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ABSTRACT

Recommender systems have been widely used in e-commerce, and
re-ranking models are playing an increasingly significant role in
the domain, which leverages the inter-item influence and deter-
mines the final recommendation lists. Online learning methods
keep updating a deployed model with the latest available samples
to capture the shifting of the underlying data distribution in e-
commerce. However, they depend on the availability of real user
feedback, which may be delayed by hours or even days, such as
item purchases, leading to a lag in model enhancement. In this
paper, we propose a novel extension of online learning methods
for re-ranking modeling, which we term LAST, an acronym for
Learning At Serving Time. It circumvents the requirement of user
feedback by using a surrogate model to provide the instructional
signal needed to steer model improvement. Upon receiving an on-
line request, LAST finds and applies a model modification on the
fly before generating a recommendation result for the request. The
modification is request-specific and transient. It means the mod-
ification is tailored to and only to the current request to capture
the specific context of the request. After a request, the modifica-
tion is discarded, which helps to prevent error propagation and
stabilizes the online learning procedure since the predictions of
the surrogate model may be inaccurate. Most importantly, as a
complement to feedback-based online learning methods, LAST can
be seamlessly integrated into existing online learning systems to
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create a more adaptive and responsive recommendation experience.
Comprehensive experiments, both offline and online, affirm that
LAST outperforms state-of-the-art re-ranking models.
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1 INTRODUCTION

Machine learning-based and deep learning-based recommendation
models have become an integral part of e-commerce platforms, such
as Taobao and Amazon. Re-ranking models [1-3, 17, 19, 22, 35]
typically reside in the last stage of an industrial recommenda-
tion pipeline and directly determine the final recommendation
lists. They explicitly consider the mutual influence between items
and explore all permutations of candidates, which makes it chal-
lenging to train a re-ranking model. Reinforcement Learning (RL)
[11, 16, 26, 29] searching algorithms and an Actor-Evaluator (AE)
framework [6, 9, 25] have been proposed to automatically find the
best recommendation list-generating policy, removing the burden
of manually specifying the best recommendation list as the label
in Supervised Learning (SL). After the deployment of a re-ranking
model, online learning methods [8, 23, 30-32] can be applied to
continuously update the deployed model using the latest available
samples so that the model can capture real-time changes in the data
distribution. As shown in Fig. 1 on the left-hand side, these updates
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are directly integrated into the deployed model, accumulating over
time and shaping all subsequent predictions. One fundamental limi-
tation of these methods is that they depend on the availability of real
user feedback, which, akin to product purchases in e-commerce,
may come several hours or even days later and ultimately con-
strains the temporal effectiveness of the model. Moreover, at any
given moment, all requests are served with a fixed model instance,
lacking contextual adaptations. In a large e-commerce platform, a
recommender system may receive tens of thousands of requests
within a second. These requests have their own context, reflecting
diverse user preferences. A single model may not be able to capture
all the variety.

In this paper, we propose LAST, an acronym for Learning At
Serving Time. It ensures continuous model optimization and fine-
grained model adaptation even in situations where feedback is
unattainable, as illustrated on the right-hand side in Fig. 1. It uses
a surrogate evaluation model as the instructional signal to steer
model refinement to ensure model freshness. LAST generates tran-
sient, contextually tailored model adjustments for each request,
meticulously engineered to optimize the recommendation efficacy
of each request. After each recommendation, the according modifi-
cation is discarded, leaving no residual influence on the deployed
model. This design helps to prevent error propagation and sta-
bilize the online learning procedure since the predictions of the
surrogate model may be inaccurate. It is also more friendly to the
online engineering system, as the modification functionality can
be implemented as a normal model module, requiring no upgrad-
ing of the online engineering system, with or without the support
of classic online learning. Most importantly, this design ensures
seamless integration of LAST with existing feedback-based online
learning methods. Comprehensive experiments, both offline and
online, affirm that LAST outperforms state-of-the-art re-ranking
models.

The main contributions of the paper are:

(1) A new re-ranking model with unique online learning abil-
ity. LAST boosts recommendation quality by feedback-independent,

transient, request-specific, engineering-friendly online model mod-
ifications. It addresses the inherent temporal and adaptation limita-
tions of conventional online learning methods and can be combined

with them to enhance user satisfaction and system outcomes.

