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Abstract

Recently, live streaming services have seen a surge in popular-
ity, prompting many platforms to offer both short video and live
streaming services to meet the diverse needs of users and streamers.
This has resulted in a close connection between short videos and
live streaming within these platforms. Incorporating short video
data into live streaming recommendation through cross-domain ap-
proaches can effectively mitigate the sparsity of live streaming gift-
ing data. However, existing cross-domain recommendation methods
primarily focus on transferring information across domains through
overlapping users or items, while overlooking the strong connec-
tion between non-overlapping short videos and streamers. In this
paper, we propose MGCCDR, a Multi-Graph Contrastive learning
framework for Cross-Domain Recommendation, which leverages
both overlapping users and non-overlapping items to enhance in-
formation transfer. Specifically, we first learn global representations
from a global graph to establish connections between streamers
and short videos. Subsequently, we construct three bipartite graphs
among users, authors, and videos and introduce multi-graph learn-
ing to capture preferences within the target domain view, the source
domain view, and the cross-domain view. Additionally, to address
the varying contributions of each graph to the final recommen-
dation task, we design an attention-based method to effectively
integrate these representations, facilitating the information aggre-
gation across domains. Extensive experiments on both commercial
and public datasets demonstrate that our MGCCDR significantly
outperforms the state-of-the-art methods.
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1 Introduction

Nowadays, with the rapid advancement of mobile internet technol-
ogy, streaming recommender systems have seamlessly integrated
into people’s daily lives [6-9, 21, 34, 45, 47, 50, 51]. Through live
streaming platforms, streamers can share their experiences in real
time, while users can engage through real-time interactions like
sending virtual gifts. Accurately modeling user preferences and
recommending suitable streamers can improve the experience for
both users and streamers, which is crucial for the growth of live
streaming platforms. However, due to the high cost of virtual gift-
ing, gifting behavior data is extremely sparse, making it challenging
to model user preferences based solely on live streaming data [5].
Given that many live streaming platforms, such as YouTube, TikTok,
and Kwali, also offer short video services, an intuitive idea is to lever-
age cross-domain recommendation methods to capture user prefer-
ences from the abundant short video data to assist in live streaming
recommendation, which has been shown to effectively mitigate the
issue of data sparsity in recommender system [20, 22, 24, 25, 46].
In recent years, significant efforts have been dedicated to enhanc-
ing the performance of cross-domain recommendation [30, 43, 54].
Several studies first obtain user and item representations from
each domain separately and then design sophisticated information
transfer modules to integrate these representations into a final
output. For example, CoNet [18] employs a cross-connection net-
work, while BiTGCF [23] uses a feature fusion module to achieve
knowledge transfer. Since user interests in the source and target
domains are not entirely aligned, simplistic feature fusion may lead
to negative transfer [1, 22, 29, 49], where irrelevant or conflicting
information from the source domain can degrade the model’s per-
formance in the target domain. DisenCDR [4] addresses this issue
by separating each user’s shared and domain-specific representa-
tions and leveraging Kullback-Leibler (KL) divergence to enhance
the distinction between user representations within each domain.
Despite their effectiveness, most previous works rely solely on
overlapping users or items between the source and target domains
for information transfer, overlooking the strong connections
that may exist between non-overlapping items, which are
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Short Video Live Streaming
(a) The author of video is a streamer.

Short Video Live Streaming
(b) The author of video is not a streamer.
Figure 1: Illustration of user behaviors on the platform. (a)
When users view a short video published by a streamer, they
may click on the streamer’s profile picture to enter the live
streaming room. (b) When the author of the short video is
not a streamer, users may explore related topics from the
video and find relevant streamers to watch their live streams.

particularly significant between live streaming and short videos:
(1) Streamers can either publish short videos or host live streams,
and according to statistics from a popular live streaming platform,
70% of streamers share short videos, which are often closely
related to their live streams or personal content. (2) Furthermore,
although certain authors of short videos are not streamers, they of-
ten share clips that are directly derived from the live sessions
of specific streamers. This overlap suggests that user behaviors
in live streaming may be influenced by their habits related to short
videos. For example, Figure 1 illustrates some user behaviors on
the platform. When the author of the short video that captures
the user’s interest is also a streamer, the user may click on the
streamer’s profile picture to enter the live streaming room and
interact with the streamer. Even if the author is not a streamer,
users may still seek out streamers whose content is related to the
short videos they have enjoyed. Consequently, a comprehensive
exploration of the relationships between short videos and streamers
can not only improve the accuracy of user interest modeling, but
also enhance the representation of streamers, thereby facilitating
effective knowledge transfer across different domains.

In this paper, we propose MGCCDR, a Multi-Graph Contrastive
learning framework for Cross-Domain Recommendation aimed at
enhancing information transfer and aggregation across domains by
leveraging non-overlapping short videos and streamers. Specifically,
to investigate the relationships between streamers and short videos,
we first learn global representations of both entities from a global
graph constructed using a combination of live streaming and short
video data. Utilizing these representations, we identify significant
connections by matching streamers and short videos from dual
perspectives. Building upon this foundation, we further construct
three bipartite graphs among users, streamers, and short videos.
To fully leverage the information from each graph, we perform
message propagation across all three, thereby generating user and
streamer representations from various perspectives. This approach
enables us to capture preferences within the target domain view,
the source domain view, and the cross-domain view, collectively
facilitating effective information transfer. Recognizing that each
graph encapsulates distinct information and contributes differently
to the overall recommendation task, we propose an attention-guided
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multi-graph fusion mechanism to integrate these representations
effectively. In particular, we acknowledge that user interests may
differ across domains, and the user-streamer graph provides a more
relevant and less noisy view for the target domain. Consequently,
we utilize the representations derived from this graph as the key to
calculate attention probabilities, which serve as fusion weights to
seamlessly integrate the multi-graph representations. In this way,
we can extract valuable insights from diverse perspectives, thereby
promoting cross-domain information integration and enhancing
the representations of both users and streamers.

