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Abstract

Consider a market with a seller and many buyers.
The seller has a kind of item for sale to the buyers.
The items have a quality and each buyer has a pri-
vate type. The quality is only known to the seller,
and the buyers only have a prior belief of the qual-
ity. A third party (e.g., intermediaries or product re-
viewers) is able to reveal information about the ac-
tual quality by using a so-called signaling scheme.
After receiving the information, buyers can update
their beliefs accordingly and decide whether to buy
the items. We consider the third party’s problem
of maximizing the purchasing probability by send-
ing signals. However, the optimal signaling scheme
has implementation issues, as the number of sig-
nals in the optimal scheme is the same as the num-
ber of buyer types, which can be exceedingly large
or even infinite. We therefore investigate whether
a finite and limited set of signals could still ap-
proximate the performance of the optimal signaling
scheme. Unfortunately, our results show that with
a finite number of signals, no signaling scheme can
achieve a certain fraction of the performance of the
optimal signaling scheme. This limitation persists
even with the regularity or the monotone hazard
rate assumption. Nevertheless, we identify a mild
technical condition under which the third party can
approximate the optimal performance within a con-
stant factor by employing only two signals. We also
conduct extensive experiments to substantiate our
theoretic results. These experiments compare the
performance of using a small signal set across dif-
ferent value distributions. Despite the negative re-
sults, our experiment results show that using only a
small number of signals is able to achieve a fairly
reasonable performance in average cases.

1 Introduction

Consider a market where a seller has a kind of items for sale
to buyers and sets a fixed price. The items have a quality
which is only known to the seller, while the valuation of the
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item to each buyer depends on the buyer’s type which is pri-
vate information of the buyer. Both the seller and the buyers
only hold prior beliefs about the private information of the
other party.

In such markets, buyers can only make purchase deci-
sions based on their prior beliefs and the price of the items.
The information asymmetry in these markets may lead to ad-
verse selection issues (e.g., the markets for lemons [Akerlof,
1978]), and such inefficiency gives rise to third parties that
can bridge the information gap between the two sides. These
third parties can be intermediaries or online product review-
ers that reveal information about the product quality to the
buyers to help the seller better target potential customers. Af-
ter receiving the information, buyers update their beliefs and
decide whether to buy an item accordingly.

This phenomenon is ubiquitous in real-world applications.
For instance, in used car markets, a car dealership may act
as a third party and provide inspection results (e.g., show-
ing whether each component works) of the cars. The buyers
may re-evaluate the cars and make purchase decisions based
on the results. Similar roles can also be found in real estate
markets, where a real estate agent may provide home inspec-
tion reports describing the status of a house to help buyers
make better estimation about the house. Websites like Zillow
or Realtor even let home buyers search for properties, view
property details, and schedule consultations with sellers or
their representatives. In social media platforms, people or or-
ganizations with expert knowledge in certain fields may post
content about certain products or reviews of them to affect the
buyer actions of their audience. Such phenomena are some-
times referred to as influencer marketing in the literature.

The various applications mentioned above motivate us to
explore how a third party can maximize market trading vol-
ume (e.g., the probability of purchases) by revealing informa-
tion. We employ the Bayesian persuasion model [Kamenica
and Gentzkow, 2011] to describe the process of revealing in-
formation. In our model, both the quality of the items and the
buyer types (their valuations for item) are drawn from pub-
licly known distributions. The third party first commits to
a signaling scheme that describes how signals are correlated
with the actual item quality. Then the third party assesses the
item quality and reveals partial information to the buyers by
sending a certain signal. Upon receiving the signal, buyers
update their beliefs about the quality of the item and make



purchasing decisions accordingly.

