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Abstract

Retrieval-Augmented Generation (RAG) systems for Large Lan-
guage Models (LLMs) have shown promise in knowledge-intensive
tasks, yet their reasoning capabilities, particularly for complex
multi-step reasoning, remain limited. Although recent approaches
have explored integrating RAG with chain-of-thought reasoning or
incorporating test-time search with process reward model (PRM),
these methods face several untrustworthy challenges, including
lack of explanations, bias in PRM training data, early-step bias in
PRM scores, and ignoring post-training that fails to fully optimize
reasoning potential. To address these issues, we propose Retrieval-
Augmented Reasoning through Trustworthy Process Rewarding
(ReARTeR), a framework that enhances RAG systems’ reasoning
capabilities through both post-training and test-time scaling. At
test time, ReARTeR introduces Trustworthy Process Rewarding via
a Process Reward Model for accurate scalar scoring and a Process
Explanation Model (PEM) for generating natural language explana-
tions, enabling step refinement. During post-training, we leverage
Monte Carlo Tree Search guided by Trustworthy Process Reward-
ing to collect high-quality step-level preference data, which is used
to optimize the model through Iterative Preference Optimization.
ReARTeR tackles three key challenges: (1) misalignment between
PRM and PEM, addressed through off-policy preference learning;
(2) bias in PRM training data, mitigated by a balanced annotation
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method and incorporating stronger annotations for difficult ex-
amples; and (3) early-step bias in PRM, resolved via a temporal-
difference-based look-ahead search strategy. Experimental results
on multi-step reasoning benchmarks demonstrate that ReARTeR
significantly improves reasoning performance, highlighting its po-
tential to advance the reasoning capability of RAG systems.
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1 Introduction

Retrieval-augmented generation (RAG) for Large Language Models
(LLMs) is widely utilized to address knowledge-intensive tasks,
typically comprising a generator (LLM) and a retriever (for external
knowledge retrieval) [6, 11, 16, 50]. Though studies have explored
integrating RAG with chain-of-thought (CoT) reasoning [42, 52],
complex multi-step reasoning tasks remain challenging even for
the most advanced RAG systems.

Recently, Process Reward Models (PRMs) have been introduced
to enhance the reasoning capability of RAG systems through test-
time scaling [3, 18], where PRM assigns a score to each step in the
reasoning process, providing more fine-grained feedback [20]. How-
ever, these methods often face untrustworthy challenges: C1: Lack
of Explanations: Existing PRMs often generate unexplainable
scalar scores and cannot incorporate natural language critiques,
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Question: What is the capital value of the company Elon Musk found in 1999?
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Musk, ...

Generator

\\ Thought: Elon Musk founded X.com in 1999

\
") Refine Reasoning step _ !
/" using Explanation from | PEN |
0§@7 vsing Explanat ;
P

i

((Gmestor Y L o bemaien e
Query: What is the current name of X.com?
Search: Yes.

0.5 () Question Decompostion Errors}
1 Retrieval Errors? !
Answer Generation Errors?
,,,,,,,,,,,,,,,,,,

Retrieved Document: X.com was rebranded as | /7T TIT AL AST T T T
PayPal after merging with Confinity in 2000 ......
Generator < Thought how to utilize the retrieved document |

\ Thought: The current name of X.com is PayPal ......

Figure 1: An example of how RARTPR tackles complex multi-
step questions. The right part highlights test-time search
with PRM and refinement via PEM explanations, while the
left part details the reasoning step, including sub-query, adap-
tive retrieval, and reasoning thought.

which limits interpretability and hinders their effectiveness in en-
hancing refinement during test-time reasoning [22, 45]; C2: Bias
in PRM training data: Traditional Monte Carlo methods for
collecting Process Supervision Datasets often result in a distri-
butional bias, where some questions receive disproportionately
high scores [18, 45, 47]. Consequently, the PRM struggles to iden-
tify erroneous steps and fails to provide meaningful feedback on
difficult examples; C3: Early-Step Bias in PRM: PRMs exhibit
reduced accuracy in predicting rewards for earlier reasoning steps
compared to those closer to the reasoning endpoint, due to the
increased randomness and uncertainty in earlier steps; C4: Lack of
Reasoning Optimization: Additionally, these approaches rely on
off-the-shelf LLMs as generators without incorporating reasoning-
specific optimization during the post-training phase [23, 49, 55].

To address the above challenges and improve the reasoning capa-
bilities of RAG systems, we explore enhancing Retrieval-Augmented
Reasoning through Trustworthy Process Rewarding (ReARTeR)
in both test-time and post-training scaling. Specifically, as shown
in Figure 1, the testing phase is guided by the Trustworthy Process
Rewarding which is implemented through two models: (1) a Process
Reward Model (PRM), which provides scalar scores for reasoning
path selection; and (2) a Process Explanation Model (PEM), which
generates natural language explanations for the process reward
model’s scores, facilitating refinement of steps with lower scores
(C1). During the post-training phase, we introduce step-level
offline reinforcement fine-tuning to enhance the reasoning capabil-
ities of the RAG system (C4). Specifically, recognizing the dynamic
interaction between the generator and retriever in RAG, on each
iteration we employ Monte Carlo Tree Search (MCTS) [2] guided
by Trustworthy Process Rewarding to generate high-quality, step-
level preference data. This data is subsequently utilized to optimize
the model, resulting in a substantial improvement in the system’s
reasoning performance.