In the training process, we jointly optimize the entire framework
using self-supervised contrastive learning loss and BPR loss. In
summary, our major contributions are as follows:

e We highlight that there are significant connections between
non-overlapping items in the cross-domain scenario of live stream-
ing and short videos, which is a prevalent scenario in real-world
recommendations but has yet to be thoroughly investigated in the
existing literature.

e We propose MGCCDR, a novel cross-domain recommenda-
tion method that leverages multi-graph learning and an attention-
guided multi-graph fusion mechanism to achieve more effective
cross-domain information transfer and integration.

o Extensive experiments on both commercial and public datasets
demonstrate the superior performance of MGCCDR. Notably, MGC-
CDR is not limited to short video and live streaming scenarios but
is also applicable to general cross-domain recommendation tasks.

2 Related Work

2.1 Live Streaming Recommendation

Recently, live streaming, as an emerging form of social media, has
drawn increasing attention from researchers. Unlike traditional
recommendation scenarios that focus on suggesting items to users,
live streaming recommendation aims to connect users with stream-
ers they may be interested in. LiveRec [32] models the repeated
consumption relationship between users and streamers, taking tem-
poral dynamics into account during recommendation. eLiveRec [53]
employs a disentangled encoder module to learn both cross-domain
shared intents and domain-specific intents, enhancing e-commerce
live streaming recommendations. Given the multi-modal nature
of live streaming, which includes text, images, and audio, meth-
ods such as MTA [40] and ContentCTR [10] explore how to effec-
tively fuse multi-modal information. Beyond multi-modal fusion,
MMBee [12] introduces a graph representation learning approach
based on meta-paths to enrich the representations of both users and
streamers. Furthermore, some recent studies focus on capturing
the dynamic changes within live streams. For instance, Sliver [21]
modifies the data stream format of live streams, while KuaiHL [11]
proposes a method for predicting highlight moments in live stream-
ing sessions. Building on these works, Moment&Cross [5] enhances
live streaming recommendations by incorporating short video data
to assist in capturing user preferences more comprehensively. How-
ever, Moment&Cross adopts a user-centered approach, overlooking
the critical role of streamers in cross-domain scenarios. There-
fore, there remains significant room for improvement in leveraging
abundant short video data to alleviate the data sparsity issue in live
streaming recommendation.
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Figure 2: Overall framework of MGCCDR: a multi-graph contrastive learning framework for cross-domain recommendation.

2.2 Cross-Domain Recommendation

Cross-domain recommendation aims to enhance recommendation
performance in the target domain by leveraging rich information
from the source domain, effectively addressing the data sparsity
problem in recommender systems [2, 14, 42, 57, 59]. Early cross-
domain recommendation methods assume that auxiliary user-item
interactions could assist in modeling users in the target domain,
extending traditional single-domain recommendation models to
multi-domain scenarios [35]. More recently, some approaches focus
on transferring user/item representations from the source domain
to improve recommendations in the target domain by designing
various transfer modules to integrate the representations learned
within their respective domains [18, 23, 28]. Meanwhile, recogniz-
ing that user interests across domains are not always identical,
several studies adopt a disentangled representation learning par-
adigm to capture both domain-invariant and domain-specific fea-
tures [4, 13, 22, 48, 52], effectively mitigating the negative transfer
problem. Despite these advancements, existing methods primarily
focus on information transfer between overlapping users or items,
while overlooking the potential knowledge transfer between non-
overlapping items. Our work aims to address these limitations by
constructing an extra bipartite graph to connect items from the
source and target domains and employing an attention-based multi-
view fusion mechanism to enhance cross-domain recommendation.

3 Problem Formulation

Formally, given a set of users denoted as U = {uy,uz,...,up},
a set of streamers represented by S = {s1,s2,...,sn}, and a set
of short videos indicated by V = {vj,v,...,00}, where M, N,
and O correspond to the number of users, streamers, and short
videos, respectively. Let Xyxn = {xus | u € U,s € S} and
Yrxo = {yuo | u € U,v € V} represent the user-streamer interac-
tions in live streaming domain and user-video interactions in short
video domain, respectively. xys, yuo € {0, 1}, where 1 denotes an
interaction between user-streamer or user-video pair. Additionally,
to explore the relationship between streamers and short videos, we
also construct a binary matrix Zyxo = {zsy | s € S,v € V}, where
Zsp € {0, 1}, with zg, = 1 indicating that the short video v is pub-
lished by the streamer s. However, since many short video authors
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are not necessarily streamers, the matrix Zx o is highly sparse.
We will introduce how to uncover the underlying relationships
between streamers and short videos to enrich Znxo in Section 4.2.
The goal of this paper is to explore how to leverage rich information
from the short video domain to enhance live streaming recommen-
dation, specifically by learning from Xy« N, Ypmxo, and Zyxo to
predict unseen user-streamer interactions.