It is worth mentioning that although there are multiple
buyers in our setting, which is different from the standard
Bayesian persuasion model, we consider the case where
the third party uses the same scheme for the buyers and
sends the same signal to them. This can be justified by the
observation that both intermediaries and product reviewers
disclose information publicly, and therefore all buyers re-
ceive the same signal. Such signaling schemes are some-
times referred to as public signaling schemes in the litera-
ture [Alonso and CAmara, 2016; Dughmi, 2019; Xu, 2020;
Zheng and Chen, 2021; Castiglioni et al., 2023].

It is known that in the standard Bayesian persuasion model,
an optimal signaling scheme uses the same number of signals
as receiver actions [Kamenica and Gentzkow, 2011]. In this
paper, we regard all buyers as a meta-buyer since they al-
ways receive the same signal. It turns out that the number of
signals used by an optimal scheme equals the number of dif-
ferent buyer types, which can be exceedingly large in a big
market and can cause implementation issues. Therefore, in
this paper, we focus our attention on whether it is possible to
achieve a performance comparable to the optimal one by us-
ing only a limited number of signals. Our contributions can
be summarized as follows:

* We show that in the general distribution case, no signal-
ing scheme that uses finitely many signals can achieve
a constant approximation of optimal performance. The
result holds even when the value distribution satisfies the
regularity condition or the monotone hazard rate condi-
tion, which are standard and widely used assumptions in
the literature.

* We identify a technical condition under which employ-
ing only two signals can already approximate the opti-
mal performance well. This result implies that using a
small number of signals can achieve a certain fraction of
the optimal performance.

* We also conduct experiments to substantiate our theo-
retical findings. In the experiments, we compare the
performance of using a limited number of signals with
the optimal performance. Despite the negative theoreti-
cal results, our experiments show that a small number of
signals can achieve good performance on average.

1.1 Related Work

Many papers have explored the impact of third party prod-
uct reviews and certifications on firms’ sales [Eliashberg
and Shugan, 1997; Chen and Xie, 2005; Chen et al., 2012;
Pei and Mayzlin, 2021; Tian, 2022]. Pei and Mayzlin [2021]
examine the optimal level of affiliation from the firm’s per-
spective, since affiliation brings a positive bias to third party’s
reviews but also decreases the credibility of the reviews. Tian
[2022] study how a firm could benefit from collaborating with
an honest third party. However, unlike their studies, our pa-
per does not take into account the affiliation between firms
and third parties. Since our purpose is to increase the trading
volume in a market, we only consider what signaling scheme
the third party should adopt to maximize the trading volume.

Our work is also related to the literature on bilateral trade
[Blumrosen and Dobzinski, 2014; Colini-Baldeschi et al.,
2016; Kang and Vondrdk, 2019], which was initially pio-
neered by Myerson and Satterthwaite [1983]. In contrast, in
our paper, the buyers and the seller cannot communicate di-
rectly. The buyers can obtain information about the seller’s
items through signals from the third party, but the seller can-
not learn any additional private information about the buyers.

Another relevant topic is the so-called Bayesian persua-
sion model [Kamenica and Gentzkow, 2011]. The most
relevant variant is the public Bayesian persuasion prob-
lem [Alonso and CaAmara, 2016; Dughmi, 2019; Xu, 2020;
Zheng and Chen, 2021; Castiglioni et al., 2023], where a
sender sends a public signal to persuade the signal receivers.
In the standard Bayesian persuasion model, the sender has
the ability to design and commit to any signaling scheme.
However, in our work, we consider a limited number of sig-
nals and explore what can be achieved by such signaling
schemes. Additionally, another line of research studies per-
suasion with limited communication [Dughmi et al., 2016;
Aybas and Turkel, 2019; Gradwohl er al., 2022], where the
communication capabilities (e.g., bandwidth) between the
sender and the receiver are bounded.

