
Test-Time Alignment with State Space Model for Tracking User
Interest Shifts in Sequential Recommendation

Changshuo Zhang

Gaoling School of Artificial

Intelligence, Renmin University of

China

Beijing, China

lyingcs@ruc.edu.cn

Xiao Zhang
∗

Gaoling School of Artificial

Intelligence, Renmin University of

China

Beijing, China

zhangx89@ruc.edu.cn

Teng Shi

Gaoling School of Artificial

Intelligence, Renmin University of

China

Beijing, China

shiteng@ruc.edu.cn

Jun Xu

Gaoling School of Artificial

Intelligence, Renmin University of

China

Beijing, China

junxu@ruc.edu.cn

Ji-Rong Wen

Gaoling School of Artificial

Intelligence, Renmin University of

China

Beijing, China

jrwen@ruc.edu.cn

Abstract
Sequential recommendation is essential in modern recommender

systems, aiming to predict the next item a user may interact with

based on their historical behaviors. However, real-world scenarios

are often dynamic and subject to shifts in user interests. Conven-

tional sequential recommendation models are typically trained on

static historical data, limiting their ability to adapt to such shifts

and resulting in significant performance degradation during testing.

Recently, Test-Time Training (TTT) has emerged as a promising

paradigm, enabling pre-trained models to dynamically adapt to test

data by leveraging unlabeled examples during testing. However,

applying TTT to effectively track and address user interest shifts in

recommender systems remains an open and challenging problem.

Key challenges include how to capture temporal information effec-

tively and explicitly identifying shifts in user interests during the

testing phase. To address these issues, we propose T2ARec, a novel
model leveraging state space model for TTT by introducing two

Test-Time Alignment modules tailored for sequential recommen-

dation, effectively capturing the distribution shifts in user interest

patterns over time. Specifically, T2ARec aligns absolute time in-

tervals with model-adaptive learning intervals to capture temporal

dynamics and introduce an interest state alignment mechanism to

effectively and explicitly identify the user interest shifts with theo-

retical guarantees. These two alignment modules enable efficient

and incremental updates to model parameters in a self-supervised

manner during testing, enhancing predictions for online recom-

mendation. Extensive evaluations on three benchmark datasets

∗
Xiao Zhang is the corresponding author (e-mail: zhangx89@ruc.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RecSys ’25, Prague, Czech Republic
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1364-4/25/09

https://doi.org/10.1145/3705328.3748060

demonstrate that T
2
ARec achieves state-of-the-art performance

and robustly mitigates the challenges posed by user interest shifts.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Test-Time Alignment, Sequential Recommendation, User Interest

Shifts, State Space Model

ACM Reference Format:
Changshuo Zhang, Xiao Zhang, Teng Shi, Jun Xu, and Ji-Rong Wen. 2025.

Test-Time Alignment with State Space Model for Tracking User Interest

Shifts in Sequential Recommendation. In Proceedings of the Nineteenth ACM
Conference on Recommender Systems (RecSys ’25), September 22–26, 2025,
Prague, Czech Republic. ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/3705328.3748060

1 Introduction
Sequential recommendations aim to predict the next item a user

will interact with by modeling dependencies within their historical

interaction data [1, 17, 19, 44, 49]. However, real-world scenarios

often present the challenge of distribution shifts, where user behav-

ior patterns and data distributions evolve dynamically over time.

For instance, consider a sequential recommendation where a user’s

interaction history (as shown in Figure 1) during the training phase

(weekdays) exhibits a strong preference for study-related items,

such as books, reflecting their focus on work or learning. However,

during the testing phase (weekends), the user’s interest shifts to-

wards sports-related items, such as football or basketball equipment,

as they transition to leisure activities. If the recommendation fails

to adapt to this shift and continues to recommend study-related

items based on the training phase, it will not align with the user’s

weekend preferences.

Existing sequential recommendation models, typically trained

on static historical data and having their model parameters fixed

during online deployment, face challenges in adapting to shifts

in user interest patterns. This limitation often leads to significant

461

https://orcid.org/0009-0001-8481-9421
https://orcid.org/0000-0001-7397-5632
https://orcid.org/0009-0004-6148-742X
https://orcid.org/0000-0001-7170-111X
https://orcid.org/0000-0002-9777-9676
https://doi.org/10.1145/3705328.3748060
https://doi.org/10.1145/3705328.3748060
https://doi.org/10.1145/3705328.3748060
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3705328.3748060&domain=pdf&date_stamp=2025-09-07

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Changshuo Zhang et al.

Figure 1: Illustrates of user interest shifts between train and
testing phases in sequential recommendation. During the
training phase (weekdays), the user’s historical behavior is
focused on study-related content (e.g., books), and the model
learns to predict the next item based on this pattern. In the
testing phase (weekends), user interest shifts from study-
related items to leisure activities (e.g., sports). Although the
Test input includes the ground truth from the training phase,
the model continues to recommend study-related content,
failing to adapt to the user’s new preferences. This highlights
the importance of modeling temporal contexts and handling
user interest shifts effectively in recommendations.

performance degradation during test time. To validate this phe-

nomenon, we conducted experiments on two datasets (ML-1M [14]

and Amazon Prime Pantry [28]) using two models (SASRec [19]

and Mamba4Rec [24]) following the implementation settings in

Recbole [60]. After training the models on the training set, the test-

ing set was evenly divided into four segments based on timestamps,

and NDCG@10 was used as the evaluation metric. As shown in Fig-

ure 2, the later the timestamp of the segment, the more significant

the user interest shift, resulting in poorer test performance metrics.

This illustrates how user behavior evolves dynamically between

the train and testing phases, driven by contextual factors such as

time availability, necessitating adaptive models to handle such user

interest shifts effectively.

Motivated by the recent promising paradigm of Test-Time Train-

ing (TTT) [18, 22, 27, 42, 47], which enables pre-trained models to

dynamically adapt to test data by leveraging unlabeled examples

during inference, we focus on applying TTT to track user interest

shifts in sequential recommendation. While TTT facilitates self-

adaptation and effectively addresses evolving distribution shifts in

an online manner, its application to tracking user interest shifts in

recommender systems remains an open and challenging problem.

We identify two key challenges associated with this task: first, cap-
turing temporal information, as user behavior is often influenced

by periodic patterns or trending topics, making it crucial to un-

derstand the impact of historical events on predictions at specific

future time points; second, dynamically and efficiently adjusting
the representation of user interest patterns, since even if a user’s

Figure 2: Validation of user interest shifts during the test-
ing phase. We conducted experiments on two datasets (ML-
1M and Amazon Prime Pantry) using two backbone models
(SASRec and Mamba4Rec). After training the models on the
training set, the testing set was evenly divided into four seg-
ments based on timestamps, and NDCG@10 was used as the
evaluation metric for analysis and comparison.

historical behavioral features remain stable, their interest patterns

may evolve dynamically. The model needs to identify and adapt to

these changes to provide accurate recommendations during testing.

To address the above challenges of tracking user interest shifts in

sequential recommendation tasks, we propose T
2
ARec, a sequential

model that integrates test-time training. T
2
ARec adopts state space

models (SSMs) [4, 9] as the backbone, which effectively models

user interest state transitions by handling historical interactions

and resolves test-time throughput issues. Then we introduce two

alignment-based self-supervised losses to adaptively capture the

user interest shifts. The time interval alignment loss computes

differences between interaction intervals in the sequence and the

target prediction time, aligning these intervals with adaptive time

steps to effectively capture temporal dynamics. The interest state

alignment loss models the dynamic evolution of user interest pat-

terns by transforming the input sequence into a final state, applying

forward and backward state updates to generate a reconstructed

state, and aligning it with the original state for precise pattern mod-

eling. During testing, T
2
ARec applies gradient descent on test data

to adjust model parameters in real time, enabling accurate next-item

predictions under distribution shifts. This design allows T
2
ARec

to effectively capture temporal dynamics and adapt to evolving

user interest patterns, ensuring robust and efficient performance in

sequential recommendation tasks at the test time.

Our main contributions are as follows:

• Identification of a key issue in applying Test-Time Training to

sequential recommendations: The overlooked shift in the user

interest pattern at the test time.

