
Benefit from Rich: Tackling Search Interaction Sparsity in
Search Enhanced Recommendation

Teng Shi
Gaoling School of Artificial Intelligence

Renmin University of China
Beijing, China

shiteng@ruc.edu.cn

Weijie Yu∗
School of Information Technology

and Management
University of International Business

and Economics
Beijing, China
yu@uibe.edu.cn

Xiao Zhang
Gaoling School of Artificial Intelligence

Renmin University of China
Beijing, China

zhangx89@ruc.edu.cn

Ming He
AI Lab at Lenovo Research

Beijing, China
heming01@foxmail.com

Jianping Fan
AI Lab at Lenovo Research

Beijing, China
jfan1@lenovo.com

Jun Xu
Gaoling School of Artificial Intelligence

Renmin University of China
Beijing, China

junxu@ruc.edu.cn

Abstract
In modern online platforms, search and recommendation (S&R)
often coexist, offering opportunities for performance improvement
through search-enhanced approaches. Existing studies show that
incorporating search signals boosts recommendation performance.
However, the effectiveness of these methods relies heavily on rich
search interactions. They primarily benefit a small subset of users
with abundant search behavior, while offering limited improve-
ments for the majority of users who exhibit only sparse search
activity. To address the problem of sparse search data in search-
enhanced recommendation, we face two key challenges : (1) how
to learn useful search features for users with sparse search inter-
actions, and (2) how to design effective training objectives under
sparse conditions. Our idea is to leverage the features of users with
rich search interactions to enhance those of users with sparse search
interactions. Based on this idea, we propose GSERec, a method
that utilizes message passing on the User-Code Graphs to alleviate
data sparsity in Search-Enhanced Recommendation. Specifically,
we utilize Large Language Models (LLMs) with vector quantization
to generate discrete codes, which connect similar users and thereby
construct the graph. Through message passing on this graph, em-
beddings of users with rich search data are propagated to enhance
the embeddings of users with sparse interactions. To further ensure
that the message passing captures meaningful information from
truly similar users, we introduce a contrastive loss to better model
user similarities. The enhanced user representations are then inte-
grated into downstream search-enhanced recommendation models.

∗Weijie Yu is the corresponding author. Work partially done at Engineering Research
Center of Next-Generation Intelligent Search and Recommendation, Ministry of
Education.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761314

Experiments on three real-world datasets show that GSERec con-
sistently outperforms baselines, especially for users with sparse
search behaviors.

CCS Concepts
• Information systems → Recommender systems.

Keywords
Recommendation; Search; Large Language Model
ACM Reference Format:
Teng Shi, Weijie Yu, Xiao Zhang, Ming He, Jianping Fan, and Jun Xu. 2025.
Benefit from Rich: Tackling Search Interaction Sparsity in Search Enhanced
Recommendation. In Proceedings of the 34th ACM International Conference
on Information and Knowledge Management (CIKM ’25), November 10–14,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3746252.3761314

1 Introduction
Nowadays, many commercial apps offer both search and recom-
mendation (S&R) services to meet diverse user needs, such as
e-commerce platforms (e.g., Taobao) and short video platforms
(e.g., TikTok). In these scenarios, user S&R behaviors frequently
influence each other, providing an opportunity to enhance recom-
mendation through search, allowing us to better model users with
search behavior.

Existing search-enhanced recommendation methods primarily
enhance the model from two perspectives: (1) Feature-level en-
hancement: These methods introduce additional search-related
features on top of traditional recommendation models. For exam-
ple, many approaches incorporate users’ search history into the
model input [14, 37, 38, 46]. (2) Loss-level enhancement: Many mod-
els [34, 55, 56] adopt joint training of S&R by introducing combined
loss functions to simultaneously optimize both objectives, aiming
to learn better user and item representations.

While these methods have achieved promising results, their en-
hancement remains constrained by data sparsity. For example, in
search-enhanced recommendation, users with limited search inter-
actions contribute minimally in two ways: (1) the search history

2685

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746252.3761314
https://doi.org/10.1145/3746252.3761314
https://doi.org/10.1145/3746252.3761314
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3761314&domain=pdf&date_stamp=2025-11-10

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Teng Shi et al.

[0,10) [10,20) [20,50) [50,100) [100,+∞)
#Search Interaction

0
1200
2400
3600
4800
6000

#U
se

r

5134

1207 1543
671 255

Figure 1: User count statistics across different groups on the
Qilin [4] dataset, where users are grouped by the number of
their search interactions. We observe that users with rich
search interactions are few, while the majority are users with
sparse interactions.

features incorporated into the model are scarce; and (2) the loss
derived from their sparse search data has limited effect on opti-
mizing representations during joint training. As a result, existing
models yield greater improvements for users with rich search inter-
actions, while offering limited benefits for users with sparse search
behavior. However, as shown in Figure 1, users with rich search in-
teractions are few, while the majority of users exhibit sparse search
behavior. Figure 2 further reveals that the state-of-the-art search-
enhanced recommendation model UniSAR [34] achieves greater
improvements primarily for users with richer search interactions.

Alleviating the issue of sparse user search data in search-enhanced
recommendation presents two main challenges: (1) How to effec-
tively enhance features for users with sparse data. For example,
in search-enhanced recommendation, how to derive informative
search features for users with limited search interactions; (2) How
to design improved loss functions during training to ensure that the
representations of users with sparse data can still be well optimized.
Our key idea is that not all users suffer from search sparsity—some
have rich search interactions. We enhance the features of users with
sparse search behaviors by propagating information from similar
users with rich search histories.

Based on this idea, to address the above issues, we propose
a method called GSERec, which performs message passing on
the User-Code Graphs to enhance the representations of users
with sparse search interactions, thereby alleviating data sparsity in
Search-Enhanced Recommendation. Specifically, we first utilize a
Large Language Model (LLM) [70] to summarize users’ S&R pref-
erences. These preferences are then encoded using an embedding
model and transformed into discrete codes via vector quantiza-
tion [29, 57]. Next, we connect each user to their corresponding
codes, and the shared codes link similar users together, forming
the graph. Subsequently, by performing message passing on this
graph, the embeddings of users with rich search interactions can
be propagated to enhance the embeddings of users with sparse
search interactions. Furthermore, to ensure that message passing
captures useful information from similar users, we design con-
trastive learning [6, 11] objectives to help user embeddings better
capture the similarity between users. Finally, the enhanced user
representations are integrated with the S&R history features in
downstream search-enhanced recommendation models for the final
recommendation task.

The major contributions of the paper are summarized as follows:
• We identify a key limitation of existing search-enhanced recom-
mendation methods: their performance is limited for users with

[0,10) [10,20) [20,50) [50,100) [100,+∞)
#Search Interaction

0.20

0.23

0.26

0.29

0.32

0.35

ND
CG

@
5

SASRec UniSAR Ours

+11.64%

+10.13%

+7.53%

+9.41%

+21.71%
+4.11%

+29.46% +1.95%

+39.25% +0.52%
Improv.(%) of UniSAR over SASRec
Improv.(%) of Ours over UniSAR

Figure 2: Relative improvements of the state-of-the-artmodel
UniSAR [34] over the traditional recommendation model
SASRec [16] across different user groups on the Qilin dataset,
along with the improvements of our model over UniSAR.
User groups are defined using the same strategy as in Figure 1.
UniSAR shows greater improvements for users with more
search interactions, while our model effectively alleviates
data sparsity and achieves larger gains for users with fewer
search interactions.

sparse search histories. This highlights the challenge of extract-
ing informative search representations and designing effective loss
functions under data sparsity.
•Wepropose GSERec, which performsmessage passing on the User-
Code graphs to enhance the embeddings of users with sparse search
interactions, thereby alleviating the data sparsity problem in search-
enhanced recommendation. Furthermore, we design contrastive
learning objectives to better model user similarity, thereby enabling
the message passing process to extract more informative signals.
• Experimental results on three datasets validate the effectiveness
of GSERec: it not only outperforms traditional recommendation
methods but also surpasses existing search-enhanced recommenda-
tion approaches. Moreover, as shown in Figure 2, GSERec achieves
notably larger gains for users with sparse search interactions.

2 Related Work
Recommendation. Recommender systems [8, 32, 58–61, 66]model
user preferences to suggest relevant items. Sequential recommen-
dation [15, 41, 54, 62, 72–74] captures interests from historical in-
teractions, with Transformer-based models [16, 39, 44] and con-
trastive learning [6, 11, 51] enhancing sequential modeling. Graph-
based methods [3, 18, 42, 47, 53] exploit user–item relations, where
LightGCN [13] aggregates neighborhood signals and SGL [47],
SimGCL [53] apply contrastive learning. Recently, LLM-enhanced
recommenders [7, 19, 20, 26, 30] have emerged, such as KAR [48]
leveraging LLM-derived reasoning vectors and LLM-ESR [20] com-
bining LLM semantics with collaborative signals. This work instead
boosts recommendation performance by incorporating search data.
Search Enhanced Recommendation. Recently, leveraging search
[24, 25, 27, 28, 31, 35, 40, 63–65] data to enhance recommendation
performance has attracted growing interest [23, 33, 34, 36, 37, 45,
50, 55, 67–69]. Existing approaches include joint model training for
S&R [55, 56], transformer-based integration of both behaviors [52],
contrastive learning to separate similar and dissimilar interests [38],
and dual-branch or masked transformer networks for unified en-
coding [34, 50]. In contrast, we address sparsity in search-enhanced
recommendation by enriching sparse user embeddings via mes-
sage passing.

