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Abstract
Recommender systems are essential for information access, allow-
ing users to present their content for recommendation. With the
rise of large language models (LLMs), AI-generated content (AIGC),
primarily in the form of text, has become a central part of the
content ecosystem. As AIGC becomes increasingly prevalent, it
is important to understand how it affects the performance and
dynamics of recommender systems. To this end, we construct an
environment that incorporates AIGC to explore its short-term im-
pact. The results from popular sequential recommendation models
reveal that AIGC are ranked higher in the recommender sys-
tem, reflecting the phenomenon of source bias [13, 41]. To further
explore the long-term impact of AIGC, we introduce a feedback
loop with realistic simulators. The results show that the model’s
preference for AIGC increases as the user clicks on AIGC rises and
the model trains on simulated click data. This leads to two issues: In
the short term, bias toward AIGC encourages LLM-based content
creation, increasing AIGC content, and causing unfair traffic distri-
bution. From a long-term perspective, our experiments also show
that when AIGC dominates the content ecosystem after a feed-
back loop, it can lead to a decline in recommendation performance.
To address these issues, we propose a debiasing method based
on L1-loss optimization to maintain long-term content ecosystem
balance. In a real-world environment with AIGC generated by main-
stream LLMs, our method ensures a balance between AIGC and
human-generated content in the ecosystem. The code and dataset
are available at https://github.com/Yuqi-Zhou/Rec_SourceBias.
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1 Introduction
The development of Large Language Models (LLMs) is advanc-
ing rapidly [46], demonstrating strong capabilities and perform-
ing excellently in many text generation tasks, such as machine
translation [22], summarization [44], and complex question an-
swering [3, 42]. Due to the cost-effectiveness, high quality, and
speed of generating AIGC compared to Human Generated Content
(HGC), an increasing volume of online content is being produced by
various LLMs and Schick [29] suggests that the synthetic content
could dominate up to 90% of the Internet. This shift is altering the
existing content creation paradigm and resulting in a prevalence of
AIGC on the internet [10, 11].

When AIGC floods into the internet, these contents will be dis-
seminated by the current information retrieval systems, especially
recommender systems, which play a central role in shaping users’
online experiences. However, the impact of this rapidly growing
AIGC content on current and future recommender systems has yet
to be explored. Therefore, an important research question emerges:
RQ1: What short-term impacts will the influx of AIGC have
on recommender systems? This research primarily focuses on
AIGC in the form of high-quality text generated by LLMs, which
are increasingly prevalent on the internet. Unlike other modalities
such as images, LLM-generated text is harder to distinguish, poten-
tially introducing more subtle biases. In the recommender system,
feedback data from user interactions with LLM-generated text is
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Figure 1:Model preference grows over timewith the feedback
loop of humans, data, and the recommender system. The red
color is used forHGC icon and the blue color is used for AIGC
icon. The subsequent figures use the same color scheme.

reused to update recommendation models, forming a feedback loop
involving users, data, and the system as shown in Figure 1. With
the continuous increase in AIGC, they will gradually influence var-
ious stages of the feedback loop, raising another research question:
RQ2: What long-term impacts will arise when AIGC further
participates in the feedback loop?

To explore the two research questions, we first examine AIGC’s
impact on recommender systems across three phases: HGC domi-
nate phase, HGC-AIGC coexist phase, and AIGC dominate phase,
as shown in Figure 2. These phases respectively correspond to the
past, present, and future, representing the influence of different
stages of AIGC flooding on recommender systems. In the HGC-
dominated phase, AIGC starts influencing the candidate set and
Top-𝐾 results within the feedback loop. During the HGC-AIGC
coexist phase, AIGC further affects users’ histories via interaction,
potentially amplifying earlier effects. In the AIGC dominate phase,
AIGC prevails in training, likely intensifying these influences.

To answer RQ1, we construct evaluation datasets from three do-
mains in Amazon’s product dataset by prompting LLMs to rewrite
product descriptions into AIGC copies [13]. We then evaluate pop-
ular recommendation models using mixed candidate sets of HGC
and AIGC items during the HGC dominate phase. Results show
that models often rank AIGC copies higher, even when their seman-
tics match the original HGC. This suggests product traffic can be
boosted by rewriting descriptions with LLMs, while also highlight-
ing risks—such as enabling malicious users to spread fake news [48]
via LLM-generated content.

For RQ2, we conduct experiments by injecting AIGC into users’
interaction histories during the HGC-AIGC coexist phase, and
into model training data during the AIGC-dominated phase,
within a feedback loop scenario. Results from four widely used
click models show that both user behaviors and model updates on
polluted data increasingly favor AIGC items. Consequently, AIGC

content is ranked progressively higher, eventually reaching top
positions. Moreover, as the loop progresses and AIGC proportion
rises, we observe a corresponding decline in the recommendation
model’s performance. This further underscores the detrimental
impact of excessive AIGC on recommender systems.

Based on the above findings, content creators may rewrite all
descriptions to gain higher rankings, creating unfairness for other
providers. Moreover, due to hallucinations [18], LLM-generated
texts may contain inaccuracies, harming user experience. Prior stud-
ies and our results further suggest that training on AIGC clicked
by users can cause model collapse [2, 5, 31], degrading recommen-
dation performance. In sum, AIGC’s dominance in recommender
systems poses long-term risks to content fairness, user experience,
and model quality. This calls for disrupting AIGC propagation in
the feedback loop, leading to a new research question: RQ3: How
can the model maintain consistent preferences for both HGC
and AIGC in the feedback loop?

