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Model-Agnostic Causal Embedding Learning for
Counterfactually Group-Fair Recommendation
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Abstract—Group-fair recommendation aims at ensuring the
equality of recommendation results across user groups catego-
rized by sensitive attributes (e.g., gender, occupation, etc.). Existing
group-fair recommendation models traditionally employ original
user embeddings for both training and testing, primarily focusing
on statistical learning while imposing group fairness constraints
under the I.I.D. assumption. However, these models encounter
limitations when addressing out-of-distribution (OOD) sensitive
attributes. The fundamental issue of unfairness within user em-
beddings arises from a causal perspective, where each embedding
vector comprises an exogenous component devoid of correlations
with sensitive attributes and an endogenous component strongly
correlated with these attributes. Overlooking the distinction be-
tween these two components during model training renders models
sensitive to shifts in the distribution of sensitive attributes. This
paper introduces the concept of Counterfactual Group Fairness
(CGF) along with a corresponding metric to evaluate group fair-
ness in scenarios involving OOD sensitive attributes in recom-
mender systems. Building on this foundation, we propose a model-
agnostic causal embedding learning framework named MACE.
MACE effectively disentangles user embedding vectors into their
exogenous and endogenous parts, thus ensuring group fairness,
even in the presence of OOD sensitive attributes in embeddings.
Specifically, MACE identifies the exogenous part of each user’s
embedding using mutual information minimization, treating it as
instrumental variables. Subsequently, under the constraint of CGF,
MACE reconstructs the endogenous and exogenous parts using
the instrumental variable regression, combines the obtained parts
into novel user embeddings using deep neural networks, and uses
the combined embeddings for fair recommendation. Experimental
results demonstrated that MACE can outperform the state-of-the-
art baselines in terms of the metric of CGF while maintaining a
comparable recommendation accuracy.

Index Terms—Causal learning, fairness, instrumental variables,
recommendation.
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I. INTRODUCTION

IN RECENT years, the proliferation of recommender systems
has raised concerns that the learned recommendation models

may be discriminatory with respect to sensitive attributes such as
gender, occupation, age, i.e., the issue of group unfairness in rec-
ommendation [1]. Group unfairness occurs when recommender
systems deliver varying levels of recommendation quality to
different user groups defined by these sensitive attributes, lead-
ing to potential biases and inequalities. Although deep learning
methods for recommender systems can extract abstract represen-
tation into embeddings for accurate prediction [2], [3], [4], the
user embeddings learned by deep neural networks often contain
or are related to sensitive attributes, ultimately compromising
group fairness in predicting users’ feedback.

Motivated by the differences of the testing and training distri-
butions that widely exist in real-world data [5], [6], [7], [8], [9],
it is necessary to ask a counterfactual problem: what the group
fairness of a recommendation model would be if the distribution
of sensitive attributes on testing data is even slightly different
from that on training data? (e.g., how the group fairness metric
of a recommendation model would change, if the distribution of
users’ occupations is replaced by a new distribution on testing
data, see Fig. 1).

To validate the presence of the unfairness issue mentioned
in the last paragraph, we focus on collaborative filtering (CF)
methods for recommendation, which utilize the known pref-
erences of a group of users to predict additional items a new
user might like. Specifically, we analyze DMF [2], a classic
CF method using neural network-based matrix factorization,
in the context of group fairness when there are shifts in the
distribution of sensitive attributes in the testing data. For the
group fairness metric, we selected ΔDP, which measures the
difference in model outputs between different groups defined by
sensitive features. In short, ΔDP shows how much a recommen-
dation model’s predictions vary between different user groups.
A smaller value of ΔDP indicates that the model treats different
groups more equally, demonstrating better group fairness. From
the empirical results depicted at the top of Fig. 2, we can infer
that the metric ΔDP of DMF [2] for movie recommendation is
sensitive to the shifts in the distribution of sensitive attributes
(occupations) within the testing dataset, where the changed
distributions of occupations are illustrated at the bottom of Fig. 2.
This effect occurs despite the model being trained and tested
without consideration of sensitive attributes. These observa-
tions motivate a deeper investigation into achieving group-fair
recommendations in scenarios where out-of-distribution (OOD)
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Fig. 1. Example of group-fair recommendation when the distribution of
occupations (sensitive attributes) changes on testing data. For example, when
a teacher working in a university resigns to pursue a career as an engineer
in the industry, the distribution of the user’s occupation (sensitive attribute)
changes. Whether the recommendation algorithm can still ensure group fairness
in recommendations in such scenarios remains unexplored.

Fig. 2. Empirical study of group fairness on MovieLens-1 M with OOD
sensitive attributes. Top: Group fairness on different testing distributions of the
occupations (original, uniform, and two extreme distributions), where ΔDP
defined in (1) is used to evaluate the group fairness that is a relaxed metric of
demographic parity (DP) (a smaller ΔDP indicates a more group-fair model).
The results are obtained by DMF [2] trained on the original training data and two
versions of DMF are used for testing: using sensitive attributes (vertical stripe
bars) and omitting sensitive attributes (horizontal stripe bars) for training and
testing. Bottom: Percentage of occupations in different testing distributions.

sensitive attributes arise due to changes in user demographics.
This concept is termed as “counterfactually group-fair recom-
mendation” (CGFR), aiming to recommend group-fair results
while testing with varying distributions of sensitive attributes
compared to those encountered during training.

Recent works focused on achieving group fairness in de-
signing recommendation and ranking algorithms [10], [11],
which typically incorporated group fairness constraints into the
objective function under the I.I.D. assumption. In addition to
considering group fairness, individual fair learning aims to give
similar predictions to similar individuals under some similarity
metric [12], [13]. To identify and utilize the causal association
between attributes and labels, several studies provided metrics
of causally motivated individual fairness, called counterfactual
individual fairness [14], [15]. But in group-fair recommendation
literature, little efforts have been made to consider the causal
association between different parts of user embeddings and the
labels, and ignored the group fairness in counterfactual worlds

where the distribution of sensitive attributes may shift in a causal
sense.

Looking into the CGFR problem from the view of causal
analysis, even if the sensitive attributes are removed, a user em-
bedding may still contain an endogenous part that is correlated to
the sensitive attributes. This observation has been demonstrated
in empirical results shown in Fig. 2, where the recommendation
model that does not use the sensitive attributes as input is still
sensitive to the distribution shift of the sensitive attributes. Since
the sensitive attributes usually have a correlation with the user
feedback (e.g., user clicks), sensitive attributes can be treated as
confounders that confound the causal association between the
user embedding and the user feedback. Directly using the mixed
user embedding for training and testing may make the recom-
mendation model vulnerable to the OOD sensitive attributes.