4 Our Approach: MGCCDR

4.1 Overview of MGCCDR

The framework of MGCCDR is illustrated in Figure 2. First, to
enable cross-domain information transfer through non-overlapping
items, we explore the relationships between streamers and short
videos using a global graph that encompasses users, streamers, and
short videos. By identifying closely related streamer-video pairs,
we construct the Streamer-Video (S-V) graph. Simultaneously, we
leverage user-streamer interactions to build the User-Streamer (U-
S) graph and user-video interactions to construct the User-Video
(U-V) graph. Then we apply multi-graph representation learning
on the three graphs to capture user and streamer representations
from different perspectives. Finally, we propose an attention-guided
multi-graph fusion method that calculates attention probabilities
between the representations obtained from each graph and the
target graph representations. These attention probabilities serve
as fusion weights, enabling the effective fusion of multi-graph
representations. The entire model is optimized in a joint manner
through a combination of BPR loss and contrastive learning loss.

4.2 Streamer-Video Graph Construction

As discussed in Section 1, some short videos are not created by
streamers. However, these videos may consist of clips from a par-
ticular streamer’s live content or be closely related to a specific
streamer. To explore the strong connections between these non-
overlapping items and enrich the sparse matrix Zynx o, we integrate
all user-streamer and user-video interactions to construct a global
graph, where both streamers and videos are regarded as the same
type of items. Then, we apply LightGCN [16] to learn the global
representations of users, streamers, and videos. The similarity dis-
tribution between streamers and their respective published short



SIGIR °25, July 13-18, 2025, Padua, Italy

2.0% - [ Valid Streamer-Video Pairs -
S0 All Streamer-Video Pairs _—‘
)
20 15% A ﬂ —’_[_‘
£ rrJ’r 1—)‘11‘
[l
5 1.0% . ] 1
g ¥ Y
. jrfﬂﬂ ﬂmmf
0.0% . : .~““+|| . =
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Cosine Similarity

Figure 3: Cosine similarity distribution of valid streamer-
video pairs and all streamer-video pairs. Valid streamer-video
pairs refer to pairs where the streamer is the author of the
short video, while all streamer-video pairs include all possi-
ble pairings between streamers and short videos.

videos, as well as the overall similarity distribution between all
streamers and all short videos, is illustrated in Figure 3. It can
be observed that the peak of the similarity distribution between
streamers and their published short videos is significantly higher
than that of the global similarity distribution. This validates the
strong connection between streamers and their published short
videos and highlights the rationale for exploring streamer-video
relationships within the global graph. We enrich the matrix Zxxo
between short videos and streamers from dual perspectives:
Short Video Perspective: We first enrich Z o from the short
video perspective by identifying the most similar streamer s € S
for each short video v € V whose publisher is not a streamer and
setting zs, to 1 accordingly, which can be formally defined as:

1,
Zso =
Zsvs

where eS and e§ are the learned global representations of streamer
s’ and video v, and sim(-, -) represents the cosine similarity function.

Streamer Perspective: To further enrich Znx o, we take the
streamer perspective by identifying short videos with high similar-
ity to each streamer. Specifically, for each streamer s € S with fewer
than K associated short videos, we rank and identify short videos
based on their similarity to the streamer. A short video v is selected

if s = argmaxy e g sim(eg, e9), )

otherwise,

if its similarity with the streamer satisfies sim(e$, eJ) > ¢, where
¢ is a predefined threshold set as the average similarity between
each streamer and their published short videos in the initial matrix
ZNxo- We iteratively add the top-ranked short video to the matrix
by setting zs, = 1 for the corresponding pairs until the number
of associated short videos reaches K. After the above process, if
a streamer still has no associated short videos, we add the short
video with the highest similarity to the matrix.

Through this dual-perspective relationship mining, we construct
a bipartite graph between streamers and short videos, laying a solid
foundation for the subsequent multi-graph representation learning
and cross-domain information transfer.

4.3 Multi-Graph Representation Learning

By constructing bipartite graphs from interactions in both the live
streaming domain and the short video domain, along with the
previously built streamer-video bipartite graph, we obtain three

2062

Changle Qu, Ligin Zhao, Yanan Niu, Xiao Zhang, and Jun Xu

bipartite graphs in total. By formulating these three graphs, we can
capture target domain information, source domain information, and
potential cross-domain fusion information, respectively. Through
these distinct views, we learn user and streamer representations
from different perspectives, thereby facilitating information transfer
between the source and target domains. The representation learning
process for the three graphs is detailed as follows.

4.3.1 User-Streamer Graph. The first graph we construct is the
U-S graph, which aims to directly capture user and streamer repre-
sentations within the live streaming domain. Following previous
works [26, 27, 31, 37], we also employ the simple yet effective
GNN-based collaborative filtering model, LightGCN, to capture the
complex relationships between users and streamers by iteratively
aggregating neighboring information over I layers. In the i-th layer,
the aggregation proceeding is depicted as:

Us(i) 1 US(i-1)
e, = ——c; ,
SeNTS \INGSINGS|
QUS() _ 1 LUSG-1) (2)
S - T o tu 4
ue NUS INTS|INTS|
where e,lf S and egs(l) represent embeddings of user u and

streamer s at the i-th layer, NV and NUS are the neighbors of
user u and streamer s in the U-S graph. Then, we perform mean
pooling over the representations from the 0-th layer to the I-th
layer to obtain the final user and streamer representations, denoted

as el S and egs , respectively, in the U-S graph:
I I
eUS _ 12 QUS(H)  US _ 12 SUS() (3)
u - I u ’ s = I S .
i=0 i=0