There is also a series of research studying the trade-off
between the optimality and complexity of auction mecha-
nisms [Hartline and Roughgarden, 2009; Alaei ef al., 2013;
Alaei et al., 2019; Cai et al., 2016; Chawla et al., 2014;
Huang et al., 2015; Yao, 2014; Shen and Tang, 2017]. Our pa-
per is relevant in the sense that we study what can be achieved
by simple signaling schemes, aiming to strike a balance be-
tween complexity and performance. For practical purposes,
many researchers focus on designing mechanisms that are
simple and can guarantee robust performance compared to
the optimal one even in the worst case scenarios.

2 Preliminaries

Consider the setting where a seller sells a kind of items to a
population of buyers and sets the price to p. We assume that
the seller has an unlimited supply, meaning that any buyer
who is willing to pay the price p can buy an item. Each item
has a quality ¢ € Q = [q,q|, which is drawn from a dis-
tribution G(¢). Assume G(q) is differentiable with density
function g(q) that has full support on (). Suppose that the
buyers only know the distribution G(g) but have no access to
the actual quality q.

Suppose that each buyer has a type v € V' = [v, 7] that
is drawn from a publicly known distribution F'(v). We also
assume F'(v) is differentiable with density function f(v) and
has full support on V. Following the literature convention
[Dughmi et al., 2016], we consider quasi-linear utilities for
the buyers defined as:

u(v,q) = vq — p. (1)

Since the buyers only know the quality distribution G(q),
a buyer with type v will buy an item only if the following
condition is satisfied:

U(”) = EqNG[“(Ua q)] = UEqNG[Q] —p=0. 2)



Now, suppose that there is a third party that has access to
the quality of the item. After getting the actual quality ¢, the
third party can send messages to the buyers to influence their
beliefs about the quality, thereby affecting their purchasing
decisions. This third party uses a so-called signaling scheme
to inform the buyers. A signaling scheme consists of both a
message set and a function that determines how messages are
correlated with the quality. In this paper, we use o = (S, )
to denote a signaling scheme, where S is the set of possible
signals (messages) and 7 : () X S +— R is a signaling function
that maps a quality to a distribution of signals. In this paper,
we consider both continuous and discrete signal spaces. If
the signal space S is discrete, we use 7(s|q) to denote the
probability of sending signal s when the actual quality is q.
And if S is continuous, 7(s|q) becomes a density function
of s conditioned on q. For simplicity, we abuse notation and
employ 7(s, q) to denote the joint probability distribution of
signal s and quality q. A signaling scheme should naturally
satisfy the following feasibility constraint:

/ m(slg)ds =1 or Zw(s|q) =1

s seS

depending on whether the signal space S is discrete or con-
tinuous.

We assume that the third party has commitment power, i.e.,
the third party samples a signal from S exactly based the dis-
tribution 7(s|q) upon accessing g. The third party first an-
nounces their signaling scheme 7(s|q) to the buyers, and then
observes ¢ and samples a signal s according to 7 (s|q) and
sends s to all the buyers. Since the third party has commit-
ment power, after receiving the signal from the third party,
the buyers update their belief and get a posterior distribution
about the quality of the item by applying the Bayes rule:

o - TGlag(a)
g(als) T

sco T(sla)g(q) dg’

where g(g|s) is the posterior belief of the buyers when re-
ceiving signal s. Then a buyer with type v makes a purchase
decision based on whether the following term is non-negative:

Jaeqam(sla)gla) dg
Jcomslogl@)dg "

In this paper, we consider the case where the third party
can only send public signals, i.e., the third party announces
the signal publicly and all the buyers receive the same signal.
Such a third party can be a product reviewer that reveals ad-
ditional information to potential customers, or a quality cer-
tification organization that issues certificates to products with
certain quality levels. Such information is usually publicly
available and thus can be seen by all buyers.

Note that sending public signals is different from using the
same signaling scheme for all the buyers, where the third
party can still send different signals to different buyers, as
long as these signals are sampled according the same signal
scheme. In our setting, the third party must send exactly the
same signal to all buyers. Such a signal can be a random vari-
able. But once realized, all buyers should receive the same
signal.