To answer RQ3, we first examine prior debiasing methods [8, 13,
41] and find they fail in feedback loop scenarios, unable to maintain
long-term system balance. To address this, we propose a black-box
debiasingmethod that preserves model neutrality toward both HGC
and AIGC. Our approach prompts LLMs to uniformly rewrite all
training data to get AIGC copies, avoiding the need to distinguish
between sources. We then apply an L1 loss to constrain outputs
of the item and history encoders, ensuring semantically similar
HGC and AIGC are mapped to aligned embeddings. Experiments
show our method effectively reduces bias and maintains prediction
neutrality across varying AIGC proportions.

The major contributions of this paper are summarized as follows:
(1) We find that LLM-generated text descriptions can be ranked

higher in recommender systems.
(2) We uncover that the recommendation model’s preference

for AIGC is gradually amplified in the feedback loop, with AIGC
sequentially affecting data, users, and recommender systems.

(3) We propose a debiasing method that can effectively alleviate
preference during the feedback loop by aligning the item and user
embedding spaces, thereby balancing the content ecosystem.

2 Preliminaries
In this section, we formulate the recommendation problem, intro-
duce three stages of AIGC flooding into recommender systems, and
explore the role of the feedback loop in propagating source bias.

2.1 Recommendation Problem Formulation
Assume that we have a set of items I and a set of user interaction
sequences S, where 𝑖 ∈ I denotes an item and 𝑠 ∈ S denotes
an interaction sequence. The numbers of items and sequences are
denoted as |I | and |S|, respectively. Generally, the interaction se-
quence 𝑠 is chronologically ordered with items: {𝑖1, · · · , 𝑖𝑛}, where
𝑛 is the number of interactions and 𝑖𝑡 is the 𝑡-th item with which
the user has interacted. For convenience, we use 𝑠𝑡 to denote the
subsequence, i.e., 𝑠𝑡 = {𝑖1, · · · , 𝑖𝑡 }, where 1 ≤ 𝑡 < 𝑛.

Based on the above notations, we now define the task of rec-
ommendation. Formally, given the history interaction sequence of
a user 𝑠𝑡 = {𝑖1, · · · , 𝑖𝑡 }, the goal of recommendation is to train a
recommendation model 𝑓𝜃 parameterized by 𝜃 . The model 𝑓𝜃 is
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Figure 2: Three phases occur during the integration of AIGC into the recommendation content ecosystem: HGC dominate
phase, HGC-AIGC coexist phase, and AIGC dominate phase. (1) The HGC dominate phase is a past period when AIGC has just
flooded into the recommender systems and only influence the candidate list. (2) The HGC-AIGC coexist phase is a present
period where the recommendation model’s inputs 𝑠 contain an increasing number of AIGC. (3) The AIGC dominate phase is a
future period during which AIGC influences each stage of the feedback loop.

used to predict the next item 𝑖𝑡+1 the user is likely to interact with
at the (𝑡 + 1)-th step.

2.2 Three Phases Involving AIGC Content
After AIGC integrates into the content ecosystem of recommender
systems, it will gradually impact the three processes of the feedback
loop over time: Top-𝐾 serving, users’ interaction, and model train-
ing. We divide the impact of AIGC on recommender systems by
feedback loop over time into three phases: HGC Dominate, HGC-
AIGC Coexist, and AIGC Dominate. Each phase corresponds to a
real-world scenario representing the past, present, and future.

HGC Dominate Phase: With the widespread use of LLMs and
the popularization of AIGC on the internet, it is easy for HGC to
have corresponding AIGC copies or even be directly generated by
LLMs. Thus, the items selected for the recommendation model’s
Top-𝐾 ranking are a combination of HGC and AIGC. In the HGC
dominate phase, the research question aims to validate whether
the recommendation models will rank AIGC at a higher position, a
phenomenon known as source bias [8, 13, 41].

HGC-AIGC Coexist Phase: With the increasing proliferation
of LLMs and AIGC on the Internet, the presence of AIGC in users’
recommendation candidate lists will rapidly grow. These contents
will be interacted with users and added to their interaction se-
quences, which will be used as input for recommendation models
later. In the HGC-AIGC coexist phase, the research question is
whether the model’s preference for AIGC will be amplified when
AIGC interacted with users is added to users’ interaction sequence.

AIGC Dominate Phase: In the future, with the decreasing
cost and increasing accessibility of LLMs, AIGC will dominate the
ecosystem of recommender systems. Furthermore, AIGC will influ-
ence any stage of the feedback loop, namely Top-𝐾 serving, users’
interaction, and model training in Figure 1. In other words, AIGC
will pollute candidate list I, users’ interaction history sequence
𝑠 , and the model’s training data S. Furthermore, within the itera-
tive feedback loop, recommendation models undergo training on

data S containing AIGC. In the AIGC dominate phase, the research
question is whether the preference will be amplified when recom-
mendation models are further trained on polluted data.

In conclusion, the integration of AIGC into the recommender
system will impact various aspects, such as the candidate item set,
users’ interactions, and data used for model training. Based on the
affected aspects, the evolution of the recommender system will
progressively exhibit three phases: HGC Dominate, HGC-AIGC
Coexist, and AIGC Dominate. We will explore the changes in pref-
erence across these three phases to answer RQ1 and RQ2.

3 Source Bias in Recommender Systems
In this section, we first introduce the experimental settings in Sec-
tion 3.1 and then provide the data construction process and verify
the AIGC quality through human evaluation in Section 3.2. In Sec-
tion 3.3, we validate the existence of source bias in recommender
systems during the HGC dominate phase. In Section 3.4 and Sec-
tion 3.5, we verify that source bias is amplified in the feedback loop
due to users’ interaction behavior and the model training process.

