Instruct

Qwen2-7B-Instruct Mistral-7B-Instruct

Type Baseline
NQ PopQA  TriviaQA NQ PopQA  TriviaQA NQ PopQA  TriviaQA
No-RAG LLM [17] 0.269 0.250 0.659 0.262 0.221 0.597 0.310 0.274 0.697
GenRead [53] 0.374 0.327 0.740 0.307 0.248 0.640 0.375 0.317 0.725
Prompt-based InstructRAG [45]  0.490 0.395 0.838 0.480 0.400 0.830 0.497 0.413 0.824
DAA [18] 0.437 0.370 0.739 0.484 0.404 0.822 0.485 0.398 0.823
RobustRAG [49] 0.467 0.411 0.841 0.471 0.394 0.824 0.444 0.390 0.827
MV-based AstuteRAG [43] 0.459 0.439 0.817 0.329 0.307 0.633 0.451 0.378 0.751
USC [9] 0.477 0.409 0.842 0.483 0.404 0.825 0.495 0.410 0.839
Ours BordaRAG 0.535" 0.458" 0.865" 0.502*  0.417 0.852* 0.522*  0.420 0.850
Improvement +9.2% +4.3% +2.7% +3.7% +3.2% +2.6% +5.0% +1.7% +1.3%

answers for a single query. Due to computational constraints, we
sample 1000 queries from each dataset for experimentation.

Metrics. Following [43, 45, 49], we consider an answer to be
correct if it contains the ground-truth answer. Formally, let G4 be
the set of ground truth answers for q. The accuracy is:

Z t(a, Gg),

qeQ

Acc = !
[&]
where t(a, G4) checks whether there exists an a; € G4 such that
the generated answer a contains the ground-truth answer ay. It
returns 1 if such an ag exists, and 0 otherwise.

Settings of LLMs. We adapt LLaMA3-8B-Instruct [17], Qwen2-
7B-Instruct [38] and Mistral-7B-Instruct-v0.3 [2] as generators in
RAG. All models are served via the vLLM inference engine [26],
with the decoding temperature set to 0 and top-p set to 0.8 to ensure
deterministic generation with moderate sampling flexibility.

Baselines. We compare BordaRAG with methods aimed at im-
proving robustness and reducing the impact of conflicting external
knowledge to generate more reliable responses.

GenRead [53] utilizes the internal knowledge of LLMs instead
of external documents to enhance the RAG system.

USC [9] samples multiple responses from the LLM and then ag-
gregates them based on majority consensus. We set the sampling
temperature to 0.7 during repeated sampling in USC.
InstructRAG [45] prompts LLMs to generate responses accord-
ing to the retrieved documents.

DAA [18] prompts LLMs to evaluate the conflicting degree of
the retrieved documents and ignore the noisy documents during
the generation process.

RobustRAG [49] aggregates the keywords of individually gener-
ated responses of each retrieved document, and prompts LLMs to
answer the query using the filtered keywords, aiming to produce
robust and trustworthy responses.

o AstuteRAG [43] clusters retrieved documents by underlying
knowledge and selects the answer with the highest LLM-assigned
confidence. As a CoT-based method, it may fail to identify the fi-
nal answer as instructed, so we use Llama3-8B-Instruct to extract
the final answer for fair comparison.
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To ensure a fair comparison, we do not include variants of these
methods that involve additional training or in-context learning.

5.2 Main Results

We evaluate our method on three datasets (NQ, PopQA, TriaviaQA)
and three LLMs (Llama3-8B-Instruct, Qwen2-7B-Instruct, Mistral-
7B-Instruct), using identical retrieval results for fairness. The ex-
perimental results are shown in Table 3, where bold indicates the
best performance, while underlined values denote the second-best.

Firstly, we can observe that our method can outperform the
baselines that utilize the internal knowledge of LLMs. More impor-
tantly, we find that our method can consistently outperform all the
baselines that aim to select the appropriate documents/knowledge,
including both MV-based methods and Prompt-based methods for
LLMs under all datasets. This is because our method can select more
appropriate documents/knowledge using the Borda voting process.
While most other baselines only adapts the majority voting process,
which only effective under a small number and binary voting scores,
and the Prompt-based method DAA, which also cannot select the
knowledge related to the right answer well.

Secondly, the improvements of our method are more substantial
on NQ and PopQA, whereas the performance gains on TriviaQA
are not that surprising. This is because in NQ and PopQA, most
queries are associated with retrieved documents containing more
than six candidate answers, reflecting a high degree of knowledge
conflict. Our method shows notable improvements on such datasets.
However, in TriviaQA, most queries correspond to documents with
at most three candidate answers, indicating limited conflict, where
the performance gains of BordaRAG are less pronounced.