2686

Benefit from Rich: Tackling Search Interaction Sparsity in
Search Enhanced Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

MSA𝑟

FFN𝑟

MSA𝑟

FFN𝑟

MCA𝑟

MSA𝑠

FFN𝑠

MSA𝑠

FFN𝑠

MCA𝑠

Alignment Alignment

Pooling Pooling

Search

History

Recommendation

History

MLP

𝐞𝑖𝑇+1

ො𝑦𝑢,𝑖𝑇+1

𝐞𝑢
𝑠𝐞𝑢

𝑟 𝐰𝑟 𝐰𝑠

𝐄𝑟 𝐄𝑠

𝐖𝑟 𝐖𝑠

(4) History Modeling and Model Prediction

𝐏𝑟 𝐏𝑠

𝐇𝑟 𝐇𝑠

𝐄 ǁ𝑟 𝐄 ǁ𝑠

RQ-VAE

Alignment

RQ-VAE

Encoder

Encoder

(2) User Preference Quantization

Recommendation Codes

𝑟1 𝑟2 𝑟3 𝑟4

𝑠1 𝑠2 𝑠3 𝑠4

Search Codes

𝐯𝑟

𝐯𝑠

𝐳𝑟

𝐳𝑠

Alignment

𝐄𝑈
𝑟

Codes ෨𝑅

Users 𝑈

LightGCN

Codes ሚ𝑆

Users 𝑈

LightGCN

𝐄𝑈
𝑠𝐄 ෨𝑅

𝐄 ሚ𝑆

(3) Message Passing over User-Code Graphs

𝐺𝑟: Graph of User and

Recommendation Codes

𝐺𝑠: Graph of User and

Search CodesLLM

(e.g.,

Qwen)

Search

History ℋ𝑠

Recommendation

History ℋ𝑟

Embedding

Model

(e.g., BERT)

Recommendation

Preference 𝐯𝑟

Search

Preference 𝐯𝑠

(1) User Preference Summarization

Figure 3: The overall framework of GSERec. The framework consists of two stages: User-Code Graph Construction: (1) User
Preference Summarization; (2) User Preference Quantization. Search Enhanced Recommendation Modeling: (3) Message Passing
over User-Code Graph; (4) History Modeling and Prediction.
3 Problem Formulation
We denote the sets of users, items, and queries as U, I, and Q,
respectively. Each user 𝑢 ∈ U has a chronologically ordered rec-
ommendation history H𝑟 = {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑟 } and a search history
H𝑠 = {(𝑞1,I𝑞1), (𝑞2,I𝑞2), . . . , (𝑞𝑁𝑠 ,I𝑞𝑁𝑠)}, where 𝑁𝑟 and 𝑁𝑠 de-
note the lengths of the user’s recommendation and search his-
tories, respectively. The total number of user interactions is de-
noted as 𝑇 = 𝑁𝑟 + 𝑁𝑠 . Here, 𝑖𝑘 ∈ I is the 𝑘-th item the user
interacted with, 𝑞𝑘 ∈ Q is the 𝑘-th query issued by the user, and
I𝑞𝑘 = {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑞𝑘 } is the set of 𝑁𝑞𝑘 items clicked by the user
after searching query 𝑞𝑘 . Our goal is to train a recommendation
model Θ that predicts the next item 𝑖𝑇+1 based on the user’s rec-
ommendation history H𝑟 and search history H𝑠 .

Existing search-enhanced recommendation methods tend to
yield greater improvements for users with rich search interactions,
while offering limited benefits for those with sparse search behavior.
To address this imbalance, we aim to enhance the representations
of users with sparse search interactions by propagating information
from users with richer search histories, thereby alleviating the data
sparsity issue in search-enhanced recommendation.

4 Our Approach
This section introduces our method, GSERec, illustrated in Figure 3,
which includes two main components: User-Code Graph Con-
struction (§ 4.1) and Search Enhanced Recommendation Mod-
eling (§ 4.2). User-Code Graph Construction includes: (1) User
Preference Summarization (§ 4.1.1): summarizes users’ S&R pref-
erences using the LLM; (2) User Preference Quantization (§ 4.1.2):
discretizes the summarized preferences into codes via vector quan-
tization; (3) Graph Construction (§ 4.1.3): connects similar users
through shared codes to form the user-code bipartite graphs. Search
Enhanced Recommendation Modeling includes: (1) Message
Passing over the User-Code Graph (§ 4.2.2): enhances the repre-
sentations of users with sparse search interactions by propagating
information from users with richer interactions; (2) Historical Mod-
eling (§ 4.2.3): integrates the enhanced user representations with
their S&R histories for final prediction.

4.1 User-Code Graph Construction
This section introduces the construction of the user-code graph. We
first use the LLM to summarize users’ S&R preferences. These pref-
erences are then encoded using an embeddingmodel and discretized
into codes via vector quantization. Finally, each user is connected
to their corresponding codes, and users who share similar codes
are linked, forming the user-code graph.

4.1.1 User Preference Summarization. For each user 𝑢 ∈ U, we
input her search history H𝑠 and recommendation history H𝑟 into
a LLM to summarize her S&R preferences. The prompts provided
to the LLM are as follows:

Search Preference Summarization

Prompt: Please analyze the queries and clicked items in the user’s
search history, and summarize the user’s interest topics, areas of focus,
style tendencies, or preference types. Here is the user’s search history
{history}, where each record contains the user’s query and the items
the user clicked on under that query.

Recommendation Preference Summarization

Prompt: Please analyze the provided user recommendation history and
summarize the user’s possible interests, style tendencies, and preferred
item types. Here is the user’s recommendation history {history}, where
each record represents an item the user has clicked on.

The user’s S&R preferences, as summarized by the LLM, are individ-
ually encoded using a pretrained embedding model (e.g., BERT [10]
or BGE [5, 49]) to obtain dense representations, denoted as v𝑠 ∈ R𝑑𝑒

and v𝑟 ∈ R𝑑𝑒 . Here, 𝑑𝑒 represents the dimensionality of the embed-
ding model. It is important to note that the embedding model is
pretrained and remains frozen during the entire training process.

4.1.2 User PreferenceQuantization. We discretize the encoded user
preferences into codes to facilitate subsequent graph construction.
Specifically, we adopt Residual Quantized Variational Autoencoder
(RQ-VAE) [29, 57, 71], a widely used vector quantization method.

2687

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Teng Shi et al.

The user’s S&R preferences are first encoded using two separate en-
coders:

z𝑠 = Encoder𝑠 (v𝑠), z𝑟 = Encoder𝑟 (v𝑟),
where z𝑠 , z𝑟 ∈ R𝑑𝑙 denote the latent representations of the user’s
S&R preferences, respectively, and 𝑑𝑙 is the dimension of the em-
bedding space. Encoder𝑠 (·) and Encoder𝑟 (·) are implemented as
multilayer perceptrons (MLPs).

z𝑠 and z𝑟 encode the S&R preferences of the same user. To bet-
ter model the similarity between different users, we align them
before quantization. To this end, we apply contrastive learning by
minimizing the following InfoNCE [22] loss:

LRQ-CL = −
[
log

exp(sim(z𝑠 , z𝑟)/𝜏1)∑
𝑧−𝑟 ∈Z

neg
𝑟

exp(sim(z𝑠 , z−𝑟)/𝜏1)

+ log
exp(sim(z𝑠 , z𝑟)/𝜏1)∑

𝑧−𝑠 ∈Z
neg
𝑠

exp(sim(z−𝑠 , z𝑟)/𝜏1)

]
,

(1)

where sim(·) denotes a similarity function (e.g., cosine similarity),
𝜏1 is a learnable temperature coefficient. Zneg

𝑟 and Zneg
𝑠 denote

the negative samples from other users within the same batch.
Next, z𝑠 and z𝑟 are independently discretized into 𝐿 codes us-

ing two separate 𝐿-level codebooks. Taking the quantization of
the user’s search preferences as an example, at each level 𝑙 ∈
{1, 2, . . . , 𝐿}, we define a codebook CS𝑙 = {e𝑘 }𝑁𝑐𝑘=1, where 𝑁𝑐 is the
size of each codebook and e𝑘 ∈ R𝑑𝑙 is a learnable code embedding.
The residual quantization process is as follows:{

𝑠𝑙 = argmin𝑘 | |r𝑠𝑙−1 − e𝑘 | |22, e𝑘 ∈ CS𝑙 ,
r𝑠
𝑙
= r𝑠

𝑙−1 − e𝑠𝑙 , r0 = z𝑠 ∈ R𝑑𝑙 ,
(2)

where 𝑠𝑙 denotes the index of the selected code at level 𝑙 , and r𝑠
𝑙−1

is the residual from the previous level.
Through the recursive quantization process described in Eq. (2),

we obtain the discrete codes 𝑠 and the quantized embedding ẑ𝑠 =∑𝐿
𝑙=1 e𝑠𝑙 for the user’s search preference. Similarly, we can obtain

the discrete codes 𝑟 and the quantized embedding ẑ𝑟 =
∑𝐿
𝑙=1 e𝑟𝑙 for

the user’s recommendation preference. The discrete codes 𝑠 and 𝑟
are as follows:

𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝐿] , 𝑟 = [𝑟1, 𝑟2, . . . , 𝑟𝐿] (3)

The quantized embeddings ẑ𝑠 and ẑ𝑟 are then passed through two
separate decoders to reconstruct the original user S&R preference
representations, v𝑠 and v𝑟 , respectively:

v̂𝑠 = Decoder𝑠 (ẑ𝑠), v̂𝑟 = Decoder𝑟 (ẑ𝑟),

where Decoder𝑠 (·) and Decoder𝑟 (·) denote two MLPs. The recon-
struction loss for training the encoders and decoders is calculated as:

LRecon = | |v𝑠 − v̂𝑠 | |22 + ||v𝑟 − v̂𝑟 | |22 . (4)

To optimize the quantization process, we further introduce the
residual quantization loss, which is formulated as:

L𝑠RQ =
∑𝐿
𝑙=1 | |sg[r

𝑠
𝑙−1] − e𝑠𝑙 | |22 + ||r𝑠

𝑙−1 − sg[e𝑠𝑙] | |22,
L𝑟RQ =

∑𝐿
𝑙=1 | |sg[r

𝑟
𝑙−1] − e𝑟𝑙 | |22 + ||r𝑟

𝑙−1 − sg[e𝑟𝑙] | |22,
LRQ = L𝑠RQ + L𝑟RQ,

(5)

21 3 4 5

21 3 4 5

21 3 4 5

21 3 4 5

3- =

1- =

2- =

4- =

3 + 1 42+ + =

Decoder

RQ-VAE

Encoder

𝐯𝑠

𝐳𝑠

ො𝐳𝑠
ො𝐯𝑠

Figure 4: The Residual Quantized Variational Autoencoder
(RQ-VAE) process.We illustrate the procedure using the quan-
tization of the search preference embedding v𝑠 as an example.

where sg[·] indicates the stop-gradient operation. The loss LRQ is
employed to optimize the code embeddings across all codebooks. Fi-
nally, the total objective for user preference quantization combines
the reconstruction loss, quantization loss, and contrastive loss as:

LRQ-VAE = LRecon + 𝜆RQLRQ + 𝜆RQ-CLLRQ-CL, (6)

where 𝜆RQ and 𝜆RQ−CL are hyper-parameters controlling the con-
tributions of the respective loss components.

4.1.3 Graph Construction. After quantizing user S&R preferences
into discrete codes, we construct two bipartite graphs to model the
relationships between users and their corresponding S&R code rep-
resentations. Specifically, let S̃ and R̃ denote the sets of search codes
and recommendation codes, respectively. The affiliation matrices
between users and these codes are defined as AS ∈ {0, 1} |U |× | S̃ |

and AR ∈ {0, 1} |U |× | R̃ | , where AS𝑢,𝑠 = 1 indicates that user 𝑢
is associated with the search code 𝑠 , and similarly for AR with
recommendation codes.

Based on the affiliation matrices, we construct two bipartite
graphs: G𝑠 = {V𝑠 , E𝑠 } for search preferences and G𝑟 = {V𝑟 , E𝑟 }
for recommendation preferences. The node sets are defined asV𝑠 =
U∪S̃ andV𝑟 = U∪R̃. The edge sets are given by E𝑠 = {(𝑢, 𝑠) |𝑢 ∈
U, 𝑠 ∈ S̃,AS𝑢,𝑠 = 1} and E𝑟 = {(𝑢, 𝑟) |𝑢 ∈ U, 𝑟 ∈ R̃,AR𝑢,𝑟 =

1}, where an edge indicates an affiliation between a user and a
corresponding preference code.

The constructed bipartite graphs are utilized to enhance user
embeddings for subsequent search enhanced recommendation mod-
eling, which will be detailed in the next section.

4.2 Search Enhanced Recommendation Modeling
This section introduces the Search Enhanced Recommendation
Modeling module. We first apply message passing over the user-
code graph to enhance the embeddings of users with sparse search
interactions by leveraging information from users with rich search
interactions. Then, the enhanced user and code embeddings are in-
tegrated with the S&R histories in the downstream search-enhanced
recommendation model for final prediction.

4.2.1 Embedding Layer. We maintain three embedding tables to
represent users, items, and query words: EU ∈ R |U |×𝑑 , EI ∈
R | I |×𝑑 , and EW ∈ R |W|×𝑑 , respectively. Here, W denotes the

2688

Benefit from Rich: Tackling Search Interaction Sparsity in
Search Enhanced Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

vocabulary comprising all words appearing in user queries, and 𝑑 is
the embedding dimension. Given a specific user 𝑢 and item 𝑖 , their
corresponding embeddings e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑 are retrieved via
standard lookup operations. For a query 𝑞 composed of a sequence
of words {𝑤1,𝑤2, . . . ,𝑤 |𝑞 | } ⊆ W, we follow priorwork [34, 38] and
represent the query by averaging its constituent word embeddings:
e𝑞 = Mean(e𝑤1 , e𝑤2 , . . . , e𝑤|𝑞 |) ∈ R𝑑 , where e𝑤𝑖 ∈ R𝑑 denotes the
embedding of the 𝑖-th word in the query.

In addition, we introduce two embedding tables, E(0)
S̃

∈ R | S̃ |×𝑑

and E(0)
R̃

∈ R | R̃ |×𝑑 , to represent the discrete codes correspond-
ing to S&R preferences, respectively. The initial embedding of a
search code 𝑠 ∈ S̃ or a recommendation code 𝑟 ∈ R̃, denoted as
e(0)𝑠 and e(0)𝑟 , is obtained via standard embedding lookup from the
respective tables.

4.2.2 Message Passing over User-Code Graphs. To leverage the rep-
resentations of users with rich search interactions to enhance those
of users with sparse interactions, we perform message passing
on the user-code graph defined in § 4.1.3. In these graphs, users
are connected via shared preference codes, allowing semantically
similar users to exchange information and mutually enhance their
representations. Specifically, we adopt LightGCN [13] as the prop-
agation framework, leveraging its simplified yet effective design
to iteratively refine user and code embeddings through neighbor-
hood aggregation.

Taking the propagation over the graph G𝑠 as an example, the
embeddings are iteratively updated through 𝐾 layers of message
passing. Let e𝑆 (𝑘)𝑢 and e𝑆 (𝑘)𝑠 denote the embeddings of user 𝑢 and
search code 𝑠 ∈ S̃ at the 𝑘-th layer, respectively, where the initial
embeddings are given by e𝑆 (0)𝑢 = e𝑢 and e𝑆 (0)𝑠 = e(0)𝑠 . The update
rule at the 𝑘-th propagation layer is defined as:

e𝑆 (𝑘)𝑢 =
∑︁
𝑠∈N𝑢

1√︁
|N𝑢 | |N𝑠 |

· e𝑆 (𝑘−1)𝑠 ,

e𝑆 (𝑘)𝑠 =
∑︁
𝑢∈N𝑠

1√︁
|N𝑢 | |N𝑠 |

· e𝑆 (𝑘−1)𝑢 ,

(7)

where N𝑢 and N𝑠 denote the neighboring codes of user 𝑢 and the
neighboring users of code 𝑠 , respectively. The final embeddings are
obtained by aggregating embeddings from all layers:

e𝑠𝑢 =
1

𝐾 + 1

𝐾∑︁
𝑘=0

e𝑆 (𝑘)𝑢 , e𝑠 =
1

𝐾 + 1

𝐾∑︁
𝑘=0

e𝑆 (𝑘)𝑠 , (8)

where e𝑠𝑢 , e𝑠 ∈ R𝑑 are the final representations for user 𝑢 and code
𝑠 , respectively. In a similar manner, message passing is performed
over the graph G𝑟 to obtain the final representations e𝑟𝑢 and e𝑟
for user 𝑢 and recommendation code 𝑟 ∈ R̃. Then, we obtain the
enhanced S&R embeddings for all users:

E𝑠U = [e𝑠𝑢1 , e
𝑠
𝑢2 , . . . , e

𝑠
𝑢 |U|]

T, E𝑟U = [e𝑟𝑢1 , e
𝑟
𝑢2 , . . . , e

𝑟
𝑢 |U|]

T,

where E𝑠U , E
𝑟
U ∈ R |U |×𝑑 denote the user’s S&R embeddings,

respectively. Similarly, we obtain the code embeddings for S&R:

ES̃ = [e𝑠1 , e𝑠2 , . . . , e𝑠 |S̃ |
]T, ER̃ = [e𝑟1 , e𝑟2 , . . . , e𝑟 |R̃ |

]T,

where ES̃ ∈ R | S̃ |×𝑑 and ER̃ ∈ R | R̃ |×𝑑 represent the embeddings
of the S&R codes, respectively.

