Check for
Updates

Test-Time Alignment with State Space Model for Tracking User
Interest Shifts in Sequential Recommendation

Changshuo Zhang
Gaoling School of Artificial
Intelligence, Renmin University of

Xiao Zhang®
Gaoling School of Artificial
Intelligence, Renmin University of

Teng Shi
Gaoling School of Artificial
Intelligence, Renmin University of

China China China

Beijing, China
lyingcs@ruc.edu.cn

Jun Xu
Gaoling School of Artificial
Intelligence, Renmin University of
China
Beijing, China
junxu@ruc.edu.cn

Abstract

Sequential recommendation is essential in modern recommender
systems, aiming to predict the next item a user may interact with
based on their historical behaviors. However, real-world scenarios
are often dynamic and subject to shifts in user interests. Conven-
tional sequential recommendation models are typically trained on
static historical data, limiting their ability to adapt to such shifts
and resulting in significant performance degradation during testing.
Recently, Test-Time Training (TTT) has emerged as a promising
paradigm, enabling pre-trained models to dynamically adapt to test
data by leveraging unlabeled examples during testing. However,
applying TTT to effectively track and address user interest shifts in
recommender systems remains an open and challenging problem.
Key challenges include how to capture temporal information effec-
tively and explicitly identifying shifts in user interests during the
testing phase. To address these issues, we propose T2ARec, a novel
model leveraging state space model for TTT by introducing two
Test-Time Alignment modules tailored for sequential recommen-
dation, effectively capturing the distribution shifts in user interest
patterns over time. Specifically, T>ARec aligns absolute time in-
tervals with model-adaptive learning intervals to capture temporal
dynamics and introduce an interest state alignment mechanism to
effectively and explicitly identify the user interest shifts with theo-
retical guarantees. These two alignment modules enable efficient
and incremental updates to model parameters in a self-supervised
manner during testing, enhancing predictions for online recom-
mendation. Extensive evaluations on three benchmark datasets

“Xiao Zhang is the corresponding author (e-mail: zhangx89@ruc.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys °25, Prague, Czech Republic

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1364-4/25/09

https://doi.org/10.1145/3705328.3748060

461

Beijing, China
zhangx89@ruc.edu.cn

Beijing, China
shiteng@ruc.edu.cn

Ji-Rong Wen
Gaoling School of Artificial
Intelligence, Renmin University of
China
Beijing, China
jrwen@ruc.edu.cn

demonstrate that T?ARec achieves state-of-the-art performance
and robustly mitigates the challenges posed by user interest shifts.

CCS Concepts

« Information systems — Recommender systems.

Keywords

Test-Time Alignment, Sequential Recommendation, User Interest
Shifts, State Space Model

ACM Reference Format:

Changshuo Zhang, Xiao Zhang, Teng Shi, Jun Xu, and Ji-Rong Wen. 2025.
Test-Time Alignment with State Space Model for Tracking User Interest
Shifts in Sequential Recommendation. In Proceedings of the Nineteenth ACM
Conference on Recommender Systems (RecSys '25), September 22-26, 2025,
Prague, Czech Republic. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3705328.3748060

1 Introduction

Sequential recommendations aim to predict the next item a user
will interact with by modeling dependencies within their historical
interaction data [1, 17, 19, 44, 49]. However, real-world scenarios
often present the challenge of distribution shifts, where user behav-
ior patterns and data distributions evolve dynamically over time.
For instance, consider a sequential recommendation where a user’s
interaction history (as shown in Figure 1) during the training phase
(weekdays) exhibits a strong preference for study-related items,
such as books, reflecting their focus on work or learning. However,
during the testing phase (weekends), the user’s interest shifts to-
wards sports-related items, such as football or basketball equipment,
as they transition to leisure activities. If the recommendation fails
to adapt to this shift and continues to recommend study-related
items based on the training phase, it will not align with the user’s
weekend preferences.

Existing sequential recommendation models, typically trained
on static historical data and having their model parameters fixed
during online deployment, face challenges in adapting to shifts
in user interest patterns. This limitation often leads to significant

https://orcid.org/0009-0001-8481-9421
https://orcid.org/0000-0001-7397-5632
https://orcid.org/0009-0004-6148-742X
https://orcid.org/0000-0001-7170-111X
https://orcid.org/0000-0002-9777-9676
https://doi.org/10.1145/3705328.3748060
https://doi.org/10.1145/3705328.3748060
https://doi.org/10.1145/3705328.3748060
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3705328.3748060&domain=pdf&date_stamp=2025-09-07

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

Weekdays Weekends

Next-item
Prediction

Dislike @ Like
Figure 1: Illustrates of user interest shifts between train and
testing phases in sequential recommendation. During the
training phase (weekdays), the user’s historical behavior is
focused on study-related content (e.g., books), and the model
learns to predict the next item based on this pattern. In the
testing phase (weekends), user interest shifts from study-
related items to leisure activities (e.g., sports). Although the
Test input includes the ground truth from the training phase,
the model continues to recommend study-related content,
failing to adapt to the user’s new preferences. This highlights
the importance of modeling temporal contexts and handling
user interest shifts effectively in recommendations.

performance degradation during test time. To validate this phe-
nomenon, we conducted experiments on two datasets (ML-1M [14]
and Amazon Prime Pantry [28]) using two models (SASRec [19]
and Mamba4Rec [24]) following the implementation settings in
Recbole [60]. After training the models on the training set, the test-
ing set was evenly divided into four segments based on timestamps,
and NDCG@10 was used as the evaluation metric. As shown in Fig-
ure 2, the later the timestamp of the segment, the more significant
the user interest shift, resulting in poorer test performance metrics.
This illustrates how user behavior evolves dynamically between
the train and testing phases, driven by contextual factors such as
time availability, necessitating adaptive models to handle such user
interest shifts effectively.

Motivated by the recent promising paradigm of Test-Time Train-
ing (TTT) [18, 22, 27, 42, 47], which enables pre-trained models to
dynamically adapt to test data by leveraging unlabeled examples
during inference, we focus on applying TTT to track user interest
shifts in sequential recommendation. While TTT facilitates self-
adaptation and effectively addresses evolving distribution shifts in
an online manner, its application to tracking user interest shifts in
recommender systems remains an open and challenging problem.
We identify two key challenges associated with this task: first, cap-
turing temporal information, as user behavior is often influenced
by periodic patterns or trending topics, making it crucial to un-
derstand the impact of historical events on predictions at specific
future time points; second, dynamically and efficiently adjusting
the representation of user interest patterns, since even if a user’s

462

Changshuo Zhang et al.

ML-IM Amazon

0.20 55 SASRec 0.101 5288 SASRec
o Mambad4Rec |© Mambad4Rec
— 0.16 — 0.081

®

O 012 O 006
QO O
A 0.08 A 0.04]
Z Z

0.04 0.024

00" Segment 1 Segment 2 Segment 3 Segmenl‘4 0.00 Segm;:l:l SEgn;e:z Segm;l:é Segment 4

Figure 2: Validation of user interest shifts during the test-
ing phase. We conducted experiments on two datasets (ML-
1M and Amazon Prime Pantry) using two backbone models
(SASRec and Mamba4Rec). After training the models on the
training set, the testing set was evenly divided into four seg-
ments based on timestamps, and NDCG@10 was used as the
evaluation metric for analysis and comparison.

historical behavioral features remain stable, their interest patterns
may evolve dynamically. The model needs to identify and adapt to
these changes to provide accurate recommendations during testing.