5.3 Experimental Analysis

In this section, we analyze how the degree of conflict in retrieved
documents relates to the characteristics of NQ and TriviaQA when
using Llama3-8B-Instruct. Similar patterns are observed across
other datasets and LLMs.

We compare BordaRAG with the best-performing baselines, In-
structRAG and USC, across varying numbers of candidate answers
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Figure 3: Query distribution and accuracy comparison of
BordaRAG against top-performing baselines under varying
numbers of candidate answers. In both panels, the x-axis
indicates the number of candidate answers, the left y-axis
shows the number of corresponding queries, and the right
y-axis presents the average accuracy under each setting.

in the retrieved documents, and then present a case study highlight-
ing its differences from MV-based methods in candidate selection.

Analysis on candidate numbers. Figure 3 illustrates the query
distribution by candidate answer count in retrieved documents and
compares our method with top baselines on NQ and TriviaQA. In
both panels, the x-axis denotes the number of candidate answers.
The left y-axis shows the number of queries with the corresponding
candidate size, while the right y-axis reports the average accuracy of
BordaRAG and the strongest baseline on those queries. We consider
queries with no more than 3 candidate answers among the 10
retrieved results as having a low level of conflict, those with 4 to 6
candidate answers as medium conflict, and those with 7 or more as
high conflict.

As shown in Figure 3 (a), most queries in NQ have more than six
candidate answers, indicating a high conflicting level. This likely
arises because NQ questions come from real Google queries, in-
cluding both objective ones with low conflict and subjective ones
with higher conflict. Figure 3 (a) also shows that accuracy drops as
conflict increases, but our method consistently outperforms Instruc-
tRAG. This advantage stems from its ability to generate concise
answers under low-conflict settings and to effectively filter docu-
ments in high-conflict scenarios.

Figure 3 (b) shows that the retrieval results of TriviaQA have
lower conflict than that of NQ, since TriviaQA mainly involves
fact-based questions that yield more consistent knowledge across
documents. The accuracy results in Figure 3 (b) exhibit a similar
trend to those in Figure 3 (a), showing a decline as conflict increases.
At low conflict levels, BordaRAG performs comparably to USC, but
its advantage over the baseline grows with higher conflict. These
findings highlight the effectiveness and robustness of our method.

Comparison of expected distortion between MV and BV.
In this section, to verify our theoretical analysis in Section 4.4, we
aim to measure the expected distortion of utilizing BV and MV.

In Figure 4, we compare the expected distortion of MV and BV.
Subfigure (a) shows the results on NQ, and subfigure (b) on Trivi-
aQA. The x-axis indicates the number of candidates, and the y-axis
the expected distortion, with the yellow and blue lines representing
MYV and BV, respectively.
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Figure 4: Comparison of expected distortion between MV
and BV.

In this experiment, we define distortion as the gap between each
method’s performance and the upper bound, i.e., the proportion
of queries whose context contains the ground truth. The expected
distortion is the mean distortion over queries with fewer candi-
date answers than the current value. MV results are obtained by
replacing the BV function in our method with MV.

As shown in Figure 4, the expected distortion of MV is consis-
tently higher than the distortion of BV among queries with different
candidate numbers on two datasets, which means BV achieves bet-
ter performance than MV under various conflicting levels. There-
fore, the experimental results verify our theoretical analysis in
Section 4.4.

Case study. To demonstrate BordaRAG in complex cases, Fig-
ure 5 shows a case study comparing BordaRAG with MV-based
methods on the query “rosie and the originals angel baby release
date?”, where ten documents are retrieved and candidate answer
frequencies are derived using Llama3-8B-Instruct.

As shown in Figure 5, the answer “1964” appears most frequently
(4 times) but it is a hallucination, while the correct answer “1960”
(including “November 1960”) appears only twice. MV-based methods
may select “1964” as the winner and prioritize documents support-
ing this incorrect answer, potentially reinforcing irrelevant or false
knowledge. In contrast, BordaRAG selects “1960” based on global
preference distribution and reranks documents by their support for
it. As a result, BordaRAG identifies the correct answer and avoids
the failure cases of MV-based methods.

Query: rosie and the originals angel baby release date?

Album re-release date «-- 2000

Spotify release date +- 2016

1969 MYV selection X

Irrelated knowledge <"
Hallucination of LLMs -
Hallucination of LLMs *~December 1960

e
11964

Correct but verbose «-November 1960

Correct ANSWer «----------w-rmx

| BV selection /
1 2 3
Frequency

Figure 5: A case study comparing BV and MV in terms of
their ability to identify the most representative knowledge.
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5.4 Ablation Study

In this section, we analyze different BordaRAG components on
NQ and TriviaQA with Llama3-8B-Instruct, and examine the effi-
ciency-accuracy trade-off under varying k.