(2) Comprehensive evaluations of the new proposal. We demon-
strate the effectiveness of LAST offline with publicly available data

and online in an industrial environment. We have released the

experimental code to increase reproducibility.

2 PRELIMINARY

In this section, we formally introduce the problem definition of
re-ranking modeling and the AE framework. Given a set of M
candidate items C = {cj}1<i<m, a user u € U, and a list reward
function R(-), the goal of a re-ranking model is to find the optimal
list L, composed by items in C:

LE = argmax R(u,L¢, yr,.),
Le
where each list is of length N and it is obvious that N < M. y . is

the feedback of the user u to the list L. In e-commerce, y usually
involves user engagements, such as click and purchase. R(-) may
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Figure 1: Classic online learning methods and our new pro-
posal, LAST. 6 means the parameter of a model. The classic
methods rely on authentic user feedback, providing endur-
ing non-request-specific updates. LAST provides transient
request-specific updates with the help of a surrogate eval-
uation model. The two can work synergistically to create a
more adaptive and responsive online serving system.

also consider other desirable aspects of the recommended list, such
as diversity [10, 18, 28], novelty [14, 27], and fairness [12, 20, 34].
Here, we assume the existence of a single optimal list. For simplicity,
we henceforth drop the subscript C. A list-generating model G(-),
parameterized by 6, is trained to find the optimal list in a single
forward execution:

¥ = G(u,C; 0)
In the actor-evaluator framework, G(-) is called the actor. The
training of the actor can be described as:

max Eyc[R(w, G(u,C; 0), yg(u,c:0))]-

where E means expectation. However, in the training process, the
actor unavoidably generates lists that have never been shown to
the user, and thus y is not available. To overcome this problem, a
surrogate model E(-), is trained to approximate R(-) in the actor-
evaluator framework, namely E(u, L; ¢) — R(u, L, yr), where ¢ is
the parameter of E(-). The surrogate model is called the evaluator,
and it is trained before the actor as

min B, [dif f(E(w L ¢). R Lyr)].

Notably, the evaluator learns how to predict user feedback during
the training process. Then, the training of the actor is to find the
population-wise optimal parameter set 0*:

0" = max EyclE(u,G(u,C;0))].

It is crucial to see that the whole offline training process of the actor
does not directly depend on user feedback, given the evaluator E(-).

3 LAST: THE PROPOSED METHOD

Classic online learning methods rely on the real user feedback,
which can be delayed by hours or even days, such as item purchases.
LAST ensures continuous model optimization and fine-grained
model adaptation even in the absence of user feedback. When a user
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Figure 2: Online serving processes of re-ranking models.
(a) The traditional re-ranking models. The model generates
a recommendation list based on its fixed policy and presents
the list directly to the user. (b) The cascade version of LAST.
The actor interacts with the evaluator iteratively to improve
its list-generating policy for higher evaluations. The list gen-
erated in the last iteration is presented to the user. (c) The
parallel version of LAST. A separate gradient exploration
module suggests potential model modifications. The actor
tries out the suggestions, and the list with the highest evalu-
ation is presented to the user.

request, denoted as (u, C), is received, LAST adds a request-specific
disposable modification, A@, to enhance the deployed model:

L*past = G(u,C; 0" + A" (u,C)).

The optimal modification A@* (v, C) can be obtained with the help
of the evaluator:

AB*(u,C) = argmax E(u, G(u, C; 0" + AG)).
AO

This modification is computed on the fly, tailored to the individual
context of the request, capturing the unique needs and preferences
of the user. After serving the current request, the modification is
discarded and the model is restored to the state when the current
request is received.