To address the above challenges of tracking user interest shifts in
sequential recommendation tasks, we propose T2ARec, a sequential
model that integrates test-time training. T?ARec adopts state space
models (SSMs) [4, 9] as the backbone, which effectively models
user interest state transitions by handling historical interactions
and resolves test-time throughput issues. Then we introduce two
alignment-based self-supervised losses to adaptively capture the
user interest shifts. The time interval alignment loss computes
differences between interaction intervals in the sequence and the
target prediction time, aligning these intervals with adaptive time
steps to effectively capture temporal dynamics. The interest state
alignment loss models the dynamic evolution of user interest pat-
terns by transforming the input sequence into a final state, applying
forward and backward state updates to generate a reconstructed
state, and aligning it with the original state for precise pattern mod-
eling. During testing, T2ARec applies gradient descent on test data
to adjust model parameters in real time, enabling accurate next-item
predictions under distribution shifts. This design allows T2ARec
to effectively capture temporal dynamics and adapt to evolving
user interest patterns, ensuring robust and efficient performance in
sequential recommendation tasks at the test time.

Our main contributions are as follows:

e Identification of a key issue in applying Test-Time Training to
sequential recommendations: The overlooked shift in the user
interest pattern at the test time.
Introduction of a novel approach: We propose T?ARec, a TTT-
based sequential recommendation model incorporating two test-
time alignment-based losses in a state space model to capture
temporal dynamics and evolving user interest patterns, along
with real-time parameter adjustment during testing to track user
interest shifts and ensure robust performance.

e Extensive experiments: We conduct experiments on three widely
used datasets, demonstrating the effectiveness of T2ARec. Fur-
ther ablation studies and analysis explain the superiority of our
designed modules.

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation

2 Related Work

2.1 Sequential Recommendation

Sequential recommendations have evolved from traditional mod-
els, like Markov Chains [16], to deep learning approaches [3, 7, 39,
40, 43, 55, 57, 59]. Early RNN-based models (e.g., GRU4Rec [17],
HRNN [33]) addressed long-range dependencies, leveraging hidden
states to capture dynamic user preferences. Recently, Transformer-
based architectures, such as SASRec [19] and BERT4Rec [41], have
gained prominence with self-attention mechanisms that model
complex interactions and enable efficient parallel computation. In-
novations like Mamba4Rec[24] further enhance performance on
long interaction sequences, reflecting the ongoing advancements
in this field. Recent works also leverage Large Language Models
(LLMs) for sequential recommendation [32, 51], relying primarily
on the static pre-trained knowledge. Our approach, however, fo-
cuses on test-time alignment to explicitly track and adapt to user
interest shifts during inference.

2.2 Test-Time Training

Test-Time Training (TTT) [18, 27, 36, 47] improves model general-
ization by enabling partial adaptation during the testing phase to
address distribution shifts between training and testing datasets.
It leverages self-supervised learning (SSL) [25, 26, 31, 35, 53] tasks
to optimize a supervised loss (e.g., cross-entropy) and an auxil-
iary task loss during training. The auxiliary task (e.g., rotation
prediction) allows the model to align test-time features closer to
the source domain. Simplified approaches like Tent [46] avoid su-
pervised loss optimization during testing, while advanced methods
such as TTT++ [27] and TTT-MAE [15] employ techniques like
contrastive learning and masked autoencoding to enhance adapta-
tion. Unsupervised extensions, such as ClusT3 [12], use clustering
with mutual information maximization but face limitations due to
hyperparameter sensitivity. Test-Time Training (TTT) has been
applied to out-of-distribution (OOD) tasks, such as recommenda-
tions [37, 48, 52, 54]. DT30R [52] introduces a model adaptation
mechanism during the test phase, specifically designed to adapt to
the shifting user and item features. TTT4Rec [54] leverages SSL in
an inner-loop, enabling real-time model adaptation for sequential
recommendations. Paragon [38] leverages a generative model to
produce a portion of the recommendation model’s parameters dur-
ing the test phase, ensuring test-time controllability [36]. LAST [48]
constructs simulated feedback through an evaluator during test-
ing, updating model parameters, and achieving online benefits.
However, existing work has not effectively captured temporal in-
formation or explicitly identified shifts in user interests during the
testing phase.

3 Preliminaries
3.1 Problem Statement

In sequential recommendation, let U = {uy, uy, ..., ”\’UI} denote
the user set, V = {v1,02,..., U|(y|} denote the item set, and S, =
[01,02,...,0p,] denote the chronologically ordered interaction se-
quence for user u € U with the corresponding timestamp sequence
[t1,t2, ..., tn,], where ny is the length of the sequence, v; is the
i-th item interacted with by user u, and ¢; is the timestamp of the

463

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

interaction. Given the interaction history S, and the timestamp
of prediction t,,+1, the task is to predict the next interacted item
On,+1, i.e., the item that the user u is most likely to interact with at
timestamp tp,11. This can be formalized as learning a function:

ftnu+1 : ‘Su — Uny+1s (1)

where f;, ., maps the historical sequence Sy at timestamp ty,,+1
to the next likely item v,,,41 from the item set V. In the following
sections, we omit the subscript v in n,, and S, and directly use n
and S for convenience.

3.2 State Space Models (SSMs)

SSMs perform well in long-sequence modeling [24], image gen-
eration [50], and reinforcement learning [29], providing efficient
autoregressive inference like RNN [23] while processing input se-
quences in parallel like Transformers [45]. This dual functionality
enables efficient training and robust performance in applications
such as time series analysis [34] and audio generation [8].

The original SSMs originated as continuous-time maps on func-
tions from d-dimensional input x(¢) € R to output y(t) € R9 at
current time ¢ through a ds-dimensional hidden state h(t) € R%,
These models leverage the dynamics described below:

I (t) = Ah(t) + Bx(t), (2a)
y(t) =CTh(2), (2b)

where A € R%%d and B,C € R%*4 are adjustable matrices,
h’(t) denotes the derivative of h(t). To enable effective representa-
tion of discrete data, Structured SSMs [10] employ the Zero-Order
Hold (ZOH) [11] method for data discretization from the input
sequence X = [x1,x2,.. Lxn]T € RXd tq output sequence Y =
[y, y2.....yn]" € Rnxd through hidden state H = [h1, hy, . .
R™4 based on a specified step size A € R. The introduction of
the Mamba [9] model significantly enhances SSMs by dynamically
adjusting the matrices B € R"*%, C € R % and the step size now
represented as A € R that dynamically depends on inputs vary-
ing over time. Its latest version, Mamba-2 [4], links structured state
space models with attention mechanisms. Mamba-2 refines A into
a scalar value A € R and sets A € R", creating a new state space
duality (SSD) framework with multi-head patterns akin to Trans-
formers. This innovation boosts training speed and increases state
size, optimizing expressiveness for greater efficiency and scalability,
making it a strong contender against Transformers.