Methods of constructing candidate answers. To determine
which method is more effective for constructing the candidate
answer set, we experiment with three approaches using Llama3-8B-
Instruct: (1) Independent Generation with Deduplication (IGD) [49]:
generates an answer for each retrieved document and deduplicates
the results; (2) Joint Contextual Generation (JCG) [43]: inputs all
retrieved documents together and generates candidate answers in
one pass; (3) Filtering Answer Set (FAS): applies LLMs to filter
unlikely answers from the set produced by IGD.

Figure 6 (a) compares answer coverage of IGD (blue), JCG (green),
and FAS (orange) on NQ (left) and TriviaQA (right). Coverage is
defined as containing the ground-truth answer within the candi-
date set. As shown in Figure 6 (a), IGD achieves the best perfor-
mance on NQ and TriviaQA. We attribute this to the fact that, when
confronted with conflicting knowledge, LLMs tend to ignore less
frequently mentioned knowledge. However, the ignored knowledge
may be factually correct. Both JCG and FAS rely on LLMs to gen-
erate the candidate answer set, whereas IGD utilizes a rule-based
approach to construct the answer set. This rule-based strategy pre-
vents the less frequently mentioned but factually correct knowledge
from being ignored by LLMs.

Methods of estimating preference scores. To determine which
method can produce high-quality preference vectors, we experi-
ment with three approaches: (1) Average Log-Probability (ALP) [47]:
uses the average log-probability that a document assigns to a
candidate answer as the preference score. (2) Confidence Scoring
(CS) [43]: prompts the LLM to produce a confidence score for an
answer given a document, which is used as the preference score.
(3) Binary Support Probability (BSP) [54]: asks the LLM whether
a document supports a candidate answer, using the probability of
generating a "True" token as the preference score.

To evaluate the quality of generated preference vectors, we define
a metric to measure the uniformity of a preference vector, named
extremeness. In the context of voting, if all preferences are extremely
skewed (e.g., only one candidate is strongly supported while all
others receive low scores), the system is prone to bias. On the other
hand, if all preferences are equal, it is hard to select a winner. A

. IGD

= ICG N FAS

. ALP
1.07 0.92

[ BSP
0.90

e

=

0.86 0.86

S 2
> »

I
=~

Answer Coverage
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o
¥

e
o

NQ

Z
TriviaQA

TriviaQA

(a) Candidate construction (b) Preference estimation

Figure 6: Evaluation of different methods for constructing
candidate answers and estimating preference scores.
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Figure 7: Trade-off between accuracy and efficiency.

high-quality preference vector should reflect differences among
candidates in a smooth and balanced manner.

Given a preference vector of the i-th voter: p; = [p1,p2,- -+, pml,
where p; describes the preference of the voter of the j-th candi-
date answer. The preference vector p; satisfies the normalization
condition: Z;.n: 1 pj = 1. we define the extremeness of p; as:

H(p:)

Ext(p;) =1-
xt(pi) logm’

where H(p) = — Z;.":l pjlog pj is the Shannon entropy.

The value of extremeness ranges from 0 to 1. Extremeness equaling
to 0 indicates that the voter has equal preference for all candidates,
and extremeness equaling to 1 indicates that the voter only supports
one candidate while completely disregarding other candidates.

In Figure 6 (b), we present the comparison of the extremeness of
three methods. The blue bars denote the results of ALP, the green
bars denote the results of BSP, and the orange bars denote the
results of CS. The left bars denote the results of the three methods
on NQ, and the right bars denote the results on TriviaQA.

As shown in Figure 6 (b), the extremeness of ALP is close to 1
on both datasets, indicating that its preference vectors are overly
sharp, meaning that each voter supports only one candidate and
ignores the others. In contrast, CS exhibits an extremeness value
near 0, indicating that its vectors are overly smooth, in the sense
that each voter shows nearly equal preference for all candidates.
From a voting perspective, both methods fail to capture meaningful
distinctions in vector preferences. BSP, with extremeness around
0.5, offers a balanced representation, making it more suitable for
estimating preference scores.

Trade-off between accuracy and efficiency. We study the
efficiency—accuracy trade-off by varying the number of Top-k re-
ranked documents in BordaRAG. As shown in Figure 7, the x-axis
indicates the number of input documents k, the blue line shows
average accuracy, and the yellow line shows average inference time,
measured using the vLLM engine [26].

Figure 7 (a) shows the relationship between inference time and
accuracy with varying k on NQ, while Figure 7 (b) shows the re-
sults on TriviaQA. Both figures exhibit a similar trend: as k in-
creases, both accuracy and inference time rise. This highlights a
trade-off: more retrieved documents improve answer quality but
lead to longer inputs and lower efficiency.
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6 Conslusion

In this paper, we formulate the methods that aims to solve the
knowledge conflict in RAG as a voting process, where the retrieved
documents are treated as voters and the knowledge they contain as
candidates. Then previous methods aiming to address knowledge
conflict can be viewed as utilizing the MV strategy, which is not
effective under complex RAG scenarios. To address this, we pro-
pose BordaRAG, which utilizes the BV to select more appropriate
documents to avoid the knowledge conflict. We provide both theo-
retical and empirical evidence showing that BordaRAG outperforms
previous methods.