As the core component of ReARTeR, the Trustworthy Process
Rewarding solving the following challenges: (1) Misalignment
between the PEM and PRM: Off-the-shelf LLMs used as PEM
often generate explanations that are not aligned with the PRM’s
scores, hindering the RAG system’s ability to refine outputs based
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on external feedback. To address this issue, we propose aligning
the PEM with the PRM through Off-policy Preference Learning,
which leverages preference labels derived from PRM scores be-
fore and after the RAG system refines the reasoning step based on
PEM explanations. If the explanation improves the PRM score, it is
treated as a positive example; otherwise, it is treated as a negative
example; (2) Bias in PRM training data: To mitigate this (C2),
we leverage OmegaPRM [22], which emphasizes identifying errors
in reasoning steps and balances positive and negative examples.
For challenging samples, we incorporate annotations from stronger
generators or human experts to provide accurate reasoning steps,
thereby enhancing the PRM’s ability to discern correct reasoning
paths in difficult scenarios; (3) Early-Step Bias in PRM: To resolve
this (C3), we propose a temporal-difference (TD) based look-ahead
search strategy (as shown in Figure 1), where simulated future
reasoning steps are used to compute expected rewards, enabling
updates to the current step’s reward estimation. Compared to pre-
vious approaches [35], this method effectively achieves a balance
between bias and variance.

We summarize the major contributions of this paper as follows:

(1) We pioneer the exploration of combining post-training and
test-time scaling to enhance the multi-step reasoning capabilities
of RAG systems. By integrating Trustworthy Process Rewarding,
ReARTeR improves the quality of reasoning paths explored during
the post-training phase, as well as the accuracy of PRM and the
refinement ability of RAG systems during the test phase.

(2) We tackle key challenges in implementing Trustworthy Pro-
cess Rewarding by aligning the PEM and PRM through off-policy
preference learning, balancing the training data of PRM, and em-
ploying a TD-based look-ahead search strategy to reduce Early-Step
Bias of PRM.

(3) Experimental results demonstrate that ReARTeR achieves
significant improvements on multiple public multi-step reasoning
RAG datasets, validating the feasibility of enhancing RAG systems’
reasoning capabilities through post-training and inference-time
scaling with ReARTeR.

2 Related Work

2.1 Learning and Search for Reasoning

Advanced reasoning models often follow the learning and search
principle [38] to enhance reasoning capabilities through post-training
and test-time scaling strategies.

Post-training Scaling. ReFT [23] employs reinforcement fine-
tuning, where LLMs explore reasoning paths and optimize based on
feedback, using PPO for training. While PPO achieves better results
than DPO due to interactive updates, it suffers from instability. Iter-
ative training methods [34] offer more stability and efficiency, with
Iterative Preference Optimization [27] improving reasoning by con-
structing preference CoT data and using iterative DPO. However,
these approaches face challenges in collecting step-level reasoning
preferences and rely on difficult-to-collect pairwise data. To address
these limitations, we propose using MCTS to collect step-level pref-
erence data and employ KTO [5] for stable optimization, leveraging
process supervision to enhance reasoning.

Test-time Scaling. Test-time scaling typically relies on (1) Self-
Refinement, where models iteratively improve outputs [24], but
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Figure 3: Post-Training Scaling of ReARTeR, which includes Warm-Up and Step-Level Offline Reinforcement Learning Stages.

this approach is limited by the lack of external feedback [10]; and
(2) Search with Verifier, which generates multiple outputs and
selects the best using a verifier, such as a Process Reward Model
(PRM). While PRM scores have been used as feedback for Self-
Refinement [48], they often fail to guide effective improvements in
RAG scenarios. To overcome this, we combine PRM-aligned PEM
explanations with step-level Self-Refinement for better reasoning
performance. PRMs are critical during search, but their training
data collection significantly affects performance. Existing meth-
ods [3, 18] use Monte Carlo methods to generate process supervi-
sion signals, discarding reasoning steps after rollouts, resulting in
inefficiency. OmegaPRM [22] improves this by storing rollouts for
reuse and using binary search to identify errors, balancing positive
and negative examples. Building on OmegaPRM, we incorporate
stronger generators for difficult problems and propose a TD-based

look-ahead search strategy to enhance PRM accuracy for shallow
reasoning nodes, achieving trustworthy process rewards.

2.2 Retrieval-Augmented Reasoning

Retrieval-augmented generation for Large Language Models is
widely used for knowledge-intensive tasks [6, 11, 16, 32, 36, 37, 50],
but remains limited in handling complex multi-step reasoning. Fac-
ing this challenge, existing works integrate RAG with CoT reason-
ing [42, 52]. For instance, Self-Ask [28] uses CoT to explicitly reason
through follow-up questions before addressing the query, while
IRCoT [42] interleaves retrieval with reasoning steps to iteratively
refine reasoning using CoT and retrieved results. Recently, Yue et al.
[53] proposed an iterative demonstration-based RAG method that
performs multiple iterations to achieve test-time scaling. However,
these approaches primarily leverage the long context capabilities of
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LLMs and directly combine CoT with retrieval without effectively
utilizing learning and search to enhance the reasoning capabilities
of RAG systems. CR-Planner [18] attempts to directly use Process
Reward Models to assist search and improve the reasoning capa-
bility of RAG systems through test-time scaling. However, it fails
to address the untrustworthy challenges inherent in PRMs. We
pioneer the use of trustworthy process rewarding to guide both
post-training scaling and test-time scaling, significantly enhancing
the multi-step reasoning capabilities of RAG systems.