• Introduction of a novel approach: We propose T
2
ARec, a TTT-

based sequential recommendation model incorporating two test-

time alignment-based losses in a state space model to capture

temporal dynamics and evolving user interest patterns, along

with real-time parameter adjustment during testing to track user

interest shifts and ensure robust performance.

• Extensive experiments: We conduct experiments on three widely

used datasets, demonstrating the effectiveness of T
2
ARec. Fur-

ther ablation studies and analysis explain the superiority of our

designed modules.

462

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation RecSys ’25, September 22–26, 2025, Prague, Czech Republic

2 Related Work
2.1 Sequential Recommendation
Sequential recommendations have evolved from traditional mod-

els, like Markov Chains [16], to deep learning approaches [3, 7, 39,

40, 43, 55, 57, 59]. Early RNN-based models (e.g., GRU4Rec [17],

HRNN [33]) addressed long-range dependencies, leveraging hidden

states to capture dynamic user preferences. Recently, Transformer-

based architectures, such as SASRec [19] and BERT4Rec [41], have

gained prominence with self-attention mechanisms that model

complex interactions and enable efficient parallel computation. In-

novations like Mamba4Rec[24] further enhance performance on

long interaction sequences, reflecting the ongoing advancements

in this field. Recent works also leverage Large Language Models

(LLMs) for sequential recommendation [32, 51], relying primarily

on the static pre-trained knowledge. Our approach, however, fo-

cuses on test-time alignment to explicitly track and adapt to user

interest shifts during inference.

2.2 Test-Time Training
Test-Time Training (TTT) [18, 27, 36, 47] improves model general-

ization by enabling partial adaptation during the testing phase to

address distribution shifts between training and testing datasets.

It leverages self-supervised learning (SSL) [25, 26, 31, 35, 53] tasks

to optimize a supervised loss (e.g., cross-entropy) and an auxil-

iary task loss during training. The auxiliary task (e.g., rotation

prediction) allows the model to align test-time features closer to

the source domain. Simplified approaches like Tent [46] avoid su-

pervised loss optimization during testing, while advanced methods

such as TTT++ [27] and TTT-MAE [15] employ techniques like

contrastive learning and masked autoencoding to enhance adapta-

tion. Unsupervised extensions, such as ClusT3 [12], use clustering

with mutual information maximization but face limitations due to

hyperparameter sensitivity. Test-Time Training (TTT) has been

applied to out-of-distribution (OOD) tasks, such as recommenda-

tions [37, 48, 52, 54]. DT3OR [52] introduces a model adaptation

mechanism during the test phase, specifically designed to adapt to

the shifting user and item features. TTT4Rec [54] leverages SSL in

an inner-loop, enabling real-time model adaptation for sequential

recommendations. Paragon [38] leverages a generative model to

produce a portion of the recommendation model’s parameters dur-

ing the test phase, ensuring test-time controllability [36]. LAST [48]

constructs simulated feedback through an evaluator during test-

ing, updating model parameters, and achieving online benefits.

However, existing work has not effectively captured temporal in-

formation or explicitly identified shifts in user interests during the

testing phase.

3 Preliminaries
3.1 Problem Statement
In sequential recommendation, letU = {𝑢1, 𝑢2, . . . , 𝑢 |U | } denote
the user set,V = {𝑣1, 𝑣2, . . . , 𝑣 |V | } denote the item set, and S𝑢 =

[𝑣1, 𝑣2, . . . , 𝑣𝑛𝑢] denote the chronologically ordered interaction se-

quence for user𝑢 ∈ U with the corresponding timestamp sequence

[𝑡1, 𝑡2, . . . , 𝑡𝑛𝑢], where 𝑛𝑢 is the length of the sequence, 𝑣𝑖 is the

𝑖-th item interacted with by user 𝑢, and 𝑡𝑖 is the timestamp of the

interaction. Given the interaction history S𝑢 and the timestamp

of prediction 𝑡𝑛𝑢+1, the task is to predict the next interacted item

𝑣𝑛𝑢+1, i.e., the item that the user 𝑢 is most likely to interact with at

timestamp 𝑡𝑛𝑢+1. This can be formalized as learning a function:

𝑓𝑡𝑛𝑢+1 : S𝑢 → 𝑣𝑛𝑢+1, (1)

where 𝑓𝑡𝑛𝑢+1 maps the historical sequence S𝑢 at timestamp 𝑡𝑛𝑢+1
to the next likely item 𝑣𝑛𝑢+1 from the item setV . In the following

sections, we omit the subscript 𝑢 in 𝑛𝑢 and S𝑢 and directly use 𝑛

and S for convenience.

3.2 State Space Models (SSMs)
SSMs perform well in long-sequence modeling [24], image gen-

eration [50], and reinforcement learning [29], providing efficient

autoregressive inference like RNN [23] while processing input se-

quences in parallel like Transformers [45]. This dual functionality

enables efficient training and robust performance in applications

such as time series analysis [34] and audio generation [8].

The original SSMs originated as continuous-time maps on func-

tions from 𝑑-dimensional input 𝒙 (𝑡) ∈ R𝑑 to output 𝒚(𝑡) ∈ R𝑑 at

current time 𝑡 through a 𝑑s-dimensional hidden state 𝒉(𝑡) ∈ R𝑑s
.

These models leverage the dynamics described below:

𝒉′ (𝑡) = 𝑨𝒉(𝑡) + 𝑩𝒙 (𝑡), (2a)

𝒚(𝑡) = 𝑪⊤𝒉(𝑡), (2b)

where 𝑨 ∈ R𝑑s×𝑑s
and 𝑩, 𝑪 ∈ R𝑑s×𝑑

are adjustable matrices,

𝒉′ (𝑡) denotes the derivative of 𝒉(𝑡). To enable effective representa-

tion of discrete data, Structured SSMs [10] employ the Zero-Order

Hold (ZOH) [11] method for data discretization from the input

sequence 𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑛]⊤ ∈ R𝑛×𝑑 to output sequence 𝒀 =

[𝒚1,𝒚2, . . . ,𝒚𝑛]⊤ ∈ R𝑛×𝑑 through hidden state𝑯 = [𝒉1,𝒉2, . . . ,𝒉𝑛]⊤ ∈
R𝑛×𝑑s

based on a specified step size Δ ∈ R. The introduction of

the Mamba [9] model significantly enhances SSMs by dynamically

adjusting the matrices 𝑩 ∈ R𝑛×𝑑s
, 𝑪 ∈ R𝑛×𝑑s

and the step size now

represented as 𝚫 ∈ R𝑛×𝑑 that dynamically depends on inputs vary-

ing over time. Its latest version, Mamba-2 [4], links structured state

space models with attention mechanisms. Mamba-2 refines 𝑨 into

a scalar value 𝐴 ∈ R and sets 𝚫 ∈ R𝑛 , creating a new state space

duality (SSD) framework with multi-head patterns akin to Trans-

formers. This innovation boosts training speed and increases state

size, optimizing expressiveness for greater efficiency and scalability,

making it a strong contender against Transformers.

4 T2ARec: The Proposed Method
To track shifts in user interest during the testing phase of sequential

recommendation tasks, we propose T
2
ARec, a method that inte-

grates a state space model for test-time training and introduces

two alignment modules to adaptively capture these shifts during

testing. First, we introduce the base model of the proposed method,

which is developed based on the Mamba-2 architecture and can

dynamically represent user interest with high test-time throughput.

Next, we describe the two alignment modules, designed for time

intervals and user interest states, respectively. Finally, we explain

how to conduct self-supervised training during the testing phase.

463

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Changshuo Zhang et al.

Figure 3: Overall framework of T2ARec: T2ARec processes
input sequences through an embedding layer, followed by
the T2A-Mamba block and Align2-SSM block for state up-
dates and output generation. The prediction layer uses out-
put embedding 𝒐𝑛 generated from the feed forward network
layer for next-item predictions. 𝒐𝑛 is reintroduced into the
T2A-Mamba block to compute the alignment losses.

4.1 Base Model
As illustrated in Figure 3, we develop the basic framework of

T
2
ARec by stacking the embedding layer, T

2
A-Mamba block, and

the prediction layer.

