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ABSTRACT

Explanations are important for conversational recommendation.
They help users to understand how the recommender system works,
and elicit user’s responses by allowing users to provide informa-
tive feedback on them. During the interaction with users, explain-
able conversational recommender system provides explanations
and collects user feedback to further refine the recommendations.
Current conversational recommender systems, however, usually
make recommendations with black-box prediction models, bringing
difficulty in model explainability. Moreover, existing methods for
explainable recommendation commonly provide one-shot explana-
tions and fail to leverage user feedback. In this paper, we propose
a tag-based post-hoc framework for explainable conversational
recommendation (TPECR), which enables black-box recommenda-
tion models to provide explanations and refine recommendations
based on user preference on tags (e.g., item attributes). Specifi-
cally, given the recommendation model being explained, TPECR
trains a generation model to construct user embeddings based on
their tag preferences. The explanations are provided by utilizing
the generation model to estimate the contributions of different
tags with respect to each item prediction. Given user feedback, the
recommendation at the next turn is refined by tuning the tag prefer-
ence and generating modified user embedding with the generation
model. We instantiate the generation model with conditional varia-
tional auto-encoder (CVAE), which reconstructs user embedding
conditioned on his tag preference. We conducted experiments by
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applying TPECR to different models and the results demonstrated
the effectiveness of our TPECR on both synthetic and real datasets.

CCS CONCEPTS
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mender systems.
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1 INTRODUCTION

Explainable recommendation, which provides both recommenda-
tion results and reasons underlying the system decisions, has at-
tracted increasing attention in recent years. Explanations not only
improve the transparency and user satisfaction of the recommenda-
tion system [41], but also elicit user’s responses by allowing users
to tell the system when it is wrong [31]. Traditionally, explain-
able recommendation methods only provide one-shot explanation
and fail to leverage user feedback [6, 17, 24, 35]. The recently pro-
posed explainable conversational recommendation integrates user
feedback into explainable recommendation to enable bidirectional
user-model communications [5] and achieves promising results.
Explainable conversational recommendation [5] introduces a
new interaction paradigm, which triggers user feedback with ex-
planations, as shown in Figure 1. The main tasks are to make rec-
ommendation, generate explanations and refine recommendation con-
sidering user feedback. Many previous works on conversational
recommendation are not able to generate explanations. They col-
lect user feedback by directly asking questions about user pref-
erence [7, 13, 30, 37, 42]. Users may feel difficult to answer these
questions when they don’t have a clear search target. Explainable
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Figure 1: Pipeline of Explainable Conversational Recommen-
dation. (Recommended Movie: Superman, Tag: Action)

conversational recommendation provides users with explanations
to avoid cognitive overload and help users express their requests.

Explainable recommendation models can be either model-intrinsic
or model-agnostic [41]. The model-intrinsic approach usually de-
velops interpretable models with transparent decision mechanism,
and model-agnostic (i.e., post-hoc) approach develops an expla-
nation model to generate explanations after recommendations. In
many cases, outstanding recommendation performances are usually
achieved by complex models that are less interpretable [38]. While
re-designing complex models into interpretable ones with similar
performances is challenging, post-hoc approaches have the advan-
tages of allowing the decision mechanism to be a blackbox and
avoiding the trade-off between accuracy and explainability [41].

Explanations can serve several goals, including transparency (ex-
plaining how the system works) and scrutability (allowing users to
tell the system it is wrong) [31]. During the interaction with users,
the explanations help them understand the working mechanism of
the system and trigger their feedback. Therefore, transparency and
scrutability are especially important for explainable conversational
recommendation. This paper tries to develop a model-agnostic ex-
plainable approach to achieve these two goals, which can be applied
to different recommendation models. We utilize the tags as inter-
mediary entity to bridge the gap between human-understandable
concepts and uninterpretable black-box models. The tags can be
item attributes or some keywords describing the items [2, 5] and
are found to be helpful for both explainable recommendation [32]
and conversational interaction [13, 45].