4.3.2  User-Video Graph. The second graph we construct is the U-V
graph, which aims to leverage user-video interactions in the short
video domain to learn the representations of users and short videos.
Subsequently, we indirectly obtain the representation of streamers
through the established S-V graph. Specifically, we first perform
I iterations of information propagation on the U-V graph using
LightGCN to obtain the representations of users and short videos.
For each layer i, the information propagation is denoted as:

egV(i) - 3 ﬁegv(i—m’
UEN,EJV \/'Nu ||Nu |
Uuv(i) _ 1 Uv(i-1) 4)
& = L ey ;
ue NV AJINTVIINGY |
where eff"(” and ef,]"(” represent embeddings of user u and short

video v at the i-th layer, NV and NUV are the neighbors of user
u and short video v in the U-V graph. Similar to the U-S graph
learning, we also perform mean pooling over the representations of
each layer to obtain the final user and short video representations,
UV and el,UV, respectively, in the U-V graph:

denoted as e;,
ZI Uv (i) 1 ZI UV (i)
i uv i
e . & =7 )€ .
i=0 i=0

1
uv

e, =- 5
AL ©
Since our goal is to enhance live streaming recommendation by
leveraging rich data from the short video domain, specifically to
obtain better representations of users and streamers, we aggregate
the representations of short videos associated with each streamer



Bridging Short Videos and Streamers with Multi-Graph Contrastive Learning for Live Streaming Recommendation

through the previously constructed S-V graph to obtain the streamer
representation eyv in U-V graph:
> o

veNSV

1
eV = NSV

(6)

where NSV represents the set of short videos associated with
streamer s in S-V graph.

By learning on the U-V graph, we explore the relationships be-
tween users and short videos, obtaining user preference representa-
tions in the short video domain. Additionally, we derive fine-grained
streamer representations by aggregating the associated short video
embeddings, providing complementary representation information
from a perspective different from that of the U-S graph.

4.3.3  Streamer-Video Graph. The third graph we construct is the
S-V graph, which aims to explore the relationships between stream-
ers and short videos, thereby enabling cross-domain information
transfer across non-overlapping items. To further leverage the S-V
graph for information transfer from the short video domain to the
live streaming domain, in addition to aggregating short video repre-
sentations into streamer representations in the U-V graph, we also
apply LightGCN on the S-V graph to perform iterative aggregation
of neighboring information across I layers. The graph propagation
in the i-th layer is depicted as:

SV(3i) _ 1 SV (i-1)
Cs - ; SV sy P ’
0e NSV A/INSVIINGY | .
SV (i) 1 SV (i-1) (7)
€, = ———e ,
se NSV NSV IINSY
where efv(l) and e‘gv(l) represent embeddings of streamer s and

short video v at the i-th layer, NSS V and NUS V' are the neighbors
of streamer s and short video v in the S-V graph. Similar to Equa-
tion 3 and Equation 5, we also perform mean pooling to obtain the
representations e5" and e3" in the S-V graph:

ZI SV (i) IZI SV (i)
i SV i
€ , €y :7 €, .

i=0 i=0

1
SVl

V=g ®)

Then we aggregate the representations of short videos that each

user interacts with through the U-V graph to obtain the user repre-
sentation e3’ in the S-V graph:

veNYV

1
&5V = &5,

©

VY

where NV represents the set of short videos interacted by user u
in U-V graph.

In summary, our multi-graph learning framework obtains three
sets of representations from different perspectives: e’ and eVS
from the user-streamer graph, eV and eV from the user-video

graph, and 3V and 5" from the streamer-video graph.

4.4 Attention-Guided Multi-Graph Fusion

After obtaining diverse representations through multi-graph learn-
ing, our objective is to effectively fuse these representations into
the final user representation e, and streamer representation es.
Considering that only the U-S graph represents real user inter-
actions in the live streaming domain, while the U-V and S-V graphs
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serve as auxiliary views, a straightforward fusion with uniform
weights may result in negative transfer. This is attributable to the
potential divergence in user interests between the live streaming
and short video domains. Some existing methods attempt to mit-
igate this issue by assigning distinct fixed weights to each graph
during fusion [26]. However, this approach imposes a significant op-
timization burden due to the extensive number of hyper-parameters
involved. Furthermore, considering the considerable variability in
user behaviors, it is imperative that the contribution of each graph
to the final representation is tailored to the individual characteris-
tics of each user and streamer. Consequently, the fusion coefficients
should be personalized for each user and streamer.

To address these challenges, we propose Attention-Guided Multi-
Graph Fusion (AMF), which effectively integrates representations
from multi-graph based on an attention mechanism. We use the
representations obtained from the U-S graph as the key to compute
the attention probabilities with respect to the three sets of repre-
sentations, and these probabilities are employed as fusion weights
Specifically, for each graph g € {US, UV, SV}, we first calculate the
attention scores as follows:

(10)
where 1] and r{ represent the attention scores for user u and
streamer s in graph g, respectively. The operator ‘|| denotes the
concatenation of two vectors.

Then we obtain attention probabilities using softmax function:

1= Linear(eZHegs), )= Linear(e‘ZHeg]S),

y_ ewd
P Ngewsuvisvyexp ()
(11)

where A% and A7 represent the attention probabilities for user u and
streamer s in graph g, respectively.