4.1.1 Embedding Layer. Given a learnable embedding layer 𝑬 =

[𝒆1, 𝒆2, . . . , 𝒆 |V |]⊤ ∈ R |V |×𝑑 for all items, where 𝑑 is the embed-

ding dimension and e𝑗 represents the dense vector for item 𝑣 𝑗 , this

layer transforms the sparse item id sequence S = [𝑣1, 𝑣2, . . . , 𝑣𝑛]
into dense vector representations, denoted as 𝑬 (1)S ∈ R𝑛×𝑑 .

4.1.2 T2A-Mamba Block. Though Transformer-based models ex-

cel in sequential recommendation [19], their quadratic complexity

related to sequence length impedes efficient test-time training and

burdens throughput. To address this issue, we develop T
2
A-Mamba

based on Mamba-2 [4].

The output representations 𝑬S of the embedding layer then

enter our core T
2
A-Mamba Block. The sequence undergoes a se-

ries of transformations to generate inputs for Align
2
-SSM block.

Specifically, 𝑬S first passes through a linear layer:

𝑬 (2)S , 𝑬 (3)S ← Linear1 (𝑬 (1)S), (3)

where 𝑬 (2)S ∈ R𝑛×(𝑑+2×𝑑s)
, 𝑬 (3)S ∈ R𝑛 and Linear1 is a linear

parameterized projection from dimension 𝑑 to dimension (𝑑 + 2 ×
𝑑𝑠 + 1). Next, 𝑬 (2)S passes through a convolution and a non-linear

activation, 𝑬 (3)S passes through a softplus function:

𝑿 ,𝑩, 𝑪 ← 𝜎

(
Conv

(
𝑬 (2)S

))
, 𝚫 = 𝜏

(
𝑬 (3)S

)
(4)

where 𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑛]⊤ ∈ R𝑛×𝑑 is the input of Align
2
-SSM,

𝑩 ∈ R𝑛×𝑑s
and 𝑪 ∈ R𝑛×𝑑s

are the adjustable matrices, 𝚫 ∈ R𝑛+ is
the step size ensured to be positive via the softplus function 𝜏 , Conv

is the convolution operation, 𝜎 is the non-linear activation.

The overall transformation process of Equation (3) and (4) can

be unified into a sequence of mappings from the input embeddings

𝑬S to the outputs 𝑿 , 𝑩, 𝑪 , and the step size 𝚫, denotes as:

𝑿 ,𝑩, 𝑪,𝚫← Transform(𝑬 (1)S) . (5)

Then, we introduce the core ingredient of T
2
A-Mamba, the

Align
2
-SSM. Given a learnable scalar value 𝐴 < 0, we compute the

discretized
¯𝑨 = [𝐴1, 𝐴2, . . . , 𝐴𝑛]⊤ ∈ R𝑛 and 𝑩̄ = [𝑩̄1, 𝑩̄2, . . . , 𝑩̄𝑛]⊤ ∈

R𝑛×𝑑s
follows the Zero-Order Hold (ZOH) [11] method, formally:

¯𝑨 = 𝑒𝚫𝐴, 𝑩̄ = diag(𝚫)𝑩, (6)

simplified as
¯𝑨, 𝑩̄ ← discretize(𝚫, 𝐴,𝑩), where diag(𝚫) is a 𝑛 × 𝑛

diagonal matrix, the diagonal elements are the elements of 𝚫.

Finally, given an all-zero matrix 𝒉0 ∈ R𝑑s×𝑑
as the initial state,

we can iteratively compute the outputs and hidden states inAlign
2
-SSM:

𝒉𝑡 = 𝐴𝑡𝒉𝑡−1 + 𝑩̄𝑡 ⊗ 𝒙𝑡 , (7a)

𝒚𝑡 = 𝒉⊤𝑡 𝑪𝑡 , (7b)

where ⊗ represents the outer product, which combines 𝑩̄𝑡 ∈ R𝑑𝑠
and 𝒙𝑡 ∈ R𝑑 into a matrix of size 𝑑𝑠 × 𝑑 , 𝒀 = [𝒚1,𝒚2, . . . ,𝒚𝑛]⊤ ∈
R𝑛×𝑑 , 𝑯 = [𝒉1,𝒉2, . . . ,𝒉𝑛]⊤ ∈ R𝑛𝑑×𝑑s

are the outputs and hidden

states of Align
2
-SSM block, separately, and 𝒉𝑛 ∈ R𝑑s×𝑑

is referred

to as the final state that characterizes the user’s current preference.

4.1.3 Feed Forward Network Layer and Prediction Layer. 𝒀 is then

passed through a Feed Forward Network (FFN) layer to adapt the

features to the semantic space of the next layer:

𝑶 = FFN(𝒀), (8)

where 𝑶 = [𝒐1, 𝒐2, . . . , 𝒐𝑛]⊤ ∈ R𝑛×𝑑 is the output embeddings.

In addition, this process involves residual connections, layer nor-

malization, and other transformations, which are not explicitly

represented in the equations for the sake of simplicity.

Based on the output embeddings 𝑶 generated by the FFN. We

use the last element 𝒐𝑛 to predict the next item the user is likely to

interact with. The prediction layer computes logits for all items as:

𝒛̂ = Softmax (𝑬𝒐𝑛) , (9)

where 𝒛̂ ∈ R |V | , Softmax is the softmax function and 𝑬 is the

embedding table of the embedding layer.

4.1.4 Recommendation Loss. The recommendation loss is then

computed using the cross-entropy loss:

Lrec = −
1

𝑛

𝑛∑︁
𝑖=1

𝑧𝑖 log (𝑧𝑖) , (10)

where 𝑧𝑖 denotes the ground-truth for item 𝑖 , 𝑧𝑖 denotes the pre-

dicted logit for item 𝑖 in 𝑧. This loss encourages the model to maxi-

mize the predicted probability of the true interacted item, improving

recommendation accuracy.

464

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation RecSys ’25, September 22–26, 2025, Prague, Czech Republic

Figure 4: The logits and losses computation in Align2-SSM: The left side illustrates the time interval alignment loss (Ltime),
which aligns the predicted time intervals 𝚫 with the ground truth 𝑻 . The right side shows the interest state alignment loss
(Lstate), aligning the final state 𝒉𝑛 with the backward state ˆ𝒉b

𝑛 . These two losses jointly enhance the model’s robustness and
effectiveness in handling user interest shifts. During testing, the model leverages these self-supervised losses to perform
gradient descent, adapting to the input data and improving prediction performance.

4.2 Time Interval Alignment
Tomore accurately capture the temporal information in distribution

shifts, we introduce a time interval alignment loss in T
2
ARec. In

this process, we not only consider relative time but also incorporate

absolute timestamps to better reflect the dynamics of temporal

information. As shown in the left half of Figure 4, we illustrate

the computation method for the time interval alignment loss. In

the Align
2
-SSM block, the discretization process (Equation (20))

involves the use of time steps 𝚫 = [Δ1,Δ2, . . . ,Δ𝑛]⊤ ∈ R𝑛+, where
Δ𝑖 ∈ R+. Ensuring the correctness of the time steps is crucial for

alleviating user interest shifts, as accurate time steps can better

capture the temporal information embedded in distribution shifts.

As discussed in Section 4.1.2, the time steps𝚫 in the T
2
A-Mamba

block are not fixed but are dynamically generated based on the

input sequence S through the embedding layer output 𝑬S . This
dynamic adjustment enables the model to adapt to variations in

input features, resulting in a more flexible temporal representation.

However, 𝚫 can only adaptively learn the temporal information in

timestamp sequence [𝑡1, 𝑡2, . . . , 𝑡𝑛], while ignoring the prediction
timestamp 𝑡𝑛+1. To address this, we aim to obtain an adaptive test-

time temporal representation Δ𝑛+1 ∈ R+ in Align
2
-SSM.

To achieve this, although we cannot directly access the ground

truth item 𝒗𝑛+1 during prediction, we consider the output embed-

ding of the feed forward network layer 𝒐𝑛 ∈ R𝑑 . This embedding

is used in the prediction layer to compute similarity scores with

all item embeddings via a dot product (as detailed in Section 4.1.3).