E[u(v, q)|s] = vE[g|s] —p =

Suppose that the third party extracts a certain fraction of
the payment as its revenue. Therefore, the goal of the third
party is to attract as many buyers as possible to buy the item
as possible. Or equivalently, for a random buyer, the goal of
the third party is to maximize the buying probability of the
buyer.

Let Pr(buy|s) denote the probability of a random buyer
purchasing an item after receiving signal s. Since only buyers
with value v E[g|s] > p will purchase an item, we have:

- ()

The utility of the third party can be written as:

[ omatori oo (5]

or

Pr(buy|s) =1

3" w(s) Pr(buyls) = 3 m(s) [1 _F (E[gs]ﬂ :

ses seS

where 7(s) is the marginal distribution of sending signal s:

n(s) = / sy 3

In a standard Bayesian persuasion setting, there is a sig-
nal sender and a signal receiver. And there exists an optimal
signaling scheme where the number of signals is at most the
number of possible actions of the receiver. Each signal leads
to the receiver playing a certain action, and thus the signals
can be viewed as “action recommendations”. However, in
our setting, there is a population of receivers and different re-
ceivers may take different actions. Nonetheless, we can view
the population as a single “meta receiver”, since all buyers
receive the same signal. The meta receiver’s action can be
indexed by a buyer type v, which corresponds to a meta ac-
tion: all buyers with a type at least v decide to buy the items.
In this case, a signal can be viewed as an “outcome indica-
tor”. Therefore, an optimal signaling scheme may feature a
continuous signal space, as the buyer type v is continuous.

Since each signal s leads to an expected quality of the item,
which completely determines a buyer’s purchase decision.
We can then use such an expectation to index the correspond-
ing signal. If two signals lead to the same expected quality,
we can simply merge these two signals and obtain exactly the
same expected quality. In this case, all three parties’ utilities
stay the same. Therefore, we require the signaling scheme to
satisfy:

e am(sla)g(a)da
Jocom(sla)g(a)dg

Elgls] =

87
or equivalently,

/ qm(slq)g(q) dg = 8/ m(slq)g(q) dg.
qeQ q€Q

We can then formulate the problem as the following math-
ematical program:



s.t. / w(s|lg)ds =1, Vg,
s
Vs, Vg,

/ qr(s|q)g(q) dg = 8/ m(s|q)g(q) dg, Vs
q€Q q€Q @

Such a continuous signaling scheme is clearly impossible
to implement in reality. It is infeasible to even represent
such a signaling scheme, let alone compute the optimal one.
Therefore, in this paper, we aim to study what performance
can be achieved by only using a limited number of signals. A
signaling scheme o = (S, ) is called an n-signal scheme, if
the signal set .S contains only n signals.

Besides, we assume that 7 < L{; and v > %, as buyers with

a valuation v > % (orv < %) will always choose to buy (or

not buy) an item, making it unnecessary to send them a signal.
Additionally, we assume q> %, since, a priori, an item with
an expected quality ¢ < £ would not be purchased by any

buyer and would thus be excluded from the market.

3 Theoretic Analysis

In this section, we analyze the problem theoretically. We first
show that, without loss of generality, we can consider only
a special type of schemes called n-segmentations (Definition
2). Then, we compare the performance (the probability of
purchases) of using finitely many signals to that of the optimal
scheme under different conditions.

We use T to denote the overall buying probability of the
optimal signaling scheme when using a continuous signaling
space, i.e., T is the optimal objective value of Program (4).
Let T’} be the overall buying probability of the optimal signal-
ing scheme when using only 7 signals (i.e., |S| = n). Clearly,
we have Ty < T*.

A useful signaling scheme that will be considered in our
paper is the full information revelation scheme, which always
directly reveals the actual quality ¢ to the buyer population.