3 Method

3.1 Overview

In this section, we present the overview of ReARTeR, which en-
hances Retrieval-Augmented Reasoning through Trustworthy Pro-
cess Rewarding in both test-time and post-training scaling. The
policy model 7y of ReARTeR includes a generator G, which can
either be an off-the-shelf LLM such as the proprietary model GPT4-
o [1] or an open-source model such as LLaMA3 [4] which can be
post-trained for enhancing reasoning, and a retriever E. Addition-
ally, ReARTeR incorporates a Process Reward Model (PRM) R and
a Process Explanation Model (PEM) C.

Given a complex multi-step question g and a retrieval corpus D,
ReARTeR generates a reasoning process (CoT) e before producing
an answer a to q. The CoT of ReARTeR consists of a sequence of
reasoning steps:
< eT] > (l)
where T represents the maximum length of the reasoning steps.

As illustrated in Figure 2, each reasoning step e; comprises a sub-
query q;, a retrieval indicator j;, external knowledge d; retrieved
by E from the corpus D if j; = “Yes”, and a thought r; generated
by the generator based on the context:

e=[ege..

er = [qe, je. dr.1e]. 2
At timestep t, the reasoning step e; is sampled from the pol-
icy mg(st), where the state s; represents the combination of the
question g and the sequence of reasoning steps up to e;—_1.
At each sampling process of e;, we first sample M different
reasoning steps:

a

1.2
Er=lesef,....€;

Subsequently, the PRM R predicts scores to the reasoning steps in
8[‘:
s € (0, l).

The reasoning step with the highest reward score is selected:

rt = R(s¢, er),

ér = arg max R(ss,ef"),
m
ee&,

if 7+ > 7, then e; « é; is directly added to s;. Otherwise, a refine-
ment phase is initiated, where the process critic model C provides
an explanation c; for the low process reward score of é;:

cr = C(st, €1, Fr).
The policy model then utilizes external feedback to correct é;:
er = mg(stlér, ct, Fr).

By employing this refinement phase, ReARTeR significantly im-
proves the quality of reasoning steps sampled during beam search.
Compared to the reasoning steps generated by MCTS [30], our
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approach strikes a better balance between accuracy and computa-
tional efficiency.
Finally, e; is added to the reasoning process:

st+1 = [se.e].

Ultimately, the policy 7y generates the final answer a based on
the question g and the complete reasoning process e.

In the following sections, we will introduce the implementation
of the PRM (§ 3.2), including its training process and the method
for reducing early-step bias for PRM. Additionally, we describe the
training process of the PEM (§ 3.4) and the post-training scaling
strategy for ReARTeR (§ 3.5).

3.2 Process Reward Model Training

The Process Reward Model of ReARTeR is trained to truthfully
predict the process reward score of each intermediate step e;.
Training data collection: Considering the training data re-
quires process supervision labels which are hard to annotate, to
reduce human annotation costs, existing methods propose an au-
tomatic annotation approach using the Monte Carlo method to
generate process supervision signals [3, 18]. For each step of a CoT
e, multiple complete reasoning paths and final answers are obtained
via rollouts. By evaluating the accuracy of the final answers, process
supervision signals for the current reasoning step can be derived.
However, as shown in Figure 2(a), we observed that this method
often introduces distributional bias, where most questions receive
disproportionately high scores. Additionally, for difficult questions,
the sampled process supervision signals frequently result in a value
of zero, leaving the PRM unable to identify erroneous steps or
provide meaningful feedback on challenging examples.
To address this issue, as illustrated in Figure 2(a), we first perform
N rollouts for the question g to obtain {(q1, €1, a1), . . ., (gn, €N, an) }-
The accuracy of the final answers across all rollouts is used to com-
pute the Monte Carlo (MC) score:
ZnNzl correct(ap)
Sl ©
For questions where 0 < MC < 1, we employ the OmegaPRM [22]
annotation scheme, which efficiently identifies the first error in e
using binary search and balances positive and negative examples,
thereby ensuring both efficiency and quality. For questions where
MC = 0, we switch to a stronger generator for reasoning. Questions
with final MC = 1 or MC = 0 (even when using a stronger gener-
ator) are discarded, as they lack discriminative value and do not
enable the model to identify correct or incorrect reasoning steps
for specific questions.

For the selected questions, following the above process, we
M,
i=1’

MC =

construct the process supervision data Dprm = {(s;, e;, MC;)}
where M, represents the number of samples in Dprm, and MC; is
the MC score computed for [s;, e;] after N rollouts using Eq. 3.
PRM Training: For each process supervision data (s;, e;, MC;)
in Dprm, we define binary labels y; = 1 if MC; > 0.5, otherwise
y; = 0. We utilize the Cross-Entropy (CE) loss to train the PRM:

Mr
1
Lo == > [110gR(si. 1) + (1= ) log(1 = R(sp i),

i=1

where R denotes the process reward model.
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3.3 Reducing Early-Step Bias for PRM

At the inference stage of PRM, we observe that PRMs exhibit re-
duced accuracy in predicting rewards for earlier reasoning steps
(shallow nodes) compared to those closer to the reasoning end-point
(deep nodes), as shown in Figure 2(b). This phenomenon, attributed
to the increased randomness and uncertainty in earlier steps, is
referred to as early-step bias.