During training, 𝒐𝑛 is expected to progressively converge toward

the embedding representation of the next ground truth item 𝒗𝑛+1.

Based on this observation, we re-feed 𝒐𝑛 into the T
2
A-Mamba block

to estimate the adaptive time step Δ𝑛+1 using Equation (5) and apply
stop-gradient to it to prevent unstable training:

𝒙̂𝑛+1,𝑩𝑛+1, 𝑪𝑛+1,Δ𝑛+1 ← Transform(𝒐𝑛)stop-gradient . (11)

After obtaining the adaptive time steps 𝚫 and Δ𝑛+1, we demon-

strate how to align them with the timestamps 𝑡1, 𝑡2, . . . , 𝑡𝑛+1. First,
we compute the time interval sequence based on these timestamps

and pad it with 0 at the beginning (since the timestamps of interac-

tions prior to the input sequence are unavailable):

𝑻 = [0, 𝑡2 − 𝑡1, 𝑡3 − 𝑡2, . . . , 𝑡𝑛+1 − 𝑡𝑛], (12)

where 𝑻 ∈ R𝑛+1 serves as the ground truth for 𝚫 and Δ𝑛+1.
Then we propose using a pairwise loss to align 𝚫 and Δ𝑛+1 with

the ground truth time interval 𝑇 , excluding the padded 0. Specifi-

cally, we compute the pairwise self-supervised loss as follows:

Lpairwise =
∑︁

2≤𝑖< 𝑗≤𝑛+1
max

{
0, 1 − (Δ𝑖 − Δ 𝑗) ·

(
𝑇𝑖 −𝑇𝑗
𝜆

)}
, (13)

where (Δ𝑖 − Δ 𝑗) represents the predicted pairwise differences,

(𝑇𝑖 − 𝑇𝑗) represents the ground truth pairwise differences, 𝜆 is

constant value for scaling. The loss penalizes mismatches between

the relative signs of predicted and ground truth time differences,

preserving the relative relationships between the learned time in-

tervals instead of relying on their absolute values.

However, directly applying this loss introduces certain chal-

lenges. When handling long sequences (e.g., 50–200 items), the

computational complexity of pairwise difference calculations in-

creases to 𝑂 (𝑛2). To address this issue, we adopt a block-based

465

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Changshuo Zhang et al.

computation approach to simplify the process. Specifically, the se-

quence is divided into smaller, non-overlapping blocks of size 𝑏, and

pairwise losses are computed independently within each block. For

each block, we first calculate the pairwise differences for predicted

values (Δ𝑖 −Δ 𝑗) and ground truth values (𝑇𝑖 −𝑇𝑗). Next, we apply a
mask to exclude invalid pairs, accommodating sequences of varying

lengths. Finally, the time interval alignment loss for each block is

computed using the hinge loss formulation and normalized by the

total number of valid pairs across all blocks:

Ltime =

∑
block

∑
2≤𝑖< 𝑗≤𝑛+1 max

{
0, 1 − (Δ𝑖 − Δ 𝑗) ·

(
𝑇𝑖−𝑇𝑗

𝜆

)}
Total Valid Pairs

.

(14)

This approach reduces both computational and memory complexity

from 𝑂 (𝑛2) to 𝑂 (𝑏2 × ⌈𝑛/𝑏⌉), significantly enhancing scalability

for long sequences.

4.3 User Interest State Alignment
To ensure the model accurately captures and represents the evolv-

ing patterns of user interests over time, we introduce a interest state

alignment loss in T
2
ARec. As shown in Figure 1, user interest shifts

during testing often occur toward the end of the input sequence.

Therefore, it is crucial for recommendation models to better under-

stand and align with the user’s interests at the tail end. To achieve

this, we align the final states of T
2
A-Mamba.

As illustrated on the right side of Figure 4, we present the com-

putation process for the interest state alignment loss. First, we in-

troduce a backward state update function, which is then applied to

align the final state of the input user history sequence. Ensuring

the correctness of the final states generated by the model is critical

for alleviating shifts in user interests.

4.3.1 Backward State Update Function. Given the forward state

update function 𝒉′ (𝑡) = 𝐴𝒉(𝑡) + 𝑩𝒙 (𝑡), similar to Equation (2a),

multiplying both sides by 𝐴−1
yields its backward form:

𝒉(𝑡) = 𝐴−1𝒉′ (𝑡) +
(
−𝐴−1𝑩𝒙 (𝑡)

)
, (15)

where 𝒉′ (𝑡) denotes the derivative of 𝒉(𝑡). To simplify the notation,

we define:

𝑃b = 𝐴−1, 𝑸b = −𝐴−1𝑩. (16)

Substituting Equation (16) into Equation (15) yields

𝒉(𝑡) = 𝑃b𝒉′ (𝑡) + 𝑸b𝒙 (𝑡). (17)

For the discrete-time system, we adopt the Zero-Order Hold [11]

method for the discretize process with a scalar step size Δ as follows:

𝑃b = 𝑒Δ𝑃
b

, ¯𝑸b = Δ𝑸b . (18)

This discretize process can be simplified as 𝑃, ¯𝑸 = discretize(Δ, 𝑃,𝑸).
Using this parameterization, Equation (17) can be expressed as a

backward discrete state update function as follows:

𝒉b

𝑡 = 𝑃b𝒉𝑡+1 + ¯𝑸b ⊗ 𝒙𝑡 . (19)

4.3.2 Interest State Alignment Loss. In the Align
2
-SSM block ex-

plained in Section 4.1.2, as described in Equation (7a) and (7b),

Align
2
-SSMblock generates the hidden states𝑯 = [𝒉1,𝒉2, . . . ,𝒉𝑛]⊤.

We take its final state 𝒉𝑛 ∈ R𝑑s×𝑑
and subsequently perform the

interest state alignment operation on it. This is because 𝒉𝑛 encapsu-

lates the entirety of the user’s historical information while retaining

the most recent behavioral context with maximal fidelity.

To begin, we estimate the forward state for the next step at

𝑡𝑛+1 (abbreviated as forward state), denoted as
ˆ𝒉𝑛+1 ∈ R𝑑s×𝑑

, af-

ter 𝒉𝑛 . Following the approach in Equation (11), the feed-forward

network layer output 𝒐𝑛 is transformed to derive 𝒙̂𝑛+1 ∈ R𝑑 ,
𝑩𝑛+1 ∈ R𝑑s

, 𝑪𝑛+1 ∈ R𝑑s
, and Δ𝑛+1 ∈ R+. These terms are sub-

sequently used to compute
ˆ𝒉𝑛+1. Specifically, the discretized terms

𝐴𝑛+1 ∈ R and 𝑩̄𝑛+1 ∈ R𝑑s×𝑑
are computed as follows:

𝐴𝑛+1 = 𝑒Δ𝑛+1𝐴, 𝑩̄𝑛+1 = Δ𝑛+1𝑩𝑛+1, (20)

Using these, along with 𝒉𝑛 and 𝒙̂𝑛+1, we update the forward state:

ˆ𝒉𝑛+1 = 𝐴𝑛+1𝒉𝑛 + 𝑩̄𝑛+1 ⊗ 𝒙̂𝑛+1 . (21)

Next, we introduce a backward state, denoted as ˆ𝒉b

𝑛 , and evaluate

its alignment with the original state 𝒉𝑛 in Equation (7a) using

an additional loss termed interest state alignment loss. In simple

terms, this involves substituting
ˆ𝒉𝑛+1 from Equation (21) into the

backward discrete state update function in Equation (19), estimate

𝑃b
and

¯𝑸b
using neural network, for computing the backward

state. More specifically, the process begins by taking 𝒙𝑛 ∈ R𝑑
in Equation (4) as input and passing it through a linear layer to

produce the estimated matrix 𝑸 ∈ R𝑑s
:

𝑸 ← Linear2 (𝒙𝑛). (22)

where Linear2 is a linear projection from dimension 𝑑 to dimension

𝑑s. Then, for estimating 𝑃b
and

¯𝑸b
in Equation (18) with Δ𝑛+1, we

introduce a scalar value 𝑃 , as specified in Theorem 4.1, and compute

the discretized 𝑃 and
¯𝑸 :

𝑃 = 𝑒Δ𝑛+1𝑃 , ¯𝑸 = Δ𝑛+1𝑸 . (23)

Subsequently, substituting Equation (23) into the backward discrete

state update function in Equation (19), we derive the following

backward state:
ˆ𝒉b

𝑛 = 𝑃 ˆ𝒉𝑛+1 + ¯𝑸 ⊗ 𝒙𝑛 . (24)

Finally, we define the interest state alignment loss as follows:

Lstate =

𝒉𝑛 − ˆ𝒉b

𝑛

2

Δ2

𝑛+1
, (25)

where the coefficient
1

Δ2

𝑛+1
serves as a dilution term as analyzed in

Theorem 4.1. Intuitively, the interest state alignment loss ensures

that the model’s internal representation of the user’s current in-

terest aligns with the expected state derived from the sequence.