To evaluate and improve the group fairness when OOD sen-
sitive attributes exist, we define a notion called counterfactual
group fairness (CGF) as well as its metric and propose a model-
agnostic causal embedding learning framework to achieve CGF
in recommendation. Our definition of CGF captures the intuition
that a recommendation model is fair towards different groups if
its group fairness metric remains the same in the actual world
and a counterfactual world where the distribution of sensitive
attributes changes. From a causal view, we treat the sensitive
attributes as confounders, and extract the exogenous part and
endogenous part of each user embedding under the constraint
of CGF. Then, the exogenous part is used to fit the endogenous
part using the instrumental variable (IV) regression approach.
In this way, the user embedding can be effectively represented
by two orthogonal vectors: a causal representation (the values
fitted by the IV regression) and a non-causal representation (the
regression residuals). Finally, these two parts are combined into
a new user embedding using deep neural networks and fed into
the recommendation model for prediction.

We summarize the major contributions of the paper:
� A counterfactual group fairness metric to measure the

group fairness for recommendation when OOD sensitive
attributes exist;

� A novel model-agnostic framework called MACE for
learning counterfactually group-fair user embeddings in
recommendation using causal learning motivated by in-
strumental variable method;

� Comprehensive empirical studies showed the effectiveness
of MACE in terms of improving the fairness of different
recommendation models and its superiority over state-of-
the-art baselines.

II. RELATED WORK

Fairness in machine learning has received considerable atten-
tion over the past several years, where the metrics of fairness can
be group-level [10], [11], individual-level [12], [16], causal [14],
[15], [17], etc. Fair learning algorithms can be divided into three
categories [18], [19]: (a) Pre-processing algorithms modify the
training data for mitigating the effects of underlying discrim-
ination in the data collection policy [20], [21], [22]. Calmon
et al. [22] designed a pre-processing transformation approach
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that trades off group fairness, data utility, and individual distor-
tion. (b) In-processing algorithms incorporate different fairness
constraints into the inductive bias of the learning algorithms dur-
ing training [10], [23], [24], [25]. Mandal et al. [25] proposed a
fair online learning approach that is robust to perturbations in the
training distribution, where the fair classifiers were obtained by a
re-weighted objective function under group fairness constraints.
(c) Post-processing algorithms only access to the predictions and
sensitive attributes and modify the unfair predictions to improve
the prediction fairness [26], [27], [28]. Hardt et al. [28] provided
a post-learning framework by constructing a non-discriminating
predictor requiring only the learned binary predictor and the
aggregate information about the data. Our fair learning frame-
work focuses on group fairness in a causal sense, and draws
on the strengths of both the pre-processing and in-processing
algorithms, which simultaneously reconstructs user embeddings
in training data and incorporates a novel counterfactual group
fairness constraint.

Causal machine learning explores modeling approaches in
the intersection of machine learning and causal inference [29],
[30]. In terms of technique, our embedding reconstruction ap-
proach is mostly related to causal representation learning that
aims to learn variables and their generation processes in causal
graphs [31]. Existing causal representation learning approaches
can mitigate bias in training data and help to resist the interven-
tions that change the joint distribution of the variables of interest.
Kuang et al. [32] designed a learning-based causal approach to
automatically separating confounders and adjustment variables
in embeddings, which can be applied to causal effect estimation.
interventions that change the joint distribution of the variables
of interest. Zheng et al. [33] learned disentangled embeddings
for capturing the interest and conformity of users in recom-
mendation, which were trained on cause-specific data from
observational interactions. Liu et al. [34] proposed an embed-
ding decomposition method using information bottleneck that
learned the biased and unbiased components of an embedding in
training, where only the unbiased component was used as input
for testing to achieve more accurate recommendation results.
Our causal embedding learning framework treats the sensitive
attributes as confounders and reconstructs the user embeddings
under a new group fairness constraint, which mitigates the
confounding bias using an approach motivated by instrumental
variables.

Fairness in recommendation has been extensively explored
and can be primarily categorized into group fairness and individ-
ual fairness. Existing works on group fair recommendation focus
on measuring and achieving group fairness under the assumption
of an independent and identically distributed (i.i.d.) setting. Yao
et al. [35] defined four group fairness metrics in collaborative
filtering recommender systems. Li et al. [10] addressed the user-
oriented group fairness problem in commercial recommender
systems. Rahmani et al. [36] illustrated that the disparity in
recommendation accuracy among user groups may vary across
different datasets. Zhao et al. [37] learned fair representations
from the perspective of mutual information to achieve group fair-
ness in recommendations. Lin et al. [38] formulated the problem
of group recommendation as a multiple objective optimization

problem and provided a optimization framework to achieve
Pareto efficiency. Unlike the above methods for group fairness
in recommendations, this paper focuses on group fairness and its
metrics and implementation in non-i.i.d. settings. On the other
hand, individual fairness posits that similar individuals should
receive comparable treatment. Li et al. [15] delved into counter-
factual fairness in recommendations, aiming for consistency in
recommendation results for each user between the factual and
counterfactual worlds. Huang et al. [39] focused on user-side
individual fairness for customers in online recommendation, and
proposed a fair causal bandit approach for achieving counter-
factual individual fairness. Unlike existing works on individual
fairness, which often focus on counterfactual individual fairness,
this paper focuses on counterfactual group fairness (CGF) in an
out-of-distribution (OOD) setting. When there is only one user
in each user group, the CGF problem discussed in this paper
degenerates into a user-side individual fairness problem in an
OOD setting.

III. PROBLEM FORMULATION

This section introduces the problem of sensitive attributes in
user embeddings from a causal view, and define a novel notion
called counterfactual group fairness and its metric.

A. Causal View of Sensitive Attributes

When a user u ∈ U accesses a recommender system, the
system provides a list of items i ∈ I with a recommendation
model f . Users and items are typically represented by real-
valued vectors (i.e., embeddings), denoted by vu ∈ Rdu and
vi ∈ Rdi , respectively, wheredi anddu are the dimensions of the
embeddings for users and items. Although deep learning models
can extract abstract representation into embeddings for accurate
prediction, user embeddings usually contain sensitive attributes
that may hurt the fairness in recommendation tasks. More specif-
ically, a user embedding contains two parts vu = [sᵀu,x

ᵀ
u]

ᵀ: the
sensitive attributes denoted by su ∈ S ⊆ Rds (gender, occupa-
tion, etc.) and the remaining attributes denoted by xu ∈ Rdx

(may also correlate with su), where S denotes the space of
sensitive attributes which is a set consisting of a finite number
of vectors, ds is the dimension of the sensitive attributes and
dx = du − ds is the dimension of xu. In deep learning-based
recommender systems, the recommendation model f is trained
with the user-system interaction histories and the training dataset
can be represented by Dtrain = {(su,xu,vi, yu,i)} that is drawn
from an unknown distribution P . Each tuple (su,xu,vi, yu,i) ∈
Dtrain means that the item i was exposed to the user u and
the interaction was yu,i ∈ {0, 1}, where yu,i denotes the user
feedback (e.g, yu,i = 1 means clicked and yu,i = 0 otherwise).