Some existing works adopt a Lookahead Search strategy [35],
which performs a simulation by rolling out up to H steps further,
stopping early if the solution end-point is reached. The PRM’s
score at the end of this rollout is then used to evaluate the current
step during beam search. While this approach mitigates bias, it
introduces significant variance [39]. To achieve a bias-variance
trade-off, inspired by Temporal Difference (TD) learning [40], we
propose a TD-based Lookahead Search to update the PRM scores
for shallow nodes:

re 1 +al,
where
Ap=(reer —re),
r: = R(ss, e), and « is the discount factor.

In our approach, the termination of the Lookahead Search simula-
tion is adaptively determined by whether A; falls below a threshold
B (indicating diminishing returns in further rollouts when reward
scores stabilize) or if the predefined step limit H is reached. This
adaptive simulation mechanism balances computational efficiency
and bias reduction, saving resources while maintaining perfor-
mance.

3.4 Process Explanation Model

In this section, we introduce the training procedure of the Process
Explanation Model. After training the PRM, the PRM can effec-
tively score the reasoning process; however, the PRM score is an
unexplainable scalar and cannot provide natural language critiques.
To address this limitation, we designed PEM, a generative model
specifically aimed at producing explanations for refinement.
However, directly using off-the-shelf LLMs as PEM often results
in explanations misaligned with the PRM’s scalar scores, hindering
the generator’s ability to refine reasoning steps based on external
feedback. To address this issue, as shown in Figure 2(c), we propose
aligning the PEM with the PRM through Off-policy Preference
Learning. This method uses the PRM as a verifier to provide feed-
back for the PEM-generated explanations, yielding preference data
Dpem. The PEM is then updated to align its explanations with
the PRM’s scoring, facilitating the generation of explanations that
enhance the policy model’s reasoning step through refinement.
Given the state s; and reasoning step etl, the process is as follows:
1. The PRM provides an initial score:

r! = R(st,e}),
and the PEM generates an explanation:
=C(st.e},1}).

2. Using external feedback, the policy model g (i.e., RAG) refines
the reasoning step:

ef =7 (st | etl,c;, rtl).
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3. The PRM re-evaluates the refined step:

rt2 = R(sy, e?),

If rZ > r}, then (s, e}, c;) is labeled as a positive example with

preference label p; = +1. Otherwise, it is labeled as a negative
example with p; = —1 (cases where r? = rt1 are discarded). The
collected PEM preference training dataset is denoted as:
M,
Dpem = {(st, e}, ct, rtl, r?,pt) } oy
where M, is the size of Dpem.

During the training phase, since the collected preference data is
binary, we employ the KTO Loss [5] to optimize the PEM. This loss
is designed for binary preference optimization and is robust to noise
in the data. The KTO Loss incorporates a hyperparameter Ay > 1
for negative examples, reflecting loss aversion. In our dataset, the
negative examples include the corresponding PRM scores r1 and ra,
which can be used to dynamically adjust Ay, reflecting the degree
of loss aversion. Instead of assigning a uniform Ay for all negative
examples as in the original KTO Loss, we introduce a dynamic Ay:

Au =2 -exp(r1 —r2),

where A¢ is the base value, which provides more accurate loss
aversion.

3.5 DPost-Training Scaling of ReARTeR

In this section, we introduce how ReARTeR enhances the reasoning
capabilities of RAG systems through post-training scaling. While
test-time scaling can improve the reasoning performance of RAG
systems to some extent, for certain weak open-source LLM-based
RAG systems 7", their inherent limitations in reasoning capabilities
prevent them from solving complex multi-hop questions solely
through test-time scaling. Inspired by [43, 49, 54], we propose a
step-level offline reinforcement fine-tuning approach to strengthen
the reasoning abilities of the RAG system. As illustrated at Figure 3
(the retriever is omitted for simplicity), this approach comprises
two stages: warm-up and step-level offline reinforcement learning.

Warm-Up Stage: In the warm-up stage, we utilize a strong
generator-based RAG system (7)) to generate a dataset containing
reasoning steps:

M,,
Dy = {(gi, ei, a1},
where e = [ej, ez,...,er] and e = [qy, ji, dp, 1t ]
During fine-tuning of the weak policy ﬁg" using Dy, the retriever-

generated content d; must be masked, as it is not produced by the
generator:

5

M~

e:|

Ly Z 1 Ork ¢ dt 105”9 (Otk | gi,0<z, 0Oy, <k)
k=1

I
—_
~
1l

1

where o, ;. denotes the k-th token in sequence e;, 0<; represents
all tokens generated before step ¢ (i.e., tokensin ey, ..., e;—1), and
04 <) denotes tokens from the first to the position (k — 1) within e;.
Step-Level Offline Reinforcement Learning: In the step-level
offline reinforcement learning stage, the policy model 7} iteratively
collects step-level preference data using MCTS and leverages this
data to improve its reasoning capability via KTO Loss. The updated
model is then used to collect new data for further policy updates.
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Data Collection: To ensure efficient data collection and balance
between positive and negative examples, we adopt the OmegaPRM-
based MCTS approach [22] introduced in § 3.2. During rollouts, the
generated nodes are scored using the PRM and PCM trained with
the strong generator 7[5. Reasoning steps with low reward scores
are refined to gather higher-quality data.