3.1 Experimental Settings
3.1.1 Datasets. Our training and evaluation are conducted on a se-
ries of real-world datasets (Amazon [26]), comprising large corpora
of product reviews and descriptions obtained from Amazon.com.
Top-level product categories are treated as separate datasets, and
we focus on three categories: “Health”, “Beauty”, and “Sports”. We
use the textual descriptions of products that users have commented
on as input to predict which product the user might review next.
Due to the low quality of short text rewriting1, we exclude items
with descriptions containing fewer than 20 words from the training
set to maintain training stability. We sort the data based on the
review time of the target item and split it into training and testing
sets in a 7:3 ratio. In the training dataset, we exclude users and items

1LLM frequently expands short texts during the rewriting process, leading to semantic
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Table 1: Statistics of the experimental datasets.

Dataset Health Beauty Sports

# Users 18,036 11,391 16,639
# Items 13,972 11,897 13,089
# Click Behaviors 346,355 198,502 296,337

with fewer than five interactions and randomly select 4 negative
items from the entire set for each product reviewed by users. The
statistics of datasets after processing are shown in Table1.

3.1.2 Recommendation Models. For our main experiments, we
select four representative models: BERT4Rec [32], SASRec [21],
GRU4Rec [16], LRURec [43]. These models are enhanced by various
pre-trained languagemodels, including BERT [14] and RoBERTa [25].
Our focus on sequential recommendation models is motivated by
their widespread use in current industrial recommender systems.
We input the product’s textual description into these pretrained
models and use the average pooled embedding of the outputs from
the pretrained models as the item embedding. Item embedding is
then used as the input for the four sequence recommendation mod-
els mentioned above. We use the bert-base-uncased checkpoint
for BERT and the roberta-base checkpoint for RoBERTa.

3.1.3 Evaluation Metrics. To evaluate the ranking performance
of the recommendation models, we compute the Top-𝐾 Normal-
ized Discounted Cumulative Gain (NDCG@𝐾 ) and Mean Average
Precision (MAP@𝐾) separately for HGC and AIGC items, where
𝐾 ∈ {3, 5}. To further measure the recommendation models’ pref-
erences for different source texts, the candidates during testing
are divided into two parts: one part consists of original HGC, and
the other part consists of copies of AIGC. To get a simple and
efficient measuring way, we utilize the relative percentage differ-
ence [8, 13, 41]:

Relative Δ =
MetricHGC − MetricAIGC
(MetricHGC + MetricAIGC)/2

× 100%, (1)

where MetricHGC and MetricAIGC are calculated on the same can-
didate set comprising both HGC and AIGC. For a given metric
(either NDCG@𝐾 or MAP@𝐾 ), when measuring the metric for one
data source, we set the labels of the other data source to 0. Rela-
tive Δ > 0 indicates a preference of the recommendation models
towards HGC, while Relative Δ < 0 indicates a preference towards
AIGC. The greater the absolute value of Relative Δ, the stronger
the preference recommendation model for AIGC or HGC.

3.1.4 Experimental Details. To ensure computational efficiency,
all pre-trained language models are frozen. All recommendation
models are trained for 5 epochs, and the best-performing model
on the development set is selected for testing on the test set. The
batch size is set to 128, the learning rate is set to 1𝑒-3, and the
Adam optimizer is used for training. The dimension of item vectors
is set to 768, and all score calculations utilize the dot function.
The text input to the model is truncated to 512 tokens, and the
user’s historical sequence is limited to 10 interactions. To ensure
reproducibility, we run each experiment with five different seeds
and report the averaged results.

6%
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AIGC
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Figure 3: Quality verification of the constructed datasets
through human evaluation.

3.2 AIGC Data Construction and Verification
3.2.1 Data Construction. Following the setting in previousworks [8,
13, 41], we reconstruct the dataset from Amazon to evaluate source
bias in recommender systems. For each item 𝑖 ∈ I, we utilize the
same rewriting prompt “Please rewrite the following text: {{human-
written text}}” to empower LLMs to produce text without extra
constraints, all the while upholding semantic equivalence to the ini-
tial HGC. Specifically, we chose some popular LLMs ChatGPT (i.e.,
gpt-3.5-turbo-0613), Llama (i.e., llama-2-7b-chat) [34], Mis-
tral (i.e., Mistral-7B-Instruct-v0.2) [20], and Gemini-pro (i.e.,
Gemini 1.5 Pro) [33] to rewrite each seed HGC, as these LLMs are
the most widely used. The temperature of all LLMs for generation
is set at 0.2 and the maximum generation length is 256.2

After rewriting, we can obtain HGC data and the corresponding
AIGC data for each dataset. Formally, we have two sets of items
denoted by I𝐻 and I𝐺 , respectively. Here, 𝑖𝐻 ∈ I𝐻 represents
an item written by a human, while 𝑖𝐺 ∈ I𝐺 represents an item
generated by LLMs. Each item 𝑖𝐻 has its corresponding AIGC copy
𝑖𝐺 ∈ I𝐺 . In the LLMs era, the task of recommendation is to predict
the next item 𝑖𝑡+1 the user is likely to interact with from a mixed
set of items I = I𝐻 ∪ I𝐺 , rather than just I𝐻 .

3.2.2 Human Evaluation. To validate that the rewritten data does
not affect users’ interaction behaviors, we conduct a human eval-
uation study by sampling 50 triples from the Health, Beauty, and
Sports, respectively. For each domain, we recruit three colleagues
for data annotation. Each human annotator is asked to indicate
which item they would be more inclined to purchase based on the
textual description of products in the browsing purchase history,
with options being “Human items”, “LLM items” and “Equal”. Each
triple is annotated by at least three annotators, and the votes deter-
mine the final label. The evaluation results in Figure 3 demonstrate
the consistency of humans’ interaction behaviors on HGC and
AIGC, providing reliable assurance for the evaluation and analysis
of source bias.