Following the causal inference framework [40], a causal graph
can be constructed for recommendation when sensitive attributes
exist in user embeddings (see the left side of Fig. 3). Specifically,
since both the user embedding and item embedding have an
influence on the user feedback, we treat the user and item
embeddings vu and vi as the treatment, and the user feedback
yu,i as the outcome. Moreover, the sensitive attributes suof user
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Fig. 3. Left: Causal graph of recommendation when sensitive attributes exist
in user embeddings. Right: Decomposition of user embedding in the proposed
MACE.

u can be seen as confounders that confound the causal associ-
ation between the user embedding vu (treatment) and the user
feedback yu,i (outcome), where the path su → vu exists since
su is part of vu, and the path su → yu,i exists since user profiles
usually contribute to the prediction in recommendation. Thus,
directly using the confounded user embedding for training and
testing will make the recommendation model unfair especially
in the case that OOD sensitive attributes exist in testing data.
As shown on the right side of Fig. 3, in this paper, the proposed
MACE extracts two parts from the original user embedding:
an exogenous part that satisfies the unconfounded condition of
instrumental variables (i.e., has no correlation with the con-
founders su) [41], [42], and an endogenous part constructed
under a novel fairness constraint that may be correlated to su.
Motivated by instrumental variable (IV) methods [43], [44], by
regressing the endogenous part on the exogenous part, we can
reconstruct the user embeddings by balancing the fairness and
recommendation accuracy in an end-to-end manner. Using the
reconstructed user embeddings, we can perform group-fair rec-
ommendation without obvious accuracy degradation even when
OOD sensitive attributes exist in a counterfactual world. Com-
pared with counterfactual learning methods for debias such as
inverse propensity score [45] and doubly robust estimator [46],
IV methods can handle high-dimensional treatment variables
(e.g., user’s embedding vectors).

B. Counterfactual Group Fairness (CGF)

The most widely used definitions of group fairness are De-
mographic Parity (DP) and Equalized Odds (EO) [47], which
enforce the statistical independence between the model predic-
tion and the sensitive attributes (EO requires this independence
condition holds conditioned on the user feedbacks). Different
from the DP distance and EO distance defined on the training
distribution P for two groups [23], [24], given a testing dataset
Dtest drawing from any distribution, we introduce the following
relaxed metrics of group fairness for multiple user groups (corre-
sponding to different sensitive attributes): for a recommendation
model f, letting ŷu,i = f(su,xu,vi)be the prediction of a user’s
preference score,

ΔDP(f,Dtest)= sup
s1,s2∈S,s1 �=s2

∣∣∣∣∣
∑

u∈Us1
ŷu,i

|Us1 |
−

∑
u∈Us2

ŷu,i

|Us2 |

∣∣∣∣∣ ,
ΔEO(f,Dtest) =

sup
s1,s2∈S,s1 �=s2

∑
y∈{0,1}

∣∣∣∣∣
∑

u∈Uy
s1
ŷu,i

|Uy
s1 |

−
∑

u∈Uy
s2
ŷu,i

|Uy
s2 |

∣∣∣∣∣ , (1)

where Us={u | (su=s,xu,vi, yu,i) ∈ Dtest}, s ∈ S, and Uy
s =

{u | (su = s,xu,vi, yu,i = y) ∈ Dtest}, y ∈ {0, 1}, are the sub-
groups of users in the testing datasetDtest.1 The proposed metrics
ΔDP and ΔEO can measure the difference of the model outputs
across multiple user subgroups on any testing dataset (may
distribute differently from the training data).

Next, we introduce the formal definition of counterfactual
group fairness, which enforces that, for a recommendation
model f trained on Dtrain, a distribution over the group fair-
ness metrics should be consistent with that in a “counterfactual
world” where the distribution of sensitive attributes had been
changed in a causal sense. We represent this counterfactual world
by a counterfactual testing dataset DQ

test = {(s̃u,xu,vi, y},
where the tuple (xu,vi, y) is drawn from the same distribu-
tion P with the training dataset but s̃u ∈ Rds denote the out-
of-distribution (OOD) sensitive attributes that are drawn from
another counterfactual distribution Q.

Definition 1 (Counterfactual Group Fairness, CGF). Let Δs

be the set of all possible distributions of sensitive attributes.
Given a group fairness metric called GF (e.g., ΔDP, ΔEO), a
recommendation model f trained on Dtrain = {(su,xu,vi, y)}
satisfies counterfactual group fairness if for any two distributions
of sensitive attributes Q1,Q2 ∈ Δs and for all possible values
of GF,

Pr
{

GF
(
f,DQ1

test

) ∣∣Dtrain

}
= Pr

{
GF

(
f,DQ2

test

) ∣∣Dtrain

}
.

(2)
Since the distribution condition (2) in Definition 1 is a rather

strict constraint, we focus instead on expectation and variance
w.r.t. the counterfactual distribution Q ∈ Δs of sensitive at-
tributes, and will target a relaxation of CGF as well as its metric
using the second-order central moment, defined below.

Definition 2 (ε-Counterfactually Group-Fair Recommenda-
tion). Given a group fairness metric called GF and a fair-
ness threshold ε > 0, we call a recommendation model f is
ε-counterfactually group-fair if the following metric of CGF
satisfies

CGF(f) := EQ

[
GF

(
f,DQ

test

)]2

= VarQ

[
GF

(
f,DQ

test

)]
+
{
EQ

[
GF

(
f,DQ

test

)]}2

≤ ε, (3)

where the expectation and variance are taken over the random
selection of distribution Q in Δs. In particular, we denote the
CGF metric in (3) by CGF-DP if ΔDP is used as the GF metric,
and CGF-EO for the case that ΔEO is used as GF.