The proposed tag-based post-hoc framework for explainable
conversational recommendation (TPECR) enables black-box rec-
ommendation model to provide explanations and refine recommen-
dations based on user preference on tags. TPECR shows the user
how the recommender system models his tag preference. The user
can exam system’s understanding of his preference and point out
whether it’s correct or not (scrutability). TPECR can also demon-
strate how the system makes current recommendations based on
the user’s tag preference, helping the user understand how the
system works (transparency). During the conversation, the user
provides feedback to clarify his current interest and TPECR can
refine recommendations by modifying tag preference accordingly.

Specifically, given the black-box recommendation model being
explained, TPECR contains a generation model to construct user
embedding based on his tag preference. The generation model is
trained to capture the relation between user’s latent vector and his
tag preference, learning how the recommendation model expresses
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user’s tag preference in latent space. Then the generation model,
together with the recommendation model, formulates a composite
function to describe how user’s tag preference is utilized to make
recommendations. To help users understand how the composite
function maps their tag preferences to item predictions, TPECR
generates explanations with feature importance methods [18, 26],
which estimate the contributions of different tags with respect to
each item prediction. After collecting user feedback on tags, TPECR
modifies user’s tag preference and uses the generation model to
generate a new user embedding.

To implement TPECR framework, we instantiate the genera-
tion model with conditional variational auto-encoder (CVAE) [29],
which generates the user’s embedding conditioned on his tag pref-
erence. After mapping user’s tag preference to current recommen-
dations with the generation model, we apply LIME [26] to estimate
the contributions of different tags. We evaluated the performance
of CVAE as the generation model and explanations generated by
TPECR on a synthetic dataset. We also applied TPECR to different
recommendation models and conducted experiments on two real
datasets to demonstrate the effectiveness of the proposed TPECR.

In summary, the contributions of this paper are as follow:

e We propose a tag-based post-hoc framework for explainable
conversational recommendation (TPECR), which achieves trans-
parency and scrutability with user’s tag preference.

o TPECR contains a generation model, which is utilized to estimate
the contributions of different tags to item prediction and generate
new user embedding considering user feedback.

e We implemented the TPECR framework with CVAE as the gen-
eration model, and experimental results demonstrated the effec-
tiveness of TPECR on both the synthetic dataset and two real
datasets.

2 RELATED WORK
2.1 Conversational Recommendation

Conversational recommendation has been studied under different
settings [8]. Christakopoulou et al. [7], Li et al. [16], Zhang et al.
[40] focus on cold-start users in conversational recommendation
with bandit-based algorithms. Lei et al. [13, 14], Sun and Zhang
[30] study policy learning in multi-round conversational recom-
mendation scenario. Luo et al. [19], Zhang et al. [42], Zou et al. [45]
predict items by matching attribute query and item description.
Chen et al. [4], Li et al. [15], Zhou et al. [44] model user preference
through dialogue history and generate natural language response.

As for explainable conversational recommendation, Narducci
et al. [22] build a graph composed of items and properties, and ap-
ply Personalized PageRank to make recommendations and provide
explanations. Moon et al. [21] also utilize a knowledge graph to
guide dialogue generation and provide explanations with walking
path. Luo et al. [20], Wu et al. [36] revisit the critiquing approach
with deep learning methods and use VAE-baed model to predict
item score and its explanations. Chen et al. [5] design an incre-
mental multitask learning framework considering recommendation
prediction, explanation generation, and user feedback integration.
Balog et al. [2] propose a transparent and scrutable user model, em-
powering users to understand recommendations made and improve
the recommendations dynamically. Alkan et al. [1] shares similar
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motivations and provides explanations by generating a justification
text based on conversation history, while this paper tries to help
user understand the working mechanism of the underlying model
and trigger user’s feedback.

2.2 Post-Hoc Explanations for Recommendation

Explainable recommendation methods can either be model-intrinsic
or model-agnostic [41]. The model-intrinsic approach develops in-
terpretable models while model-agnostic (i.e., post-hoc) approach
develops an explanation model to generate explanations after rec-
ommendations. Peake and Wang [24] train association rules based
on the outputs of a matrix factorisation black-box model. Cheng
et al. [6] use the influence function to estimate the effect of training
data on the predictions. Wang et al. [34] propose a reinforcement
framework to extract sentences from reviews as explanations. Xu
et al. [38] utilize a perturbation model to generate counterfactual
examples and extracts causal rule for sequential recommendation.
In this paper, we design a post-hoc framework for explainable con-
versational recommendation, which can provide explanations and
incorporate user feedback to refine recommendations.