By integrating the three sets of representations along with their
corresponding attention weights, we obtain the final user and
streamer representations e, and es:

€u = de{US,UV,SV} K€l e = de{US,UV,SV} (12)
AMEF leverages an attention mechanism that utilizes the represen-
tations of the target domain as the key to calculate fusion weights,
which not only reduces the number of hyper-parameters but also
assigns personalized weights for each user and streamer, thereby
facilitating the effective integration of multi-graph representations.

o entd
u - ] E)
2ge{Us,uv,sv) exp (ry)

el

4.5 Prediction and Optimization.

4.5.1 Prediction. After obtaining the final user and streamer repre-
sentations, we utilize the inner-product to calculate the preference

score s for user u on streamer s:
Yu,s = €y * €. (13)

4.5.2 Optimization. For model optimization, we apply the stan-
dard BPR loss [33] as the main loss, which is widely used in the
recommender system. The objective function is formally depicted

as:
LBpr = Z Z —logcr (ﬁu,s - ﬁu,s‘) >

ueU se NUS

(14)

where s~ represents the negative streamer that is randomly sampled
from streamers that users have not interacted.
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Algorithm 1 The Learning Algorithm of MGCCDR

Input: User-Streamer interactions matrix Xprx N7, User-Video interactions

matrix Yarxo, Streamer-Video matrix Znx o, predefined threshold ¢,
layer number I, contrastive loss coefficient A, temperature 7.
Output: MGCCDR Model with learnable parameters 6.
// Streamer-Video Graph Construction:
while LightGCN not Convergence do
fori=1toIdo
Conduct message propagation in global graph
end for
Calculate BPR loss using Eq. (14)
Update model parameter using Adam
: end while
: Get global representations: e and e§ and construct streamer-video
graph
// Multi-Graph Representation Learning:
9: while MGCCDR not Convergence do

1:
2
3
4
5:
6
7
8

10: fori=1toldo
11: Conduct message propagation using Eq. (2), Eq. (4), and Eq. (7)
12:  end for
13: Calculate ef{s, eES, ef]", eEV, eﬁV, and ef,V using Eq. (3), Eq. (5),
Eq. (6), Eq. (8), and Eq. (9)
// Attention-Guided Multi-Graph Fusion:
14:  Calculate e, and e using Eq. (10), Eq. (11), and Eq. (12)
// Optimization:
15:  Calculate BPR loss Lppr using Eq. (14)
16:  Calculate contrastive loss .E% and Lg using Eq. (15) and Eq. (16)
17 Calculate total loss L using Eq. (17)
18:  Update model parameter using Adam

19: end while
20: return 0

Given the remarkable success of contrastive learning in the rec-
ommender system [39, 41, 44], we also incorporate a contrastive
learning loss in addition to the BPR loss. Specifically, inspired
by [44], we generate different representations for the same user
and streamer by adding a noise vector to their original embeddings.
We then optimize the model using the InfoNCE [15] loss:

exp (sim(ey, e,)/7)

1
L8 =——— %1 , 15
U 24 BT e tmiene 0
1 exp (sim(es, e, )/7)
Li=- )1 — : 16
7S 4 T e Gme e 09

where (e, e;) and (e, e;) represent the original and augmented
representations of the same user u and streamer s, respectively, and
7 denotes the temperature parameter.

Based on the BPR loss and the contrastive loss, we optimize our
proposed MGCCDR by the joint loss £:

L :LBPR‘FA(L(CL("'LE)) (17)

where A is the hyper-parameter to balance the two loss functions.
The learning algorithm is presented in Algorithm 1.

5 Experiments

In this section, we first describe the experimental setups and then
conduct an extensive evaluation and analysis of the proposed MGC-
CDR.
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Table 1: Statistics of the experimental datasets.

Dataset Domain #Users #Items #Interactions Sparsity
. Video 114,305 2,738,031 99.85%
Comerical - pio0” 10025 ) 959 180,445 99.90%
Movie 12.905 18,416 1,427,309 99.40%
Book ’ 24,646 552,794 99.82%

Douban
Movie 12.425 18,102 1,341,810 99.40%
Music ’ 32,472 857,689 99.79%

5.1 Experimental Setups

5.1.1 Datasets. We conduct extensive experiments on two datasets:
one collected from a popular live streaming platform and the other
a well-known publicly available Douban dataset. The statistics of
these datasets are shown in Table 1.

Commerical dataset. This dataset is constructed based on be-
havior logs of 16, 625 users who engaged with both live streaming
and short video services on a popular live streaming platform over
a one-week period in 2024. It includes each user’s historical gifting
behaviors in live streaming services and their click interactions
with short video services. For data pre-processing, we group inter-
action records by user and apply filtering criteria to retain users
with at least 5 interactions in the live streaming domain and at least
20 interactions in the short video domain. Additionally, we keep
items with at least 5 interactions in the live streaming domain and
at least 10 interactions in the short video domain.

Douban dataset!. To demonstrate that our methodology ex-
tends beyond live streaming and short video services and can be
applied to various cross-domain scenarios, we also conduct exper-
iments on the Douban dataset. Specifically, we select the three
largest domains: movie, book, and music, to build cross-domain rec-
ommendation scenarios. We use the movie domain, which has more
interaction records, as the source domain, and the book and music
domains, which have fewer interactions, as the target domains. Ac-
cordingly, we construct two cross-domain recommendation tasks:
movie — book and movie — music.

5.1.2  Evaluation Protocol. Following previous works [19, 36], we
apply the leave-one-out splitting strategy for evaluation. To better
validate our approach, the test set consists of the last interacted item
and all uninteracted items for each user, which provides a more
comprehensive evaluation compared to randomly sampling a subset
of uninteracted items. The results of our MGCCDR and baselines
are evaluated by HR@{10, 20, 40} and NDCG@{10, 20, 40}.

5.1.3  Baselines. To demonstrate the effectiveness of our proposed
method, we compare MGCCDR with with two categories of compet-
itive baselines: single-domain methods and cross-domain methods.