3.3 Preference in HGC Dominate Phase
In this subsection, we examine the recommendation models during
the HGC dominate phase, aiming to explore whether AIGC will be
ranked higher. We train recommendation models on each dataset
with items from I𝐻 and test the model’s performance on candidate
items from I𝐻 ∪ I𝐺 . As shown in Table 2, it can be observed that
most recommendation models exhibit preference for AIGC in terms
of metrics such as NDCG@𝐾 and MAP@𝐾 . An important point

2The examples of rewritten text can be found in the supporting materials.
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Table 2: Performance comparison of recommendation models based on BERT and RoBERTa for mixed HGC and AIGC item sets
on the Health, Beauty, and Sports dataset. Relative Δ < 0 indicates that the recommendation models rank AIGC higher than
HGC, while Relative Δ > 0 indicates that the models rank HGC higher than AIGC. The absolute value of Relative Δ indicates
the degree of bias, with a larger value representing a stronger bias. Unless otherwise stated, AIGC will be generated using
ChatGPT with BERT as the encoder model, and Relative Δ is calculated based on NDCG@5.

PLM Model Corpus Health Beauty Sports

NDCG@3 NDCG@5 MAP@3 MAP@5 NDCG@3 NDCG@5 MAP@3 MAP@5 NDCG@3 NDCG@5 MAP@3 MAP@5

BERT

GRU4Rec
Human-Written 32.77 41.18 28.39 33.06 27.92 36.88 23.80 28.79 31.80 41.12 26.75 31.97
LLM-Generated 41.28 48.74 36.92 41.03 44.21 52.41 39.54 44.09 51.73 58.92 47.03 51.00
Relative Δ -22.99 -16.80 -26.13 -21.51 -45.18 -34.78 -49.71 -42.01 -47.74 -35.60 -54.98 -45.87

SASRec
Human-Written 24.47 32.74 20.54 25.11 23.80 32.27 20.32 25.00 25.45 34.91 21.39 26.62
LLM-Generated 39.82 47.60 35.80 40.10 34.51 43.38 30.28 35.18 44.56 52.73 39.95 44.48
Relative Δ -47.76 -36.99 -54.16 -45.96 -36.73 -29.38 -39.34 -33.85 -54.58 -40.68 -60.50 -50.24

BERT4Rec
Human-Written 26.49 35.22 22.88 27.70 21.53 30.31 18.42 23.27 26.00 35.54 22.06 27.37
LLM-Generated 32.89 40.97 28.67 33.12 35.51 43.52 31.25 35.67 40.46 49.12 36.17 40.95
Relative Δ -21.57 -15.09 -22.47 -17.85 -49.00 -35.81 -51.66 -42.09 -43.49 -32.06 -48.46 -39.77

LRURec
Human-Written 34.22 42.13 30.13 34.51 31.30 39.26 27.26 31.66 34.12 42.31 29.55 34.09
LLM-Generated 32.29 40.22 28.33 32.69 38.30 46.24 33.84 38.24 40.84 49.40 36.10 40.86
Relative Δ -20.13 5.80 4.65 6.16 5.43 -16.35 -21.54 -18.82 -17.92 -15.46 -19.93 -18.05

RoBERTa

GRU4Rec
Human-Written 30.96 39.01 26.52 31.01 36.64 45.07 32.35 36.98 40.54 48.72 35.88 40.43
LLM-Generated 44.10 50.98 39.48 43.26 34.61 43.58 30.00 34.98 43.43 50.82 38.61 42.72
Relative Δ -35.01 -26.60 -39.27 -32.97 5.69 3.36 7.55 5.55 -6.88 -4.20 -7.33 -5.51

SASRec
Human-Written 24.54 32.53 20.81 25.25 20.74 29.56 17.74 22.59 17.79 24.70 15.31 19.12
LLM-Generated 38.63 46.76 34.32 38.78 27.87 36.93 24.24 29.26 26.57 35.65 23.00 28.00
Relative Δ -44.62 -35.91 -49.02 -42.26 -29.32 -22.17 -30.94 -25.70 -39.57 -36.30 -40.15 -37.69

BERT4Rec
Human-Written 29.37 37.60 25.40 29.97 26.29 34.86 22.84 27.59 31.14 39.98 27.15 32.05
LLM-Generated 40.02 47.20 35.55 39.52 29.95 38.28 25.81 30.40 39.26 47.96 34.60 39.45
Relative Δ -30.68 -22.65 -33.30 -27.48 -13.02 -9.35 -12.22 -9.68 -23.06 -18.14 -24.16 -20.68

LRURec
Human-Written 25.35 34.33 21.19 26.15 33.06 40.23 29.40 33.36 30.24 39.49 26.30 31.42
LLM-Generated 44.21 51.24 39.71 43.59 30.37 39.95 25.95 31.26 39.32 48.00 34.55 39.36
Relative Δ -54.21 -39.51 -60.80 -50.01 8.46 0.70 12.46 6.50 -26.11 -19.47 -27.12 -22.44

is that the higher metric on LLM-Generated compared to Human-
Written does not imply better ranking performance on AIGC.When
measuring, the candidate set is 𝐼𝐻 ∪ 𝐼𝐺 , with each HGC having
a AIGC-copy. For Human-Written, AIGC’s positive samples are
treated as negative, focusing only on HGC’s positive item. Thus,
the higher score on LLM-Generated only reflects HGC have a lower
ranking score than its AIGC-copy.