We introduce two versions of LAST algorithms with more details.
The first is the cascade version, which finds the optimal modifica-
tion A@*(u, C) through an iterative process as shown in Fig. 2 (b).
Upon the arrival of a new user request, the cascade approach com-
mences by generating a prediction using the currently deployed
model and subsequently invokes the evaluation function, E(-), to
assess the quality of this prediction. Thereafter, LAST endeavors to
adjust the model parameters, 0, in an effort to enhance the evalua-
tion score. The specific methods employed for updating may vary
based on the application context and can range from straightfor-
ward gradient descent techniques to more intricate RL strategies.
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Following this initial modification of the model, LAST attempts to
produce a revised list of recommendations. It proceeds to engage
in a cycle of prediction, evaluation, and parameter updating until
a predetermined stopping criterion is satisfied. This criterion can
be defined as a minimal change in evaluation per iteration or a
maximum number of iterations. The recommendation list produced
in the final iteration is presented to the user. Although the cascade
version of LAST can be highly effective, its iterative nature has the
potential to lead to a substantial increase in the system’s response
time. This delay may render the cascade variant less suitable for
online serving systems, where a rapid response is crucial.

The parallel version of LAST offers enhanced efficiency com-
pared to its cascade counterpart, as shown in Fig. 2 (c). It introduces
a new gradient exploration module that suggests potential model
modifications. After receiving the modification suggestions, the
generator attempts the suggestions, and E(-) estimates their ef-
fectiveness. The list with the highest evaluation is presented to
the user. Algorithm. 1 shows a more concrete implementation. We
explore two very special gradient directions: the one increasing
the generating probability of the current list and its opposite. It is
interesting that finding these directions does not involve the execu-
tion of E(-). Mirroring the principles of offline training, we enhance
the probability of list generation when a high reward is obtained,
and conversely, lower it when the reward is minor. The value ob-
tained from E(-) is instrumental in calibrating the magnitude of
the updates, but not the direction. The list generating probability
P(L) can be easily derived from a generative actor. The gradient
is normalized with respect to the magnitude of . The normalized
gradient and a set of manually specified step sizes are utilized to
provide the model modification suggestions. The partial gradient of
E(-) with respect to 6 is not directly used because E(-) may not be
a function of 0 and thus the partial gradient does not exist. Modern
neural network models can have billions of parameters. It is not
necessary or efficient to modify all of them for a single request. A
more feasible solution is to modify only a key subset of 6.

Algorithm 1 LAST, the parallel version implementation.

Require: a user u; a candidate item set C; a deployed actor model
G(-; 0) parameterized by ; a list evaluation function E(-); a
function P(L) indicating the probability of G generating list L;
a list of step size [n1, 72, ...]; a constant factor « for gradient
normalization

Ensure: a predicted optimal recommendation list I+ LAsT for u,
which is composed by items in C

1: L « G(u,C; 0) {run the prediction model}
2 gg — L(L) {calculate the partial derivative of P with respect
to 6}
3 AO (x| | gg {normalize the gradient}
: for nin [m 12, ...] do
Ly « G(u, C:0 +1A0)
n < E(u,Ly)
: end for
: n* = argmax, Ey,

SIS B NS N

9: return L*posT = Ly
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4 EXPERIMENTS
4.1 Offline Experiments

We conduct our offline experiments on the benchmark LibRerank!
with the public recommendation dataset Ad22. The source code
has been released®. The original Ad dataset records 1 million users
and 26 million ad display/click logs, with 8 user profiles (e.g., id,
age, and occupation), 6 item features (e.g., id, campaign, and brand).
LibRerank transformed the records of each user into ranking lists
according to the timestamp of the user browsing the advertisement.
The final Ad dataset contains 349,404 items and 483,049 lists. We
chose a wide range of representative and state-of-the-art re-ranking
methods as baselines, including GSF [2], DLCM [1], PRM [22],
SetRank [21], EGR [25], and CMR [5]. CMR can work in two modes.
In the greedy mode, it picks the item with the largest selection
probability in each step and generates only one recommendation
list for each request. In the sampling mode, it generates multiple
recommendation lists using Thompson Sampling, and the list with
the highest evaluation score is presented to a user. We implement
the parallel version of the LAST. The backbone model structure
of the actor and the entire structure of the evaluator are the same
as CMR. LAST adds the gradient exploration module to the actor,
which only functions in online serving. Offline training is the same
for LAST and CMR, including the training objectives and procedure.
Our offline experiments aim to answer two key questions: (i) Does
LAST outperform the latest re-ranking models? and (ii) How do
hyper-parameters impact the effectiveness of LAST?