3 THE PROPOSED FRAMEWORK: TPECR
3.1 Problem Setting

TPECR utilizes tags as side information to generate explanations
and refine recommendations. The explanation shows the user how
the recommender system models his tag preference and utilizes it
to make recommendation. Then the user provides his feedback on
tags, which is further used to refine next-turn recommendations.

Formally, we denote the set of users as U and the set of items
as V. To predict the affinity score ry, between user u € U and
item v € V, the recommendation model first maps them into latent
vectors e, € R9 and ey € Rd, and then computes the score based
on a function F of two vectors:

)

The set of tags is denoted as T and each tag t € T describes a
feature of items (e.g., category of movies). V; C V denotes the set of
items associated with tag t and T,, C T denotes the set of tags related
to item o. Please note that we don’t require the recommendation
model to take the tag information into consideration. The proposed
framework can be applied to recommendation models without
specialized module to encode tag information.

The framework needs to firstly infer user preference on all tags
T, denoted as ¢, € RIT! where each element cut € ¢y represents
how likely the user will prefer tag ¢ predicted by the recommenda-
tion model. Then, given the recommended item v, the framework
shows how the tag preference c,, is utilized by estimating the im-
portance scores of tag preference I, € RITI. Each importance
score I,y € I, represents the contribution of the corresponding
tag t with respect to the predicted score ry,. Finally, according
to user feedback, the framework adjusts the predictions from the
recommendation model and refines the recommendations.

ruo = Fey, ey)

3.2 Tag-Based Post-Hoc Framework

Figure 2 illustrates the proposed TPECR framework. It contains
a generation model G, which constructs user embedding based
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Figure 2: Overview of TPECR framework.

on his tag preference. To generate explanations, TPECR estimates
importance scores of tag preference I, based on the generation
model and the recommendation model, showing how user’s tag
preference is modeled and contributes to current recommendation.
To refine recommendations, TPECR modifies user’s tag preference
and utilizes the generation model to construct new user embedding,
which is used to calculate refined item score by the recommendation
model. Next, we will introduce the generation model G and how to
generate explanations and refine recommendations in detail.

3.2.1 Generation Model. Given a user u, his tag preference ¢, is
inferred with item scores predicted by the recommendation model:

cur = Agg({ruslo € V;}),Vt € T (2)

where Agg(-) refers to an aggregation function which maps a set of
item scores into tag score. The function varies with different settings
of the relationship between items and tags, which could be either a
binary or real value [32]. Some recommendation models [13, 30]
estimate user preference on both items and tags, and can directly
predict ¢, without inferring from item scores ry;.

Given the tag preference c; calculated in Equation (2), the gen-
eration model reconstructs user’s corresponding embedding e;,:

ey, = G(cy)

where the function G(-) models the relation between user’s latent
vector and tag preference predicted by the recommendation model.
Intuitively, the generation model learns how the recommendation
model expresses user’s tag preference in latent space.

3.2.2  Explanation Generation. TPECR provides explanations by
showing the user how the recommender system models his tag
preference and utilizes it to make recommendations. User’s tag
preference cy, is calculated in Equation (2). To infer predicted item
score ryp from tag preference ¢,,, we formulate a composite function,
which consists of the generation model G and the recommendation
model F. Equation (1) can be rewritten as:

rup = F(G(cy), ey) = Fy 0 G(cy)

where F,(-) = F(-, ep).

After constructing the function that maps tag preference ¢, to
item prediction ry,, TPECR applies existing model-agnostic explana-
tion approaches [3] to help user understand how his tag preference

®)
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Figure 3: Our implementation of TPECR. We instantiate the generation model with conditional variational auto-encoder (left)
and utilize the generation model to provide explanations and refine recommendations (right).

is utilized to make recommendation. Specifically, the contribution
of each tag I, ; with respect to the predicted score ry; is estimated
by applying feature importance methods [18, 26], which interpret
model predictions by assigning an importance score to each in-
put feature. Both the sign and the magnitude of importance score
are considered to understand the contribution of each tag [3]. If
Lyv,r > 0, the tag t contributes positively to the prediction ry,; oth-
erwise if I, s < 0, it contributes negatively. The magnitude |I;5 |
represents how great the contribution of the tag t is to ryy. Other
choices of model-agnostic explanation methods would be a straight-
forward extension in future work. The way of presenting user’s
tag preference and importance scores can be different according to
domain requirements, which is not constrained by TPECR.