After obtaining the enhanced user S&R preference embeddings,
e𝑠𝑢 and e𝑟𝑢 , through propagation over the graphs G𝑠 and G𝑟 , respec-
tively, we align the two embeddings to better capture user-level
similarity, which facilitates more effective information transfer dur-
ing message passing. Moreover, the aligned embeddings are also
utilized in subsequent downstream tasks. Specifically, we adopt
contrastive learning and compute the following InfoNCE loss:

LU-CL = −
[
log

exp(sim(e𝑠𝑢 , e𝑟𝑢)/𝜏2)∑
𝑢−∈Uneg exp(sim(e𝑠𝑢 , e𝑟𝑢−)/𝜏2)

+ log
exp(sim(e𝑠𝑢 , e𝑟𝑢)/𝜏2)∑

𝑢−∈Uneg exp(sim(e𝑠𝑢− , e𝑟𝑢)/𝜏2)

]
,

(9)

where 𝜏2 is a learnable temperature coefficient and Uneg is the
set of in-batch negative users. After message passing, we retrieve
the embeddings of the user’s S&R code sequences, 𝑠 and 𝑟 , by
performing a lookup on the embedding tables ES̃ and ER̃ , as learned
from Eq. (3) in § 4.1.2, as follows:

E𝑠 = [e𝑠1 , e𝑠2 , . . . , e𝑠𝐿]T ∈ R𝐿×𝑑 , E𝑟 = [e𝑟1 , e𝑟2 , . . . , e𝑟𝐿]T ∈ R𝐿×𝑑 .
(10)

The aligned user embeddings e𝑠𝑢 and e𝑟𝑢 , as well as the S&R code
sequence embeddings E𝑠 and E𝑟 , are subsequently utilized in down-
stream modeling.

4.2.3 History Modeling. We first obtain the embeddings of the
user’s S&R histories via the lookup operation. Specifically, the em-
bedding of the recommendation history is obtained by concatenat-
ing the embeddings of the constituent items:

E𝑟 = [e𝑖1 , e𝑖2 , . . . , e𝑖𝑁𝑟]
T ∈ R𝑁𝑟 ×𝑑 .

For the search history, the embedding of each record is computed
by summing the embedding of the query and the mean-pooled
embedding of its associated clicked items. The overall embedding
of the search history is formulated as:
E𝑠 = [e𝑞1 +M(I𝑞1), e𝑞2 +M(I𝑞2), . . . , e𝑞𝑁𝑠 +M(I𝑞𝑁𝑠)]

T ∈ R𝑁𝑠×𝑑 ,

where M(I𝑞𝑘) = MEAN(e𝑖1 , e𝑖2 , . . . , e𝑖𝑁𝑞𝑘) denotes the mean of
the embeddings of items clicked in response to query 𝑞𝑘 .

To capture the sequential dependencies within user behavior
sequences, we introduce position embeddings P𝑠 ∈ R𝑁𝑠×𝑑 and P𝑟 ∈
R𝑁𝑟 ×𝑑 for the S&R histories, respectively. The final representations
of the S&R histories are computed as follows:

Ê𝑠 = E𝑠 + P𝑠 , Ê𝑟 = E𝑟 + P𝑟 .

To further model the contextual representations of user S&R
histories, we encode them separately using two Transformer [44]
encoders, each consisting of a Multi-Head Self-Attention (MSA)
layer followed by a Feed-Forward Network (FFN). The historical em-
beddings serve as the query, key, and value in the MSA mechanism.
The encoding process is formulated as:

H𝑠 = FFN𝑠 (MSA𝑠 (Ê𝑠 , Ê𝑠 , Ê𝑠)), H𝑟 = FFN𝑟 (MSA𝑟 (Ê𝑟 , Ê𝑟 , Ê𝑟)),

where H𝑠 ∈ R𝑁𝑠×𝑑 and H𝑟 ∈ R𝑁𝑟 ×𝑑 denote the contextualized
embeddings of the S&R histories, respectively.

H𝑠 and H𝑟 encode the user’s interests reflected in their S&R
histories, respectively. In contrast, the code embeddings E𝑠 and
E𝑟 derived in Eq. (10) capture user preferences enhanced by col-
laborative relationships among users. We fuse these two types of
representations to obtain enriched representations of the user’s

2689

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Teng Shi et al.

S&R histories. Specifically, we employ Multi-Head Cross-Attention
(MCA), where the history representations serve as queries, and the
corresponding code embeddings act as keys and values. The fusion
process is computed as follows:

F𝑠 = MSA𝑠 (H𝑠 ,H𝑠 ,H𝑠), W𝑠 = FFN𝑠 (MCA𝑠 (F𝑠 , E𝑠 , E𝑠)),
F𝑟 = MSA𝑟 (H𝑟 ,H𝑟 ,H𝑟), W𝑟 = FFN𝑟 (MCA𝑟 (F𝑟 , E𝑟 , E𝑟)),

(11)

whereW𝑠 ∈ R𝑁𝑠×𝑑 andW𝑟 ∈ R𝑁𝑟 ×𝑑 denote the final contextually
enriched representations for the S&R histories, respectively.

To enable more effective fusion, we first align the history em-
beddings with the code embeddings. Taking the search history as
an example, we compute the mean of the search history embed-
dings and the search code sequence embeddings to obtain h𝑠 =

MEAN(H𝑠) ∈ R𝑑 and e𝑠 = MEAN(E𝑠) ∈ R𝑑 , respectively. Then
we employ contrastive learning and computer the following loss:

LS-CL = −
[
log

exp(sim(h𝑠 , e𝑠)/𝜏3)∑
e−
𝑠
∈Eneg

𝑠

exp(sim(h𝑠 , e−𝑠)/𝜏3)

+ log
exp(sim(h𝑠 , e𝑠)/𝜏3)∑

h−𝑠 ∈H
neg
𝑠

exp(sim(h−𝑠 , e𝑠)/𝜏3)

]
,

(12)

where 𝜏3 is a learnable temperature coefficient, Eneg
𝑠

and Hneg
𝑠 are

in-batch negative samples. Similarly, we can get the contrastive
loss LR-CL for recommendation history and code sequence. The
total contrastive loss is formulated as follows:

LHis-CL = LS-CL + LR-CL . (13)

After obtaining the representations of the user’s S&R histories,
W𝑠 and W𝑟 , we perform history pooling based on the similar-
ity between each historical behavior and the next candidate item.
Specifically, we apply a Self-Attention (SA) mechanism as follows:

w𝑠 = SA(e𝑖𝑇+1 ,W𝑠 ,W𝑠), w𝑟 = SA(e𝑖𝑇+1 ,W𝑟 ,W𝑟), (14)

where w𝑠 ,w𝑟 ∈ R𝑑 are the aggregated representations of the S&R
histories, respectively. Here, the embedding of the next candidate
item e𝑖𝑇+1 serves as the query, while the S&R history representations
act as the key and value for the attention computation.

4.3 Model Prediction and Training
4.3.1 Prediction. Finally, we concatenate the user’s S&R represen-
tations, e𝑠𝑢 and e𝑟𝑢 , obtained from Eq. (8), along with the historical
representations w𝑠 and w𝑟 derived from Eq. (14), and the embed-
ding of the next candidate item e𝑖𝑇+1 . The concatenated vector is
then fed into a multi-layer perceptron (MLP) to predict the user’s
preference for the next item:

𝑦𝑢,𝑖𝑇+1 = MLP(CONCAT(e𝑠𝑢 , e𝑟𝑢 ,w𝑠 ,w𝑟 , e𝑖𝑇+1)), (15)

where𝑦𝑢,𝑖𝑇+1 is the predicted preference score. CONCAT(·) denotes
the concatenation operation.

4.3.2 Training. Following previous works [34, 38, 73], we adopt the
binary cross-entropy loss to optimize our recommendation model:

Lrec = − 1
|D |

∑︁
(𝑢,𝑖𝑇+1) ∈D

𝑦𝑢,𝑖𝑇+1 log(𝑦̂𝑢,𝑖𝑇+1)+(1−𝑦𝑢,𝑖𝑇+1) log(1−𝑦̂𝑢,𝑖𝑇+1),

(16)

Table 1: Dataset statistics used in this paper. “S” and “R” rep-
resent search and recommendation, respectively.

Dataset #Users #Items #Queries #Interaction-S #Interaction-R

CDs 75,258 64,443 671 852,889 1,097,592
Electronics 192,403 63,001 982 1,280,465 1,689,188
Qilin 15,482 1,983,938 44,820 969,866 1,438,435

where D denotes the set of user-item interaction pairs used for
training. Here, 𝑦𝑢,𝑖𝑇+1 ∈ {0, 1} is the ground-truth label indicating
whether user 𝑢 interacts with item 𝑖𝑇+1.

Finally, the overall training loss of our model combines the rec-
ommendation loss defined in Eq. (16) with two auxiliary contrastive
losses introduced in Eq. (9) and Eq. (13). Additionally, we incorpo-
rate an 𝐿2 regularization term to prevent overfitting. The total loss
is formulated as:

LTotal = Lrec + 𝜆U-CLLU-CL + 𝜆His-CLLHis-CL + 𝜆Reg | |Θ| |2, (17)

where 𝜆U-CL, 𝜆His-CL, and 𝜆Reg are hyper-parameters that control
the contributions of the user-level alignment loss, history-level
alignment loss, and regularization term, respectively. Here, | |Θ| |2
represents the 𝐿2 norm of the model parameters Θ, which helps to
regularize the model and improve its generalization ability.