4.1.1  Performance Analysis. In the first offline experiment, we
carry out a wide comparison between re-ranking methods, AE and
non-AE ones. To make the comparison fair and appreciable, we
use popular metrics such as Normalized Discounted Cumulative
Gain (NDCG) for evaluation. In this case, an item not initially ex-
posed to users is given a negative pseudo-label. A more subtle
assumption is that user feedback to items stays the same while a
recommendation list has been re-arranged, which does not seem
to be very plausible from the perspective of re-ranking modeling.
However, these assumptions constitute a simple experiment evalua-
tion protocol widely used in related works. The non-AE approaches
obtain the final recommendation list by ranking candidates accord-
ing to the engagement probability prediction of each item from
high to low. The AE re-ranking models use NDCG as the evaluator.

Table. 1 summarizes the results. It is interesting to see that the
non-AE methods, including GSF, DLCM, SetRank, and PRM, out-
perform the AE methods, i.e. EGR and CMR(Greedy). These AE
methods use a single-list strategy, which means the actor will only
generate a single recommendation list, by picking the item with
the largest selection probability in each step. We think it is because
"ranking the items according to the predicted user engagement prob-
abilities" is a very strong prior, it significantly reduced the modeling
difficulty. RL searching algorithms do not know this prior and thus
converge to a worse local optimal. When it comes to AE re-ranking
models with the multi-list strategy including CMR(Sampling) and
LAST, they beat other baselines by a large margin. It reflects the

Ihttps://github.com/LibRerank-Community/LibRerank
Zhttps://tianchi.aliyun.com/dataset/56
3https://github.com/lyingCS/LAST
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simple fact that more trials can always lead to better results, in
probability. The margins seem surprisingly large. This is because
MAP and NDCG are discrete functions and heavily emphasize the
top lists. For example, the NDCG value of the perfect list "1, 0, 0,
0,0,0,0,0,0,0"is 1 and 0.63 for a close list "0, 1, 0, 0, 0, 0, 0, 0, 0,
0". The former is nearly 59 percent higher than the latter, which
appears to be exaggerated. Here 1 in the list means a relevant item
and 0 means an irrelevant one. LAST performs significantly better
than all other baselines, which supports the benefit of serving time
adaptation.

Table 1: Offline comparison of re-ranking models. The AE
re-ranking models use the NDCG metric as the evaluator.
The best results is bolded and the runner-up is underlined.
* indicates that the improvement over the best baseline is
statistically significant (p-value < 0.05).

Method map@5 map@10 ndcg@5 ndcg@10
GSF 0.6038 0.6074 0.6838 0.6984
DLCM 0.6169 0.6201 0.6948 0.7080
SetRank 0.6084 0.6122 0.6878 0.7020
PRM 0.6176 0.6209 0.6950 0.7087
EGR 0.6010 0.6047 0.6822 0.6964
CMR(Greedy) 0.6032 0.6067 0.6838 0.6979
CMR(Sampling) 0.6559 0.6587 0.7243 0.7370
LAST 0.6623" 0.6652*  0.7289" 0.7418"

In the second offline experiment, we train the AE re-ranking
models with a pre-trained evaluator, which is the standard practice
of the AE framework, leading to better online performance experi-
mentally. In this experiment, the model structure of the evaluator
is the same as in CMR, and it tries to predict the click probability
of each item. We use evaluator@N to indicate the quality of the
recommendation list, which represents the item-wise average click
probability of the top N items. The results in Table. 2 clearly show
the advantage of re-ranking models with the multi-list strategy
over the ones with the single-list strategy, and the advantage of
LAST over baselines. The relative improvements appear to be more
reasonable compared to the first offline experiment, which is more
likely to indicate the improvement online.

Table 2: Offline comparison of re-ranking models. The AE
re-ranking models use a pre-trained evaluator to predict user
engagement. The best results is bolded and the runner-up is
underlined. * indicates that the improvement over the best
baseline is statistically significant (p-value < 0.05).