C. An Empirical Implementation of CGF

One problem with the CGF metric in (3) is that it is impossible
to access to each counterfactual distribution Q of sensitive at-
tributes in testing data. Therefore, (3) cannot be directly applied

1In (1), ΔDP and ΔEO are only computed using the nonempty sets Us and
Uy
s where s ∈ S, and |U| denotes the cardinality of the set U .
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Fig. 4. (a): The overall architecture of the proposed MACE framework. (b): The module of exogeneity construction, where MI denotes mutual information.
(c): The module of causal embedding reconstruction, where rep. stands for representation. (d): The module of CGF-oriented constraint, where GF denotes the
metric of group fariness (e.g., ΔDP, ΔEO in (1)), the metric ECGF and the counterfactual distribution Qt are defined in (5) and (4), respectively.

to the model training phase. One solution is mimicking the
distribution shift of the sensitive attributes by sampling a series
of counterfactual distributions that are formulated by adding
uniform perturbations to the training data, yielding an empirical
version of CGF metric named ECGF. Specifically, given a set of
perturbation parameters T = {t|t ∈ [0, 1]}, the counterfactual
distribution of sensitive attributes is defined by

Qt := tPs + (1− t)Us, t ∈ T , (4)

where Ps denotes the distribution of sensitive attributes on
training data that can be estimated by simply counting users with
different sensitive attributes in training data, and Us denotes a
uniform distribution over sensitive attributes. In particular, if
t = 1, then the counterfactual distribution Qt degenerates to
the original training distribution of sensitive attributes; if t = 0,
then Qt is equivalent to a uniform distribution over sensitive
attributes. Finally, based on the proposed counterfactual distri-
bution in (4), the following ECGF can be used to estimate the
CGF metric in (3):

ECGF(f, T ) :=
∑
t∈T

[
GF

(
f,DQt

train

)]2
, (5)

where, similarly to the definition ofDQ
test,DQ

train denotes a training
dataset whose sensitive attributes change that are drawn from a
counterfactual distribution Q.

IV. MACE: THE PROPOSED FRAMEWORK

We propose a Model-Agnostic Causal Embedding learning
framework named MACE which reconstructs the user embed-
dings for counterfactually group-fair recommendation.

A. Framework Overview

Fig. 4(a) illustrates the overall architecture of the proposed
MACE framework. MACE consists of three ingredients: (1) the

exogeneity construction tries to identify the exogenous part that
is unconfounded by the sensitive attributes in user embeddings;
(2) the causal embedding reconstruction treats the exogenous
part as instrumental variables (IVs), decomposes a user embed-
ding into the causal and non-causal representations using IV
regression, and combines these representations for fair recom-
mendation; (3) the CGF-oriented constraint is incorporated into
the final loss for training the embeddings and recommendation
model.

Algorithm 1 shows the detailed training procedure. At each
training iteration, after B training instances are sampled into
the buffer V , a network gexo is trained by performing mutual
information minimization with an update cycle ρ, which is
used for exogeneity construction. Then, the parameters of the
recommendation model f and the networks hre, gendo, gexo for
causal embedding reconstruction, are updated on V with a
CGF-oriented constraint.

Next, we specify the ingredients of MACE with details.

B. Causal Embedding Learning

The main idea behind the causal embedding learning module
is to construct instrumental variables that are unrelated to sen-
sitive attributes (i.e., the exogenous part). These instrumental
variables are then utilized to decompose and reconstruct the orig-
inal user embeddings, distinguishing between the parts related
and unrelated to sensitive attributes. This module aims to ensure
fairness while maintaining recommendation performance, com-
prising two components: (1) Exogeneity construction, shown in
Fig. 4(b), extracts the exogenous part of user embeddings and
ensures that the exogenous part is uncorrelated with users’ sensi-
tive attributes by minimizing the mutual information; (2) Causal
embedding reconstruction, shown in Fig. 4(c), involves regress-
ing the endogenous part of user embeddings onto the exogenous
part. This process disentangles the causal part, unconfounded

Authorized licensed use limited to: Renmin University. Downloaded on November 10,2025 at 13:57:54 UTC from IEEE Xplore.  Restrictions apply. 



8806 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Algorithm 1: Model-Agnostic Causal Embedding Learning
(MACE).

Require: Training dataset Dtrain = {(su,xu,vi, yu,i)},
batch size B, update cycle ρ, maximum
number of iterations N ,

Ensure: Neural networks f, hre, gexo, gendo

1: Initialize f, hre, gexo, gendo

2: for n = 1, 2, . . . , N do
3: Sample B instances from Dtrain and store them in V
4: if n mod ρ = 0 then
5: Update the parameters θexo of gexo by mutual

information minimization on V {(7)}
6: end if
7: Update the parameters θall of f, hre, gendo, gexo by

minimizing the final loss on V {(10)}
8: end for
9: return θall

by the sensitive attributes, and the non-causal part, confounded
by the sensitive attributes. Subsequently, these two parts are
combined to get the reconstructed user representations for the
fair recommendation.

1) Exogeneity Construction: To identify the exogeneity and
endogeneity in the original user embedding shown in Fig. 3,
we introduce two deep neural networks gexo and gendo to extract
the exogenous and endogenous parts, respectively. Specifically,
given a user embedding vu with sensitive attributes su, the
exogenous part can be represented by gexo(vu) ∈ Rdexo whose
dimension is dexo. As shown in Fig. 4(b), the model parameters
θexo of the network gexo are obtained using mutual information
minimization:

θexo = arg min
θ∈Θexo

I (gexo(vu|θ); su) , (6)

where I(a;b) denotes the mutual information (MI) between
vectors a and b, Θexo denotes the trainable parameter space
of gexo, and gexo(·|θ) denotes the network parameterized by θ.
Since directly minimizing MI is intractable, we employ an upper
bound estimation of MI instead, called CLUB [48], which is
formulated using the probability log-ratio of conditional distri-
butions between the user embedding and the sensitive attributes.
Then, at each training iteration, after B user embeddings are
sampled into the buffer V , θexo in (6) can be estimated by
minimizing the objective function:∑

(su,vu)∈V
[log q (su|gexo(vu|θ))− log q (s̃|gexo(vu|θ))] , (7)

where s̃ is a vector of sensitive attributes uniformly sampled
from the buffer V , and q is a stochastic encoder implemented in
a Gaussian variational family as in [48].