4 T?ARec: The Proposed Method

To track shifts in user interest during the testing phase of sequential
recommendation tasks, we propose T?ARec, a method that inte-
grates a state space model for test-time training and introduces
two alignment modules to adaptively capture these shifts during
testing. First, we introduce the base model of the proposed method,
which is developed based on the Mamba-2 architecture and can
dynamically represent user interest with high test-time throughput.
Next, we describe the two alignment modules, designed for time
intervals and user interest states, respectively. Finally, we explain
how to conduct self-supervised training during the testing phase.

Lhn)T €

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

Next-Item Prediction

Prediction Layer

Stop-gradient /
Op ~""7mmTTTI

@Activation ® Multiply

®) Normalization @ Softplus

Add & Norm

Feed Forward

Align?-SSM
Time Interval Interest State
Alignment Alignment

T2A-Mamba [+~ : Q

Embedding Layer

X, B, C|A
©

[Linear] [Linear]
Item Sequence Input : I I
{v1,V2, o, Vn} |

[Linear]
T

Figure 3: Overall framework of T2ARec: T2ARec processes
input sequences through an embedding layer, followed by
the T?A-Mamba block and Align-SSM block for state up-
dates and output generation. The prediction layer uses out-
put embedding o, generated from the feed forward network
layer for next-item predictions. o, is reintroduced into the
T?A-Mamba block to compute the alignment losses.

4.1 Base Model

As illustrated in Figure 3, we develop the basic framework of
T2ARec by stacking the embedding layer, T>A-Mamba block, and
the prediction layer.

4.1.1 Embedding Layer. Given a learnable embedding layer E =
[e1, ez, .. .,e‘q;|]-r e RIVIXd for all items, where d is the embed-
ding dimension and e; represents the dense vector for item v;, this
layer transforms the sparse item id sequence S = [v1,02,...,0,]

into dense vector representations, denoted as Eg) € R¥d,

4.1.2 T? A-Mamba Block. Though Transformer-based models ex-
cel in sequential recommendation [19], their quadratic complexity
related to sequence length impedes efficient test-time training and
burdens throughput. To address this issue, we develop T? A-Mamba
based on Mamba-2 [4].

The output representations Eg of the embedding layer then
enter our core T2A-Mamba Block. The sequence undergoes a se-
ries of transformations to generate inputs for Align?-SSM block.
Specifically, E first passes through a linear layer:

EgZ)’ EgS) « Linearq (Egl))’ ®)

where Egz) € Rnx(d+2xds) Eg) € R" and Linear; is a linear
parameterized projection from dimension d to dimension (d + 2 X

ds + 1). Next, Eg) passes through a convolution and a non-linear

activation, Eg) passes through a softplus function:

X,B,C «— ¢ (Conv (Eg))) , A=1 (ES)) 4)

464

Changshuo Zhang et al.

where X = [x1,%2,...,%xn]T € R is the input of Align?-SSM,
B € R™% and C € R"™9% are the adjustable matrices, A € RY is
the step size ensured to be positive via the softplus function 7, Conv
is the convolution operation, o is the non-linear activation.

The overall transformation process of Equation (3) and (4) can
be unified into a sequence of mappings from the input embeddings
Eg to the outputs X, B, C, and the step size A, denotes as:

X,B,C, A « Transform(Eél)). (5)

Then, we introduce the core ingredient of T2A-Mamba, the
Alignz—SSM. Given a learnable scalar value A < 0, we compute the

discretized A = [A1,Ay,...,A,]T € R"and B = [By,Bs,...,B,]" €
R™4s follows the Zero-Order Hold (ZOH) [11] method, formally:

A=eM, B=diag(A)B, (6)

simplified as A, B « discretize(A, A, B), where diag(A)isanxn

diagonal matrix, the diagonal elements are the elements of A.
Finally, given an all-zero matrix ho € R%Xd 35 the initial state,

we can iteratively compute the outputs and hidden states in Align®-SSM:

hy = Athtfl + Bt ® x¢, (73-)
Yr = htTCt, (7b)

where ® represents the outer product, which combines B; € R%
and x; € RY into a matrix of size ds X d, Y = [y y2.....yn]" €
R™4 H = [hy,hy, ..., hn]T € R"%% are the outputs and hidden
states of Align?-SSM block, separately, and h,, € R%*9 is referred
to as the final state that characterizes the user’s current preference.

4.1.3 Feed Forward Network Layer and Prediction Layer. Y is then
passed through a Feed Forward Network (FFN) layer to adapt the
features to the semantic space of the next layer:

O = FEN(Y), ()

where O = [01,02,...,0,]" € R4 is the output embeddings.

In addition, this process involves residual connections, layer nor-
malization, and other transformations, which are not explicitly
represented in the equations for the sake of simplicity.

Based on the output embeddings O generated by the FFN. We
use the last element o, to predict the next item the user is likely to
interact with. The prediction layer computes logits for all items as:

z = Softmax (Eop), 9)

where z € qu’l, Softmax is the softmax function and E is the
embedding table of the embedding layer.

4.1.4 Recommendation Loss. The recommendation loss is then
computed using the cross-entropy loss:

1% X
Lrec = _; Zzi 10g (Zi): (10)
i=1

where z; denotes the ground-truth for item i, Z; denotes the pre-
dicted logit for item i in 2. This loss encourages the model to maxi-
mize the predicted probability of the true interacted item, improving
recommendation accuracy.

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation RecSys ’25, September 22-26, 2025, Prague, Czech Republic

A, B = discretize(A, 4, B) P,Q = discretize(Ay41, P, Q)

Interest State Alignment Loss Lo
h, ——= h®

Time Interval Alignment Loss Ly
— T
T = [0, tz - tl, t3 - th ...,tn+1 - tn] e [A ,An+1]

r |

Timestamps: ¢4 ty e th typ1 Timestamp of prediction
Ground truth Erec QOutput embedding
Items: V1 (%] oo Un Un+1 <& > O ¢
l l l Recommendation l Stop-gradient
Loss .
Inputs: X1 X1 X, Xn+1 X,
—‘ B, —‘ B, B, By —|£’
States: ho| |ha| |ha| - _ |ha R _ |R3
A, A, A, Ani1 P
Co C, C, Forward State Backward State
Outputs: Y1 Y2 o Yn

Figure 4: The logits and losses computation in Align?-SSM: The left side illustrates the time interval alignment loss (Lijme),
which aligns the predicted time intervals A with the ground truth T. The right side shows the interest state alignment loss
(Lstate), aligning the final state h, with the backward state ill,; These two losses jointly enhance the model’s robustness and
effectiveness in handling user interest shifts. During testing, the model leverages these self-supervised losses to perform
gradient descent, adapting to the input data and improving prediction performance.