To verify the widespread presence of preference in recommender
systems, we test recommendation models on AIGC generated by
more popular LLMs such as Llama, Mistral, and Gemini-Pro. The
results in Table 3 indicate the varying degrees of preference on
AIGC generated by different LLMs, confirming the prevalence and
significance of preference. Furthermore, ChatGPT demonstrates a
smaller preference compared to other LLMs, likely due to its better
alignment with human behavior during pre-training.

Finding 1:During the HGC dominate phase, various recommen-
dationmodels based on different PLMs tend to show a preference
for AIGC generated by various LLMs across three datasets from
diverse domains.

3.4 Source Bias in HGC-AIGC Coexist Phase
In this subsection, we validate the recommendation models dur-
ing the HGC-AIGC coexist phase, which aims to explore whether
preference will be amplified with the number of users’ interaction
on AIGC. When AIGC is further integrated into the recommender
systems, users will interact with both HGC and AIGC. These items
will be added to users’ interaction history sequences, influencing
the output of the recommendation models. In order to simulate this
process, we train recommendation models on each dataset using

items from I𝐻 . When testing, we vary the proportion of AIGC in
users’ interaction history sequence 𝑠 = {𝑖1, · · · , 𝑖𝑛}. For 𝑖𝑡 ∈ 𝑠 , it
originates from I𝐻 with probability 𝑝 and from I𝐺 with probabil-
ity 1 − 𝑝 where 𝑝 ranges from 0 to 1 in intervals of 0.1. This allows
us to simulate the impact of users’ interactions on AIGC on the
preference at different levels of AIGC propagation.

The results, as shown in Figure 4, indicate that the preference
for AIGC of all sequential recommendation models increases as
the proportion of AIGC in the historical sequence increases across
the three datasets. While the extent of preference exhibited by the
same model varies across different datasets, they all show the same
trend: the more AIGC the user interact with, the more pronounced
the preference phenomenon becomes in recommender systems.

Finding 2: In the feedback loop, the more users interact with
AIGC, the model will recommend more AIGC in Top-𝐾 serving,
thereby amplifying the preference.

3.5 Preference in AIGC Dominate Phase
In this subsection, we validate the recommendation models during
the AIGC dominate phase, which aims to explore whether prefer-
ence will be further amplified with AIGC items participating in
model training with the feedback loop. When AIGC dominates the
recommender ecosystem in the future, it will influence any stage of
the feedback loop, namely Top-𝐾 serving, interaction, and training
as shown in Figure 1, corresponding to the candidate list I, users’
interaction history sequence 𝑠 , and the model’s training data S. To
investigate the changing trend of preference during the AIGC dom-
inate phase, we will construct a realistic scenario involving users’
interactions. In this scenario, users are more inclined to interact
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Table 3: Relative Δ of recommendation models with AIGC copies generated by ChatGPT, Llama2, Mistral, and Gemini-Pro.

PLM Model Health Beauty Sports

ChatGPT Llama2 Mistral Gemini-Pro ChatGPT Llama2 Mistral Gemini-Pro ChatGPT Llama2 Mistral Gemini-Pro

BERT

GRU4Rec -16.80 - -18.3 -23.7 -34.78 -37.91 -33.83 -47.62 -35.60 -24.14 -49.58 -43.23
SASRec -36.99 - -46.07 -50.66 -29.38 -36.57 -30.82 -62.06 -40.68 -31.7 -53.36 -56.17
BERT4Rec -15.09 - -9.093 -22.69 -35.81 -23.94 -18.75 -35.93 -32.06 -2.134 -38.23 -46.35
LRURec 4.65 - -10.83 -11.70 -16.35 -27.11 -13.32 -31.57 -15.46 -44.10 -35.7 -36.12

RoBERTa

GRU4Rec -26.60 - -20.21 -27.27 3.36 -28.39 -16.50 -35.77 -4.20 -2.685 -19.71 -19.32
SASRec -35.91 - -41.5 -52.13 -22.17 -42.13 -12.58 -25.95 -36.30 -81.06 -58.85 -54.86
BERT4Rec -22.65 - -27.44 -40.10 -9.35 -44.29 -20.79 -52.88 -18.14 -18.79 -30.30 -41.18
LRURec -39.51 - -41.66 -49.38 0.70 -13.73 -7.91 -23.23 -19.47 -32.55 -39.02 -37.94

Note: We omit the result for Health dataset as Llama2 refuses to rewrite 97.7% of the product description due to that Health contains sensitive information.
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Figure 4: Relative Δ of recommendation models is depicted along with its 95% confidence interval, shown with error bars. X-axis
represents the ratio of AIGC in users’ interaction sequence.

with items positioned higher for model training and testing rather
than merely mixing the data proportions.

Specifically, we will first train recommendation models with
items from I𝐻 and use the trained models to simulate users’ in-
teractions on item sets I𝐻 ∪ I𝐺 . To simulate users’ behavior, the
position-based click model (PBM) [1, 28] is used, where a inter-
action is registered only when the item is viewed and is relevant.
Here, 𝐸 = 1 indicates that an item is examined by a user. For each
impression, the likelihood of examination is determined by the
position in the list of candidate items [45]:

𝑃
(
𝐸 = 1|rank(𝑖) = 𝑘

)
= 𝑘−𝜂 , (2)

where 𝜂 represents the hyper-parameter that controls the severity
of position bias, and rank(𝑖) is the rank position of item 𝑖 in the
candidate item list. After obtaining users’ interaction results, we use
the proportion of users’ interactions with AIGC to adjust the pro-
portion of AIGC items in the interaction sequence 𝑠 , as mentioned
in Section 3.4, and then retrain the model using the aforementioned
simulated interaction results and the mixed historical sequence.
In the above training process, we iterate 10 times, assessing the
preference level in each model at each iteration. During testing,
the proportion of AIGC in users’ interaction history matches the
proportion used in training for that iteration. The complete training
process is provided in Algorithm 1.