3.2.3 Recommendation Refinement. TPECR refines recommenda-
tions by modifying user’s tag preference and utilizing generation
model G to generate new user embedding. After collecting user
feedback, TPECR first changes original tag preference c¢; corre-
spondingly, resulting in new tag preference c;,. Here, we don’t spec-
ify the way of adjusting tag preference, as it depends on the type
of user feedback. For example, users can provide explicit signals,
directly changing the value of ¢,. They can also provide implicit
signals, telling the system whether they like or dislike the tags.
Based on new tag preference c;,, the generation model G generates
the corresponding user embedding e;,:

e, =G(cy)

The recommendation model F then predicts the refined item score
r;, using the newly generated embedding e;,:

r;z) = F(e;, €y)

3.3 Implementation

To materialize TPECR, we provide an implementation considering
implicit feedback from users. The recommendation model being
explained is trained with user’s interaction history and estimates
the ranking scores of the unobserved items. User feedback on ex-
planations informs the system whether he likes or dislikes the tags.
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3.3.1 Generation Model: CVAE. We assume that the relationship
between items and tags is binary, which means all tags associated
with an item describe that item equally well [2]. User preference on
tag cy,; is inferred by taking average of predicted scores of items
associated with tag t:

o= Zvth Tuy
T

Despite its simplicity, Sharma et al. [27] found that for most users
the rating on a set can be accurately approximated by the average
rating of the items in that set.

We instantiate the generation model with conditional variational
auto-encoder (CVAE) [29], a conditional directed graphical model
whose input observations modulate the prior on Gaussian latent
variables that generate the outputs. CVAE has been used to gen-
erate images conditioned on certain attributes [39] and diverse
responses for neural dialog models [43]. Inspired by these works,
we utilize CVAE to generate user embedding conditioned on his
tag preference, as shown in Figure 3.

Given tag preference ¢, CVAE samples latent variable z;, from
the prior distribution py(zy|cy), and then generates user embed-
ding e, conditioned on tag preference ¢, and latent variable z;,:

VteT

po(eu, zulcy) = po(zulcu)po(eu, |zu, cu).

CVAE is trained to maximizes the conditional log-likelihood of e,
given c¢,. As proposed in [12, 29], the parameters of CVAE can
be estimated efficiently with stochastic gradient variational Bayes
(SGVB), where the variational lower bound of the log-likelihood is
used as a surrogate objective function to be maximized:

Levae = Eg, (2, |ey,c,) [108 Po (eulzu, )]
~KL(qg4(2zuleu, cu)llpg(zu))-

Here, the prior distribution py(z,) is assumed to follow isotropic
multivariate Gaussian distribution AV (0, I). The first term in Equa-
tion (4) represents the log likelihood of training samples and the
second term is KL divergence term for regularization. In TPECR
framework, CVAE works as a generation model to reconstruct user
embedding, which is a high-dimensional variable with continuous
values. Hence, we use Mean Squared Error to measure the similarity

4)
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between the reconstructed embedding e,, and original one ¢, from
the recommendation model. Equation (4) can be rewritten as:

Levak = ~EBq, (2, le7.0,) [MSE(€us €u)]

. )
Ak * KL(qg (zuleu, cu)llpg(zu))

where g4 (zuléw, cu) ~ N (u, diag(o?)) is a multivariate Gaussian
distribution, e, is generated with z;,, sampled from 94 (zulew, cu)
and Ay is the regularization parameter to balance these two losses.
Two Multi-Layer Perceptrons (MLPs), denoted as MLP4 and MLPy,
are used to approximate the distribution g (zyléy,cy) and the
generation process of e, respectively:

[, log(0?)] = MLPy([€y, cu]),
e, = MLPy ([zus eul)
where [, -] is the concatenation of the input vectors.