4.2 Time Interval Alignment

To more accurately capture the temporal information in distribution
shifts, we introduce a time interval alignment loss in T2ARec. In
this process, we not only consider relative time but also incorporate
absolute timestamps to better reflect the dynamics of temporal
information. As shown in the left half of Figure 4, we illustrate
the computation method for the time interval alignment loss. In
the Align®-SSM block, the discretization process (Equation (20))
involves the use of time steps A = [A1,Ag, .. ., An]T € R7, where
A; € Ry. Ensuring the correctness of the time steps is crucial for
alleviating user interest shifts, as accurate time steps can better
capture the temporal information embedded in distribution shifts.

As discussed in Section 4.1.2, the time steps A in the T2A-Mamba
block are not fixed but are dynamically generated based on the
input sequence S through the embedding layer output Eg. This
dynamic adjustment enables the model to adapt to variations in
input features, resulting in a more flexible temporal representation.
However, A can only adaptively learn the temporal information in
timestamp sequence [t1, t2, .. ., I;], while ignoring the prediction
timestamp t+1. To address this, we aim to obtain an adaptive test-
time temporal representation A1 € Ry in Alignz-SSM.

To achieve this, although we cannot directly access the ground
truth item vp41 during prediction, we consider the output embed-
ding of the feed forward network layer o,, € R%. This embedding
is used in the prediction layer to compute similarity scores with
all item embeddings via a dot product (as detailed in Section 4.1.3).
During training, o, is expected to progressively converge toward
the embedding representation of the next ground truth item v;1.

465

Based on this observation, we re-feed o, into the T2 A-Mamba block
to estimate the adaptive time step Ap41 using Equation (5) and apply
stop-gradient to it to prevent unstable training:

Xn+1, But1, Cnst, Any1 TranSform(On)stop—gradient~ (11)

After obtaining the adaptive time steps A and A,+41, we demon-
strate how to align them with the timestamps t1, ta, . . ., tp41. First,
we compute the time interval sequence based on these timestamps
and pad it with 0 at the beginning (since the timestamps of interac-
tions prior to the input sequence are unavailable):

Sitnel — tn]a (12)

where T € R gerves as the ground truth for A and Apq;.

Then we propose using a pairwise loss to align A and A,4q with
the ground truth time interval T, excluding the padded 0. Specifi-
cally, we compute the pairwise self-supervised loss as follows:

-1,
maX{O,l—(Ai—Aj)~()}, (13)

T =[0,tp —t1,t3 — to, ..

Lo =
pairwise A

2<i<j<n+1

where (A; — Aj) represents the predicted pairwise differences,
(T; — T;) represents the ground truth pairwise differences, A is
constant value for scaling. The loss penalizes mismatches between
the relative signs of predicted and ground truth time differences,
preserving the relative relationships between the learned time in-
tervals instead of relying on their absolute values.

However, directly applying this loss introduces certain chal-
lenges. When handling long sequences (e.g., 50-200 items), the
computational complexity of pairwise difference calculations in-
creases to O(nz). To address this issue, we adopt a block-based

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

computation approach to simplify the process. Specifically, the se-
quence is divided into smaller, non-overlapping blocks of size b, and
pairwise losses are computed independently within each block. For
each block, we first calculate the pairwise differences for predicted
values (A; —A;) and ground truth values (T; — T;). Next, we apply a
mask to exclude invalid pairs, accommodating sequences of varying
lengths. Finally, the time interval alignment loss for each block is
computed using the hinge loss formulation and normalized by the
total number of valid pairs across all blocks:

-1
Yblock 2i2<i<j<n+1 Max {0’ 1= (A= 4j)- (7 ’)}
Total Valid Pairs

Ltime = .
(14)
This approach reduces both computational and memory complexity
from O(n?) to O(b? x [n/b]), significantly enhancing scalability
for long sequences.

4.3 User Interest State Alignment

To ensure the model accurately captures and represents the evolv-
ing patterns of user interests over time, we introduce a interest state
alignment loss in T2ARec. As shown in Figure 1, user interest shifts
during testing often occur toward the end of the input sequence.
Therefore, it is crucial for recommendation models to better under-
stand and align with the user’s interests at the tail end. To achieve
this, we align the final states of T2A-Mamba.

As illustrated on the right side of Figure 4, we present the com-
putation process for the interest state alignment loss. First, we in-
troduce a backward state update function, which is then applied to
align the final state of the input user history sequence. Ensuring
the correctness of the final states generated by the model is critical
for alleviating shifts in user interests.

4.3.1 Backward State Update Function. Given the forward state
update function h’(t) = Ah(t) + Bx(t), similar to Equation (2a),
multiplying both sides by A~! yields its backward form:

h(t) = A" (t) + (—A_le(t)), (15)

where h’(t) denotes the derivative of h(t). To simplify the notation,
we define:

PP=A"1, Q’=-A"'B. (16)
Substituting Equation (16) into Equation (15) yields
h(t) = PPR’ (t) + QPx(1). 17)

For the discrete-time system, we adopt the Zero-Order Hold [11]
method for the discretize process with a scalar step size A as follows:

, 0P =AQ". (18)

- b
pb = AP

This discretize process can be simplified as P, Q = discretize(A, P, Q).

Using this parameterization, Equation (17) can be expressed as a
backward discrete state update function as follows:

BY = PPhyy; + QP @ x;. (19)

4.3.2 Interest State Alignment Loss. In the Align?-SSM block ex-
plained in Section 4.1.2, as described in Equation (7a) and (7b),

AlignZ—SSM block generates the hidden states H = [h1,hg, ..., hy,] T,

We take its final state h,, € R%*? and subsequently perform the

466

Changshuo Zhang et al.

interest state alignment operation on it. This is because h, encapsu-
lates the entirety of the user’s historical information while retaining
the most recent behavioral context with maximal fidelity.

To begin, we estimate the forward state for the next step at
tn+1 (abbreviated as forward state), denoted as iln+1 € REXd of.
ter hy,. Following the approach in Equation (11), the feed-forward
network layer output o, is transformed to derive Xp4+1 € RY,
B, € RdS, Cpy1 € RdS, and Ap+1 € R;. These terms are sub-
sequently used to compute 1. Specifically, the discretized terms
Ap+1 € Rand By € R%%9 are computed as follows:

A_n+1 = eA"HA: Bn+1 = An+1Bn+1, (20)

Using these, along with h, and X1, we update the forward state:
i’n+1 = Apyihp + Bpyy ® Zpq1. (21)

Next, we introduce a backward state, denoted as IAlE’2 and evaluate
its alignment with the original state h, in Equation (7a) using
an additional loss termed interest state alignment loss. In simple
terms, this involves substituting l:ln+1 from Equation (21) into the
backward discrete state update function in Equation (19), estimate
PP and OP using neural network, for computing the backward
state. More specifically, the process begins by taking x, € R?
in Equation (4) as input and passing it through a linear layer to
produce the estimated matrix Q € R%:

QO « Lineara(xp). (22)

where Linear; is a linear projection from dimension d to dimension
ds. Then, for estimating Pb and Qb in Equation (18) with Ap41, we
introduce a scalar value P, as specified in Theorem 4.1, and compute
the discretized P and Q:

p=erP 0 =710 (23)
Subsequently, substituting Equation (23) into the backward discrete
state update function in Equation (19), we derive the following
backward state:

R = Phpyt + 0 ® xp. (24)
Finally, we define the interest state alignment loss as follows:
‘h" - 2
Lstate = 2 (25)
n+1

1
.
Theorem 4.1. Intuitively, the interest state alignment loss ensures
that the model’s internal representation of the user’s current in-
terest aligns with the expected state derived from the sequence.
Specifically, it reconstructs the user’s interest state at the end of
their interaction sequence and aligns it with a backwardly updated
version of the same state, enabling the model to fine-tune its un-
derstanding during the testing phase. Theoretically, we provide an
upper bound of Ltate to analyze its effect.

where the coefficient

serves as a dilution term as analyzed in

THEOREM 4.1. Denote €, = Q — QP and Q0 = ~A7'B,,

_a-1
and let P = %, the following upper bound for Lstate holds:
Xn — Xn+1

-2 -1 -1
Lstate < Apiy hnlly + Ap iy [1xnllz [lenllz + A7 (Bl || —)
n+

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation

Algorithm 1 Test-Time Alignment for T?ARec on a Single Batch

Input: Batch of test sequences, denoted as {S; ;’i . where each
represented as S; = [v1, 02, ..., v,] with the corresponding
timestamp sequence [t1, f2, ..., t,] and timestamp of prediction

tn+1, well-trained model gg (), number of training steps M,
learning rate &, and weight parameters ;" and pi*"
Output: Final prediction oy,

1: Record the original model parameters: 6, < 0

2: for step=1,2,...,M do

3: Forward go({S;},) and get the learned step size A, final
state hy, and output o,
Compute the time interval sequence T using Equation (12)
Calculate Lyjye from Equation (14) using A and T
Compute the forward state Fnst using Equation (21)
Compute the backward state f:k,’, using Equation (24)
Calculate Lgtate from Equation (25) using h, and fll,’l
Update model parameters:

0 — 0-aVy (utleStLtime + H;eSt-Lstate)

R AR A

10: end for
11: Compute final prediction o, using the updated go ({Si}]2,)
12: Restore the model parameters: 6 « 6, for the next batch

Table 1: Dataset statistics.

Dataset #Users #Items #Interactions Avg. Length Sparsity

ML-1IM 6,034 3,706 1,000,209 138.3 95.57%
Amazon 3,834 6,350 471,615 17.04 98.78%
Zhihu-1IM 7,974 81,563 999,970 29.03 99.48%

In Theorem 4.1, ||ep||2 is considered an instance-dependent term
that depends on the input x,, and it tends to increase for unseen
user interaction x,. The term ||(xp — p+1)/An+1l|, aims to ensure
consistency between the model and the most recent interaction
under dynamic behavior changes, especially when the time inter-
val Ap41 between the user’s testing time and their most recent
behavior is very short. Similar to how humans continuously update
expectations based on new experiences, this alignment mechanism
enables the model to dynamically adapt to changes in user behavior,
thereby improving recommendation accuracy.

4.4 Training and Testing Process

4.4.1 Training Process. After designing the two self-supervised
losses, the total loss of the model combines the primary recommen-
dation loss Lyec in Section 4.1.4 and the two self-supervised losses
Litime and Lgtate, weighted by their respective hyperparameters:

trai trai
Ltotal =Lrec + ﬂlra1n£time + IlzramLState, (26)

where pﬁr ain and p;r ain are the weights for the self-supervised losses.

This combined loss optimizes the model by integrating both the
primary task and self-supervised learning objectives.

4.4.2 Testing Process. During testing, the pre-trained model gg(+)’s
parameters 0 are adaptively fine-tuned on all testing examples. For

each batch of test data {S;},, optimization is performed using the

467

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

self-supervised losses Ltime and Lgtate as defined in Equation (14)
and Equation (25). The trained model is then used to make the final
item predictions. After completing the predictions, the adjusted
parameters on 6 are discarded, and the model reverts to its origi-
nal parameters to process the next batch of testing examples. The
pseudo-code for processing a single batch of testing examples is
illustrated in Algorithm 1.

5 Experiments

To verify the effectiveness of T2ARec, we conduct extensive exper-
iments and report detailed analysis results.

5.1 Experimental Settings

5.1.1 Datasets. We evaluate the performance of the proposed model
through experiments conducted on three public datasets:

e MovieLens-1M (referred to as ML-1M) [14]: A dataset collected
from the MovieLens platform, containing approximately 1 million
user ratings of movies.

e Amazon Prime Pantry (referred to as Amazon) [28]: A dataset of
user reviews in the grocery category collected from the Amazon
platform up to 2018.

e Zhihu-1M [13]: A dataset sourced from a large knowledge-
sharing platform (Zhihu), consisting of raw data, including infor-
mation on questions, answers, and user profiles.

For each user, we sort their interaction records by timestamp to
generate an interaction sequence. We retain only users and items
associated with at least ten interaction records. We follow the leave-
one-out policy [19] for training-validation-testing partition. The
statistical details of these datasets are presented in Table 1.

5.1.2 Baselines. To demonstrate the effectiveness of our proposed
method, we conduct comparisons with several representative se-
quential recommendation baseline models: Foundational models
such as Caser [44], a Convolutional Neural Network (CNN)-based
approach; GRU4Rec [17], which leverages Gated Recurrent Units
(GRU) from Recurrent Neural Networks (RNN); BERT4Rec [41],
adopting the bidirectional attention mechanism of BERT [5]; SAS-
Rec [19], the first to introduce the Transformer architecture to
this field; and innovative models like Mamba4Rec [24], which
applies the Mamba architecture. Time-aware models such as Ti-
SASRec [21], which enhances SASRec with temporal information,
and TiM4Rec [6], which improves low-dimensional performance
of SSD while maintaining efficiency, integrate temporal dynamics.
TTT4Rec [54] uses Test-Time Training to dynamically adapt model
parameters during inference for sequential recommendation.

5.1.3 Evaluation Metrics. To evaluate the performance of top-K
recommendation, we adapt the metrics Recall@K, MRR@K, and
NDCG@K, which are widely used in recommendation research
to evaluate model performance [2, 56, 58]. In this context, we set
K =10 and present the average scores on the test dataset.

5.1.4 Implementation Details. Our evaluation is based on imple-
mentations using PyTorch [30] and RecBole [60]. We set all model
dimensions d to 64, the learning rate to 0.001, and the batch size to
4096. Additionally, we set the state dimension ds of the T2A-Mamba
to 32, the number of blocks to 1, the training steps M during testing

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

Changshuo Zhang et al.

Table 2: Performance comparison of different sequential recommendation models. The best result is bolded and the runner-up
is underlined. * means improvements over the second-best methods are significant (¢-test, p-value < 0.05).