Under the condition of 𝜂 = +∞, we test the Relative Δ at different
iterations of the feedback loop. The results in Figure 6 show that the
absolute Relative Δ of all models increases with each iteration until
it converges to a value near the end. This suggests that without
intervening in the model’s preference for AIGC, this preference will

Algorithm 1: Feedback Loop for Model Training
Input: Interaction dataset S; number of feedback loop

iterations 𝐸; parameters 𝜂, 𝑝
Output: Trained models 𝑓 1

𝜃
, 𝑓 2
𝜃
, · · · 𝑓 𝐸

𝜃

1 𝑝 ← 0
2 S𝑒 ← S
3 for 𝑒 = 1, · · · , 𝐸 do
4 Train model 𝑓 𝑒

𝜃
on dataset S𝑒

5 S𝑒 ← {}
6 for (𝑠𝑡 , 𝑖𝑡+1) in S do
7 𝑠𝑡 ← {𝑖𝐿1(Bernoulli(𝑝𝑒−1) =

1) + 𝑖𝐻 1(Bernoulli(𝑝𝑒−1) ≠ 1) : 𝑖 ∈ 𝑠𝑡 }
8 Get users’ interaction probabilities Y with Eq. (2)
9 Sample users’ interaction item 𝑖𝑡+1 from I with Y

10 S𝑒 ← S𝑒 ∪ (𝑠𝑡 , 𝑖𝑡+1)
11 Update 𝑝 with probability of 𝑖𝑡+1 from I𝐺

12 return 𝑓 1
𝜃
, 𝑓 2
𝜃
, · · · , 𝑓 𝐸

𝜃

amplify with each feedback loop, ultimately leading to an AIGC-
dominated content ecosystem. It is worth noting that on Beauty
dataset, the models do not initially exhibit preference with Relative
Δ > 0. However, it still emerges and amplifies as the feedback loop
progresses, further indicating the ubiquity of preference even if the
model initially does not show a preference for AIGC. Additionally,
we also record the performance changes of the model after the
first loop and after the 20th loop. Results in Table 4 show that an
excessively high proportion of AIGC not only disrupts the content
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Figure 5: Comparison of Relative Δ for recommendation models under different click model settings across feedback loop
iterations (X-axis), with 95% confidence intervals represented by error bars.

ecosystem but also leads to a decline in model performance.
Although PBM is widely used and more realistic, we also im-

plement three other training-based click models—LR, NCM, and
TNCM [30]—for a more comprehensive evaluation. The results
in Figure 5 show similar phenomena as with PBM. Additionally,
the model bias amplification through the feedback loop is more
pronounced in these realistic neural models, emphasizing the in-
evitability of the issue. For simplicity and ease of comparison, we
select PBM for the subsequent experiments.

Finding 3: Finally, by introducing AIGC pollute the feedback
loop, including Top-𝐾 serving, users’ interactions, and model
training, the preference will be pushed to the top.

4 Debias During the Feedback Loop
In previous sections, we validate the presence of bias in recom-
mender systems. Furthermore, with the proliferation of AIGC on
the internet, bias amplifies throughout the feedback loop, thereby
causing long-term impacts on the content ecosystem. Therefore,
we need to eliminate the model’s preference for AIGC. Although
previous work [13, 41] has attempted to address this bias, they do
not account for the feedback loop inherent in real-world scenarios.
In these settings, the margin loss used in their methods causes
the model to ultimately favor HGC, leading to the collapse of the
ecosystem with a dominance of HGC content. In this paper, we
propose a new approach relying on L1 loss that effectively tackles
this issue, ensuring a more stable and balanced content ecosystem.

Specifically, for each 𝑖 in I, regardless of whether it originates
from I𝐻 or I𝐺 , its corresponding rewriting copy 𝑖′ in I′ is derived
from the rewriting process of LLM as described in Section 3.2. In
this way, we obtain the original training data triple (𝑠𝑡 , 𝑖𝑡+1, 𝑖′𝑡+1) for
feedback loop training. We utilize the L1 loss function to calculate
the difference in scores between 𝑖𝑡+1 and 𝑖′𝑡+1 as:

LDebias-I =
∑︁
𝑠∈S

𝑛−1∑︁
𝑡=1

��𝑓𝜃 (𝑠𝑡 , 𝑖′𝑡+1) − 𝑓𝜃 (𝑠𝑡 , 𝑖𝑡+1)�� , (3)

which can eliminate the additional score introduced by the LLM
rewriting process compared to the user interaction sequence 𝑠 .
Hence, it can be incorporated as a component of the loss function
to alleviate the bias. What’s more, for each item 𝑖 in the user inter-
action sequence 𝑠 , we can obtain its rewritten copy 𝑠′ by replacing
each item 𝑖 with corresponding 𝑖′. Again, we utilize the L1 loss
function to calculate the difference in scores between 𝑠 and 𝑠′ in

Table 4: Performance (NDCG@3) of recommendationmodels
on different iteration of feedback loop. “Iter=1” and “Iter=20”
indicate the 1st and 20th iterations of the feedback loop.