Specifically, it reconstructs the user’s interest state at the end of

their interaction sequence and aligns it with a backwardly updated

version of the same state, enabling the model to fine-tune its un-

derstanding during the testing phase. Theoretically, we provide an

upper bound of Lstate to analyze its effect.

Theorem 4.1. Denote 𝝐𝑛 = 𝑸 − 𝑸b

𝑛+1 and 𝑸b

𝑛+1 = −𝐴−1𝑩𝑛+1,

and let 𝑃 =
ln(−𝐴−1)

Δ𝑛+1
, the following upper bound for Lstate holds:

Lstate ≤ Δ−2

𝑛+1 ∥𝒉𝑛 ∥2 + Δ
−1

𝑛+1 ∥𝒙𝑛 ∥2 ∥𝝐𝑛 ∥2 +𝐴
−1 ∥𝑩𝑛+1∥2

𝒙𝑛 − 𝒙̂𝑛+1Δ𝑛+1

2

.

466

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation RecSys ’25, September 22–26, 2025, Prague, Czech Republic

Algorithm 1 Test-Time Alignment for T
2
ARec on a Single Batch

Input: Batch of test sequences, denoted as {S𝑖 }𝑚𝑖=1
, where each

represented as S𝑖 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] with the corresponding

timestamp sequence [𝑡1, 𝑡2, . . . , 𝑡𝑛] and timestamp of prediction

𝑡𝑛+1, well-trained model 𝑔𝜽 (·), number of training steps𝑀 ,

learning rate 𝛼 , and weight parameters 𝜇test

1
and 𝜇test

2

Output: Final prediction 𝒐𝑛
1: Record the original model parameters: 𝜽𝑜 ← 𝜽
2: for step = 1, 2, . . . , 𝑀 do
3: Forward 𝑔𝜽 ({S𝑖 }𝑚𝑖=1

) and get the learned step size Δ, final
state 𝒉𝑛 and output 𝒐𝑛

4: Compute the time interval sequence 𝑻 using Equation (12)

5: Calculate Ltime from Equation (14) using 𝚫 and 𝑻
6: Compute the forward state

ˆ𝒉𝑛+1 using Equation (21)

7: Compute the backward state
ˆ𝒉b

𝑛 using Equation (24)

8: Calculate Lstate from Equation (25) using 𝒉𝑛 and
ˆ𝒉b

𝑛

9: Update model parameters:

𝜽 ← 𝜽 − 𝛼∇𝜽
(
𝜇test

1
Ltime + 𝜇test

2
Lstate

)
10: end for
11: Compute final prediction 𝒐𝑛 using the updated 𝑔𝜽 ({S𝑖 }𝑚𝑖=1

)
12: Restore the model parameters: 𝜽 ← 𝜽𝑜 for the next batch

Table 1: Dataset statistics.

Dataset #Users #Items #Interactions Avg. Length Sparsity

ML-1M 6,034 3,706 1,000,209 138.3 95.57%

Amazon 3,834 6,350 471,615 17.04 98.78%

Zhihu-1M 7,974 81,563 999,970 29.03 99.48%

In Theorem 4.1, ∥𝜖𝑛 ∥2 is considered an instance-dependent term

that depends on the input 𝒙𝑛 , and it tends to increase for unseen

user interaction 𝒙𝑛 . The term ∥(𝒙𝑛 − 𝒙̂𝑛+1)/Δ𝑛+1∥2 aims to ensure

consistency between the model and the most recent interaction

under dynamic behavior changes, especially when the time inter-

val Δ𝑛+1 between the user’s testing time and their most recent

behavior is very short. Similar to how humans continuously update

expectations based on new experiences, this alignment mechanism

enables the model to dynamically adapt to changes in user behavior,

thereby improving recommendation accuracy.

4.4 Training and Testing Process
4.4.1 Training Process. After designing the two self-supervised

losses, the total loss of the model combines the primary recommen-

dation loss Lrec in Section 4.1.4 and the two self-supervised losses

Ltime and Lstate, weighted by their respective hyperparameters:

L
total

= Lrec + 𝜇train

1
Ltime + 𝜇train

2
Lstate, (26)

where 𝜇train

1
and 𝜇train

2
are the weights for the self-supervised losses.

This combined loss optimizes the model by integrating both the

primary task and self-supervised learning objectives.

4.4.2 Testing Process. During testing, the pre-trained model𝑔𝜃 (·)’s
parameters 𝜃 are adaptively fine-tuned on all testing examples. For

each batch of test data {S𝑖 }𝑚𝑖=1
, optimization is performed using the

self-supervised losses Ltime and Lstate as defined in Equation (14)

and Equation (25). The trained model is then used to make the final

item predictions. After completing the predictions, the adjusted

parameters on 𝜃 are discarded, and the model reverts to its origi-

nal parameters to process the next batch of testing examples. The

pseudo-code for processing a single batch of testing examples is

illustrated in Algorithm 1.

5 Experiments
To verify the effectiveness of T

2
ARec, we conduct extensive exper-

iments and report detailed analysis results.

5.1 Experimental Settings
5.1.1 Datasets. Weevaluate the performance of the proposedmodel

through experiments conducted on three public datasets:

• MovieLens-1M (referred to as ML-1M) [14]: A dataset collected

from theMovieLens platform, containing approximately 1million

user ratings of movies.

• Amazon Prime Pantry (referred to as Amazon) [28]: A dataset of

user reviews in the grocery category collected from the Amazon

platform up to 2018.

• Zhihu-1M [13]: A dataset sourced from a large knowledge-

sharing platform (Zhihu), consisting of raw data, including infor-

mation on questions, answers, and user profiles.

For each user, we sort their interaction records by timestamp to

generate an interaction sequence. We retain only users and items

associated with at least ten interaction records. We follow the leave-

one-out policy [19] for training-validation-testing partition. The

statistical details of these datasets are presented in Table 1.

5.1.2 Baselines. To demonstrate the effectiveness of our proposed

method, we conduct comparisons with several representative se-

quential recommendation baseline models: Foundational models

such as Caser [44], a Convolutional Neural Network (CNN)-based

approach; GRU4Rec [17], which leverages Gated Recurrent Units

(GRU) from Recurrent Neural Networks (RNN); BERT4Rec [41],
adopting the bidirectional attention mechanism of BERT [5]; SAS-
Rec [19], the first to introduce the Transformer architecture to

this field; and innovative models like Mamba4Rec [24], which

applies the Mamba architecture. Time-aware models such as Ti-
SASRec [21], which enhances SASRec with temporal information,

and TiM4Rec [6], which improves low-dimensional performance

of SSD while maintaining efficiency, integrate temporal dynamics.

TTT4Rec [54] uses Test-Time Training to dynamically adapt model

parameters during inference for sequential recommendation.

5.1.3 Evaluation Metrics. To evaluate the performance of top-𝐾

recommendation, we adapt the metrics Recall@𝐾 , MRR@𝐾 , and

NDCG@𝐾 , which are widely used in recommendation research

to evaluate model performance [2, 56, 58]. In this context, we set

𝐾 = 10 and present the average scores on the test dataset.

5.1.4 Implementation Details. Our evaluation is based on imple-

mentations using PyTorch [30] and RecBole [60]. We set all model

dimensions 𝑑 to 64, the learning rate to 0.001, and the batch size to

4096. Additionally, we set the state dimension 𝑑s of the T
2
A-Mamba

to 32, the number of blocks to 1, the training steps M during testing

467

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Changshuo Zhang et al.