Iterative Updates: In the first iteration, the policy model is ini-
tialized as ﬂé"o, which is the model fine-tuned during the warm-up
stage. Using the collected preference data:

DY = {(s1, 1, MCi) Y™,

where MC; > 0.5 indicates desirable (positive) reasoning steps and
MC; < 0.5 indicates undesirable (negative) reasoning steps, Dy is

used to update né"o via KTO Loss [5] (with the retrieved document

d; in reasoning steps e; masked). This yields the updated model Jrewl.
o ,

0,1
preference data DY, which is then used to update )", to x’,. This

In subsequent iterations, )", is used as the policy model to generate

process is repeated for I iterations, progressively improving the
reasoning capability of né" . Compared to the PPO approach used
in ReFT [23], our method sacrifices some exploration but achieves
more stable updates. Finally, né"l represents the policy model after
post-training scaling of ReARTeR, which can be combined with
test-time scaling to further enhance the reasoning capabilities of
RAG systems.

4 Experiments

In this section, we empirically verify the effectiveness of ReARTeR
by addressing the following research questions:
RQ1: How does ReARTeR improve the reasoning capabilities of
RAG systems in both closed-source and open-source models?
RQ2: How do the components of ReARTeR affect test-time scaling?
RQ3: How does the number of iterations during the post-training
process of ReARTeR affect its performance?
RQ4: How effective is ReARTeR in aligning PEM and PRM?

The source code and detailed prompts have been shared at: https:
//github.com/Jeryi-Sun/ReARTeR.

4.1 Experimental Settings

4.1.1 Datasets. In this paper, we focus on leveraging ReARTeR to
address complex multi-step question-answering (QA) tasks. To this
end, we utilize five benchmark datasets: HotpotQA [51], 2WikiMul-
tiHopQA [8], Musique [41], Bamboogle [29], and StrategyQA [7].
Wikipedia passages serve as the retrieval corpus for all datasets [14].
Following the general experimental setup of RAG [12, 14, 15], we
sample 500 examples from the development sets of HotpotQA,
2WikiMultiHopQA, and Musique as test sets. For Bamboogle, which
has only 125 examples in its test set, we include all of them as the
test set. Since StrategyQA lacks dev or test sets, we sample 500
examples from its training set for testing.

For the training data used in PRM and PCM, and for the post-
training of ReARTeR, we sample 200 examples from the training
sets of each dataset. Using the PRM training data construction strat-
egy described in § 3.2, we generate a total of M, = 167, 716 training
examples. Similarly, using the PCM training data construction strat-
egy described in § 3.4, we generate M, = 769 training examples.
For the post-training phase, the warm-up stage uses M,, = 548
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examples, and the preference data collected during each iteration
averages M, = 27,822 examples.

4.1.2  Evaluation Metrics. During the evaluation phase, we ob-
served that the outputs of reasoning-optimized RAG systems are
typically longer compared to those generated by traditional RAG
systems. Specifically, while the model accurately answers the ques-
tion, it often includes extensive supplementary information. This
renders exact-match metrics such as EM unsuitable for our evalua-
tion tasks. Therefore, we adopt accuracy (ACCR) as our primary
evaluation metric, which determines whether the golden answer is
contained within the predicted answer generated by the RAG sys-
tem. To further refine our evaluation, we employ an LLM-as-Judge
approach [17], using GPT4-o [1] as the evaluation model to assess
whether the predicted answer is correct. This accuracy metric is
referred to as ACCy. The evaluation prompt is as follows:

Given a Question and its Golden Answer, verify whether
the Predicted Answer is correct. The prediction is correct
if it fully aligns with the meaning and key information of
the Golden Answer. Respond with True if the prediction is
correct and False otherwise.

Question: { }

Golden Answer: {}

Predicted Answer: { }

Further manual verification confirms the reliability of the ACCp
metric.

During the Process Reward Model Training and Post-Training
stages, we use ACCp to determine correctness in Eq. 3, which is
more efficient and better suited for collecting large amounts of
training data as reward feedback.