Single-domain methods. We first compare MGCCDR with
the following single-domain methods: (1) BPRMF [33] is a fa-
mous method based on matrix factorization and optimized with
the BPR loss. (2) NeuMF [17] is a representative neural CF model
that utilizes GMF and MLP simultaneously to learn representations.
(3) NGCEF [38] is a neural collaborative filtering method that lever-
ages GNNs to capture high-order connections and collaborative
signals. (4) LightGCN [16] removes the feature transformation and

!https://recbole.s3-accelerate.amazonaws.com/CrossDomain/Douban.zip
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Table 2: Performance comparison between MGCCDR and the baselines on three cross-domain recommendation scenarios.

The best and second-best performance methods are highlighted in bold and underlined fonts, respectively. * represents
improvements over the second-best methods are significant (¢-test with p-value < 0.01).
. R Single-domain Methods Cross-domain Methods Ours
Datasets Domain Metrics %Improv
BPRMF NeuMF NGCF LightGCN CMF EMCDR CoNet DCDCSR DTCDR BiTGCF DisenCDR MGCCDR

HR@10  0.0471 0.0409 0.0513  0.0529 0.0829 0.0726 0.0373 0.0801  0.0524 0.0882  0.0583  0.0983"  +11.45%

NDCG@10 0.0245 0.0217 0.0267 0.0271  0.0430 0.0385 0.0184 0.0418  0.0263 0.0459  0.0291  0.0513*  +8.38%

Comerical  Video — Live  TR@20 00729 00646 00792 00782 01264 0.1100 00608 0.1220 00852 0.I371  0.0907  0.1486"  +6.16%
NDCG@20 0.0310 0.0276 0.0337  0.0334  0.0540 0.0480 0.0243 0.0523  0.0345 0.0582 00372  0.0640° +11.76%

HR@40  0.1083 0.0962 0.1178 0.1140 0.1844 0.1664 0.1003 0.1805 0.1316 0.2044  0.1422  0.2170"  +9.96%

NDCG@40 0.0382 0.0341 0.0415  0.0407  0.0658 0.0594 0.0323 0.0642  0.0439 00719  0.0477  0.0780*  +8.48%

HR@10  0.0555 0.0590 0.0580  0.0636  0.0655 0.0566 0.0471 0.0521  0.0465 0.0667  0.0335  0.0863"  +29.38%

NDCG@10 0.0293 0.0296 0.0311  0.0345 0.0341 0.0290 0.0241 0.0273  0.0239 0.0360  0.0160  0.0467*  +29.72%

Movie  Boox  IR@20 00855 00902 00896 00979  0.0966 00882 00721 00827 00769 01014 00570  0.1246" +22.87%
NDCG@20 0.0369 0.0374 0.0391  0.0431 0.0419 0.0369 0.0304 0.0350  0.0316 0.0447 00219  0.0563°  +25.95%

HR@40 0.1317 0.1338 0.1338 0.1466 0.1408 0.1306 0.1077 0.1234 01166 0.1499  0.0890  0.1712*  +14.20%

Douban NDCG@40 0.0463 0.0463 0.0481  0.0530  0.0509 0.0456 0.0376 0.0433  0.0396 0.0546  0.0285  0.0658"  +20.51%
HR@10  0.0453 0.0488 0.0492 0.0460 0.0516 0.0456 0.0393 0.0473 00402 0.0617  0.0223  0.0767" +24.31%

NDCG@10 0.0236 0.0259 0.0258 0.0233  0.0274 0.0229 0.0206 0.0258  0.0200 0.0334  0.0109  0.0424"  +26.94%

Movie —» Music IR@20 00719 00744 00773 00707 00809 00724 00616 00751 00666 0.0929 00402  0.1138" +22.49%
NDCG@20 0.0302 0.0323 0.0329  0.0295 0.0348 0.0296 0.0262 0.0328 00266 0.0412 00155  0.0517"  +25.48%

HR@40 0.1082 0.1136 0.1161 01090 0.1235 0.1115 0.0998 0.1128  0.1055 0.1364  0.0631  0.1556*  +14.07%

NDCG@40 0.0377 0.0403 0.0408 0.0372 0.0434 0.0376 0.0340 0.0405  0.0345 0.0501 00201  0.0603"  +20.35%

non-linear activation components in vanilla GCN to simplify the
model structure. Following previous works [2, 3, 57], we merge all
interactions of both domains as one domain to train them.
Cross-domain methods. We also compare MGCCDR with the
following cross-domain methods: (1) CMF [35] enhances traditional
matrix factorization by jointly factorizing interaction matrices from
multiple domains. (2) CoNet [18] facilitates cross-domain knowl-
edge transfer by introducing cross-connection units within MLPs.
(3) EMCDR [28] addresses the cross-domain cold-start problem
by learning a mapping function to align user embeddings across
domains. (4) DCDCSR [59] combines MF and DNN to map user
and item latent factors across domains for cross-system recommen-
dations. (5) DTCDR [58] leverages multi-task learning with an
adaptable embedding-sharing strategy to improve cross-domain
user and item representations. (6) BITGCF [23] integrates graph
collaborative filtering with bidirectional knowledge transfer to en-
hance recommendations across both domains. (7) DisenCDR [4]
disentangles user representations into domain-shared and domain-
specific components, transferring only the shared features.