Definition 1 (Full Information Revelation). A signaling
scheme is called full information revelation, if the third party
always directly discloses the quality q of the item, i.e., a full
information revelation scheme is o gy = (S fuir, Tgunr) with

Srun = Q,
mrai(d'la) = 0(¢ — q),
where 0(+) is the Dirac delta function.

When the third party uses the full information revelation
scheme, the buyers will know the exact quality ¢ after receiv-
ing the signal. There is no need to calculate the posterior
belief, or equivalently, the posterior belief is a single point
mass at q. Similarly, we use T's,,; to denote the overall buy-
ing probability of the population under the full information
revelation scheme. Clearly, we also have T'y,;; < T™.

We now define a special type of signaling scheme that will
be useful for later arguments.

Definition 2 (Segmentation). A signaling scheme o = (S, )
is called a segmentation (or an n-segmentation), if there exist
q=q < q2 < ... < @p < qny1 = q with finite n, such that

S = {Si}?:la

1 q€ (¢, qi+1]
ilq) = ) )V
m(sila) {O otherwise !

The points q1,qs, - . .
the segmentation.

, Qn+1 are called separating points for

In the above definition, we ignore the point g as the proba-
bility is 0. We now provide a characterization for an n-signal
scheme to be a segmentation.

Lemma 1. A feasible n-signal scheme o = (S, 7) is a seg-
mentation if and only if, for any two signals s;,s; € S, there
exists ' € (q,q) that perfectly separates the two signals, i.e.,
one of the following conditions must hold.:

» 7(s;lqg) = 0 when ¢ < ¢ and 7(sj|q) = 0 when q > ¢';
* m(silq) = 0when g > ¢ and w(sj|q) = 0 when q < ¢'.

It should be straightforward to see the equivalence between
Definition 2 and the stated conditions. We now show that, for
any finite integer n, it is without loss of generality to only
consider n-segmentations.

Lemma 2. [f function H(q) =1 — F (%) is convex, then for

any finite number n, there exists an optimal n-signal scheme
that is a segmentation.

With the above results, we now present the theoretical anal-
ysis for the general distributions.

3.1 Performance Analysis for General
Distributions

In this subsection, we show that, unfortunately, the perfor-
mance of using any finitely number of signals can be arbi-
trarily worse compared to that of the optimal solution. We
now present a special problem instance in Example 1. The
instance is determined by a parameter k, and we prove the
result based on this example by pushing the parameter £ to-
wards 0.

Example 1. Consider an example with ¢ = ¥ and q =

Let k € (0,1) be a parameter. the quality distribution G(q)
and the buyer type distribution are:

P
5

k1 — k4 P
G(q):kﬁ—kq and F(v)=1-Ak™v — B,
where:
p, P
kv kx kv
= — 7 and B=-——
kv — kz v — kv

The corresponding density functions are:

IS

Ink ko
kﬁ—k‘ﬁkq and  f(v) = —pA(lnk) o

<

g(q) =



Lemma 3. In Example 1, any n-signal segmentation o =
(S, ) satisfies:

H(E[g|s;])m(s;)

lim ————F—= =0,Vs; €5,
k—04 E[H(q)m(s:|q)]
where all expectations are taken over q and H(q) = 1 —

F(g)

Lemma 3 will be used in the following result. We are
now ready to present the first negative result. The follow-
ing lemma shows that we cannot guarantee to obtain a certain
fraction of the overall buying probability 7', of the full in-
formation revelation scheme with any signaling scheme that
uses finitely many signals.

Lemma 4. For any n and any € > 0, there exists a problem
instance such that:
T*

3

<
Trun

We provide a sketch of the proof of Lemma 4 here. It is
clear that T is the sum of the performance from n signals
under the optimal signaling scheme and each signal is dis-
tributed over a certain interval of ¢ according to Lemma 2.
Thus, we represent T't,;; as the sum of the corresponding
performance from the n intervals. According to Lemma 3,
as k — 0, the performance of each signal in 7, becomes in-
finitesimally small compared to the corresponding interval’s
performance in T',,;. This completes the proof of Lemma 4.
Since lemma 4 has been established, it is obvious that we can
obtain the following negative result.