Method evaluator@5 evaluator@10
EGR 0.3215 0.3086
CMR(Greedy) 0.3259 0.3131
CMR(Sampling) 0.3395 0.3267

LAST 0.3438* 0.3310*
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4.1.2  Hyper-parameters Analysis. We evaluate the impact of two
core hyper-parameters of LAST in the third offline experiment.
Fig. 3(a) shows the influence of the length of the step size lists
[71, 12, ...], where each n generates a recommendation list. We can
see that more list trials always lead to higher evaluation scores
and LAST is clearly more effective than CMR(Sampling). Fig. 3(b)
depicts the influence of the normalization factor @. When « is too
small, the modification is not strong enough to effectively change
the recommendation lists to increase the evaluation score; when
a goes too big, the direction indicated by the local gradient be-
comes unreliable. Both lead to a suppressed LAST improvement.
The performance of LAST reaches its peak when « is 1%.
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g :
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Figure 3: The impact of hyper-parameters on LAST.

4.2 Online Experiments

We conduct online experiments on the "Subscribe" scene in the
Taobao App, a leading e-commerce platform in China. Its main
entrance is the "Subscribe" button on top of Taobao’s main landing
page and it is a stream of various elements including items, posters,
videos, etc. 2,003,565 users were involved in the 7-day long experi-
ments. In the online experiment, we aim to improve the purchase
number per user, meanwhile maintaining the user interaction fre-
quency, indicated by the click number per user. CMR(Sampling) is
the baseline method, which serves the main traffic of our online
scene and LAST is the experiment method. The main difference
between the two is that LAST uses online request-adaptive modifica-
tions. Other aspects, such as the model structure, the offline training
process, and the exploration number of lists during online serving
are the same between CMR(Sampling) and LAST. We do not have
classic online learning methods deployed at this moment because of
engineering limitations. We leave the combination of classic online
learning methods and LAST in further study. The results from the
online A/B testing are summarized in Table 3, where the superiority
of LAST is evident. By explicitly adapting its model parameters
in real-time to each incoming request, LAST is able to achieve a
higher conversion rate, leading to more purchases, without detract-
ing from user interaction. With our current implementation, the
average online response time is 24ms for CMR(sampling) and 32ms
for LAST. In daily use, it is acceptable, but during promotional
periods, acceleration is desirable which we are working on.

5 DISCUSSION

Superficially from the problem definition, it is easy to see that
L*1 AsT can achieve a higher evaluator score than L* for each re-
quest. The underlying question is: is there any new information

900

RecSys '24, October 14-18, 2024, Bari, Italy

Table 3: Online A/B test results, LAST over CMR(Sampling).

Metric Relative improvement
click number per user 0.08%
purchase number per user 2.08%

we can utilize by only knowing the request without user feedback?
Our answer is yes. Fundamentally, as long as two random variables
are not independent, like a request and its optimal parameter set,
one can get information about one random variable by knowing
the value of another. In the semi-supervised learning [13, 15, 33]
community, it has been widely accepted that unlabeled data can
be beneficial. In fact, the whole idea of semi-supervised learning
is rooted in it. Another piece of evidence is documented in the
book [4] where it is proved that the Vovk-Azoury-Warmuth fore-
caster can achieve an improved logarithmic regret bound using the
input information at the last time point without the target value.
In LAST, we use the information contained in the new request for
model updating.

LAST appears to be prone to overfitting since the prediction
of the evaluator is not noise-free and, as a result, may mislead
model updating. In this paper, we demonstrate its effectiveness
with online experiments. Robust estimation techniques, such as
Double Q-learning [7, 24], can be applied to alleviate this problem
and may further improve the performance of LAST.

6 CONCLUSION

We propose a novel re-ranking model in e-commerce with a unique
online learning ability. Distinct from existing methods, it can achieve
effective model online learning without waiting for real user feed-
back, by using supervision signals provided by a surrogate model.
Deliberated algorithmic designs are introduced to fulfill its full po-
tential. It introduces request-specific modifications to maximize
model adaptation to the context of each request. It discards the
modifications after each recommendation to stabilize the training
procedure. These designs ensure LAST can work in harmony with
existing online learning systems while providing improved tempo-
ral effectiveness and incremental adaptation. Through extensive
offline and online experiments, we demonstrate the strength of the
new proposed model.
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