4.4 Discussion
Computational Efficiency and Complexity. Our method lever-
ages LLM inference solely for summarizing user preferences, which
can be performed offline. As a result, the online serving phase only
requires the recommendation model, ensuring high efficiency. Re-
garding the user-code graph, take G𝑠 (described in § 4.1.3) as an
example. It consists of |U| + |S̃ | nodes, where |U| denotes the
number of users and |S̃ | the number of search codes. The number
of codes |S̃ | is at most 𝐿 ×𝑁𝑐 , where 𝐿 is the number of codebooks
used in RQ-VAE (§ 4.1.2) and 𝑁𝑐 is the size of each codebook. In
practice, both 𝐿 ≪ |U| and 𝑁𝑐 ≪ |U|, so the resulting graph
remains lightweight. This structure is significantly more efficient
than prior graph-based recommendation models [13, 47, 53], where
the node count is |U| + |I|, with |I | (the number of items) typically
much larger than both 𝐿 and 𝑁𝑐 (|I | ≫ 𝐿 and |I | ≫ 𝑁𝑐).
Comparison with Existing Methods. In contrast to existing
search-enhanced recommendation models, our method explicitly
targets the challenge of sparse search interactions by constructing
the user-code graphs. Through message passing on the graphs, user
embeddings with rich search interactions are leveraged to enhance
those of users with sparse behaviors. This design leads to more
substantial performance gains, especially for users with limited
search histories.

Compared to GNN-based graph recommendation models [13,
47, 53], which commonly construct user-item graphs to capture
collaborative filtering signals, our approach instead builds the user-
code graphs aimed at enhancing user representations. This graph
structure facilitates more effective user-user information sharing
via shared discrete codes, offering a novel perspective on graph-
based representation learning.

2690

Benefit from Rich: Tackling Search Interaction Sparsity in
Search Enhanced Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 2: Overall recommendation performance comparison of different methods on all datasets. H@𝑘 and N@𝑘 denote HR@𝑘

and NDCG@𝑘 , respectively. The best and second-best results are highlighted in bold and underlined fonts, respectively. “*”
denotes that the improvement over the second-best method is statistically significant (𝑡-test, 𝑝-value < 0.05).

Category Methods CDs Electronics Qilin

H@1 H@5 H@10 N@5 N@10 H@1 H@5 H@10 N@5 N@10 H@1 H@5 H@10 N@5 N@10

Recommendation

LightGCN 0.0911 0.3285 0.4963 0.2103 0.2645 0.0277 0.1025 0.1707 0.0648 0.0867 0.0624 0.2436 0.3820 0.1530 0.1976
SGL 0.1431 0.3660 0.4929 0.2579 0.2988 0.0304 0.1081 0.1816 0.0690 0.0926 0.0780 0.2566 0.3854 0.1684 0.2099

SimGCL 0.1651 0.3874 0.5141 0.2799 0.3207 0.0395 0.1261 0.2061 0.0827 0.1084 0.0751 0.2607 0.3889 0.1684 0.2097
GRU4Rec 0.1360 0.4191 0.5854 0.2806 0.3344 0.0579 0.2005 0.3144 0.1295 0.1661 0.1295 0.3443 0.4855 0.2395 0.2850
SASRec 0.1621 0.4134 0.5638 0.2907 0.3393 0.1019 0.2188 0.3121 0.1608 0.1907 0.1334 0.3449 0.4768 0.2411 0.2836

BERT4Rec 0.1692 0.4226 0.5750 0.2993 0.3485 0.1031 0.2242 0.3224 0.1642 0.1957 0.1319 0.3472 0.4832 0.2426 0.2864
CL4SRec 0.1834 0.4570 0.6084 0.3240 0.3730 0.1052 0.2308 0.3299 0.1684 0.2003 0.1363 0.3489 0.4848 0.2455 0.2894
KAR 0.1922 0.4937 0.6394 0.3483 0.3955 0.0958 0.2513 0.3629 0.1750 0.2108 0.1140 0.3200 0.4551 0.2188 0.2625

LLM-ESR 0.2079 0.5104 0.6610 0.3648 0.4136 0.1055 0.2560 0.3672 0.1817 0.2175 0.1422 0.3599 0.4932 0.2532 0.2963

Search Enhanced
Recommendation

NRHUB 0.1454 0.4243 0.5825 0.2885 0.3397 0.0533 0.1820 0.2889 0.1179 0.1522 0.1389 0.3543 0.4829 0.2499 0.2913
Query-SeqRec 0.1832 0.4537 0.6066 0.3219 0.3713 0.1009 0.2219 0.3205 0.1619 0.1935 0.1299 0.3473 0.4824 0.2412 0.2847

JSR 0.1808 0.4346 0.5807 0.3113 0.3586 0.1090 0.2289 0.3246 0.1694 0.2001 0.1445 0.3711 0.5077 0.2608 0.3048
USER 0.1904 0.4929 0.6465 0.3465 0.3963 0.0672 0.2146 0.3270 0.1415 0.1776 0.1549 0.3820 0.5199 0.2715 0.3161
SESRec 0.2019 0.5059 0.6494 0.3595 0.4060 0.0790 0.2403 0.3572 0.1606 0.1982 0.1535 0.3694 0.4904 0.2647 0.3037

UnifiedSSR 0.2079 0.4928 0.6359 0.3549 0.4012 0.1066 0.2343 0.3320 0.1711 0.2025 0.1412 0.3595 0.4957 0.2532 0.2972
UniSAR 0.2219 0.5249 0.6712 0.3797 0.4271 0.0996 0.2633 0.3757 0.1829 0.2191 0.1616 0.3835 0.5099 0.2767 0.3174
GSERec 0.2505* 0.5459* 0.6825* 0.4045* 0.4487* 0.1205* 0.2739* 0.3788* 0.1989* 0.2327* 0.1812* 0.4062* 0.5335* 0.2988* 0.3400*

5 Experiments
We conducted extensive experiments to evaluate the performance
of GSERec. The code is available1.

5.1 Experimental Setup
5.1.1 Dataset. Since GSERec relies on both users’ S&R interaction
data, as well as the textual information of items, we conduct exper-
iments on the following publicly available datasets. The statistics
of these datasets are summarized in Table 1.

Amazon2 [12, 21]: We adopted a widely used semi-synthetic
dataset. Following previous studies [1, 2, 34, 38], we generated
synthetic search behaviors based on an existing recommendation
dataset. We used the “CDs and Vinyl” and “Electronics” subsets and
selected their five-core versions, ensuring that each user and item
has at least five interactions. 3

Qilin [4]: The dataset is collected from Xiaohongshu4, a well-
known lifestyle search engine in China with over 300 million
monthly active users. It contains user behavior data from both
S&R scenarios, as well as multimodal information for all items. In
this work, we utilize only the textual information.

Following previous works [34, 38, 39], we applied the leave-one-
out strategy to split all the dataset into training, validation, and
test sets.

5.1.2 Baselines. We compare GSERec with two categories of base-
lines to comprehensively evaluate its effectiveness: (1) Recommen-
dation: LightGCN [13]; SGL [47]; SimGCL [53]; GRU4Rec [15];
SASRec [16]; BERT4Rec [39]; CL4SRec [51]; KAR [48]; LLM-
ESR [20]. (2) Search enhanced recommendation:NRHUB [46];Query-
SeqRec [14]; JSR [55]; USER [52]; SESRec [38]; UnifiedSSR [50];
UniSAR [34].

1https://github.com/TengShi-RUC/GSERec
2https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html, https://github.com/
QingyaoAi/Amazon-Product-Search-Datasets.
3Due to the lack of textual information for approximately 70% of items in the “Kindle
Store” subset used in previous works [34, 38], we instead used the “CDs and Vinyl”
and “Electronics” subsets, where fewer than 1% of items lack text.
4https://www.xiaohongshu.com.

5.1.3 Evaluation. Following previous studies [34, 38, 39], we adopt
Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG)
as our evaluation metrics. We report HR at top {1, 5, 10} ranks
and NDCG at top {5, 10} ranks. Following the standard evaluation
protocol [16, 34, 38], each ground-truth item is paired with 99
randomly sampled negative items with which the user has no prior
interactions to form the candidate list.

5.1.4 ImplementationDetails. User-CodeGraphConstruction (§ 4.1):
We use the LLM DeepSeek-R1-Distill-Qwen-7B5 [9] to summarize
user S&R preferences, which are then embedded via BGE-M36 [5].
The RQ-VAE (§ 4.1.2) uses 𝐿 = 4 codebooks with 𝑁𝑐 = 256 codes
each and code dimension 𝑑𝑙 = 32. We set 𝜆RQ = 1.0 (Eq, (6)) and
train the quantization model for 500 epochs using Adam [17] with
a batch size of 1024 and learning rate 1e-3. The temperature 𝜏1
(Eq. (1)) is 0.1, and the contrastive loss weight 𝜆RQ-CL (Eq. (6)) is
tuned from {1e-4, 1e-3, 1e-2, 1e-1, 1}.

Search Enhanced Recommendation Modeling (§ 4.2): Each base-
line was tuned per dataset based on the original paper settings. For
our model, embedding dimension 𝑑 is 64 for CDs/Electronics and
32 for Qilin. The max history length is 20 for CDs/Qilin and 10
for Electronics. We use 2 LightGCN layers (𝐾 = 2). Temperatures
𝜏2 (Eq. (9)) and 𝜏3 (Eq. (12)) are set to 0.1. Loss weights 𝜆U-CL and
𝜆His-CL (Eq. (17)) are tuned over {1e-4, 1e-3, 1e-2, 1e-1, 1}. All models
are trained for up to 100 epochs with Adam [17], using a batch size
of 1024 and early stopping. The learning rate is searched from {1e-3,
1e-4, 1e-5}, and 𝜆Reg (Eq. (17)) is tuned over {1e-5, 1e-6, 1e-7}.