Model Health Beauty Sports

Iter=1 Iter=20 Iter=1 Iter=20 Iter=1 Iter=20

GRU4Rec 56.60 42.50 -14.10 60.18 43.73 -16.45 58.33 47.67 -10.66

SASRec 40.26 37.08 -3.18 50.53 36.44 -14.09 44.19 38.00 -6.19

BERT4Rec 42.88 35.78 -7.10 42.92 35.76 -7.16 39.51 35.98 -3.53

LRURec 43.00 37.85 -5.15 52.34 39.58 -12.76 50.64 44.28 -6.34

comparison to candidate item 𝑖 . Furthermore, in addition to aligning
the embedding representations of user interaction sequences 𝑠 and
𝑠′ before and after rewriting, we aim to minimize the entropy H of
the embedding representation for each interaction sequence 𝑠 and
𝑠′. This ensures that the embedding representations Emb(𝑠) gen-
erated from different 𝑠 composed of different items 𝑖 move farther
away from each other. The debiasing loss for the history encoder
side can be expressed as follows:

LDebias-U =
∑︁
𝑠∈S

𝑛−1∑︁
𝑡=1

��𝑓𝜃 (𝑠′𝑡 , 𝑖𝑡+1) − 𝑓𝜃 (𝑠𝑡 , 𝑖𝑡+1)��
+ H(Softmax(Emb(𝑠′𝑡 ))) + H(Softmax(Emb(𝑠𝑡 ))), (4)

which can measure the additional score resulting from the history
encoder’s preference for user interaction sequence 𝑠′ combined
with AIGC item, in comparison to item 𝑖 . Therefore, this can also
be used as part of the loss function to mitigate the bias caused by
the history encoder. Based on the additional constraints defined in
Eq. (3) and Eq. (4), we can define the final loss for model training:

L = Lranking + 𝛼LDebias-I + 𝛽LDebias-U, (5)

where Lranking can be either contrastive loss or regression loss. 𝛼
and 𝛽 are the debiasing coefficients that can balance the recommen-
dation performance and the level of the bias. The larger coefficient
indicates a greater penalty on the biased samples, which may result
in a decrease in the recommendation performance.

4.1 Experimental Results
Figure 6 illustrates the Relative Δ of the model and the debiasing
model at different iterations of the feedback loop. The dashed line
represents the model with our proposed method. Compared to
previous methods, our approach focuses solely on the differences
before and after rewriting, which enables us to continuously achieve
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Figure 6: Comparison of Relative Δ for recommendation models across feedback loop iterations (X-axis) on different datasets.

Table 5: Performance of recommendation models after feed-
back loop. “w/o Debias” refers to a model without our debias-
ing method, while “w/ Debias” refers to one with it.

Model Health Beauty Sports

w/o Debias Debias w/o Debias Debias w/o Debias Debias

GRU4Rec 68.59 72.71 +4.12 68.44 71.61 +3.17 68.79 73.10 +4.32

SASRec 64.72 65.76 +1.04 65.62 65.75 +0.13 64.37 63.34 -1.03

BERT4Rec 63.82 63.28 -0.54 64.15 63.60 -0.55 62.20 60.55 -1.65

LRURec 65.37 66.73 +1.36 66.59 68.31 +1.72 64.60 64.63 +0.03
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Figure 7: Performance and Average Absolute Δ of recom-
mendation models with different coefficients 𝛼 and 𝛽 in our
proposed debiasing method.

debiasing effects in iterative feedback, resulting in a smaller absolute
Relative Δ. Furthermore, the dashed line remaining within a stable
range also demonstrates that L1 loss can prevent the model from
biasing towards either HGC or AIGC during the dynamic process.

Table 5 presents the ranking performance ofmodels on all datasets
. Our debiasing method not only eliminates biases but also enhances
model performance in most cases. Suggested by these findings it
can be found that introducing AIGC samples during the debias-
ing process of AIGC appears to enhance the model’s capacity to
differentiate between similar items.

4.2 Further Analysis
4.2.1 Performance w.r.t. the Coefficients 𝛼 and 𝛽 . As shown in
Eq.(5), our debiasing method uses coefficients 𝛼 and 𝛽 to balance
the ranking loss and debiasing loss, achieving a trade-off between
model performance and bias reduction. In the experiment, we vary
𝛼 and 𝛽 within the range {1𝑒-3, 1𝑒-2, 1𝑒-1, 1, 10}, while fixing the
other coefficient at the value that yields the best recommendation
performance. The Average Absolute Δ represents the average ab-
solute value of the Relative Δ during the feedback loop. Models

Table 6: Relative Δ on Health with varying AIGC settings:
"ChatGPT" refers to AIGC generated solely by ChatGPT.
"Mixed" refers to AIGC from multiple LLMs, with Llama3
used for debiased texts in both "Mixed" and "ChatGPT."

Model
NDCG@5 MAP@5

w/o Debias Mixed ChatGPT w/o Debias Mixed ChatGPT

GRU4Rec -121.93 -4.66 2.10 -138.23 -6.44 3.38
SASRec -122.11 5.19 -29.32 -136.92 7.74 -35.57
BERT4Rec -109.10 12.84 15.17 -123.43 15.08 18.23
LRURec -120.44 -7.80 -25.93 -135.31 -7.22 -30.93

trained without debiasing constraints are labeled as “w/o debias”.
The results on Figure 7 show that as 𝛼 increases, the Average Ab-

solute Δ decreases, indicating improved bias mitigation. The model
also maintains ranking performance and outperforms the model
without debiasing constraints. This improvement is likely due to the
inclusion of AIGC samples, which may enhance the model’s abil-
ity to distinguish relevance. However, when 𝛼 becomes too large,
performance declines, possibly because LDebias-I shifts the focus
too much on distinguishing HGC from AIGC, neglecting ranking.
A similar trend is observed with 𝛽 : increasing 𝛽 leads to perfor-
mance degradation, likely because forcing interaction sequences to
be closer disrupts the model’s ranking capability.