Theorem 1. For any n and any € > 0, there exists a problem
instance such that:
T
T

Proof. The proof is straightforward by considering Example
1. Since T’y < T, we clearly have:

*

- T,
lim =2 < i L =0. 5
ki>r(r)l+ T — ki%ﬂr Tfull 0 )

O

3.2 Performance Analysis under Regularity and
MHR Conditions

The regularity condition and the MHR condition are standard
assumptions in the literature and most commonly used dis-
tributions satisfy these conditions. However, even with the
regularity condition or the monotone hazard rate (MHR) con-
dition, any signaling scheme with finitely many signals still
cannot achieve performance comparable to the optimal one.

Definition 3 (Regularity). A distribution F(v) with density

f (W) is said to satisfy the regularity condition, if v — 1}5)()1;)

is monotonically increasing in v.

Definition 4 (Monotone Hazard Rate (MHR)). A distribution

F(v) with density f(v) is said to satisfy the monotone hazard

.. . 1—F(v)
rate condition if 7o)

is monotonically decreasing in v.

Note that if a distribution satisfies the MHR condition, it is
also regular. We only show that a distribution satisfying MHR
cannot achieve a certain fraction of the optimal performance,
and the result for the regularity condition directly follows.

Lemma 5. Suppose the buyer type’s distribution F(v) satis-
fies the MHR condition. For any n and any € > 0, there exists
a problem instance such that:

Iy
T*

Since Lemma 5 is established and MHR condition suffices
for regularity, it directly implies the following corollary.

Corollary 1. Suppose the buyer type’s distribution F (v) sat-
isfies the regularity condition. For any n and any € > 0, there
exists a problem instance such that:

I

T €.

3.3 Performance Analysis for (L, c)-Flat
Distributions

Despite the negative results presented in Section 3.1 and 3.2,
in this subsection, we introduce a mild technical condition
called (L, ¢)-flatness (Definition 5) and show that if the value
distribution f(v) is (L, c¢)-flat, using only two signals already
achieves a certain fraction of the optimal performance. It fol-
lows that any optimal n-signal scheme where n > 2 can also
achieve performance comparable to the optimal scheme. We
also identify a condition under which we can achieve the op-
timal performance using just a single signal.

Definition 5 ((L, ¢)-Flatness). Let L and c be positive con-
stants. A distribution F with density function f is (L,c)-
flat, if f(v) is L-Lipschitz and lower bounded by c, i.e.,
(02) = f02)] < Lloy — val, Yor, 05 € V, and f(v) >
c,YveV.

We remark that (L, ¢)-flatness is a mild condition, as buy-
ers’ values are bounded, and many widely used distributions
satisfy this condition when truncated to a bounded interval.
Examples include truncated Gaussian, lognormal, exponen-
tial, and Poisson distributions.

Let 75 denote the overall buying probability under the op-
timal signaling scheme when only two signals are used (i.e.,
|S| = 2). Now, we are ready to present the main result in this
section.

Theorem 2. If the buyer type’s density function f(v) is
(L, ¢)-flat, then using only two signals achieves an « fraction
of the optimal performance T, i.e.,

Ty > aT”,

M—q)2cp
where o = (M—q)

WﬂlndM:

p
Pt T ¢



Proof. Since it is difficult to directly compare T3 and T, we
derive an upper bound for 7 and a lower bound for 7%, and
compare these bounds instead.