5.2 Overall Performance
Table 2 presents the recommendation results on three datasets.
From the results, we can observe the following:
• Firstly, it can be observed that compared to existing recommenda-
tion or search-enhanced recommendation models, GSERec achieves
state-of-the-art results. This validates the effectiveness of GSERec
in alleviating data sparsity by constructing the user-code graphs

5https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.
6https://huggingface.co/BAAI/bge-m3.

2691

https://github.com/TengShi-RUC/GSERec
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
https://github.com/QingyaoAi/Amazon-Product-Search-Datasets
https://github.com/QingyaoAi/Amazon-Product-Search-Datasets
https://www.xiaohongshu.com
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/BAAI/bge-m3

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Teng Shi et al.

Table 3: Ablation study conducted on the Qilin dataset,
where “w/o” indicates that the corresponding module has
been removed from GSERec. “U-C Graph” denotes the user-
code graph.

Model H@1 H@5 H@10 N@5 N@10

GSERec 0.1812 0.4062 0.5335 0.2988 0.3400
w/o LRQ-CL (Eq. (1)) 0.1665 0.3975 0.5272 0.2862 0.3281
w/o U-C Graph 0.1428 0.3647 0.4858 0.2576 0.2967
w/o LU-CL (Eq. (9)) 0.1632 0.3922 0.5230 0.2819 0.3242
w/o LHis-CL (Eq. (13)) 0.1654 0.3935 0.5215 0.2835 0.3248
w/o MCA 0.1763 0.4032 0.5295 0.2933 0.3358

and performing message passing, thereby enhancing the represen-
tations of users with sparse search interactions using information
from users with richer search behaviors.
• Secondly, we observe that search-enhanced recommendation
models, such as GSERec and UniSAR, generally outperform tradi-
tional recommendation methods. However, models like NRHUB
perform worse than traditional baselines in some cases, indicating
that simply incorporating search features does not necessarily lead
to improved performance. This highlights the need for dedicated
designs to effectively learn representations of search features.
• Thirdly, we also observe that graph-based models such as Light-
GCN underperform compared to sequential recommendation mod-
els like SASRec, highlighting the importance of leveraging users’
historical behaviors. Meanwhile, models leveraging LLMs, includ-
ing GSERec, KAR, and LLM-ESR, achieve significant improvements
over traditional recommendation methods, highlighting the effec-
tiveness of incorporating LLMs into recommendation tasks.
• Finally, we compare the performance of the baselines and our
model across user groups with varying numbers of search inter-
actions, as shown in Figure 2. Due to space limitations, we report
results on the Qilin dataset, comparing the traditional recommen-
dation model SASRec, the search-enhanced model UniSAR, and our
proposed model GSERec. As observed, UniSAR achieves larger im-
provements for users with rich search interactions, while GSERec
further outperforms it for users with sparse search interactions.
This further confirms the effectiveness of GSERec in alleviating the
sparsity of search interactions.

5.3 Ablation Study
Due to space limitations, we conduct ablation studies on Qilin,
the dataset containing real user S&R interactions, to evaluate the
effectiveness of each module in GSERec. The results are shown in
Table 3.

5.3.1 Effectiveness of User Alignment in PreferenceQuantization. In
§ 4.1.2, we leverage contrastive learning to align the latent embed-
dings of users’ S&R preferences, promoting the capture of user-level
similarity. This alignment is enforced via the loss term LRQ-CL de-
fined in Eq. (1). As demonstrated by the “w/o LRQ-CL” setting in
Table 3, removing this loss leads to a significant performance drop,
underscoring its critical role. By ensuring better alignment before
quantization, the generated codes more effectively reflect inter-user
similarities, thereby improving downstream tasks.

[0,10) [10,20) [20,50) [50,100) [100,+∞)
#Search Interaction

0.25

0.27

0.29

0.31

0.33

0.35

ND
CG

@
5

w/o RQ − CL
w/o U-C Graph

w/o U − CL
w/o His − CL

w/o MCA
Ours

Figure 5: Ablation study across user groups with varying
numbers of search interactions

5.3.2 Effectiveness of User-Code Graphs. To enrich the representa-
tions of users with sparse search interactions, we construct user-
code graphs using discrete codes (§ 4.1.3) and applymessage passing
(§ 4.2.2) to propagate information from users with richer behaviors.
To assess its effectiveness, we ablate the user-code graph, allowing
the model to rely solely on users’ S&R histories for prediction. As
shown by the “w/o U-C Graph” setting in Table 3, performance
drops significantly, confirming the utility of leveraging rich user
interactions to enhance sparse-user representations.

Furthermore, to facilitate more effective message passing, we
introduce a user alignment loss LU-CL in Eq. (9) to align user em-
beddings and better capture cross-user similarity. Removing this
loss (“w/o LU-CL”) leads to notable degradation in performance,
demonstrating the importance of embedding alignment in improv-
ing information propagation and similarity modeling.

5.3.3 Effectiveness of Code and History Fusion. In § 4.2.3, we align
and fuse the enhanced user S&R code embeddings (E𝑠 and E𝑟) with
the corresponding user S&R histories. We separately evaluate the
contributions of the alignment and fusion components.

For alignment, we introduce the contrastive loss LHis-CL in
Eq. (13) to align the code sequences with users’ historical behaviors.
As shown by the “w/o LHis-CL” setting in Table 3, removing this
loss leads to noticeable performance degradation, underscoring the
importance of aligning the two types of embeddings into a shared
semantic space prior to fusion.

For the fusion step, as defined in Eq. (11), we employ Multi-head
Cross Attention (MCA) to integrate the code sequences with the
historical behavior representations. As indicated by the “w/o MCA”
setting in Table3, the absence of MCA results in reduced perfor-
mance, validating the effectiveness of incorporating enhanced code
embeddings to enrich the modeling of S&R histories.

5.4 Experimental Analysis
We further conduct experimental analysis on the Qilin dataset to
investigate the contributions of different modules.

5.4.1 Ablation study across user groups with varying numbers of
search interactions. To further investigate the effectiveness of each
module in addressing the search sparsity issue, we conduct ablation
studies across user groups with different levels of search interaction
sparsity, as shown in Figure 5.

We observe that removing the user-code graph module (“w/o
U-C graph” in Figure 5) causes a more substantial performance
degradation for users with sparse search interactions. This indicates
that message passing on the user-code graph can transfer useful

2692

Benefit from Rich: Tackling Search Interaction Sparsity in
Search Enhanced Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

−100 −50 0 50 100−100

−50

0

50

100
Er

 (User Recommendation Embedding)
Es

 (User Search Embedding)

(a) E𝑠U and E𝑟U w/o LU-CL .

−100 −50 0 50 100−100

−50

0

50

100

Er
 (User Recommendation Embedding)

Es
 (User Search Embedding)

(b) E𝑠U and E𝑟U w/ LU-CL .

−50 −25 0 25 50−50

−25

0

25

50

E ̃ (Recommendation Codes)
E ̃ (Search Codes)

(c) ES̃ and ER̃ w/o LU-CL .

−50 −25 0 25 50−50

−25

0

25

50
E ̃ (Recommendation Codes)
E ̃ (Search Codes)

(d) ES̃ and ER̃ w/ LU-CL .

Figure 6: The t-SNE visualization of user S&R embeddings E𝑠U and E𝑟U , as well as code embeddings ES̃ and ER̃ (§ 4.2.2), with and
without the user alignment loss LU-CL (Eq. (9)). “w/o” and “w/” denote results without and with the alignment loss, respectively.

0 1e-4 1e-3 1e-2 1e-1 10.285

0.289

0.293

0.297

0.301

0.305

ND
CG

@
5

NDCG@5

0.395

0.398

0.401

0.404

0.407

0.410
HR

@
5

HR@5

(a) Performance of different 𝜆RQ-CL (Eq. (6))

0 1e-4 1e-3 1e-2 1e-1 10.275

0.281

0.287

0.293

0.299

0.305

ND
CG

@
5

NDCG@5

0.385

0.391

0.397

0.403

0.409

0.415

HR
@
5

HR@5

(b) Performance of different 𝜆U-CL (Eq. (17))

0 1e-4 1e-3 1e-2 1e-1 10.175

0.201

0.227

0.253

0.279

0.305

ND
CG

@
5

NDCG@5

0.265

0.295

0.325

0.355

0.385

0.415

HR
@
5

HR@5

(c) Performance of different 𝜆His-CL (Eq. (17))

Figure 7: Impact of hyper-parameters 𝜆RQ-CL, 𝜆U-CL, and 𝜆His-CL on model performance, evaluated by NDCG@5 and HR@5.

information from users with rich search histories to those with
sparse ones, thereby improving their representation quality.

Furthermore, removing the user alignment loss LU-CL (Eq. (9))
also leads to amore pronounced performance drop for sparse-search
users. This highlights the critical role of the alignment loss in cap-
turing user similarity, which enhances the effectiveness of message
passing on the user-code graph. Moreover, this loss contributes to
the learning of more discriminative user embeddings.