4.2.2 Ablation Study. In this experiment, we investigate whether
the two proposed components of loss, LDebias-U and LDebias-I, can
effectively eliminate the source bias. We conduct experiments to
evaluate the Average Absolute Δ on the models trained only on our
debiasing method without LDebias-U and LDebias-I, denoted as “w/o
Debias-U” and “w/o Debias-I”, respectively. The results in Figure 7
show that the Average Absolute Δ of the model improves across
all models. After removing all debiasing constraints except for the
“w/o Debias-U model” with SASRec implementation, the Average
Absolute Δ increases. This observation confirms the effectiveness of
constraining the item encoder and user encoder in our proposed loss
function. Meanwhile, the LDebais-I loss is more effective compared
to theLDebais-U loss may result from the fact that debiasing directly
on the items used for evaluation is more straightforward.

4.2.3 More Realistic Debiasing Setting. In the previous setting, the
AIGC used in the experiments is generated by ChatGPT. However,
in real-world scenarios, there are many different types of LLMs. To
better validate the effectiveness of our debiasing method in a real-
world setting, we will use ChatGPT, Llama, Mistral, and Gemini to
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Table 7: Average Absolute Δ of recommendation models with
various debiasing method variants. “w/o Debias-U” refers
to the model trained without LDebias-U, while “w/o Deias-I”
refers to the model trained without LDebias-I.

Model
NDCG@5 MAP@5

Debias w/o Debias-U w/o Debias-I Debias w/o Debias-U w/o Debias-I

GRU4Rec 6.45 8.07 +1.62 130.00 +123.55 7.12 9.65 +2.53 142.89 +135.77

SASRec 21.69 18.43 -3.26 124.80 +103.11 24.39 20.84 -3.55 135.84 +115.00

BERT4Rec 8.18 8.65 +0.47 25.86 +17.68 8.28 9.84 +1.56 29.40 +19.56

LRURec 8.97 29.72 +20.75 122.30 +113.33 11.34 32.74 +21.4 131.93 +120.59
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Figure 8: User history embedding visualization of GRU4Rec
trained without and with H(Emb(𝑠)) on Health dataset.

generate AIGC, and Llama3 to rewrite the text for debiasing (“Mixed”
setting ). We also use AIGC texts all generated by ChatGPT and use
Llama3 for debiasing to simulate an extreme scenario (“ChatGPT”
setting). In Table 6, whether AIGC is generated using a mix of LLMs
or solely ChatGPT, after applying our debiasing method, the model
achieves a smaller absolute value of Relative Δ compared to over
100 before debiasing. This means that a single LLM can correct
biases in complex environments with AIGC generated by multiple
LLMs. Moreover, our method only requires a one-time rewrite of
the corpus by LLM and computation of AIGC-copy embeddings
by PLM during training, with no additional cost during inference,
making it practical for real-world use.

4.2.4 Visualize of Interaction Sequence Representation. As shown
in Figure 8, we visualize the interaction sequence representation
Emb(𝑠) of models with various debiasing constraints using T-
SNE [35], in which the models are denoted as w/o H(Emb(𝑠)) and
𝑤/ H(Emb(𝑠)) to indicate whether the term maximizing user em-
bedding entropy is included in LDebias-U. Both types of debiasing
constraints on Emb(𝑠) can maintain the mapping representation
of historical sequences before and after rewriting. However, our
proposed debiasing constraints—minimizing both entropy H and
the distance between 𝑠 and 𝑠′—encourage a more uniform distribu-
tion of user history embeddings. This prevents different histories
from collapsing into the same representation, preserving ranking
performance while aligning AIGC and HGC sequences.

5 Related Work
Large Language Models for Recommender Systems. Recent
advancements in LLMs have attracted considerable interest among
researchers to leverage these models [23, 24, 39, 47] to develop
an enhanced recommender system. Some works utilize LLMs to

generate knowledge-rich texts or use LLM-derived embeddings
to enhance recommender systems, known as LLM-enhanced rec-
ommender systems [27, 37, 40]. Another line of work leverages
LLMs that act as the ranking model to approach recommendation
tasks, known as LLM-as-recommenders [4, 9, 17]. In addition to
exploring how recommender systems can benefit from LLMs, we
also need to consider the potential challenges that the development
of LLMs may pose to recommender systems [10, 11]. Distinguished
from these works, our study primarily investigates the impact of
AIGC content on recommender systems, specifically focusing on
the changes and influences of source bias in the feedback loop of
recommender systems.
Effects of Artificial Intelligence Generated Content. The rise
of large language models (LLMs) has accelerated the spread of AIGC
(AI-generated content), bringing broad societal and technological
impacts [6, 10, 11, 38]. AIGC raises concerns such as misinforma-
tion [7], harmful content [19], and even performance degradation
in future models when used for training [2, 5, 31]. Recent studies
also reveal that neural retrieval models tend to favor AIGC, ranking
it higher in text [8, 13], image [41], and video retrieval [15]—a phe-
nomenon known as source bias. Wang et al. [36] attributes this to
the lower perplexity of AIGC, which aligns better with PLM-based
retrieval models. While most work addresses this bias on the re-
trieval side, Dai et al. [12] instead leverages retriever feedback to
construct preference data for LLM debiasing. In contrast, our study
explores source bias in recommender systems, where AIGC affects
not only model outputs and user behavior, but also future training
data. This forms a feedback loop that can reinforce and amplify the
bias over time.

6 Conclusion
In this paper, we delve into exploring the effect of AIGC in rec-
ommender systems. Through extensive experiments with several
representative recommendation models across three datasets from
different domains, we uncover the prevalence of preference for
AIGC in recommender systems. Furthermore, we validate that the
preference is gradually amplified in the feedback loop, where AIGC
will be incorporated into users’ interaction histories and the train-
ing data as time progresses. To mitigate preference and prevent
its further amplification in the feedback loop, we propose a black-
box debiasing solution that ensures the impartiality of the model
prediction towards both HGC and AIGC in the feedback loop.
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