We first show that under the L-Lipschitz continuity condi-
tion, the function f(v) is bounded. Note that:

[f(v1) = f(v2)| < Llvy — v, Vor, 02 € V.
And f(v) > ¢,Vv € [v, 7], we have:
c< flv) < L(®—10) +ec (6)

Since we have assumed that ¢ >
7, Yq € [gq,q]. It follows that:

pov_ P (P _ (LT ) +c)
H(Q)_tff(q)é p '

v (L(T—v)+c)
P

£ before, we have % <

!/
For convenience, we let H, . =

a function H (q) as follows:

I7 (q - q)Hma:n qe [qv M]
o= {1 ge (M’

and construct

where M = m —|—Q < q. Note that ﬁ(g) =
H(g) = 0 and H(M) = 1. It is easy to check that H(q)

is concave and satisfies H(q) > H(q).
Given the optimal signaling scheme o = (S, 7), the prob-
ability of a random buyer purchasing an item is:

7“=LQW®H@MQM6<AQWQH@MQMS
<A ([ atoEilsas) = HED)

where the first inequality is due to H(q) < H(q), and the
second inequality follows from the concavity of H(q). The
above inequality gives an upper bound for 7.

We next derive the lower bound for 73. When ¢ < M,
according to Equation 6, we can obtain the lower bound of
H'(q) as follows:

w5 (L) L

Let H) ;, = +7z. Then, we construct the the following func-
tion H(q):
(¢-9)H, € lg, M]
(o) - { min 1€ 10
(M =@ H, qe (Mg

One can easily verify that H(q) < H (q)
Now, we construct two signals s; and sq, where:

_ [l aclgM] _ [0 qelgM]
sl = {y 1M ana n(eale) = {

Assume that the overall buying probability under signals s;
and sy is T, we have Th < T3 and:

Ty = Pr(s1)H (E [g]s1]) + Pr(s2) H (E[g]s2]) .

1 qge[M,q"

We construct the following linear function H (¢):

where H' = Eg[_ ;)%)\g It is easy to check that H(q) <

H(q) < H(q). Then we have:

Ty = Ty = Pr(s1)H (E [g]s1]) + Pr(s2) H (Eg]s2])

> Pr(s1)H (E[gs1]) + Pr(s2) H (E [q]s2])
> H (E[q)).
(M—q)cp
For convenience, we let o = R CEIER which is a positive

constant. Then we can get that:

O

Now we identify a special case where revealing no infor-
mation is optimal.

Lemma 6. If v2f(v) is monotonically increasing in v, then
using just a single signal (which is equivalent to revealing no
information) achieves the optimal performance.

4 Experiments

We conduct experiments and report the results in this section.
All experiments are run on a server equipped with a 13th Gen
Intel(R) Core(TM) i9-13900K CPU and 128 GB of RAM.
Since the computer cannot handle continuous distribution, we
discretize the item quality space () into m, different qualities
and the buyers’ value space V' into m,, different values. The
discrete problem can be formulated as a linear program.

We also give an approximation result for the discrete case:

Theorem 3. Let m,, be the number of different values. Then
for any discrete problem instance, we have

T 1
> b
T = m,

where T3 is the performance of the optimal 2-signal scheme
and T* is the optimal performance. And the bound is tight.

Since the bound in Theorem 3 is tight, there exist problem
instances with % = mi As m,, approaches infinity, the per-
formance ratio goes to 0 for such instances, which is negative.
Therefore, Theorem 3 can be viewed as the discrete version
of Theorem 1.

We next present our experiment results. All LPs are
solved with Gurobi 11.0 [Gurobi Optimization, LLC, 2023].
We conduct experiments on (i) instances satisfying (L, ¢)-
flatness, and (ii) instances that are generated randomly with-
out any constraints.
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Figure 1: The approximation ratio of a small number of signals under (L, ¢)-flat distributions and general distributions.

4.1 Experiment Results for (L, c)-Flat
Distributions

In this experiment, we analyze the approximation ratio of a
limited number of signals (ranging from 1 to 3) compared to
the optimal performance when the buyers’ value distribution
fis (L, ¢)-flat. The experiments are conducted with different
prices p € {10, 15,20, 25,30} and set m, = m, = 20. We
randomly sample v € [1,3],7 € [6,8],¢ € [1,3]. G € [6,8]
and equidistantly choose value and quality from their corre-
sponding space.