The use of MI minimization aims to reduce the correlation
between the exogenous part gexo(vu) and the sensitive attributes
su, enforcing this exogenous part to meet the unconfounded
condition of instrumental variables. Besides, we extract the
endogenous part from the original user embedding vu using
another neural network gendo, denoted by gendo(vu) ∈ Rdendo ,

where dendo is the dimension of gendo(vu). Obviously, gexo(vu)
has correlation with gendo(vu) since they are both extracted
from the same user embedding vu. Next, we will show how to
reconstruct user embedding through causal embedding learning
on the exogenous and endogenous parts, and how to update gendo

and gexo under fairness constraint.
2) Causal Embedding Reconstruction: The causal embed-

ding reconstruction module first regresses the endogenous part
onto the exogenous part, disentangling the causal part uncon-
founded by sensitive attributes and the non-causal part con-
founded by sensitive attributes. Directly using the causal part,
which is unconfounded by sensitive attributes, can ensure the
fairness of recommendations. However, to maintain recommen-
dation accuracy, we also retain the non-causal part. We em-
ploy two Multi-Layer Perceptrons (MLPs) to adaptively learn
the weights for these two parts, then combine them through
weighted summation. This approach enables the model to en-
hance fairness while maintaining accuracy for recommenda-
tions.

Specificall, after decomposing the original user embedding
vu into the exogenous part gexo(vu) and the endogenous part
gendo(vu), using these two parts, we can reconstruct the user
embedding through causal learning, shown in Fig. 4(c).

Formally, we denote the reconstructed user embedding of
vu by hre(vu) and represent it using a combination of two
orthogonal vectors ĝ(vu) and ĝ⊥(vu):

hre(vu) = h1ĝ(vu) + h2ĝ
⊥(vu), (8)

where: (a) the vector ĝ(vu) is the projection of the endogenous
part gendo(vu) onto the exogenous part gexo(vu), which can
be seen as a causal representation since it does not depend
on the confounders su in Fig. 3; (b) another vector ĝ⊥(vu)
is the residual of projecting gendo(vu), which is a non-causal
representation that is orthogonal to ĝ(vu); (c)h1, h2 ∈ R are the
combination coefficients in the mapping hre, which are obtained
using two different MLPs (multilayer perceptrons)

hj = MLPj(gexo(vu), gendo(vu)), j = 1 or 2,

where their inputs are both the concatenations of the exogenous
and endogenous parts of the user embedding vu.

Next, we provide a rigorous derivation of the orthogonal
vectors ĝ(vu) and ĝ⊥(vu) in (8). The causal representation
ĝ(vu) aims to remove the path from the confounders (sensi-
tive attributes) to the treatment (user embedding) on the left
side of Fig. 3, for achieving fair recommendation through em-
bedding learning. Inspired by the instrumental variable (IV)
regression [44], [49], we formulate the causal representation
ĝ(vu) as a linear projection of the exogenous and unconfounded
gexo(vu) as ĝ(vu) = Γ̂gexo(vu), where Γ̂ is a parameter matrix
that is estimated by regressing the endogenous part on the
exogenous part. More specifically, at each training iteration,
B user embeddings are sampled from Dtrain and stored in a
bufferVue = {v̄1, v̄2, . . . , v̄B}, and then Γ̂ is obtained by a ridge
regression

Γ̂= arg min
Γ∈Rdendo×dexo

∑
v∈Vue

‖gendo(v)−Γgexo(v)‖22 + τ‖Γ‖2F
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= G
(B)
endoG

(B)ᵀ
exo

(
G(B)

exo G
(B)ᵀ
exo + τIdexo

)−1

, (9)

where τ > 0 is a regularization parameter, and G
(B)
endo,G

(B)
exo are

constructed using Vue: G
(B)
endo = [gendo(v̄1), . . . , gendo(v̄B)] ∈

Rdendo×B ,G
(B)
exo = [gexo(v̄1), . . . , gexo(v̄B)] ∈ Rdexo×B . Please

note that classic IV regression approaches typically regress the
endogenous variables on the instrumental variables using
the whole dataset. Here we regard the exogenous part as
the instrumental variables and calculate the solution of IV
regression problem using mini-batches of training data due
to computational efficiency requirements. Besides, to avoid
overfitting the batch size should satisfy B > dexo.

After obtaining the causal representation using the IV re-
gression, we can easily express the non-causal representation
of user embedding v ∈ Vue as the regression residual in (9)
ĝ⊥(v) = gendo(v)− Γ̂gexo(v). The intuition is that the non-
causal associations can also capture the user preference, which
can contribute to the recommendation accuracy and user satis-
faction [50]. The observation motivates us that the non-causal
representation ĝ⊥(v) can be leveraged to improve the recom-
mendation performance although the non-causal part is often
discarded for model parameter estimation in traditional causal
inference. Furthermore, the combination hre(vu) in (8) can be
seen as a learning-based mixup of the causal and non-causal
representations of the user embedding vu, which balances the
fairness and recommendation accuracy.

C. Fairness-Oriented Model Learning

1) CGF-Oriented Constraint: To predict the user’s prefer-
ence score, the reconstructed user embedding hre(vu) is fed into
a recommendation model f , and the predicted user’s preference
score for item i ∈ I can be represented by a composite function
ŷu,i = f(hre(vu),vi). Obviously, the model parameters of f
and hre need to be trained alternately. To further improve the
counterfactual group fairness (CGF) of f , it is necessary to
incorporate a CGF-oriented constraint into the model learning
process.

As shown in Fig. 4(d), we use ECGF in (5) as an empirical
implementation of CGF-oriented constraint, which needs to be
computed using the outputs of the function f(hre(·), ·). Given a
set of perturbation parametersT = {t|t ∈ [0, 1]}, we specify the
notion of ECGF by ECGF(f, hre, T ), which can be seen as a dis-
tributionally robust fairness constraint. Next, we will incorporate
ECGF into the optimization problem as a fairness constraint, in
helping to make counterfactually group-fair recommendations.