In the future, we plan to explore more effective voting strategies
for resolving knowledge conflict in RAG, aiming to ensure that the
selected winners are optimal.

Acknowledgments

This work was funded by the National Natural Science Foundation
of China (No. 62472426), Beijing Key Laboratory of Research on
Large Models and Intelligent Governance, fund for building world-
class universities (disciplines) of Renmin University of China.

Appendix
A Proof of Theorem 1

In this section, we prove that when RAG is formalized as a voting
system, the upper bound of the expected distortion for BV is less
affected by the number of candidates compared to that for MV.
First, we define a voting system with properties analogous to those
of RAG. Then, inspired by [10], we deduce the properties of this
voting system, which in turn lead to the proof of Theorem 1.

As shown in Table 1, retrieved documents Dy = {d1,- - ,dn}
serve as voters V, and candidate answers A = {ay,az, - ,am} as
candidates C. We define the embedding model of LLMs as e(-), and
the embedding of d; and a; can then be denoted as e(d;), e(a;).

We define e(d;), e(a;) in the same vector space €, a metric space
(Q,d) with dy,, 2 denoting the distance between w1, w2 € Q. The
voter distribution in this space is given by a density function 6.

Based on the definition in Section 4.4, we have:

DEFINITION 1. A RAG system can be formalized as a non-strategic,
representative, positional voting system.

To better understand this definition, we provide further explana-
tions of the three core properties:

e Non-strategic: As the LLM estimates preferences based on a
single voter-candidate pair at a time, the process is inherently
non-strategic.

o Representative: Since candidates are extracted from documents
(voters), they can be viewed as representative of the voters.

o Positional voting: Both MV and BV are positional voting meth-
ods, where voters rank candidates by non-decreasing distance.

Inspired by [10], we construct a scoring function for such a
non-strategic, representative, positional voting system:

DEFINITION 2. LetV be a voting system with m candidates and
n voters, the total score o of aj is: o(aj) = fw Im (7 (aj))0sdow,
where gm : {0, -+ ,m—1} — [0, 1] is a non-increasing function with
gm(0) =1 and gm(n—1) =0, ng4,(a;) denots the rank of aj by d;.
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For positional voting systems, the winning candidate is the one
with the highest total score: w(A) € argmaxje[y,m,] o(a;).
Inspired by [10], we define the limit scoring rule:

DEFINITION 3. Let V be a positional voting system with m candi-
dates, if exists a threshold mg satisfying:

Vx € [0,1],Vm > mg, Ve > 0,gm([x(m—1)]) = g(x) — €,

Vx € [0,1],Vm > mg,Ye > 0,gm([x(m = 1)]) < g(x) +e.
theng: QN [0,1] — [0,1] is the limit scoring rule of V.

Based on Corollary 3.2 in [10] and our Definition 1,3, we derive
the following lemma:

LEMMA 2. LetV be a non-strategic, representative positional vot-
ing system with limit scoring rule g, then:

(1) 3x1,x2 € (0,1),g(x1) # g(x2) = Eg-p [% € 0(1),
A
(2)V¥Vx € (0,1),9(x) =c,c#1=>Eg-9 [Cc((‘:((—ﬂ)))) € w(1).

where w(1) indicates that the original expression has a super-constant
upper bound, while O(1) indicates that it has a constant upper bound.

Based on the above, the proof of Theorem 1 is derived as follows:

Proor. Based on Definition 1-3, we obtain the following speci-

fications of g, and g:

e In MV with m candidates, Yk > 0,9,(0) = 1,gm(k) = 0, and
Vx > 0,g(x) =0,g(0) = 1.

e In BV with m candidates, Vk > 0,gm(k) = % and Vx >
0,9(x) =1-x.

By Lemma 2, we obtain:

c(wyy (A))
c(o(A))

and therefore Theorem 1 is proved.

c(wpy (A))

(o() ] <ow,

Fgg [ € 0(1).Eq-p [

[m]

B Prompt Template for Estimating Preference

In this section, we present the prompt for estimating preferences,
in which the question corresponds to the query, the context to the
document d;, and the answer to the candidate a;.

Preference Estimation

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert fact-checking assistant. Your task is to
determine whether the given answer is factually supported
by the provided context.

You must answer "True" only if the answer is directly
supported by the context. If the answer is not explicitly
stated in the context you must answer "False".

Do not include any explanation. Output only one word:
"True" or "False".<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Question: {question}

Context:
{context}

Answer:
{answer}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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