4.1.3 Backbone and Baseline Models. To verify the effectiveness
of ReARTeR in enhancing the reasoning capabilities of RAG sys-
tems, we selected different generators for evaluation. These in-
clude the proprietary GPT4o-mini [1] for test-time scaling and
the open-source LLaMA3.1-8B [4] (Llama-3.1-8B-Instruct) for both
post-training (warm-up from GPT40-mini) and test-time scaling.
We compared ReARTeR against several baselines: 1. Naive Gen-
eration: Directly generating answers using the generator without
retrieval. 2. Standard RAG: Traditional retrieval-augmented gen-
eration systems. Given that ReARTeR employs multi-path reasoning
with CoT processes, which include adaptive retrieval and final answer
generation summarized from CoTs, we further compared it with: 3.
Branching Methods (Branching): These execute multiple rea-
soning paths in parallel for a single query, including SuRe [16] and
REPLUG [33]. 4. Summarization-based Methods (Summary):
LongLLMLingua [13], RECOMP-abstractive [50], and Selective-
Context [19]. 5. Adaptive Retrieval Methods (AR): SKR [46]
which adaptively retrieve based on generator’s knowledge. 6. RAG-
CoT Methods (RAG-CoT): These integrate RAG with CoT rea-
soning, including Self-Ask [28], Iter-RetGen [31], and IRCoT [42].
7. Test-time Scaling Methods (Test-Time): CR-Planner [18], a
recently proposed approach for scaling RAG using PRM at test time.
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Additionally, we compared ReARTeR with LLaMA3.1-8B as the
backbone against recent Open-source Reasoning Models (Rea-
soning), such as Marco-o1-Qwen-7B [56] and Skywork-o1-Llama-
3.1-8B [25], which have been extensively optimized for reasoning
through large-scale training in general domains and test-time scal-
ing, both integrated into standard RAG configurations.

4.1.4 Implementation Details. The implementation of ReARTeR
and the baseline models is based on the open-source RAG frame-
work FlashRAG [14]. The number of samples M generated per
reasoning step for ReARTeR at test-time is set to 3, balancing ac-
curacy and efficiency. The maximum number of reasoning steps T
for Chain-of-Thought (CoT) reasoning is set to 5, where shallow
nodes are defined as the first 3 reasoning steps and deep nodes
are the remaining steps. To ensure a fair comparison, the setup
of CR-Planner is consistent with that of ReARTeR. The threshold
7 for initiating the refinement phase is set to 0.5. For the looka-
head search, the predefined step limit H and stopping threshold
P are set to 3 and 0.05, respectively. The number N in PRM train-
ing data collection is set to 5. To ensure fairness, we configure the
retrieval settings as follows: for iterative retrieval baselines and
ReARTeR, the number of external documents retrieved per step is
set to Top 1; for single-retrieval baselines, the number of retrieved
documents is set to 3. The stronger generator used for collecting
PRM training data is GPT4-o. The retriever utilized in all experi-
ments is e5-base-v2 [44]. For the PRM, following [18] we fine-tune
skywork-reward-1lama-3.1-8b-v0.2 [21] with LoRA [9], which is
fine-tuned from the general-purpose LLM and excels at scoring
in complex scenarios. For the PEM, we fine-tune the Llama-3.2-
3B-Instruct [4], which is efficient and effective in generating the
explanation for the policy model to refine error reasoning steps. We
run all the experiments on machines equipped with NVIDIA A6000
GPUs and 52-core Intel(R) Xeon(R) Gold 6230R CPUs at 2.10GHz.

4.2 ROQ1: Overall Performance

Table 1 presents the experimental results of applying ReARTeR to
RAG systems with two different generators: the proprietary GPT4o-
mini and the open-source LLaMA3.1-8B, across five multi-step QA
datasets. For the RAG system with GPT40-mini as the generator,
where fine-tuning is not feasible, we applied only the Test-Time
Scaling component of ReARTeR. Based on the results in Table 1,
we observed the following key findings: (1) Compared to baseline
models, ReARTeR significantly improves the reasoning capabili-
ties of RAG systems in both closed-source and open-source setups,
demonstrating the generalizability of the ReARTeR framework in
enhancing RAG systems’ reasoning abilities. (2) ReARTeR outper-
forms Branching methods, indicating that multi-path exploration
through CoT reasoning is better suited for complex multi-step QA
tasks than probability integration in REPLUG or Best-of-K strate-
gies in SuRe. (3) ReARTeR surpasses summarization-based methods,
suggesting that conducting CoT reasoning followed by summariza-
tion is superior to directly compressing and summarizing external
document knowledge for multi-step reasoning tasks. (4) ReARTeR
outperforms adaptive retrieval methods, showing that allowing the
generator to dynamically decide whether to retrieve in the CoT
process can further unlock the model’s reasoning potential and
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improve its ability to answer complex questions. (5) ReARTeR ex-
ceeds the performance of RAG-CoT methods, demonstrating that
our approach, which leverages Post-Training and Test-Time Scal-
ing, more effectively enhances reasoning capabilities compared
to directly combining RAG and CoT reasoning. (6) ReARTeR out-
performs CR-Planner, validating that our proposed Trustworthy
Process Rewarding mechanism produces superior reasoning paths
for RAG systems, thereby improving their ability to handle com-
plex multi-step reasoning problems. (7) ReARTeR surpasses models
extensively optimized for reasoning through large-scale training
on general domains and test-time scaling, such as Skywork-o1 and
Marco-ol. This result indicates that models optimized for general
tasks are less effective in RAG-specific reasoning scenarios com-
pared to our framework, further highlighting the effectiveness of
ReARTeR in enhancing the reasoning capabilities of RAG systems.

0.40 2WikiMultiHopQA 0.50 Bamboogle
0.38 0.48
036 ~0.46
@] ®)
&) &)
<034 <044
0.32 0.42
0-30 Iter-1 Iter-2  Tter-3 0-40 Iter-1 Iter-2  Tter-3
0.44 HotpotQA 026 Musique
0.42 0.25
0.40 0.24
J J
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0.22
0.36
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Iter-1 Iter-2  Tter-3 0-20 Tter-1 Tter-2  Tter-3

Figure 4: The impact of Post-Training Scaling iterations on
ReARTeR using LLaMA-3.1-8B as the generator.