2) Model Optimization: We formulate an optimization prob-
lem with the CGF-oriented constraint, for trading-off the rec-
ommendation performance on observational data and the group
fairness on potentially shifted distributions of sensitive at-
tributes. Specifically, letting θall be all the trainable parameters
of f, hre, gendo, gexo, as shown in Algorithm 1, we alternatively
optimize the parameters θexo of the network gexo for exogeneity
construction, and θall for minimizing the final loss (i.e., pre-
diction loss with a CGF-oriented constraint). More formally,
after the exogeneity construction, model optimization amounts

to minimizing the following final loss on training data Dtrain:

L(θall) :=
∑

(su,xu,vi,yu,i)∈Dtrain

� [ f(hre(vu),vi), yu,i]︸ ︷︷ ︸
Prediction Loss

+

λ · ECGF(f, hre, T )︸ ︷︷ ︸
CGF-Oriented Constraint

+γ‖θall‖22, (10)

where � is a loss function for the recommendation task (cross
entropy loss is adopted in this paper) and λ > 0 denotes the fair
weight, γ > 0 is the regularization parameter. In Algorithm 1,
MACE updates the parameters θall in an end-to-end way using
the mini-batch gradient descent. The optimization process in
Algorithm 1 can be viewed as a multi-objective optimization
problem, including two optimization objectives: (a) minimizing
mutual information (MI) for exogenous part construction, and
(b) minimizing the final loss in (10) for the recommendation
task under the CGF-oriented constraint. We employ a sequential
optimization method (also known as the lexicographic method)
in multi-objective optimization [51], sequentially optimizing the
objectives (a) and (b). Since objective (a) is solely related to the
parameters of the exogenous part gexo, during MI minimization,
only the parameters of the exogenous part are optimized. On
the other hand, objective (b) is related to all parameters, neces-
sitating a full parameter updating. Thus, although it may seem
that the parameters of the exogenous part are optimized twice
in certain steps, they serve different optimization objectives.
Besides, MACE is a model-agnostic framework, where the
recommendation model f can be implemented over existing
recommendation models (specified in Section VI-A2).

V. DISCUSSION

Relation to Existing Fairness Metrics: To measure the group
fairness in the presence of OOD sensitive attributes, we intro-
duce a novel concept named counterfactual group fairness (CGF)
as well as its empirical metric ECGF defined in (5). Our aim in
part is to work toward a more unified view of existing concepts
of group fairness and counterfactual fairness:

(1) Relation to group fairness: Existing metrics of group
fairness (e.g., DP distance, EO distance [23], [24]) aim to
measure the difference of the model outputs between two groups
(e.g., two user subgroups) on a fixed distribution of sensitive
attributes. The proposed ECGF can be regarded as an exten-
sion of the existing metrics of group fairness in counterfactual
worlds, which can be used to give counterfactual estimations of
the group fairness in multiple shifted distributions of sensitive
attributes. As an empirical implementation, we estimate ECGF
on the counterfactual distributions Qt, t ∈ T defined in (4). In
particular, letting the set of perturbation parameters be T = {1},
the counterfactual distribution Qt turns to be the original training
distribution Ps, and then the proposed ECGF degenerates into
the classic group fairness.

(2) Relation to counterfactual fairness: Counterfactual fair-
ness (CF) is typically defined at the individual level [14], [15],
which requires that the predicted results for an individual (e.g.,
a user) should be the same when the sensitive attributes of the
user change. Efforts have been made to generalize the metric
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of individual CF to a more general formula, by introducing
the average causal effects of the sensitive attributes on the
outcomes [17]. But in these metrics of CF, the assignment of
sensitive features is deterministic for each individual, ignoring
the potential distribution shift of the sensitive attributes of the
whole population. The proposed CGF and the corresponding
empirical metric ECGF assume that the assignments of sensi-
tive features are random, and provide a way to measures the
effect of the changes in the population distribution of sensitive
attributes on group fairness. In particular, the proposed CGF in
Definition 1 will degenerate into the classic individual CF, if GF
is replaced with the model outputs and the distributions Q1 and
Q2 on sensitive features are set to the deterministic indicator
vectors (e.g., (0, 1, 0, . . . , 0) that indicates the second attribute
is assigned).

Difference With IV Methods: MACE has made the following
fundamental modifications for adapting IV regression to coun-
terfactually group-fair recommendation:

1) Representation of embeddings. In classic IV methods [52],
[53], instrumental variables (IVs) are predefined by domain
experts. However, effective IVs are usually hard to find. To avoid
the challenge of choice of IVs, in the exogeneity construction
module of MACE (Section IV-B1), exogenous parts in user em-
beddings are extracted and represented through deep learning,
which are treated as the proxy of IVs. Besides, the treatments
(i.e., the endogenous parts in user embeddings) are also rep-
resented using neural networks and updated in an end-to-end
manner. In this way, useful information is extracted from the
user embeddings for fair prediction of outcomes.

2) Reconstruction of embeddings: After estimating the model
parameters using the IV regression, traditional IV methods use
the original treatments as inputs for prediction. However, to
achieve a favorable trade-off between the fairness and accu-
racy of recommendation, MACE learns the combination coeffi-
cients of the causal and non-causal user representations ((8) in
Section IV-B2). The new reconstructed user embeddings were
used as the input for recommendation. The module of causal
embedding reconstruction in MACE can be seen as a flexible
extension of IV methods to the case where the non-causal repre-
sentation of the original treatment is also helpful in enhancing the
recommendation accuracy. In particular, setting the combination
coefficients h1 = h2 = 1 in (8) for prediction, the prediction
process in the proposed causal embedding reconstruction de-
generates into that in classic IV methods.

VI. EXPERIMENTS

We conducted experiments to test the performance of MACE.
The source code, dataset description and implementation details
have been shared at https://anonymous.4open.science/r/MACE-
9568/.

A. Experimental Settings

1) Dataset Description: The experiments were conducted
on 3 publicly available recommendation benchmarks: (a)
MovieLens-1 M contains 1,000,209 user-system interactions

from 6,040 users on 3,952 movies;2 (b) Insurance is an
insurance recommendation dataset on Kaggle,3 containing 5,382
interactions from 1,231 users on 21 insurances; (c) Rent-
TheRunWay [54] contains 192,544 user-system interactions
from 105,508 customers on 5,850 products.

2) Baselines: The proposed MACE is model-agnostic,
which can help enhance the counterfactual group fairness for
the following base models for recommendation:

DMF [2] is a matrix factorization model for recommenda-
tion, which uses deep learning to capture the low-dimensional
representations of users and items from the user-item interaction
matrix. DIN [3] learns the representations of user interests by
considering the sequential historical behaviors given a candidate
item. DeepModel [55], [56] is a base model for recommendation
which concatenates the embeddings of users and items together
and feeds them into a DNN to learn the nonlinear relations
among features.

MACE was compared to baselines that focus on the group
fairness and optimize the fairness constraint with different strate-
gies, including:

Mixup [24] optimizes the loss function on paths of interpo-
lated examples between different groups to improve the gener-
alization for both accuracy and fairness, where the interpolated
sample is convex combinations of examples. GapReg [24]
incorporates the group fairness constraint into loss functions,
and directly optimizes the obtained loss. FairMI [37] aims to
enhance group fairness in recommender systems by minimiz-
ing the mutual information between embeddings and sensitive
information while simultaneously maximizing the mutual infor-
mation between embeddings and non-sensitive information.