We enumerate L over the set {1, 10, 100} and c over the set
{1073,107%,10~°}, conducting experiments for each com-
bination. We randomly sample 1000 instances for each com-
bination of p, L and c to obtain the average results with sta-
tistical confidence. For each instance, we calculate the ap-
proximation ratio as the ratio between the optimal value with
a limited number of signals and the optimal value with suf-
ficient signals. The optimal value for different numbers of
signals is computed by solving a series of linear programs.

The results for combinations (L = 1,¢ = 1073), (L =
10,¢ = 107%) and (L = 100,c = 10~5) are presented in
Figures la, 1b, and lc, while results for other combinations
exhibit similar outcomes. It is evident that, as the price in-
creases, the approximation ratio for a single signal decreases
and eventually approaches zero. In contrast, the approxima-
tion ratio of two or three signals remains consistently high,
always exceeding 0.95. This indicates that a third party (e.g.,
a used car platform) can achieve near-optimal performance
using only two signals, which, in practical scenarios, corre-
spond to recommendations for buyers to either purchase or
not purchase. Note that a single signal implies that the third
party reveals no information, which means that revealing in-
formation to buyers significantly increases the probability of
buyers making a purchase under (L, ¢)-flat distributions.

4.2 Experiment Results for General Distributions

In the previous section, we examined the approximation ratio
of a limited number of signals under (L, ¢)-flat distributions.
However, we are also interested in the average approximation
ratio under general distributions without the (L, ¢)-flatness
constraint. Although the theoretical results in Theorem 1 in-
dicate that the approximation ratio can be arbitrarily worse in
certain problem instances, it’s important to note that these in-
stances represent extreme cases. To evaluate the average ap-
proximation ratio under general distributions, we randomly

generate distributions for each instance and conduct experi-
ments across a large number of instances.

In this experiment, for each instance, we also randomly
sample v € [1,3],v € [6,8,¢ € [1,3], 7 € [6,8],
and set m, = my, = 20. Then, we equidistantly select
value and quality from their corresponding space. To en-
sure the randomness of the generated distributions, we sam-
ple f and ¢ from [0,1] and subsequently normalize them.
Additionally, we also experiment with different prices p €
{10, 15, 20, 25,30}. For each price p, we randomly sample
1000 instances and conduct experiments to calculate the av-
erage results with statistical confidence.

As shown in Figure 1d, under general distributions, the ap-
proximation ratio for two signals, although not as strong as
the results under the (L, ¢)-flat distributions, consistently ex-
ceeds 0.8. This finding suggests that, even under general dis-
tributions, a third party can still use just two or three signals
to nearly approximate the optimal performance, despite the
theoretical possibility of extremely poor approximation ra-
tios in worst-case scenarios. Similarly, as the price increases,
the approximation ratio of a single signal (equivalent to re-
vealing no information) decreases and eventually approaches
zero. This highlights the importance of a third party revealing
information to buyers, as it significantly increases the proba-
bility of purchases even under general distributions.

5 Conclusion

We explored the extent to which a third party can achieve a
constant approximation of the optimal performance through
a signaling scheme with a limited number of signals. We first
showed that no signaling scheme can achieve a certain frac-
tion of the optimal performance, even if the buyers’ value
distribution satisfies the commonly used regularity or mono-
tone hazard rate conditions. However, we demonstrated that
when the value distribution is (L, ¢)-flat, the third party can
achieve a certain fraction of the optimal performance by us-
ing only two signals. Additionally, we conducted extensive
experiments to verify our theoretical results. Our experiments
indicated that even under general distributions, a small num-
ber of signals (two or three signals) can nearly approximate
the optimal performance. This finding suggests that the exis-
tence of a third party that reveals information to buyers plays
a crucial role in increasing the probability of purchases.
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