Model ML-1M Amazon Zhihu-1M
Recall@10 MRR@10 NDCG@10 [Recall@10 MRR@10 NDCG@10 [Recall@10 MRR@10 NDCG@10
Caser 0.1954 0.0703 0.0994 0.0594 0.0204 0.0294 0.0288 0.0089 0.0134
GRU4Rec 0.2732 0.1147 0.1518 0.0939 0.0480 0.0586 0.0283 0.0092 0.0142
BERT4Rec 0.2770 0.1093 0.1482 0.0675 0.0372 0.0443 0.0289 0.0098 0.0142
SASRec 0.2471 0.0911 0.1273 0.1025 0.0527 0.0644 0.0364 0.0098 0.0159
Mamba4Rec 0.2813 0.1201 0.1578 0.1003 0.0522 0.0635 0.0355 0.0112 0.0167
TiSASRec 0.2713 0.1191 0.1478 0.1030 0.0540 0.0651 0.0390 0.0117 0.0175
TiM4Rec 0.2873 0.1211 0.1596 0.1016 0.0567 0.0665 0.0384 0.0118 0.0179
TTT4Rec 0.2887 0.1208 0.1599 0.1020 0.0560 0.0655 0.0370 0.0115 0.0174
T2 ARec (ours) 0.2932* 0.1262* 0.1648* 0.1102* 0.0580* 0.0705* 0.0402* 0.0122* 0.0187*
M to 1 and the learning rate during testing « to 0.005. Furthermore, o8 ML-1M o0 Amazon
the search space for the weights of the two self-supervised losses o /‘..:
during training, Agram and A;ram, is {0.01, 0.1, 1, 10}, and for testing, o) 7 o +2.1% o ~oos] .
the search space for A1 and AL is {1e-3, 1e-2, 1e-1, 1}. To adapt | s s N 3 9«}: e S
to the characteristics of the baselines and datasets, we set the fixed Gou) Sew e ;':" g | O] /na ;':’ ok
sequence length to 200 for ML-1M and 50 for other datasets (Ama- 2 Ve ;':': ;" o | 2 /:“:': ; ek ;':’
zon and Zhihu-1M). For a fair comparison, we ensured consistency e ;::: ;:::: e .,:;:: o ;:::: /::: ::"; /{,
of key hyperparameters across different models while using default RS I s B | oo ek e
hyperparameters for baseline methods as recommended in their Segmentt 1 Segent 2 Segment 3 Segment 4 Segment 1 Segment 2 Segment 3 Segmert 4
(77 TiMiRee %R TTTRec WA T°ARec]

respective papers. Finally, we utilized the Adam optimizer [20] in a
mini-batch training manner.

5.2 Overall Performance

Table 2 presents the performance comparison of the proposed
T?ARec and other baseline methods on three datasets. From the
table, we observe several key insights:

(1) General sequential methods, such as SASRec and Mamba4Rec,
show varying strengths depending on the dataset character-
istics. Mamba4Rec performs better on ML-1M, a dataset with
longer sequences, due to its ability to model complex long-term
dependencies, whereas SASRec achieves slightly higher perfor-
mance on shorter sequence datasets like Amazon and Zhihu-1M,
where simpler sequence modeling suffices.

(2) TiSASRec, TiM4Rec and TTT4Rec outperform these general
sequential methods by alleviating specific challenges in rec-
ommendation. TiSASRec and TiM4Rec effectively incorporates
temporal information, enhancing their ability to model time-
sensitive dynamics, while TTT4Rec leverages test-time training
to alleviate distribution shifts, leading to superior performance.

(3) Finally, T2ARec outperforms all baselines across datasets, achiev-
ing the best results by introducing time interval alignment
loss and interest state alignment loss. These innovations en-
able T?ARec to capture temporal and sequential patterns more
effectively and adapt dynamically to test data through gradi-
ent descent during inference, further alleviating distributional
shifts and enhancing overall performance.

5.3 Ablation Studies

We conduct ablation experiments in T2ARec to validate the effec-
tiveness of the time interval alignment loss and the interest state

468

Figure 5: Effectiveness of T ARec on user interest shifts.

alignment loss. The experimental configurations include ‘ Ly’
where both losses are removed during training and testing, as well
as ‘Liime and ‘Lgtate, where only one of the losses is removed.

i i i 7 ¢ ptest > < ptest »
During testing, we design configurations such as "L;°° ", "L 7,

and ‘L;SEE’, which disable all or part of the losses during the testing
phase. As shown in Table 3, removing any loss significantly de-
grades model performance, highlighting the importance of adapting
to use interest shifts. The time interval alignment loss captures tem-
poral dependencies, while the interest state alignment loss captures
the current user’s interest state. Both are crucial for the robustness

and adaptability of sequential recommendations.

5.4 Further Analysis

5.4.1 Effectiveness of T>ARec on User Interest Shifts. To validate
the effectiveness of T2ARec on user interest shifts, we followed
the setup in Figure 2 and compared T?ARec with TiM4Rec and
TTT4Rec on both the ML-1M and Amazon datasets. As shown in
Figure 5, the later the timestamp of the segment, indicating a greater
user interest shift, the performance of TiM4Rec and TTT4Rec shows
a declining trend. On the basis of these two baselines, our model
demonstrates higher improvements in Segment 3 and Segment 4
compared to Segment 1 and Segment 2. This indicates that T?ARec
performs better on test data with more significant user interest
shifts, highlighting the effectiveness of our two alignment losses
during Test-Time Alignment.

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

Table 3: Ablation studies.

Model ML-1M Amazon Zhihu-1M
Recall@10 MRR@10 NDCG@10 | Recall@10 MRR@10 NDCG@10 [Recall@10 MRR@10 NDCG@10

TZARec 0.2932 0.1262 0.1648 0.1102 0.0580 0.0705 0.0402 0.0122 0.0187
"wio Lpon | 0.2813 0.1207 0.1578 | 0.1003 0.0522 0.0635 | 0.0355 00112 0.0167

w/0 Ltime 0.2891 0.1225 0.1618 0.1026 0.0531 0.0649 0.0389 0.0110 0.0180

w/0 Lstate | 0.2876 0.1214 0.1590 0.1010 0.0545 0.0652 0.0365 0.0114 0.0175
Cwio LT T 02899 01239 01626 | 01033 00568 0.0677 | 0.0389 00113 00177

w/o LIS 0.2912 0.1252 0.1645 0.1095 0.0570 0.0690 0.0390 0.0120 0.0180

w/o LI | 0.2921 0.1241 0.1635 0.1067 0.0558 0.0686 0.0393 0.0120 0.0183

Table 4: Analysis of test-time throughput, defined as the num- Acknowledgments

ber of iterations per second, with each iteration processing a
batch of 4096 testing examples.

Model Test-Time Throughput (# of iterations / second)
ML-1M Amazon Zhihu-1M

SASRec 1.56 2.26 1.96
Mamba4Rec 2.82 3.11 3.01
TiSASRec 1.50 2.52 1.71
TiM4Rec 2.16 2.64 2.56
TTT4Rec 0.96 1.74 1.19
T2ARec (ours) | 1.02 2.05 1.36

5.4.2 Analysis of Test-time Throughput. Noticed that training dur-
ing testing requires gradient descent, which could introduce ad-
ditional load on test-time (inference) throughput. We conducted
offline experiments to analyze the impact of training during testing.
The results are shown in Table 4, where we compare T2ARec with
several typical baselines and quantify the test-time throughput in
terms of it/s (iterations per second). From the results in the table, it
is evident that the test-time throughput of the method that trains
during testing is approximately half of that of Mamba4Rec that
does not train during testing. Nevertheless, with increasing com-
putational power, the additional load from training during testing
may not have a significant impact, especially since previous work
has shown that TTT has yielded online benefits [48]. We present
these findings and provide optimization opportunities for future
work applying TTT in recommendations.