Table 2: Performance comparison of different sequential recommendation models. The best result is bolded and the runner-up
is underlined. * means improvements over the second-best methods are significant (t-test, p-value < 0.05).

Model

ML-1M Amazon Zhihu-1M

Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10

Caser 0.1954 0.0703 0.0994 0.0594 0.0204 0.0294 0.0288 0.0089 0.0134

GRU4Rec 0.2732 0.1147 0.1518 0.0939 0.0480 0.0586 0.0283 0.0092 0.0142

BERT4Rec 0.2770 0.1093 0.1482 0.0675 0.0372 0.0443 0.0289 0.0098 0.0142

SASRec 0.2471 0.0911 0.1273 0.1025 0.0527 0.0644 0.0364 0.0098 0.0159

Mamba4Rec 0.2813 0.1201 0.1578 0.1003 0.0522 0.0635 0.0355 0.0112 0.0167

TiSASRec 0.2713 0.1191 0.1478 0.1030 0.0540 0.0651 0.0390 0.0117 0.0175

TiM4Rec 0.2873 0.1211 0.1596 0.1016 0.0567 0.0665 0.0384 0.0118 0.0179

TTT4Rec 0.2887 0.1208 0.1599 0.1020 0.0560 0.0655 0.0370 0.0115 0.0174

T
2
ARec (ours) 0.2932∗ 0.1262∗ 0.1648∗ 0.1102∗ 0.0580∗ 0.0705∗ 0.0402∗ 0.0122∗ 0.0187∗

𝑀 to 1 and the learning rate during testing 𝛼 to 0.005. Furthermore,

the search space for the weights of the two self-supervised losses

during training, 𝜆train

1
and 𝜆train

2
, is {0.01, 0.1, 1, 10}, and for testing,

the search space for 𝜆test

1
and 𝜆test

2
is {1𝑒-3, 1𝑒-2, 1𝑒-1, 1}. To adapt

to the characteristics of the baselines and datasets, we set the fixed

sequence length to 200 for ML-1M and 50 for other datasets (Ama-

zon and Zhihu-1M). For a fair comparison, we ensured consistency

of key hyperparameters across different models while using default

hyperparameters for baseline methods as recommended in their

respective papers. Finally, we utilized the Adam optimizer [20] in a

mini-batch training manner.

5.2 Overall Performance
Table 2 presents the performance comparison of the proposed

T
2
ARec and other baseline methods on three datasets. From the

table, we observe several key insights:

(1) General sequential methods, such as SASRec and Mamba4Rec,

show varying strengths depending on the dataset character-

istics. Mamba4Rec performs better on ML-1M, a dataset with

longer sequences, due to its ability to model complex long-term

dependencies, whereas SASRec achieves slightly higher perfor-

mance on shorter sequence datasets like Amazon and Zhihu-1M,

where simpler sequence modeling suffices.

(2) TiSASRec, TiM4Rec and TTT4Rec outperform these general

sequential methods by alleviating specific challenges in rec-

ommendation. TiSASRec and TiM4Rec effectively incorporates

temporal information, enhancing their ability to model time-

sensitive dynamics, while TTT4Rec leverages test-time training

to alleviate distribution shifts, leading to superior performance.

(3) Finally, T
2
ARec outperforms all baselines across datasets, achiev-

ing the best results by introducing time interval alignment

loss and interest state alignment loss. These innovations en-

able T
2
ARec to capture temporal and sequential patterns more

effectively and adapt dynamically to test data through gradi-

ent descent during inference, further alleviating distributional

shifts and enhancing overall performance.

5.3 Ablation Studies
We conduct ablation experiments in T

2
ARec to validate the effec-

tiveness of the time interval alignment loss and the interest state

Figure 5: Effectiveness of T2ARec on user interest shifts.

alignment loss. The experimental configurations include ‘L
both

’,

where both losses are removed during training and testing, as well

as ‘Ltime’ and ‘Lstate’, where only one of the losses is removed.

During testing, we design configurations such as ‘Ltest

both
’, ‘Ltest

time
’,

and ‘Ltest

state
’, which disable all or part of the losses during the testing

phase. As shown in Table 3, removing any loss significantly de-

grades model performance, highlighting the importance of adapting

to use interest shifts. The time interval alignment loss captures tem-

poral dependencies, while the interest state alignment loss captures

the current user’s interest state. Both are crucial for the robustness

and adaptability of sequential recommendations.

5.4 Further Analysis
5.4.1 Effectiveness of T2ARec on User Interest Shifts. To validate

the effectiveness of T
2
ARec on user interest shifts, we followed

the setup in Figure 2 and compared T
2
ARec with TiM4Rec and

TTT4Rec on both the ML-1M and Amazon datasets. As shown in

Figure 5, the later the timestamp of the segment, indicating a greater

user interest shift, the performance of TiM4Rec and TTT4Rec shows

a declining trend. On the basis of these two baselines, our model

demonstrates higher improvements in Segment 3 and Segment 4

compared to Segment 1 and Segment 2. This indicates that T
2
ARec

performs better on test data with more significant user interest

shifts, highlighting the effectiveness of our two alignment losses

during Test-Time Alignment.

468

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation RecSys ’25, September 22–26, 2025, Prague, Czech Republic

Table 3: Ablation studies.

Model

ML-1M Amazon Zhihu-1M

Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10

T
2
ARec 0.2932 0.1262 0.1648 0.1102 0.0580 0.0705 0.0402 0.0122 0.0187

w/o L
both

0.2813 0.1207 0.1578 0.1003 0.0522 0.0635 0.0355 0.0112 0.0167

w/o Ltime 0.2891 0.1225 0.1618 0.1026 0.0531 0.0649 0.0389 0.0110 0.0180

w/o Lstate 0.2876 0.1214 0.1590 0.1010 0.0545 0.0652 0.0365 0.0114 0.0175

w/o Ltest

both
0.2899 0.1239 0.1626 0.1033 0.0568 0.0677 0.0389 0.0113 0.0177

w/o Ltest

time
0.2912 0.1252 0.1645 0.1095 0.0570 0.0690 0.0390 0.0120 0.0180

w/o Ltest

state
0.2921 0.1241 0.1635 0.1067 0.0558 0.0686 0.0393 0.0120 0.0183

Table 4: Analysis of test-time throughput, defined as the num-
ber of iterations per second, with each iteration processing a
batch of 4096 testing examples.

Model

Test-Time Throughput (# of iterations / second)

ML-1M Amazon Zhihu-1M

SASRec 1.56 2.26 1.96

Mamba4Rec 2.82 3.11 3.01

TiSASRec 1.50 2.52 1.71

TiM4Rec 2.16 2.64 2.56

TTT4Rec 0.96 1.74 1.19

T
2
ARec (ours) 1.02 2.05 1.36

5.4.2 Analysis of Test-time Throughput. Noticed that training dur-

ing testing requires gradient descent, which could introduce ad-

ditional load on test-time (inference) throughput. We conducted

offline experiments to analyze the impact of training during testing.

The results are shown in Table 4, where we compare T
2
ARec with

several typical baselines and quantify the test-time throughput in

terms of it/s (iterations per second). From the results in the table, it

is evident that the test-time throughput of the method that trains

during testing is approximately half of that of Mamba4Rec that

does not train during testing. Nevertheless, with increasing com-

putational power, the additional load from training during testing

may not have a significant impact, especially since previous work

has shown that TTT has yielded online benefits [48]. We present

these findings and provide optimization opportunities for future

work applying TTT in recommendations.

6 Conclusion
To address dynamic user interest shifts in real-world sequential

recommendation, we propose T
2
ARec, which integrates Test-Time

Training via two self-supervised losses. Existing static methods

struggle to adapt to such shifts, leading to performance drops. Our

approach aligns absolute time intervals with model-adaptive learn-

ing intervals to capture temporal dynamics and introduces an inter-

est state alignment mechanism to explicitly identify user interest

shifts with theoretical guarantees. These two modules enable effi-

cient, incremental parameter updates during testing. Experiments

show T
2
ARec outperforms state-of-the-art methods, demonstrating

TTT’s potential for enhancing test-time adaptability in tracking

evolving user preferences.