MACE was also compared to another category of baseline
that focuses on the individual counterfactual fairness, called
AdvLearning [15]. It generates user embeddings that are in-
dependent of sensitive attributes via adversary learning for fair
recommendation.

The proposed MACE is a model-agnostic framework, which
can be applied to different base models such as DMF, DIN and
DeepModel. In the experiments, the recommendation model f in
MACE was set as the base models (DMF, DIN or DeepModel),
and the prediction modules in other baselines were set as the
same base models. Besides, the constraint ECGF in MACE
can integrate any optimization strategies such as Mixup and
GapReg, yielding two versions of MACE: MACE-Mixup and
MACE-GapReg. Mixup [24] utilizes the Mixup technique for
interpolation. It involves forward propagation of the output
obtained by interpolating two samples with different sensitive
features, followed by backward propagation to compute gradi-
ents. GapReg [24] directly incorporates the counterfactual group
fairness constraints computed from Eq.(5) into the final loss
function.

3) Evaluation Metrics: Area Under Curve (AUC) was
adopted to measure the recommendation accuracy. To measure
the counterfactual group fairness, we used the metric of CGF

2[Online]. Available: https://grouplens.org/datasets/movielens/1m/
3[Online]. Available: https://www.kaggle.com/mrmorj/insurance-

recommendation
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defined in (3), including CGF-DP (selecting GF as ΔDP) and
CGF-EO (selecting GF as ΔEO). Specifically, to assess AUC
and CGF over different testing distributions of sensitive at-
tributes, we employed four distinct testing distributions. These
distributions are as follows. (1) The original distribution: reflects
the natural distribution of sensitive attributes in the original
testing data, where we did not alter the proportions of sensitive
attributes while testing. (2) A uniform distribution: we adjusted
the testing data such that the proportions of instances for each
sensitive attribute were set to be nearly identical. For example,
if the sensitive attribute was gender and the original dataset had
an imbalanced gender ratio, we resampled the testing data and
modified the gender of some users to ensure an equal number
of male and female instances. (3) Two extreme distributions:
For the MovieLens-1 M dataset, we depicted the extreme
distributions of occupations in histograms of Fig. 2. For the
RentTheRunWay dataset, we focused on the age attribute and
constructed extreme distributions by allocating only 10% of the
users to two specific age groups, significantly deviating from
the original age distribution. For the Insurance dataset, we
created two distinct extreme distributions based on gender. In
one distribution, 90% of the users were female and the remaining
10% were male. In the other distribution, 10% of the users
were female while the remaining 90% were male. This drastic
alteration allowed us to observe the model’s performance under
highly imbalanced gender distributions.

The above 4 sensitive attribute distributions were utilized
in computing the CGF metrics on testing data defined in (3).
Specifically, we used the mean of CGF over these four sensitive
attribute distributions as an estimate of the expectation in (3), to
evaluate the counterfactual group fairness metrics of different
algorithms. According to the definition of CGF, the lower CGF
score is better, and an ideal result to meet the counterfactual
group fairness requirement is a CGF score closed 0.

4) Implementation Details: All the baselines and base mod-
els were trained on a single NVIDIA Tesla P100 GPU, with
the batch size tuned among {64, 128, 256, 512, 1024} and the
learning rate tuned in {1E-1, 1E-2, 1E-3, 1E-4}. In the imple-
mentation of MACE, we set the networks gexo, gendo, MLP1 and
MLP2 to 3-layer fully connected neural networks, respectively,
where the activation functions were tanh and sigmoid. The
dimensions of the exogenous part gexo(vu) and the endogenous
part gendo(vu) were set to dexo = dexo = 32, and the dimen-
sions of the user and item embeddings were all set to 128.
The embeddings are randomly initialized and are continuously
updated during training. In the training process of MACE, the
batch size B and the maximum number of iteration N were
set to 128 and 20× sample size/128, respectively, the update
cycle ρ was set according to the sample size of training data
ensuring that the MI minimization was executed 20 times, the
fair weight λ in the final loss 10 was tuned among [0 : +0.1 : 5],
the regularization parameter γ in the final loss was set to 0.001,
and the regularization parameter τ in the IV regression 9 was set
to 0.9. For the baselines Mixup and MACE-GapReg, we chose
Δ DP as the fairness constraint. For fair comparisons, in the
CGF-oriented constraint of MACE, we chose a weighted version

Fig. 5. Mutual information between the sensitive attributes and exogenous part
in MACE-Mixup w.r.t. number of iterations, where MACE-Mixup was equipped
with DMF.

ofΔDP as the GF metric in ECGF, where the set of perturbation
parameters in ECGF was set to T = {0, 0.2, 0.4, 0.6, 0.8, 1}.

B. Experimental Results

Tables I, II and III report the performances of the proposed
two versions of MACE and the baselines onMovieLens-1 M,
Insurance and RentTheRunWay, in terms of the AUC and
the fairness metrics CGF-DP and CGF-EO. From the results,
we can conclude that MACE consistently achieved the lowest
CGF-DP and CGF-EO, verifying the effectiveness of MACE
in terms of enhancing the counterfactual group fairness in rec-
ommendation. More specifically, MACE can help significantly
improve the group fairness of the base models in counterfac-
tual worlds that out-of-distribution (OOD) sensitive attributes
exist. Besides, the two versions of MACE combined with the
constraint optimization strategies Mixup and GapReg obtained
lower CGF scores than the baselines that apply these strategies
to the traditional group fairness constraint alone.

On the other hand, the results of AUC in Tables I, II
and III revealed an interesting phenomenon: MACE even
achieved a higher accuracy for recommendation compared to
the base models in most cases, indicating that MACE enhanced
not only the OOD generalization of group fairness constraints
but also the overall accuracy. Similar experimental results were
also obtained by the baseline Mixup, which were consistent with
its empirical studies in the fairness literature [24]. Looking into
the phenomenon, the CGF-oriented constraint in MACE can
not only be regarded as a fairness constraint, but also a stability
constraint of the training process for achieving a more accurate
learner. Besides, the decomposition and reconstruction of the
embeddings in MACE can also help achieve the improvements
of both the fairness and the accuracy.

From the results in Tables I, II, and III, it is evident that
MACE-Mixup often exhibits higher fairness metrics while hav-
ing slightly lower recommendation accuracy. This suggests
that incorporating Mixup, an effective optimization technique,
during MACE optimization can further enhance CGF without
significant sacrifice in recommendation accuracy. In practical
applications, MACE-Mixup offers a better solution for scenarios
with higher fairness requirements.