6 Conclusion

To address dynamic user interest shifts in real-world sequential
recommendation, we propose T?ARec, which integrates Test-Time
Training via two self-supervised losses. Existing static methods
struggle to adapt to such shifts, leading to performance drops. Our
approach aligns absolute time intervals with model-adaptive learn-
ing intervals to capture temporal dynamics and introduces an inter-
est state alignment mechanism to explicitly identify user interest
shifts with theoretical guarantees. These two modules enable effi-
cient, incremental parameter updates during testing. Experiments
show T? ARec outperforms state-of-the-art methods, demonstrating
TTT’s potential for enhancing test-time adaptability in tracking
evolving user preferences.

469

This work was partially supported by the National Natural Sci-
ence Foundation of China (No. 62376275, 62472426). Work partially
done at Beijing Key Laboratory of Research on Large Models and
Intelligent Governance, and Engineering Research Center of Next-
Generation Intelligent Search and Recommendation, MOE. Sup-
ported by fund for building world-class universities (disciplines) of
Renmin University of China.

A Proof of Theorem 4.1

Proor oF THEOREM 4.1. Based on the definitions of Lgtate, ﬁﬁ,
and hy+1, we can derive:

Lstate
b
n—hy,

n+1

= ”hn - (eAnHPhnH +An+10® xn) A;H

= ‘hn - (AnniP ("+1Ah + An+1Bn+1 ®xn+1) + An+1an) ‘ An+1
- H(1 et P} Byt 110 @ 3 = A1 By © i s
= ” (1 — eA"“(PJrA)) hy + Ay (Q — eA"“PBnH) ® xp+
Ans1€® P By ® (xn — Fner) H A2,
yielding that
Lstate
o) 5 fo) i

An+1Bn+1eA"“P ® (xp — Xn+1) H A;lfl (triangle inequality)

< A2 [y ||2+‘ -1 (—A 1B et + €y — eMriPB +1) ® x|+
‘ A;ileA"“PBnH ® (xp — Xn+1) Hz (Def. of Q;¢* < 1,¥x < 0)
A2 Nkl +‘ -1 (— (A—1 +eA"“P) Busi + en) @ x|+

HA,;LAianH ® (xn — -’2'n+1)“2 (P =In(=A"")/Ans1)
=A, 21 lIRallz + ||An+1en ® xn“z + ”An+1A "Bpi1 ® (xn — xn+1)”2

Xp — Xn+1

-2 -1 -1
= Dpi nllz + Ay llxnlly lenlly + A7 1Bl | —
n+1

2

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

References

(1]

A

N
fust

&

=
=2

[11]

[12

[13

[14]

(15

[16

[17]

[18

[19]

[20

[21]

[22

[23

[24

[25

Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks.
In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval. 378—-387.

Sirui Chen, Yuan Wang, Zijing Wen, Zhiyu Li, Changshuo Zhang, Xiao Zhang,
Quan Lin, Cheng Zhu, and Jun Xu. 2023. Controllable multi-objective re-ranking
with policy hypernetworks. In Proceedings of the 29th ACM SIGKDD conference
on knowledge discovery and data mining. 3855-3864.

Sunhao Dai, Changle Qu, Sirui Chen, Xiao Zhang, and Jun Xu. 2024. Recode:
Modeling repeat consumption with neural ode. In Proceedings of the 47th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 2599-2603.

Tri Dao and Albert Gu. 2024. Transformers are SSMs: Generalized models
and efficient algorithms through structured state space duality. arXiv preprint
arXiv:2405.21060 (2024).

Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

Hao Fan, Mengyi Zhu, Yanrong Hu, Hailin Feng, Zhijie He, Hongjiu Liu, and
Qingyang Liu. 2024. TiM4Rec: An Efficient Sequential Recommendation Model
Based on Time-Aware Structured State Space Duality Model. arXiv preprint
arXiv:2409.16182 (2024).

Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. 2020. Deep learning
for sequential recommendation: Algorithms, influential factors, and evaluations.
ACM Transactions on Information Systems (TOIS) 39, 1 (2020), 1-42.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. 2022. It’s raw!
audio generation with state-space models. In International Conference on Machine
Learning. PMLR, 7616-7633.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with
selective state spaces. arXiv preprint arXiv:2312.00752 (2023).

Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently modeling long
sequences with structured state spaces. arXiv preprint arXiv:2111.00396 (2021).
Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and
Christopher Ré. 2021. Combining recurrent, convolutional, and continuous-time
models with linear state space layers. Advances in neural information processing
systems 34 (2021), 572-585.

Gustavo A Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheragha-
likhani, Ali Bahri, Ismail Ben Ayed, and Christian Desrosiers. 2023. Clust3:
Information invariant test-time training. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 6136—6145.

Bin Hao, Min Zhang, Weizhi Ma, Shaoyun Shi, Xinxing Yu, Houzhi Shan, Yiqun
Liu, and Shaoping Ma. 2021. A large-scale rich context query and recommendation
dataset in online knowledge-sharing. arXiv preprint arXiv:2106.06467 (2021).

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1-19.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 16000-16009.
Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 191-200.

B Hidasi. 2015. Session-based Recommendations with Recurrent Neural Networks.
arXiv preprint arXiv:1511.06939 (2015).

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2022.
Empowering graph representation learning with test-time graph transformation.
arXiv preprint arXiv:2210.03561 (2022).

Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197-206.

Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-
attention for sequential recommendation. In Proceedings of the 13th international
conference on web search and data mining. 322-330.

Jian Liang, Ran He, and Tieniu Tan. 2024. A comprehensive survey on test-time
adaptation under distribution shifts. International Journal of Computer Vision
(2024), 1-34.

Zachary Chase Lipton. 2015. A Critical Review of Recurrent Neural Networks
for Sequence Learning. arXiv Preprint, CoRR, abs/1506.00019 (2015).

Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee.
2024. Mambadrec: Towards efficient sequential recommendation with selective
state space models. arXiv preprint arXiv:2403.03900 (2024).

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie
Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE transactions
on knowledge and data engineering 35, 1 (2021), 857-876.

470

[26

[27

[28

™~
20,

[30

[31

[32

@
&

[34

[35

[36

S
=

[38

[39

[40

N
furg

[42]

[43

[44

[45]

=
&

[47

(48]

Changshuo Zhang et al.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip.
2022. Graph self-supervised learning: A survey. IEEE transactions on knowledge
and data engineering 35, 6 (2022), 5879-5900.

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor
Mordan, and Alexandre Alahi. 2021. Ttt++: When does self-supervised test-time
training fail or thrive? Advances in Neural Information Processing Systems 34
(2021), 21808-21820.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing (EMNLP-IJCNLP).
188-197.