4.3 RQ2: Ablation Study of ReARTeR

In this section, we conduct an ablation study to analyze the impact
of different components of ReARTeR on the test-time scaling per-
formance of RAG systems. Specifically, we evaluate the following
configurations: (1) w/o Refinement: Removing the refinement
phase to analyze its effect on the reasoning process of ReARTeR. (2)
w/o PEM: Replacing the Process Explanation Model (PEM) with
the process reward score directly provided by the PRM during the
refinement phase, to evaluate the importance of PEM-generated
explanations for refinement. (3) w/o TD-Lookahead: Removing
the TD-based lookahead search to validate its role in mitigating
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Table 1: Performance comparisons between ReARTeR and the baselines. The above table shows results with GPT4-0-mini as
the generator (Only Test-Time Scaling), while the below table uses LLaMA3.1-8B. The boldface indicates the best performance.

Types Models 2WikiMultiHopQA  Bamboogle HotpotQA Musique StrategyQA
ACCpg ACCp ACCg ACC;p ACCgp ACCp ACCr ACCr ACCr ACCL

i E;I:T;ij;n;  Naive Generation 0348 0346  0.240 0.280 0324 0404 0.134 0170 0724 0.724
Standard RAG 0.344 0.292 0.272  0.328 0.342 0.450  0.172 0.188 0.674 0.674

77777 . SuRe 0244 0264 0168 0208 0270 038 0128 0.146 0.550 0.576

Branching

REPLUG 0.296 0.254 0.224  0.256 0.350  0.428  0.132 0.138 0.654  0.654

~ LongLLMLingua 0324 0316 0248 0288 0358 0450 0.150 0.172 0722 0722
Summary RECOMP-abstractive  0.298 0.306 0.136  0.176 0.332 0.398  0.118 0.134  0.628  0.628
Selective-Context 0.350 0.290 0.240 0.288 0.366 0.442 0.152 0.172  0.688  0.688

“Adaptive  SKR 0364 0314 0248 0.288 0360 0454 0162 0.174 0712 0712

- SelfAsk 033 0478 0336 0416 0392 0462 0260 0270 0556 0556
RAG-CoT Iter-RetGen 0.326 0.270 0.232  0.256 0.374 0.456  0.178 0.188 0.686  0.686
IRCoT 0.492 0.114 0.272  0.184 0.434 0.308  0.192 0.214  0.406  0.406

“Test-Time  CR-Planner 0520 0478 0483 0524 0404 0416 0272 0262 0744 0744

"Ours  ReARTeR 0554 0534 0496 0.544 0.468 0.506 0296 0302 0.772 0.772
LLaMA3.1-8B Naive Generation 0.326 0.254 0.144 0.168 0.208 0.268 0.068  0.096 0.672  0.672
Standard RAG 0.336 0.212 0.168  0.216 0.334 0398 0.104 0.098 0.674 0.674

77777 . SuRe 0122 0262 0160 0.192 0266 0346 0.106 0.144 0478  0.498

Branching

REPLUG 0.334 0.204 0.168  0.232 0.290  0.348  0.078 0.090 0.654  0.654

~ LongLLMLingua 0304 0294 0168 0216 0314 0382 0.088 0.100 0584 0584
Summary RECOMP-abstractive  0.324 0.322 0.104  0.160 0.318 0.380 0.112 0.126  0.628  0.628
Selective-Context 0.266 0.204 0.144 0.200 0.296 0.358 0.092 0.104 0.690  0.690

“Adaptive SKR 033 0212 0176 0.208 0300 0372 0.100 0.112 0.662  0.662

- SelfAsk 0306 0322 0360 0432 0316 0408 0.222 0226 0.616 0616
RAG-CoT Iter-RetGen 0.310 0.224 0.144  0.176 0.302 0.362 0.084 0.084 0.642 0.642
IRCoT 0.338 0.312 0.120  0.104 0.210 0.146  0.060 0.042 0.242 0.242

“Test-Time  CR-Planer =~ 0420 0350 0304 0336 0332 0350 0.144 0.098 0.664 0.654

i ;(e;;or;i;g7 ~ Marco-ol 0442  0.184 0224 0200 0352 0348 0134 0104 0.654 0.504
Skywork-o1l 0.344 0.190 0.176 ~ 0.160  0.306  0.256  0.092  0.060 0.612  0.326

"Ours ~ ReARTeR 0470 0364 0438 0484 0424 0434 0244 0252 0.724 0.724

early-step bias in the PRM. (4) w/o PRM Data: Training the PRM
using data collected with traditional Monte Carlo methods instead
of the unbiased data collection strategy proposed in ReARTeR, to
analyze the quality of the PRM trained with our data collection
method. (5) w/o Beam Search: Disabling beam search by setting
M = 1, resulting in only a single reasoning path being sampled to
generate the CoT.