Given the modified tag preference ¢;,, new user embedding e;,
is generated as follows:

e, = G(c;,) = MLPy([z;. c;,]) (6)

where the latent variable z}, is inferred without sampling: zj, =
E[qg(zuléu, c;,)]. Though CVAE is trained with the objective to
reconstruct original user embedding, it can also generate new em-
bedding with modified tag preference, as shown in our experiments.

3.3.2 Explanation Generation with LIME. TPECR applies feature
importance methods to estimate the contribution of each tag with
respect to item prediction. Specifically, we use LIME [26], an ex-
planation method that explains the predictions of any classifier, to
help users understand how the recommendation model works.

LIME explains the output of classifier by learning an interpretable
model locally around the prediction [26]. To demonstrate how it
works, we assume that the black-box model is denoted f and the
instance being explained is x. The objective of LIME is to train a
simple model g that minimizes following objective:

&(x) = L(f, 9, mx) + Q(9)

where £ measures how unfaithful g is in approximating f in the
locality defined by 7y and Q(g) measures the complexity of model
g. The model g is a sparse linear model, which is trained with
perturbed samples drawing around x. The weights of the trained
linear model g are treated as the feature importance explanations.

In TPECR framework, LIME is used to explain the composite func-
tion in Equation (3). However, directly applying LIME to ranking
model is nontrivial since it’s difficult to get the label for perturbed
instance. Inspired by previous work [28], we reformulate ranking
problem to classification problem and get the importance scores
I, from the parameters of the trained linear model g.

Given user’s tag preference c; and the recommended item v
being explained, R(v|cy, V) denotes the rank of item v among the
set of items V, i.e. ranking position in descending order according
to predicted score ryp = Fy 0 G(cy). Let X be a random variable
indicating whether user with tag preference ¢, likes or dislikes the
item v. We estimate the distribution of X as follow:

1, R(v|ey,V) < R(v|ey, V),

P(X = like|o, ¢y, V) = {0’ R([Ew. V) > R(olew. V).

P(X = dislike|v, ¢y, V) = 1 — P(X = like|v, ¢y, V).
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where ¢, is the perturbed tag preference sampled by LIME and
R(v|ey, V) is the rank of item v based on predicted score 7y, = Fy 0
G(cy). With the setting of classification problem above, LIME learns
feature importance considering how tag preference influences the
rank of item v. Since it may be time-consuming to calculate the
rank among all the items, we randomly sample k items as a smaller
set Vi € V and rank the item v among V4.

3.3.3 Recommendation Refinement with Online Update. How to in-
corporate user feedback is an important problem for conversational
recommender systems. Current works either develop specialized
modules to adapt user preference [37, 42] or conduct online update
to further optimize model parameters [7, 13, 19, 45]. TPECR uti-
lizes online update to refine recommendations with user feedback,
keeping the flexibility to be applied to different models.

Specifically, user feedback on tags is used to construct the loss
function of online training L¢eqpack- TPECR only updates user’s
tag preference ¢y, based on L¢eeqpack and fixes other parameters
(the generation model G and the recommendation model F) during
the training process. After online update, the generation model
G generates new user embedding e], with the modified tag pref-
erence c;,, and the recommendation model F makes refined rec-
ommendations based on new predicted score r},, = F(e,, ey). The
loss function Leeapack is consistent with the loss function used
for offline training the recommendation model F. During online
update, the item scores are predicted with tag preference ¢, i.e.
rus = F(G(cy), ey). For example, if the recommendation model F
is Matrix Factorization (MF) trained with Bayesian Personalized
Ranking loss [25], the loss function Lfeeqpack should also be BPR
loss with training instances constructed based on user feedback.
Assuming that the user informs that he likes the tag t, we define the
positive items for training as V; and the negative items are sampled
from other items unrelated to tag ¢. The loss function for positive
feedback Lfeeqpack is defined as:

2

(Utvi)EDpos

Lfeedback = —Ino (F(G(cw), eyr) — F(G(cw), ev-))

where Dpos = {(v*,07)|o* € V;,0” € V \ V;} denotes the set
of item pairs for positive feedback and o is the sigmoid function.
The training instances for user’s negative feedback can be built
in a similar way: Dpey = {(0*,07)o* € Vi,0™ € V;}, where V,
contains the items historically interacted by the user.