Toshihiro Ota. 2024. Decision mamba: Reinforcement learning via sequence
modeling with selective state spaces. arXiv preprint arXiv:2403.19925 (2024).
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Weicong Qin, Zelin Cao, Weijie Yu, Zihua Si, Sirui Chen, and Jun Xu. 2024.
Explicitly Integrating Judgment Prediction with Legal Document Retrieval: A
Law-Guided Generative Approach. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 2210—
2220.

Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping
Fan, and Jun Xu. 2024. Enhancing Sequential Recommendations through Multi-
Perspective Reflections and Iteration. arXiv preprint arXiv:2409.06377 (2024).
Massimo Quadrana, Alexandros Karatzoglou, Balazs Hidasi, and Paolo Cremonesi.
2017. Personalizing session-based recommendations with hierarchical recurrent
neural networks. In proceedings of the Eleventh ACM Conference on Recommender
Systems. 130-137.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. 2018. Deep state space models for time
series forecasting. Advances in neural information processing systems 31 (2018).
Madeline C Schiappa, Yogesh S Rawat, and Mubarak Shah. 2023. Self-supervised
learning for videos: A survey. Comput. Surveys 55, 13s (2023), 1-37.

Chenglei Shen, Xiao Zhang, Teng Shi, Changshuo Zhang, Guofu Xie, and Jun Xu.
2024. A survey of controllable learning: Methods and applications in information
retrieval. arXiv preprint arXiv:2407.06083 (2024).

Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu. 2023. Hyperbandit: Contex-
tual bandit with hypernewtork for time-varying user preferences in streaming
recommendation. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management. 2239-2248.

Chenglei Shen, Jiahao Zhao, Xiao Zhang, Weijie Yu, Ming He, and Jianping
Fan. 2024. Generating Model Parameters for Controlling: Parameter Diffusion
for Controllable Multi-Task Recommendation. arXiv preprint arXiv:2410.10639
(2024).

Teng Shi, Zihua Si, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Dewei Leng,
Yanan Niu, and Yang Song. 2024. UniSAR: Modeling User Transition Behaviors
between Search and Recommendation. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1029-1039.

Teng Shi, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Yang Song, and Enyun
Yu. 2025. Unified Generative Search and Recommendation. arXiv preprint
arXiv:2504.05730 (2025).

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441-1450.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz
Hardt. 2020. Test-time training with self-supervision for generalization under
distribution shifts. In International conference on machine learning. PMLR, 9229—
9248.

Jiakai Tang, Sunhao Dai, Teng Shi, Jun Xu, Xu Chen, Wen Chen, Wu Jian, and
Yuning Jiang. 2025. Think before recommend: Unleashing the latent reasoning
power for sequential recommendation. arXiv preprint arXiv:2503.22675 (2025).
Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565-573.

A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor
Darrell. 2020. Tent: Fully test-time adaptation by entropy minimization. arXiv
preprint arXiv:2006.10726 (2020).

Yiqi Wang, Chaozhuo Li, Wei Jin, Rui Li, Jianan Zhao, Jiliang Tang, and Xing
Xie. 2022. Test-time training for graph neural networks. arXiv preprint
arXiv:2210.08813 (2022).

Yuan Wang, Zhiyu Li, Changshuo Zhang, Sirui Chen, Xiao Zhang, Jun Xu, and
Quan Lin. 2024. Do Not Wait: Learning Re-Ranking Model Without User Feedback

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation

At Serving Time in E-Commerce. In Proceedings of the 18th ACM Conference on
Recommender Systems. 896-901.

Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation. In
2022 IEEE 38th international conference on data engineering (ICDE). IEEE, 1259—
1273.

Rui Xu, Shu Yang, Yihui Wang, Bo Du, and Hao Chen. 2024. A survey on vision
mamba: Models, applications and challenges. arXiv preprint arXiv:2404.18861
(2024).

Yi Xu, Weicong Qin, Weijie Yu, Ming He, Jianping Fan, and Jun Xu. 2025. Decoding
Recommendation Behaviors of In-Context Learning LLMs Through Gradient
Descent. arXiv preprint arXiv:2504.04386 (2025).

Xihong Yang, Yigi Wang, Jin Chen, Wengqi Fan, Xiangyu Zhao, En Zhu, Xin-
wang Liu, and Defu Lian. 2024. Dual test-time training for out-of-distribution
recommender system. arXiv preprint arXiv:2407.15620 (2024).

Xihong Yang, Yiqi Wang, Yue Liu, Yi Wen, Lingyuan Meng, Sihang Zhou, Xinwang
Liu, and En Zhu. 2024. Mixed graph contrastive network for semi-supervised
node classification. ACM Transactions on Knowledge Discovery from Data (2024).
Zhaoqi Yang, Yanan Wang, and Yong Ge. 2024. TTT4Rec: A Test-Time Training
Approach for Rapid Adaption in Sequential Recommendation. arXiv preprint
arXiv:2409.19142 (2024).

471

RecSys ’25, September 22-26, 2025, Prague, Czech Republic

Changshuo Zhang, Sirui Chen, Xiao Zhang, Sunhao Dai, Weijie Yu, and Jun Xu.
2024. Reinforcing Long-Term Performance in Recommender Systems with User-
Oriented Exploration Policy. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1850-1860.
Changshuo Zhang, Zihan Lin, Shukai Liu, Yonggi Liu, and Han Li. 2025. Comment
Staytime Prediction with LLM-enhanced Comment Understanding. In Companion
Proceedings of the ACM on Web Conference 2025. 586—595.

Changshuo Zhang, Teng Shi, Xiao Zhang, Qi Liu, Ruobing Xie, Jun Xu, and Ji-
Rong Wen. 2024. Modeling Domain and Feedback Transitions for Cross-Domain
Sequential Recommendation. arXiv preprint arXiv:2408.08209 (2024).
Changshuo Zhang, Teng Shi, Xiao Zhang, Yanping Zheng, Ruobing Xie, Qi Liu,
Jun Xu, and Ji-Rong Wen. 2024. QAGCEF: Graph Collaborative Filtering for Q&A
Recommendation. arXiv preprint arXiv:2406.04828 (2024).

Kepu Zhang, Teng Shi, Sunhao Dai, Xiao Zhang, Yinfeng Li, Jing Lu, Xiaoxue
Zang, Yang Song, and Jun Xu. 2024. SAQRec: Aligning Recommender Systems
to User Satisfaction via Questionnaire Feedback. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management. 3165-3175.
Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan,
Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. 2021. Recbole: Towards a
unified, comprehensive and efficient framework for recommendation algorithms.
In proceedings of the 30th acm international conference on information & knowledge
management. 4653-4664.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Test-Time Training

	3 Preliminaries
	3.1 Problem Statement
	3.2 State Space Models (SSMs)

	4 T2ARec: The Proposed Method
	4.1 Base Model
	4.2 Time Interval Alignment
	4.3 User Interest State Alignment
	4.4 Training and Testing Process

	5 Experiments
	5.1 Experimental Settings
	5.2 Overall Performance
	5.3 Ablation Studies
	5.4 Further Analysis

	6 Conclusion
	Acknowledgments
	A Proof of Theorem 4.1
	References