Acknowledgments
This work was partially supported by the National Natural Sci-

ence Foundation of China (No. 62376275, 62472426). Work partially

done at Beijing Key Laboratory of Research on Large Models and

Intelligent Governance, and Engineering Research Center of Next-

Generation Intelligent Search and Recommendation, MOE. Sup-

ported by fund for building world-class universities (disciplines) of

Renmin University of China.

A Proof of Theorem 4.1
Proof of Theorem 4.1. Based on the definitions of Lstate,

ˆ𝒉𝑏𝑛 ,
and

ˆ𝒉𝑛+1, we can derive:

Lstate

=

𝒉𝑛 − ˆ𝒉𝑏𝑛

2

Δ−2

𝑛+1

=

𝒉𝑛 − (
𝑒Δ𝑛+1𝑃 ˆ𝒉𝑛+1 + Δ𝑛+1𝑸 ⊗ 𝒙𝑛

)

2

Δ−2

𝑛+1

=

𝒉𝑛 − (
𝑒Δ𝑛+1𝑃

(
𝑒Δ𝑛+1𝐴𝒉𝑛 + Δ𝑛+1𝑩𝑛+1 ⊗ 𝒙̂𝑛+1

)
+ Δ𝑛+1𝑸𝒙𝑛

)

2

Δ−2

𝑛+1

=

(1 − 𝑒Δ𝑛+1 (𝑃+𝐴)
)
𝒉𝑛 + Δ𝑛+1𝑸 ⊗ 𝒙𝑛 − Δ𝑛+1𝑒Δ𝑛+1𝑃𝑩𝑛+1 ⊗ 𝒙̂𝑛+1

2

Δ−2

𝑛+1

=

 (1 − 𝑒Δ𝑛+1 (𝑃+𝐴)
)
𝒉𝑛 + Δ𝑛+1

(
𝑸 − 𝑒Δ𝑛+1𝑃𝑩𝑛+1

)
⊗ 𝒙𝑛+

Δ𝑛+1𝑒Δ𝑛+1𝑃𝑩𝑛+1 ⊗ (𝒙𝑛 − 𝒙̂𝑛+1)

2

Δ−2

𝑛+1,

yielding that

Lstate

≤

 (1 − 𝑒Δ𝑛+1 (𝑃+𝐴)

)
𝒉𝑛

2

Δ−2

𝑛+1 +

Δ𝑛+1 (

𝑸 − 𝑩𝑛+1𝑒Δ𝑛+1𝑃
)
⊗ 𝒙𝑛

2

Δ−2

𝑛+1+

Δ𝑛+1𝑩𝑛+1𝑒Δ𝑛+1𝑃 ⊗ (𝒙𝑛 − 𝒙̂𝑛+1)

2

Δ−2

𝑛+1 (triangle inequality)

≤ Δ−2

𝑛+1 ∥𝒉𝑛 ∥2 +

Δ−1

𝑛+1
(
−𝐴−1𝑩𝑛+1 + 𝝐𝑛 − 𝑒Δ𝑛+1𝑃𝑩𝑛+1

)
⊗ 𝒙𝑛

2

+

Δ−1

𝑛+1𝑒
Δ𝑛+1𝑃𝑩𝑛+1 ⊗ (𝒙𝑛 − 𝒙̂𝑛+1)

2

(Def. of 𝑸 ; 𝑒𝑥 ≤ 1,∀𝑥 ≤ 0)

= Δ−2

𝑛+1 ∥𝒉𝑛 ∥2 +

Δ−1

𝑛+1
(
−
(
𝐴−1 + 𝑒Δ𝑛+1𝑃

)
𝑩𝑛+1 + 𝝐𝑛

)
⊗ 𝒙𝑛

2

+

Δ−1

𝑛+1𝐴
−1𝑩𝑛+1 ⊗ (𝒙𝑛 − 𝒙̂𝑛+1)

2
(𝑃 = ln(−𝐴−1)/Δ𝑛+1)

= Δ−2

𝑛+1 ∥𝒉𝑛 ∥2 +

Δ−1

𝑛+1𝝐𝑛 ⊗ 𝒙𝑛

2
+

Δ−1

𝑛+1𝐴
−1𝑩𝑛+1 ⊗ (𝒙𝑛 − 𝒙̂𝑛+1)

2

= Δ−2

𝑛+1 ∥𝒉𝑛 ∥2 + Δ
−1

𝑛+1 ∥𝒙𝑛 ∥2 ∥𝝐𝑛 ∥2 +𝐴
−1 ∥𝑩𝑛+1∥2

𝒙𝑛 − 𝒙̂𝑛+1Δ𝑛+1

2

.

□

469

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Changshuo Zhang et al.

References
[1] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng

Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks.

In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval. 378–387.

[2] Sirui Chen, Yuan Wang, Zijing Wen, Zhiyu Li, Changshuo Zhang, Xiao Zhang,

Quan Lin, Cheng Zhu, and Jun Xu. 2023. Controllable multi-objective re-ranking

with policy hypernetworks. In Proceedings of the 29th ACM SIGKDD conference
on knowledge discovery and data mining. 3855–3864.

[3] Sunhao Dai, Changle Qu, Sirui Chen, Xiao Zhang, and Jun Xu. 2024. Recode:

Modeling repeat consumption with neural ode. In Proceedings of the 47th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 2599–2603.

[4] Tri Dao and Albert Gu. 2024. Transformers are SSMs: Generalized models

and efficient algorithms through structured state space duality. arXiv preprint
arXiv:2405.21060 (2024).

[5] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805 (2018).
[6] Hao Fan, Mengyi Zhu, Yanrong Hu, Hailin Feng, Zhijie He, Hongjiu Liu, and

Qingyang Liu. 2024. TiM4Rec: An Efficient Sequential Recommendation Model

Based on Time-Aware Structured State Space Duality Model. arXiv preprint
arXiv:2409.16182 (2024).

[7] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. 2020. Deep learning

for sequential recommendation: Algorithms, influential factors, and evaluations.

ACM Transactions on Information Systems (TOIS) 39, 1 (2020), 1–42.
[8] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. 2022. It’s raw!

audio generation with state-space models. In International Conference on Machine
Learning. PMLR, 7616–7633.

[9] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with

selective state spaces. arXiv preprint arXiv:2312.00752 (2023).
[10] Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently modeling long

sequences with structured state spaces. arXiv preprint arXiv:2111.00396 (2021).
[11] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and

Christopher Ré. 2021. Combining recurrent, convolutional, and continuous-time

models with linear state space layers. Advances in neural information processing
systems 34 (2021), 572–585.

[12] Gustavo A Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheragha-

likhani, Ali Bahri, Ismail Ben Ayed, and Christian Desrosiers. 2023. Clust3:

Information invariant test-time training. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 6136–6145.

[13] Bin Hao, Min Zhang, Weizhi Ma, Shaoyun Shi, Xinxing Yu, Houzhi Shan, Yiqun

Liu, and ShaopingMa. 2021. A large-scale rich context query and recommendation

dataset in online knowledge-sharing. arXiv preprint arXiv:2106.06467 (2021).

[14] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.

2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 16000–16009.

[16] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov

chains for sparse sequential recommendation. In 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 191–200.

[17] BHidasi. 2015. Session-based Recommendationswith Recurrent Neural Networks.

arXiv preprint arXiv:1511.06939 (2015).
[18] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. 2022.

Empowering graph representation learning with test-time graph transformation.

arXiv preprint arXiv:2210.03561 (2022).
[19] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[20] Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[21] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-

attention for sequential recommendation. In Proceedings of the 13th international
conference on web search and data mining. 322–330.

[22] Jian Liang, Ran He, and Tieniu Tan. 2024. A comprehensive survey on test-time

adaptation under distribution shifts. International Journal of Computer Vision
(2024), 1–34.

[23] Zachary Chase Lipton. 2015. A Critical Review of Recurrent Neural Networks

for Sequence Learning. arXiv Preprint, CoRR, abs/1506.00019 (2015).
[24] Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee.