The experimental results, presented in Table 1, demonstrate that
removing any of these components negatively impacts the overall
performance of ReARTeR. This highlights the importance of each
component in enhancing the reasoning capabilities of the RAG sys-
tem. Moreover, these results validate that the unbiased PRM training
data collection strategy designed to address the untrustworthy chal-
lenges of process reward models enables the training of a more
reliable PRM, which provides accurate reward scores for reasoning
steps. Additionally, the combination of a more accurate PRM with
the TD-based lookahead search enhances the feedback provided
during the refinement stage. By leveraging explanations generated
by the PEM during the refinement phase, ReARTeR achieves better
reasoning step improvements compared to using PRM scores alone.
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4.4 RQ3: Post-training iterations analysis.

In this section, we analyze the impact of the number of iterations in
the Step-Level Offline Reinforcement Stage during the post-training
scaling of ReARTeR on the reasoning capabilities of RAG systems.
In this experiment, we used LLaMA-3.1-8B as the generator and
conducted three iterations of Offline Reinforcement, testing the
system on four multi-step reasoning datasets. The experimental
results in Figure 4 demonstrate that the performance of the RAG
system on multi-step reasoning datasets improves significantly as
the number of Offline Reinforcement iterations increases. Addi-
tionally, the results show that our algorithm achieves stable perfor-
mance improvements across iterations, validating that the proposed
Step-Level Offline Reinforcement method provides effective and
consistent updates. Due to resource constraints, we did not verify
the scalability of our approach on larger datasets or with additional
iterations. However, based on the current experimental results, we
observe a promising scaling property, suggesting the potential for
even greater improvements under resource-abundant conditions.



ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding

SIGIR ’25, July 13-18, 2025, Padua, Italy

Table 2: Ablation Study of ReARTeR across different generators and datasets.

Model Ablation 2WikiMultiHopQA  Bamboogle HotpotQA Musique
ACCpgr ACCp, ACCR ACCp ACCgr ACCp ACCgr ACCL
w/o Refinement 0.522 0.466 0474 0522 0424 0456 0.282  0.276
w/o PEM 0.532 0.484 0486 0532 0426 0462 0.284 0.286
GPT40-mini w/o TD-Lookahead 0.524 0.490 0.488 0540 0.458 0494 0.290 0.294
w/o Beam Search 0.526 0.492 0.482 0522 0.442 0474 0.278 0.272
w/o PRM Data 0.536 0.476 0474 0534 0464 0504 0.288 0.290
ReARTeR 0.554 0.534 0.496 0.544 0.468 0.506 0.296 0.302
w/o Refinement 0.444 0.334 0418 0.440 0.402 0424 0.230 0.238
w/o PEM 0.450 0.340 0420 0446 0406 0416 0.234 0.218
w/o TD-Lookahead  0.462 0.352 0428 0454 0414 0438 0.222 0.242
Llama-3.1-8B
w/0 Beam Search 0.452 0.346 0424 0448 0416 0420 0.236 0.246
w/o PRM Data 0.466 0.350 0416 0458 0.406 0400 0.238 0.232
ReARTeR 0.470 0.364 0.438 0.484 0.424 0.434 0.244 0.252
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Figure 5: The impact of aligning PEM and PRM on ReARTeR’s
overall performance with GPT4-0-mini as generator.

4.5 ROQ4: The effective of RARTPR in aligning
PEM and PRM.

To evaluate the effectiveness of the alignment strategy for PEM
and PRM proposed in RARTPR, we first calculated the improve-
ment rate of process reward scores for reasoning steps with low
initial scores after refinement using explanations generated by PEM,
both before and after alignment. As shown in Figure 5(a), before
aligning PEM with PRM (w/o PEM Align), the improvement rate
achieved using explanations from an off-the-shelf LLM-based PEM
was only around 50%. This result indicates that PEM struggles to
produce accurate explanations aligned with PRM scores, making
it difficult for the RAG system to leverage these explanations to
refine reasoning steps and improve PRM scores. In contrast, after
aligning PEM and PRM (w PEM Align), we observed a significant
increase in the improvement rate, validating the effectiveness of
the alignment strategy for enhancing the refinement process and
improving reasoning quality. Furthermore, as shown in Figure 5(b),
we directly compared the accuracy of RARTPR in solving com-
plex multi-hop queries before and after aligning PEM with PRM.
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The results demonstrate consistent improvements across multiple
datasets after alignment, further confirming the effectiveness of the
proposed alignment strategy for PEM and PRM in RARTPR.

5 Conclusion

We propose ReARTeR, a framework that enhances the multi-step
reasoning capabilities of RAG systems through both post-training
and test-time scaling. ReARTeR integrates Trustworthy Process
Rewarding, which combines a Process Reward Model for accurate
scoring and a Process Explanation Model for explanation-based
refinements. During post-training, step-level offline reinforcement
fine-tuning with MCTS generates high-quality preference data to
optimize the generator. ReARTeR addresses key reasoning chal-
lenges, including misalignment between PEM and PRM, bias in
PRM training data, and early-step bias in PRM scores, through
off-policy preference learning, balanced annotation strategies, and
a temporal-difference-based look-ahead search. Experiments on
multi-step reasoning benchmarks show that ReARTeR outperforms
existing methods, demonstrating its effectiveness in enhancing RAG
systems for knowledge-intensive tasks. Based on the reliable PRM
technique and the natural step-wise decomposition characteristic
of Deep (Re)search [26], we believe that ReARTeR will have broader
applications in future Deep (Re)search scenarios.
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