C. Analysis

1) Effectiveness of Exogeneity Construction: Fig. 5 illus-
trates the mutual information between the sensitive attributes
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TABLE I
PERFORMANCE COMPARISON OF MACE AND BASELINES ON MovieLens-1 M, WHERE BASE MODEL REPRESENTS DMF (COLUMNS 2–4) OR DIN (COLUMNS

5–7), AND USER’S OCCUPATION WAS SELECTED AS THE SENSITIVE ATTRIBUTE

TABLE II
PERFORMANCE COMPARISON OF MACE AND BASELINES ON Insurance, WHERE THE BASE MODEL REPRESENTS DMF (COLUMNS 2–4) OR DEEPMODEL

(COLUMNS 5–7), AND USER’S GENDER WAS SELECTED AS THE SENSITIVE ATTRIBUTE

TABLE III
PERFORMANCE COMPARISON OF MACE AND BASELINES ON RentTheRunWay, WHERE THE BASE MODEL REPRESENTS DMF (COLUMNS 2–4) OR DEEPMODEL

(COLUMNS 5–7), AND USER’S AGE WAS SELECTED AS THE SENSITIVE ATTRIBUTE

and the constructed exogenous part gexo(vu) of user embedding
vu in MACE w.r.t. number of iterations. On both datasets,
the mutual information decreased steadily with the training
went on. The results indicate that the network gexo in MACE
effectively extracted the exogenous part from user embeddings
and it is reasonable to treat the exogenous part as instrumental
variables (IVs). To verify the importance of the exogenous part,

we compared the original MACE with its variant that used a
completely random networkgexo, denoted by “MACE w/ random
IV”. The results in Table IV indicate that exogenous parts
contributed to the recommendation performances, especially in
terms of the CGF.

2) Impact of Causal Embedding Reconstruction: The
module of causal embedding reconstruction in MACE made
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TABLE IV
ABLATION STUDY OF MACE, WHERE THE BASE MODEL WAS SELECTED AS DIN ON MovieLens-1 M AND DMF ON Insurance, AND USER’S OCCUPATION

AND GENDER WERE SELECTED AS THE SENSITIVE ATTRIBUTES ON MovieLens-1 M AND Insurance, RESPECTIVELY

several fundamental modifications compared with classic IV
methods. To further understand the role of these modifications,
we designed the following variants of MACE for comparison:
(a) “MACE w/ classic IV” set the combination coefficients
in (8) as h1 = 1, h2 = 0 for training and h1 = h2 = 1 for
testing, which conformed to the setting of classic IV methods;
(b) “MACE w/o residual” directly discarded the IV regression
residuals that may be helpful for recommendation accuracy,
which focused on the effectiveness of the proposed fairness con-
straint; (c) “MACE w/o IV regression” only used the exogenous
part obtained by gexo as the reconstructed user embedding (i.e.,
without using the IV regression). From the results in Table IV
we have the following three observations: (1) The significant
decrease in recommendation accuracy when employing “MACE
w/ classic IV” suggests that traditional instrumental variable
methods prioritize estimating causal effects rather than enhanc-
ing prediction accuracy. Therefore, they cannot be directly ap-
plied to recommendation models. (2) The advantage of “MACE
w/o residual” in fairness metrics indicates that the causal part
in the causal embedding reconstruction can effectively improve
recommendation fairness, aligning with the motivation outlined
in Section IV-B2. (3) The decline in performance with “MACE
w/o IV regression” validates the effectiveness of introducing
instrumental variables in counterfactually group-fair
recommendation. In summary, the proposed fairness constraint
was effective for achieving CGF, and the modifications of IV
methods in MACE were helpful for improving counterfactual
group fairness while retaining recommendation accuracy.

3) Impact of CGF-Oriented Constraint: We conducted
an ablation study to show the performances of the proposed
CGF-oriented constraint called ECGF. We compared MACE
with its two variants: “MACE w/o ECGF” that removed the
ECGF term from the final loss (10), and “MACE w/ GF” that
used the traditional group fairness constraint (i.e., a fairness
constraint defined on a fixed distribution). The results reported in
Table IV show that, although good accuracy can be achieved by
these two variants, lower CGF scores were obtained, verifying
the importance of the ECGF term for fair recommendation

Fig. 6. Impact of the fair weight λ in MACE, measured by AUC, CGF-DP
(Left), and CGF-EO (Right) on MovieLens-1 M. Results are obtained by
MACE-Mixup equipped with DMF.

Fig. 7. Impact of the number of counterfactual distributions in (4) (i.e., the
size of the set of perturbation parameters T , denoted by “# of Distributions”),
measured by AUC, CGF-DP on MovieLens-1 M. Results were obtained by
MACE-Mixup equipped with DMF.

on counterfactual distributions. Besides, Fig. 6 illustrated the
impact of the fair wight λ in (10), from which we can observe
that a larger λ leads to a lower CGF score with a sacrifice on
AUC, and a suitable choice of λ will significantly decrease the
CGF score with a comparable accuracy.

4) Impact of the Number of Counterfactual Distributions:
To verify the effectiveness of the empirical version of CGF
metric, we conducted experiments by varying the number of
counterfactual distributions in Eq. (4). From the results in Fig. 7
we can observe that larger number of counterfactual distribu-
tions {Qt}t∈T can significantly decrease the CGF score while
slightly hurting the recommendation accuracy, indicating that
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the counterfactual distributions can well mimic the distribution
drift of sensitive attributes. We also tested the performance of
MACE when T = {1}, as shown in Table IV. In this case, the
training process only considers group fairness, like classic group
fairness methods. It can be observed that the counterfactual
group fairness and accuracy achieved in a single distribution
were not as good as those obtained by training MACE on
multiple distributions. This highlights the significance of in-
corporating multiple distributions of sensitive attributes dur-
ing training to enhance the robustness of fairness. The con-
clusion validates the effectiveness of the proposed MACE in
ensuring the counterfactual group fairness of recommendation
models.

VII. CONCLUSION

This paper aims to measure and enhance the group fair-
ness of recommendation in counterfactual worlds with out-of-
distribution (OOD) sensitive attributes. Specifically, we define a
novel notion called counterfactual group fairness (CGF) from a
unified view of group fairness and counterfactual fairness. From
a causal view, we treat the sensitive attributes as confounders,
extract and reconstruct the exogenous and endogenous parts of
user embeddings under the constraint of CGF. The proposed
causal embedding learning framework is model-agnostic, which
can help improve CGF for existing recommendation models.
Experimental results demonstrated the effectiveness of MACE
in counterfactually group-fair recommendation.
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