5.1.4 Implementation Details. We implement all baseline methods
using the RecBole [55, 56] library, except for DisenCDR, which
is directly implemented using the released codes by the authors.
To ensure a fair comparison, we set the embedding size of all
methods to 64 and use a batch size of 2048. We optimize all these
methods with Adam optimizer and carefully tune the learning
rate among {le-3, 5e-3, le—4, 5e—4, le-5}, the weight decay among
{1e-5,1e-6, 1e-7}, as well as the layer number I among {1, 2, 3}.
We set the similarity threshold ¢ to 0.6, 0.5, and 0.4 for the three
cross-domain recommendation scenarios, and the value of K to 25.
All experiments are conducted on NVIDIA Tesla V100 32G GPUs.
Our code is available at https://github.com/quchangle1/MGCCDR.
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5.2 Experimental Results

We compare our proposed MGCCDR with the aforementioned base-
lines on Commercial and Douban datasets, as shown in Table 2.
From the experimental results, we have the following observations:

o Firstly, compared to BPRMF and NeuMF, both NGCF and Light-
GCN achieve better results. This demonstrates that GNN-based
methods, by incorporating higher-order neighborhood informa-
tion, are more effective at capturing collaborative filtering signals,
thereby learning improved user and streamer representations.

e Secondly, compared to single-domain recommendation meth-
ods, cross-domain methods achieve better results. This indicates
the effectiveness of information transfer across domains, as data
from the source domain can also reflect user preferences, helping
to more accurately capture their preferences in the target domain.

o Nevertheless, it is noteworthy that not all cross-domain meth-
ods demonstrate superior performance compared to single-domain
methods. This suggests that the mere amalgamation of user pref-
erences from both the source and target domains may not only be
ineffective in improving performance but may also lead to negative
transfer. Therefore, designing effective strategies for information
transfer and fusion is crucial for cross-domain recommendation.

o Finally, compared to all baseline methods, MGCCDR achieves
the best results across three cross-domain scenarios, significantly
surpassing SOTA methods. This demonstrates the effectiveness of
MGCCDR, which can be attributed to its capacity for multi-graph
learning by uncovering relationships between non-overlapping
items and the implementation of an effective fusion approach.
In this way, MGCCDR effectively captures valuable information
from source domain, target domain, and cross-domain interactions,
thereby facilitating information transfer and fusion, which ulti-
mately enhances the representations of both users and streamers.


https://github.com/quchangle1/MGCCDR

SIGIR °25, July 13-18, 2025, Padua, Italy

Table 3: Ablation study of the proposed MGCCDR on three
cross-domain recommendation scenarios. “w/o” represents
“without”. AMF is short for Attention-Guided Multi-Graph
Fusion. CL is short for Contrastive Loss.

Commerical Douban
Methods Video — Live Movie — Book Movie — Music
H@20 N@20 H@20 N@20 H@20 N@20
MGCCDR 0.1486 0.0640 0.1246 0.0563 0.1138 0.0517
w/o AMF 0.1159 0.0489 0.0966 0.0417 0.0733 0.0301
w/o Noise  0.1269 0.0537 0.1217 0.0553 0.1113 0.0515
w/o CL 0.0782 0.0322 0.0390 0.0168 0.0377 0.0153
0.155 — e .072 0.1 — — 0.060 0.122 — e .060
0.145 0.066 0.118 0.052 0.108 0.052
% 0.135 0,0()0% é 0.106 0.044 é g) 0.094 0.044§
&~ Q = Q & Q
T 0.125 0.054 g T 0.094 0.036 2 T 0.080 0.036 2
0.115 0.048 0.082 0.036 0.066 0.028

0.105 0.0 0.030 0.052 .020

MGCCDRWG US wia UV wio SV
(a) Video — Live.

MGCCDRwlo US wlo UV wio SV

(b) Movie — Book.

MGCCDRwi US o UV
(c) Movie — Music.

WSV

Figure 4: Ablation study on the impact of each graph in MGC-
CDR framework on three cross-domain recommendation
scenarios. SV, UV, and US represent the cross-domain graph,
source domain graph, and target domain graph, respectively.

5.3 Ablation Study.

We conduct ablation studies by systematically removing each com-
ponent at a time from MGCCDR. The results presented in Table 3
highlight the significance of each element:

w/o AMF refers to a variant that performs multi-graph represen-
tation fusion using a straightforward, uniform-weighted strategy.
This substitution leads to a notable decline in performance, primar-
ily due to the misalignment of user interests across domains, as
well as the differential contributions of each graph to the overall
recommendation task. It can be intuitively understood that the
graph constructed from user interactions within the target domain
is characterized by reduced noise and assumes a more pivotal role
in the final recommendation process. This observation validates
the effectiveness of our proposed AMF, which leverages the target
domain graph as a key to calculate attention probabilities, thereby
employing them as weights for more effective fusion.

w/o Noise is a variant that removes the noise-based data aug-
mentation component. This omission also results in a noticeable
performance drop, indicating that the incorporation of noise for
data augmentation effectively mitigates the issue of representation
degradation, particularly for low-degree nodes, thereby enabling
the model to learn more robust and informative representations. Ad-
ditionally, it is noted that the extent of performance decline varies
across different datasets. In the Douban dataset, the performance
drop is relatively minor, whereas the decline is much more pro-
nounced in the commercial dataset. This suggests that commercial
datasets are more sensitive to noise-based augmentation and bene-
fit more from it, likely due to their diverse user behavior and sparse
interaction patterns. Thus, a higher ratio of noise injection might
be required to enhance representation learning in such scenarios.

2066

Changle Qu, Ligin Zhao, Yanan Niu, Xiao Zhang, and Jun Xu

w/o CL represents the variant where the model is optimized
solely with BPR loss, without the joint optimization of contrastive
loss and BPR loss. The removal of contrastive loss significantly
diminishes performance, demonstrating the necessity of incorpo-
rating contrastive learning to enhance representation learning.
Moreover, our analysis reveals that the performance drop is most
pronounced in the two cross-domain scenarios within the Douban
dataset, indicating that the importance of contrastive learning varies
across different datasets. This observation implies that contrastive
learning is particularly vital in datasets characterized by more ex-
tensive user-item interactions in the target domain.