2024. Mamba4rec: Towards efficient sequential recommendation with selective

state space models. arXiv preprint arXiv:2403.03900 (2024).
[25] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie

Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE transactions
on knowledge and data engineering 35, 1 (2021), 857–876.

[26] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip.

2022. Graph self-supervised learning: A survey. IEEE transactions on knowledge
and data engineering 35, 6 (2022), 5879–5900.

[27] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor

Mordan, and Alexandre Alahi. 2021. Ttt++: When does self-supervised test-time

training fail or thrive? Advances in Neural Information Processing Systems 34
(2021), 21808–21820.

[28] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations

using distantly-labeled reviews and fine-grained aspects. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing (EMNLP-IJCNLP).
188–197.

[29] Toshihiro Ota. 2024. Decision mamba: Reinforcement learning via sequence

modeling with selective state spaces. arXiv preprint arXiv:2403.19925 (2024).
[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[31] Weicong Qin, Zelin Cao, Weijie Yu, Zihua Si, Sirui Chen, and Jun Xu. 2024.

Explicitly Integrating Judgment Prediction with Legal Document Retrieval: A

Law-Guided Generative Approach. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 2210–
2220.

[32] Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping

Fan, and Jun Xu. 2024. Enhancing Sequential Recommendations through Multi-

Perspective Reflections and Iteration. arXiv preprint arXiv:2409.06377 (2024).

[33] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.

2017. Personalizing session-based recommendations with hierarchical recurrent

neural networks. In proceedings of the Eleventh ACM Conference on Recommender
Systems. 130–137.

[34] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,

Yuyang Wang, and Tim Januschowski. 2018. Deep state space models for time

series forecasting. Advances in neural information processing systems 31 (2018).
[35] Madeline C Schiappa, Yogesh S Rawat, and Mubarak Shah. 2023. Self-supervised

learning for videos: A survey. Comput. Surveys 55, 13s (2023), 1–37.
[36] Chenglei Shen, Xiao Zhang, Teng Shi, Changshuo Zhang, Guofu Xie, and Jun Xu.

2024. A survey of controllable learning: Methods and applications in information

retrieval. arXiv preprint arXiv:2407.06083 (2024).
[37] Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu. 2023. Hyperbandit: Contex-

tual bandit with hypernewtork for time-varying user preferences in streaming

recommendation. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management. 2239–2248.

[38] Chenglei Shen, Jiahao Zhao, Xiao Zhang, Weijie Yu, Ming He, and Jianping

Fan. 2024. Generating Model Parameters for Controlling: Parameter Diffusion

for Controllable Multi-Task Recommendation. arXiv preprint arXiv:2410.10639
(2024).

[39] Teng Shi, Zihua Si, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Dewei Leng,

Yanan Niu, and Yang Song. 2024. UniSAR: Modeling User Transition Behaviors

between Search and Recommendation. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1029–1039.

[40] Teng Shi, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Yang Song, and Enyun

Yu. 2025. Unified Generative Search and Recommendation. arXiv preprint
arXiv:2504.05730 (2025).

[41] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-

resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[42] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz

Hardt. 2020. Test-time training with self-supervision for generalization under

distribution shifts. In International conference on machine learning. PMLR, 9229–

9248.

[43] Jiakai Tang, Sunhao Dai, Teng Shi, Jun Xu, Xu Chen, Wen Chen, Wu Jian, and

Yuning Jiang. 2025. Think before recommend: Unleashing the latent reasoning

power for sequential recommendation. arXiv preprint arXiv:2503.22675 (2025).
[44] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-

tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565–573.

[45] A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[46] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor

Darrell. 2020. Tent: Fully test-time adaptation by entropy minimization. arXiv
preprint arXiv:2006.10726 (2020).

[47] Yiqi Wang, Chaozhuo Li, Wei Jin, Rui Li, Jianan Zhao, Jiliang Tang, and Xing

Xie. 2022. Test-time training for graph neural networks. arXiv preprint
arXiv:2210.08813 (2022).

[48] Yuan Wang, Zhiyu Li, Changshuo Zhang, Sirui Chen, Xiao Zhang, Jun Xu, and

Quan Lin. 2024. Do NotWait: Learning Re-RankingModelWithout User Feedback

470

Test-Time Alignment with State Space Model for Tracking User Interest Shifts in Sequential Recommendation RecSys ’25, September 22–26, 2025, Prague, Czech Republic

At Serving Time in E-Commerce. In Proceedings of the 18th ACM Conference on
Recommender Systems. 896–901.

[49] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin

Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation. In

2022 IEEE 38th international conference on data engineering (ICDE). IEEE, 1259–
1273.

[50] Rui Xu, Shu Yang, Yihui Wang, Bo Du, and Hao Chen. 2024. A survey on vision

mamba: Models, applications and challenges. arXiv preprint arXiv:2404.18861
(2024).

[51] Yi Xu,WeicongQin,Weijie Yu,MingHe, Jianping Fan, and Jun Xu. 2025. Decoding

Recommendation Behaviors of In-Context Learning LLMs Through Gradient

Descent. arXiv preprint arXiv:2504.04386 (2025).
[52] Xihong Yang, Yiqi Wang, Jin Chen, Wenqi Fan, Xiangyu Zhao, En Zhu, Xin-

wang Liu, and Defu Lian. 2024. Dual test-time training for out-of-distribution

recommender system. arXiv preprint arXiv:2407.15620 (2024).
[53] Xihong Yang, YiqiWang, Yue Liu, YiWen, LingyuanMeng, Sihang Zhou, Xinwang

Liu, and En Zhu. 2024. Mixed graph contrastive network for semi-supervised

node classification. ACM Transactions on Knowledge Discovery from Data (2024).
[54] Zhaoqi Yang, Yanan Wang, and Yong Ge. 2024. TTT4Rec: A Test-Time Training

Approach for Rapid Adaption in Sequential Recommendation. arXiv preprint
arXiv:2409.19142 (2024).

[55] Changshuo Zhang, Sirui Chen, Xiao Zhang, Sunhao Dai, Weijie Yu, and Jun Xu.

2024. Reinforcing Long-Term Performance in Recommender Systems with User-

Oriented Exploration Policy. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1850–1860.

[56] Changshuo Zhang, Zihan Lin, Shukai Liu, Yongqi Liu, and Han Li. 2025. Comment

Staytime Prediction with LLM-enhanced Comment Understanding. In Companion
Proceedings of the ACM on Web Conference 2025. 586–595.

[57] Changshuo Zhang, Teng Shi, Xiao Zhang, Qi Liu, Ruobing Xie, Jun Xu, and Ji-

Rong Wen. 2024. Modeling Domain and Feedback Transitions for Cross-Domain

Sequential Recommendation. arXiv preprint arXiv:2408.08209 (2024).
[58] Changshuo Zhang, Teng Shi, Xiao Zhang, Yanping Zheng, Ruobing Xie, Qi Liu,

Jun Xu, and Ji-Rong Wen. 2024. QAGCF: Graph Collaborative Filtering for Q&A

Recommendation. arXiv preprint arXiv:2406.04828 (2024).
[59] Kepu Zhang, Teng Shi, Sunhao Dai, Xiao Zhang, Yinfeng Li, Jing Lu, Xiaoxue

Zang, Yang Song, and Jun Xu. 2024. SAQRec: Aligning Recommender Systems

to User Satisfaction via Questionnaire Feedback. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management. 3165–3175.

[60] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan,

Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. 2021. Recbole: Towards a

unified, comprehensive and efficient framework for recommendation algorithms.

In proceedings of the 30th acm international conference on information & knowledge
management. 4653–4664.

471

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Test-Time Training

	3 Preliminaries
	3.1 Problem Statement
	3.2 State Space Models (SSMs)

	4 T2ARec: The Proposed Method
	4.1 Base Model
	4.2 Time Interval Alignment
	4.3 User Interest State Alignment
	4.4 Training and Testing Process

	5 Experiments
	5.1 Experimental Settings
	5.2 Overall Performance
	5.3 Ablation Studies
	5.4 Further Analysis

	6 Conclusion
	Acknowledgments
	A Proof of Theorem 4.1
	References