For the other modules, we generally observe that removing any
of them leads to performance degradation across most user groups.
This further validates the effectiveness and necessity of each com-
ponent in the overall model.

5.4.2 Embedding Visualization. To gain deeper insights into the
representations learned through message passing on the user-code
graph (§ 4.2.2), we visualize the user and code embeddings for both
S&R. Specifically, we analyze the user embeddings E𝑠U and E𝑟U ,
along with the corresponding code embeddings ES̃ and ER̃ . We
employ t-SNE [43] to project the high-dimensional embeddings
into a two-dimensional space, as shown in Figure 6.

To assess the effectiveness of the user alignment loss, we compare
the embedding distributions with and without the user contrastive
loss LU-CL (Eq. (9)). Without this loss, the embeddings for S&R are
highly entangled, which can lead to redundant information being
propagated through the graphs G𝑠 and G𝑟 . In contrast, when the
alignment loss is applied, the embeddings become more clearly
separated, allowing the two graphs to model distinct user behavior
patterns. This separation contributes to more effective message
passing and ultimately leads to improved recommendation perfor-
mance.

5.4.3 Impact of Hyper-parameters. We analyze the influence of the
alignment loss weights 𝜆RQ-CL, 𝜆U-CL, and 𝜆His-CL—corresponding
to LRQ-CL (Eq. (6)), LU-CL (Eq. (17)), and LHis-CL (Eq. (17))—on

the final recommendation performance. Results are shown in Fig-
ure 7. During each analysis, the other two weights are fixed to their
optimal values: 𝜆RQ-CL = 1e-4, 𝜆U-CL = 1e-1, and 𝜆His-CL = 1e-2.

We find that a non-zero 𝜆RQ-CL consistently improves perfor-
mance, highlighting the benefit of aligning user S&R preference
embeddings before quantization to better capture user similarity.
For 𝜆U-CL, non-zero values occasionally degrade performance, sug-
gesting that this loss requires careful tuning to effectively model
user similarity in the user-code graph. For 𝜆His-CL, overly large
values significantly harm performance, likely due to overemphasis
on aligning code sequences with user histories at the expense of
the main recommendation loss Lrec (Eq. (17)). Thus, this weight
must be appropriately balanced to ensure optimal performance.

6 Conclusion
In this paper, we propose GSERec to address data sparsity in search-
enhanced recommendation by leveraging users with rich search
interactions to improve representations for users with sparse behav-
iors. We first use a LLM to summarize each user’s S&R preferences,
which are then encoded and discretized via vector quantization.
Users are connected to their codes, forming the user-code graphs
where shared codes link similar users. Message passing on this
graph enables knowledge transfer from rich to sparse users. We
further introduce contrastive losses to enhance user similarity mod-
eling. The refined user and code embeddings are finally integrated
with user histories for prediction. Experiments on three real-world
datasets show that GSERec consistently outperforms baselines, es-
pecially for users with sparse search activity.

Acknowledgments
This work was funded by the National Natural Science Foundation
of China (No. 62472426), Beijing Key Laboratory of Research on
Large Models and Intelligent Governance, fund for building world-
class universities (disciplines) of Renmin University of China.

2693

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Teng Shi et al.

GenAI Usage Disclosure
During the writing of this paper, we used generative AI tools (e.g.,
ChatGPT) solely for the purpose of improving language clarity and
grammar. No parts of the manuscript were generated directly by
AI; all content, including ideas, experimental designs, results, and
discussions, were conceived and written by the authors. The use of
AI was limited to minor linguistic refinement and did not contribute
to the creation of scientific content or analysis.

References
[1] Qingyao Ai, Daniel N Hill, SVN Vishwanathan, and W Bruce Croft. 2019. A zero

attention model for personalized product search. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 379–388.

[2] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft. 2017.
Learning a hierarchical embedding model for personalized product search. In
Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 645–654.

[3] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple
Yet Effective Graph Contrastive Learning for Recommendation. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023.

[4] Jia Chen, Qian Dong, Haitao Li, Xiaohui He, Yan Gao, Shaosheng Cao, YiWu, Ping
Yang, Chen Xu, Yao Hu, et al. 2025. Qilin: A Multimodal Information Retrieval
Dataset with APP-level User Sessions. arXiv preprint arXiv:2503.00501 (2025).

[5] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu.
2024. BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity
Text Embeddings Through Self-Knowledge Distillation. arXiv:2402.03216 [cs.CL]

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[7] Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongx-
iang Sun, Xiao Zhang, and Jun Xu. 2023. Uncovering chatgpt’s capabilities in
recommender systems. In Proceedings of the 17th ACM Conference on Recom-
mender Systems. 1126–1132.

[8] Sunhao Dai, Ninglu Shao, Jieming Zhu, Xiao Zhang, Zhenhua Dong, Jun Xu,
Quanyu Dai, and Ji-Rong Wen. 2024. Modeling user attention in music recom-
mendation. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 761–774.

[9] DeepSeek-AI. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/2501.
12948

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers).

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[12] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[14] Zhankui He, Handong Zhao, Zhaowen Wang, Zhe Lin, Ajinkya Kale, and Julian
Mcauley. 2022. Query-Aware Sequential Recommendation. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management
(Atlanta, GA, USA) (CIKM ’22). Association for Computing Machinery, New York,
NY, USA, 4019–4023.

[15] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun
(Eds.).

[16] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[18] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving
graph collaborative filtering with neighborhood-enriched contrastive learning.

In Proceedings of the ACM web conference 2022. 2320–2329.
[19] Qijiong Liu, Hengchang Hu, Jiahao Wu, Jieming Zhu, Min-Yen Kan, and Xiao-

Ming Wu. 2024. Discrete semantic tokenization for deep ctr prediction. In Com-
panion Proceedings of the ACM Web Conference 2024. 919–922.

[20] Qidong Liu, Xian Wu, Yejing Wang, Zijian Zhang, Feng Tian, Yefeng Zheng, and
Xiangyu Zhao. 2024. Llm-esr: Large language models enhancement for long-
tailed sequential recommendation. Advances in Neural Information Processing
Systems 37 (2024), 26701–26727.

[21] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[23] Gustavo Penha, Ali Vardasbi, Enrico Palumbo, Marco De Nadai, and Hugues
Bouchard. 2024. Bridging Search and Recommendation in Generative Retrieval:
Does One Task Help the Other?. In Proceedings of the 18th ACM Conference on
Recommender Systems. 340–349.

[24] Weicong Qin, Zelin Cao, Weijie Yu, Zihua Si, Sirui Chen, and Jun Xu. 2024.
Explicitly integrating judgment prediction with legal document retrieval: a law-
guided generative approach. In Proceedings of the 47th international ACM SIGIR
conference on research and development in information retrieval. 2210–2220.

[25] Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Ming He, Jianping Fan, Xiao
Zhang, and Jun Xu. 2025. MAPS: Motivation-Aware Personalized Search via
LLM-Driven Consultation Alignment. arXiv preprint arXiv:2503.01711 (2025).

[26] Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping
Fan, and Jun Xu. 2024. Enhancing sequential recommendations through multi-
perspective reflections and iteration. arXiv preprint arXiv:2409.06377 (2024).

[27] Weicong Qin, Yi Xu, Weijie Yu, Teng Shi, Chenglei Shen, Ming He, Jianping Fan,
Xiao Zhang, and Jun Xu. 2025. Similarity= Value? Consultation Value Assessment
and Alignment for Personalized Search. arXiv preprint arXiv:2506.14437 (2025).

[28] Weicong Qin, Weijie Yu, Kepu Zhang, Haiyuan Zhao, Jun Xu, and Ji-Rong Wen.
2025. Uncertainty-aware evidential learning for legal case retrieval with noisy
correspondence. Information Sciences 702 (2025), 121915.

[29] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan,
Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al.
2023. Recommender systems with generative retrieval. Advances in Neural
Information Processing Systems 36 (2023), 10299–10315.

[30] Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei
Yin, and Chao Huang. 2024. Representation learning with large language models
for recommendation. In Proceedings of the ACMWeb Conference 2024. 3464–3475.

[31] Chenglei Shen, Xiao Zhang, Teng Shi, Changshuo Zhang, Guofu Xie, and Jun Xu.
2024. A survey of controllable learning: Methods and applications in information
retrieval. arXiv preprint arXiv:2407.06083 (2024).

[32] Chenglei Shen, Jiahao Zhao, Xiao Zhang, Weijie Yu, Ming He, and Jianping
Fan. 2024. Generating Model Parameters for Controlling: Parameter Diffusion
for Controllable Multi-Task Recommendation. arXiv preprint arXiv:2410.10639
(2024).

[33] Teng Shi, Weicong Qin, Weijie Yu, Xiao Zhang, Ming He, Jianping Fan, and Jun
Xu. 2025. Bridging Search and Recommendation through Latent Cross Reasoning.
arXiv preprint arXiv:2508.04152 (2025).

[34] Teng Shi, Zihua Si, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Dewei Leng,
Yanan Niu, and Yang Song. 2024. UniSAR: Modeling User Transition Behaviors
between Search and Recommendation. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1029–1039.

[35] Teng Shi, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Yang Song, and Han
Li. 2025. Retrieval Augmented Generation with Collaborative Filtering for Per-
sonalized Text Generation. In Proceedings of the 48th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1294–1304.