Impact of Each Graph in MGCCDR. In addition to the above
ablation studies, to investigate the impact of each graph within
our multi-graph representation learning framework, we compare
MGCCDR with its variants where each graph was individually
removed: w/o SV, w/o UV, and w/o US. As shown in Figure 4, the
performance drops in all cases, indicating the essential role of each
graph in facilitating effective cross-domain information transfer.
Notably, the removal of the U-V and S-V graphs results in minor
performance degradation, whereas the exclusion of the U-S graph
leads to a substantial decline in performance. This observation
emphasizes the significance of the U-S graph and further validates
our decision to utilize the representations obtained from the US
graph as the key in the AMF mechanism.

5.4 Further Analysis

In this section, we conduct more detailed experiments to investigate
the effectiveness of MGCCDR, providing an in-depth analysis of
how and why MGCCDR achieves state-of-the-art performance.

5.4.1 S-V Graph and Cross-Domain Interest Transfer Analysis. The
proposed model, MGCCDR, distinguishes itself from other cross-
domain methodologies by establishing connections between non-
overlapping items across the source and target domains, thereby
constructing corresponding graphs to facilitate information transfer.
To investigate the underlying factors contributing to the superior
performance of MGCCDR, we calculate the proportion of instances
in which the S-V graph aids in capturing user cross-domain interest
transfer. Specifically, we compute the proportion of users within
the test set who have viewed short videos related to a particular
streamer prior to interacting with that streamer. The proportions
for the three cross-domain scenarios are 15.2%, 32.32%, and 35%,
respectively. These results suggest that the S-V graph can, to some
extent, assist in identifying user cross-domain interest transfer.
Furthermore, we note that the proportion in the Douban dataset
exceeds that of the commercial dataset, which explains why MGC-
CDR achieves a greater performance improvement on the Douban
dataset compared to the commercial dataset.

5.4.2  Performance Comparison w.r.t Different Data Sparsity. To as-
sess the efficacy of our model in addressing the issue of data sparsity
within the target domain, we categorize the test users into four
groups based on sparsity degrees, i.e., the number of interactions in
the target domain, and then analyze the performance of the model
across these groups. The experimental results are presented in Fig-
ure 5, where it is evident that MGCCDR consistently surpasses
the most robust baseline, BiTGCF, across all groups. This finding
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Figure 5: Performance comparison regarding different level of data sparsity on three cross-domain recommendation scenarios.
The X-axis represents grouping by user interactions from low to high, which are G1, G2, G3, and G4, respectively.
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Figure 6: Hyper-parameter analysis w.r.t. A, I, 7 on three cross-
domain recommendation scenarios.

underscores the robustness of MGCCDR and its ability to adapt
effectively to a range of scenarios. Furthermore, we observe that
both BiTGCF and MGCCDR perform even better in groups with
sparse interactions compared to those with abundant interactions.
This phenomenon may be attributed to differences in the amount of
source-domain data or the challenge of capturing users’ recent in-
terests when their preferences are highly diverse. In such instances,
GNN-based methods that do not account for interaction sequences
tend to encounter difficulties.

5.4.3 Hyper-parameter Analysis. We further conduct experiment to
investigate several key hyper-parameters introduced in MGCCDR.
Impact of the coefficient 1. We change the coefficient of con-
trastive loss A from 0.02 to 0.1 and present the results in Figure 6.
The results indicate a significant improvement in performance as
the parameter A is increased from 0.02 to 0.05, indicating that con-
trastive learning helps to learn better representations. However,
further increasing A from 0.05 to 0.1 yields varying trends across
datasets—performance decreases, first drops and then rises, or re-
mains stable. This is likely because an extremely large coeflicient
may disrupt the BPR loss, leading to performance degradation.
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Impact of the layer number I. We evaluate MGCCDR with dif-
ferent layer numbers I = 1, 2, and 3. The results presented in Figure 6
show that the performance of MGCCDR improves progressively
with an increase in I, which suggests that MGCCDR effectively
mitigates the over-smoothing problem commonly associated with
excessive layers in graph neural networks by introducing noise for
data augmentation. Consequently, MGCCDR is capable of captur-
ing deeper neighbor information and ultimately achieving superior
representations of users and streamers.

Impact of the temperature 7. We vary the temperature 7 from
0.05 to 0.25 and present the results in Figure 6. The results indicate
that MGCCDR is highly sensitive to the 7, with notable fluctuations
in performance corresponding to different values of 7. Specifically,
as 7 is increased from 0.05 to 0.15, performance improves because a
very small 7 makes contrastive learning overly focused on optimiz-
ing hard negatives. Conversely, further increasing 7 from 0.15 to
0.25 leads to a performance drop, as an excessively large 7 may fail
to distinguish hard negatives from other negative samples. Thus,
selecting an appropriate 7 is crucial for contrastive learning.

6 Conclusion

We propose MGCCDR, a novel cross-domain live streaming recom-
mendation method that bridges short videos and streamers through
multi-graph contrastive learning. Unlike previous works that trans-
fer cross-domain information through overlapping users or items,
we emphasize the strong ties between non-overlapping short videos
and streamers for cross-domain knowledge transfer. Specifically,
MGCCDR first leverages multi-graph learning to capture represen-
tations from the source domain, target domain, and cross-domain
separately. Subsequently, we apply attention-based aggregation to
extract useful information from different graphs, facilitating the
transfer and integration of information across domains. Extensive
experimental results demonstrate the effectiveness of MGCCDR.
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