[36] Teng Shi, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Yang Song, and Enyun
Yu. 2025. Unified Generative Search and Recommendation. arXiv preprint
arXiv:2504.05730 (2025).

[37] Zihua Si, Xueran Han, Xiao Zhang, Jun Xu, Yue Yin, Yang Song, and Ji-Rong
Wen. 2022. A Model-Agnostic Causal Learning Framework for Recommendation
Using Search Data. In Proceedings of the ACMWeb Conference 2022 (Virtual Event,
Lyon, France) (WWW ’22). Association for Computing Machinery, New York,
NY, USA, 224–233.

[38] Zihua Si, Zhongxiang Sun, Xiao Zhang, Jun Xu, Xiaoxue Zang, Yang Song, Kun
Gai, and Ji-Rong Wen. 2023. When Search Meets Recommendation: Learning Dis-
entangled Search Representation for Recommendation. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2023, Taipei, Taiwan, July 23-27, 2023. ACM, 1313–1323.

[39] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Rep-
resentations from Transformer. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). ACM, New York, NY, USA, 1441–1450.

2694

https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Benefit from Rich: Tackling Search Interaction Sparsity in
Search Enhanced Recommendation CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

[40] Zhongxiang Sun, Kepu Zhang, Weijie Yu, Haoyu Wang, and Jun Xu. 2024. Logic
rules as explanations for legal case retrieval. arXiv preprint arXiv:2403.01457
(2024).

[41] Jiakai Tang, Sunhao Dai, Teng Shi, Jun Xu, Xu Chen, Wen Chen, Wu Jian, and
Yuning Jiang. 2025. Think before recommend: Unleashing the latent reasoning
power for sequential recommendation. arXiv preprint arXiv:2503.22675 (2025).

[42] Jiakai Tang, Sunhao Dai, Zexu Sun, Xu Chen, Jun Xu, Wenhui Yu, Lantao Hu,
Peng Jiang, and Han Li. 2024. Towards robust recommendation via decision
boundary-aware graph contrastive learning. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2854–2865.

[43] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[45] Yuening Wang, Man Chen, Yaochen Hu, Wei Guo, Yingxue Zhang, Huifeng Guo,
Yong Liu, and Mark Coates. 2024. Enhancing Click-through Rate Prediction in
Recommendation Domain with Search Query Representation. In Proceedings of
the 33rd ACM International Conference on Information and KnowledgeManagement.
2462–2471.

[46] Chuhan Wu, Fangzhao Wu, Mingxiao An, Tao Qi, Jianqiang Huang, Yongfeng
Huang, and Xing Xie. 2019. Neural News Recommendation with Heterogeneous
User Behavior. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics,
Hong Kong, China, 4874–4883.

[47] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and
Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 726–735.

[48] Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo
Chen, Ruiming Tang, Weinan Zhang, and Yong Yu. 2024. Towards open-world
recommendation with knowledge augmentation from large language models. In
Proceedings of the 18th ACM Conference on Recommender Systems. 12–22.

[49] Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and
Jian-Yun Nie. 2024. C-pack: Packed resources for general chinese embeddings.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 641–649.

[50] Jiayi Xie, Shang Liu, Gao Cong, and Zhenzhong Chen. 2024. UnifiedSSR: A
Unified Framework of Sequential Search and Recommendation. In Proceedings of
the ACM on Web Conference 2024. 3410–3419.

[51] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation. In
2022 IEEE 38th international conference on data engineering (ICDE). IEEE, 1259–
1273.

[52] Jing Yao, Zhicheng Dou, Ruobing Xie, Yanxiong Lu, Zhiping Wang, and Ji-Rong
Wen. 2021. USER: A Unified Information Search and Recommendation Model
Based on Integrated Behavior Sequence. In Proceedings of the 30th ACM Interna-
tional Conference on Information]& Knowledge Management (Virtual Event,
Queensland, Australia) (CIKM ’21). Association for Computing Machinery, New
York, NY, USA, 2373–2382.

[53] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive
learning for recommendation. In Proceedings of the 45th international ACM SIGIR
conference on research and development in information retrieval. 1294–1303.

[54] Zhenrui Yue, Yueqi Wang, Zhankui He, Huimin Zeng, Julian McAuley, and Dong
Wang. 2024. Linear recurrent units for sequential recommendation. In Proceedings
of the 17th ACM International Conference on Web Search and Data Mining. 930–
938.

[55] Hamed Zamani and W. Bruce Croft. 2018. Joint Modeling and Optimization of
Search and Recommendation. In Proceedings of the First Biennial Conference on
Design of Experimental Search & Information Retrieval Systems, Bertinoro, Italy,
August 28-31, 2018 (CEURWorkshop Proceedings, Vol. 2167). CEUR-WS.org, 36–41.

[56] Hamed Zamani andW. Bruce Croft. 2020. Learning a Joint Search and Recommen-
dation Model from User-Item Interactions. In Proceedings of the 13th International

Conference on Web Search and Data Mining (Houston, TX, USA) (WSDM ’20).
Association for Computing Machinery, New York, NY, USA, 717–725.

[57] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco
Tagliasacchi. 2021. Soundstream: An end-to-end neural audio codec. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 30 (2021), 495–507.

[58] Changshuo Zhang, Sirui Chen, Xiao Zhang, Sunhao Dai, Weijie Yu, and Jun Xu.
2024. Reinforcing Long-Term Performance in Recommender Systems with User-
Oriented Exploration Policy. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1850–1860.

[59] Changshuo Zhang, Teng Shi, Xiao Zhang, Qi Liu, Ruobing Xie, Jun Xu, and
Ji-Rong Wen. 2024. Modeling domain and feedback transitions for cross-domain
sequential recommendation. arXiv preprint arXiv:2408.08209 (2024).

[60] Changshuo Zhang, Teng Shi, Xiao Zhang, Yanping Zheng, Ruobing Xie, Qi Liu,
Jun Xu, and Ji-Rong Wen. 2024. QAGCF: Graph Collaborative Filtering for Q&A
Recommendation. arXiv preprint arXiv:2406.04828 (2024).

[61] Changshuo Zhang, Xiao Zhang, Teng Shi, Jun Xu, and Ji-Rong Wen. 2025. Test-
Time Alignment for Tracking User Interest Shifts in Sequential Recommendation.
arXiv preprint arXiv:2504.01489 (2025).

[62] Kepu Zhang, Teng Shi, Sunhao Dai, Xiao Zhang, Yinfeng Li, Jing Lu, Xiaoxue
Zang, Yang Song, and Jun Xu. 2024. SAQRec: Aligning Recommender Systems
to User Satisfaction via Questionnaire Feedback. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management. 3165–3175.

[63] Kepu Zhang, Zhongxiang Sun, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Yang
Song, and Jun Xu. 2025. Trigger3: Refining Query Correction via Adaptive Model
Selector. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 39.
13260–13268.

[64] Kepu Zhang, Weijie Yu, Sunhao Dai, and Jun Xu. 2024. Citalaw: Enhancing llm
with citations in legal domain. arXiv preprint arXiv:2412.14556 (2024).

[65] Kepu Zhang, Weijie Yu, Zhongxiang Sun, and Jun Xu. 2025. Syler: A framework
for explicit syllogistic legal reasoning in large language models. arXiv preprint
arXiv:2504.04042 (2025).

[66] Xiao Zhang, Teng Shi, Jun Xu, Zhenhua Dong, and Ji-Rong Wen. 2024. Model-
agnostic causal embedding learning for counterfactually group-fair recommen-
dation. IEEE Transactions on Knowledge and Data Engineering (2024).

[67] Yuting Zhang, Yiqing Wu, Ruidong Han, Ying Sun, Yongchun Zhu, Xiang Li,
Wei Lin, Fuzhen Zhuang, Zhulin An, and Yongjun Xu. 2024. Unified Dual-Intent
Translation for Jont Modeling of Search and Recommendation. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
6291–6300.

[68] Jujia Zhao, Wenjie Wang, Chen Xu, Xiuying Chen, Zhaochun Ren, and Suzan
Verberne. 2025. Unifying Search and Recommendation: A Generative Paradigm
Inspired by Information Theory. arXiv preprint arXiv:2504.06714 (2025).

[69] Kai Zhao, Yukun Zheng, Tao Zhuang, Xiang Li, and Xiaoyi Zeng. 2022. Joint
Learning of E-Commerce Search and Recommendation with a Unified Graph
Neural Network. In Proceedings of the Fifteenth ACM International Conference on
Web Search and Data Mining (Virtual Event, AZ, USA) (WSDM ’22). Association
for Computing Machinery, New York, NY, USA, 1461–1469.

[70] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[71] Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming
Chen, and Ji-Rong Wen. 2024. Adapting large language models by integrating
collaborative semantics for recommendation. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). IEEE, 1435–1448.

[72] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
5941–5948.

[73] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-
Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’18). 1059–1068.

[74] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Filter-Enhanced
MLP is All You Need for Sequential Recommendation. In Proceedings of the ACM
Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for
Computing Machinery, New York, NY, USA, 2388–2399.

2695

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Our Approach
	4.1 User-Code Graph Construction
	4.2 Search Enhanced Recommendation Modeling
	4.3 Model Prediction and Training
	4.4 Discussion

	5 Experiments
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Ablation Study
	5.4 Experimental Analysis

	6 Conclusion
	Acknowledgments
	References