To conduct efficient training, we add a regularization term to the
loss function Leegpack, Which concerns about balancing user’s
long-term and short-term preference. User feedback only reflects
his current interest and the modified tag preference ¢, needs to con-
sider both user’s original preference and current feedback. Hence,
the generated user embedding should not be far from original em-
bedding e, to avoid forgetting user’s long-term preference:

~Ereg = MSE(G(cu), eu) 7)
where MSE is Mean Squared Error loss.
The final loss function of online update is defined as follow:
Lonline = 'Lfeedback + Areg-l:rey ®)

where Ayeq is the regularization parameter.
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Table 1: NDCG and MSE of generated embedding.
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Table 3: Statistics of Movielens and Goodreads.

Table 2: Importance scores of all tags given an item, which
is associated with the tag in brackets.

Scores Tagl Tag2 Tag3 Tag4 Tag5
Item(Tagl) | 0.2865 | -0.0767 | -0.0774 | -0.0658 | -0.0711
Item(Tag2) | -0.0765 | 0.2781 | -0.0701 | -0.0687 | -0.0707
Item(Tag3) | -0.0675 | -0.0642 | 0.2941 | -0.0700 | -0.0776
Item(Tag4) | -0.0686 | -0.0605 | -0.0619 | 0.2856 | -0.0607
Item(Tag5) | -0.0769 | -0.0654 | -0.0576 | -0.0638 | 0.2901

4 EXPERIMENTS
4.1 Verifying CVAE and LIME on Synthetic Data

We first conducted experiments! to verify the correctness of CVAE
and LIME used in TPECR, trying to answer two research questions:
RQ1: How is the performance of CVAE as generation model?

RQ2: Can LIME learn how the recommendation model utilizes
tag preference to predict item score?

It’s difficult, if not impossible, to get the ground-truth of user em-
bedding generated with modified tag preference and know exactly
how the recommendation model uses tag preference. To mitigate
the issue, we construct a synthetic dataset with a simple recom-
mendation model. Assuming there are Ny, users, N, items and N;
tags, the recommendation model predicts score as follows:

_—
Tup =€, €y

where item embedding e, € RNv is defined as one-hot encoded
vector. We further assume that each item is related to only one tag
and the recommendation model predicts item score solely based
on user preference on its related tag, i.e. the related tag should be
assigned with highest importance score:

©
With the assumptions above, we randomly sample tag preference
¢yt from [0, 1) for each user and construct his embedding according
to Equation (9). We set Ny, = 1000, N, = 50 and N; = 5, and the
items are evenly distributed to all tags, i.e., |V;| = 10,Vt € T. The
users are split into training data (90%) and test data (10%). As for
generation model, MLP4 and MLP, are Multi-Layer Perceptrons
with one hidden layer whose size is 16 and the size of latent variable

Tup = e:I *€y = Cuts Ty = {t}

!The source code and the experiments have been shared at https://github.com/xxkkrr/
TPECR.
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Metrics NDCG Dataset #User #ltem #Tags #Interactions
Num of Changes 1 2 3 4 5 Movielens-10M 69,878 7254 19 9,242,191
Original 0.9702 | 0.9395 | 0.9054 | 0.8850 | 0.8537 Goodreads-Comics | 58,318 35,146 6 5,351,077
MLP 0.9747 | 0.9500 | 0.9191 0.9004 | 0.8713
CVAE 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
Metrics MSE 2y is 8. Adam [11] is used as optimizer with learning rate 0.001 and
Num of Changes 1 2 3 4 5 the regularization parameter Ay is set to 1.
Original 0.0321 | 0.0655 | 0.1027 | 0.1323 | 0.1735 To answer RQ1, we randomly change user’s tag preference by
MLP 0.0261 | 0.0531 | 0.0835 | 0.1075 | 0.1413 sampling from [0, 1) again to simulate user’s explicit feedback. The
CVAE(x1 x 107°%) | 1.782 2.046 3.521 7.635 2.763 corresponding embedding is constructed according to Equation (9)

as the ground truth. We use NDCG and MSE as evaluation metrics
and compare the CVAE-generated embedding with the original one.
We also trained a Multi-Layer Perceptron (MLP) as baseline model
to generate new embedding based on the concatenation of user
embedding and modified tag preference, which is same as CVAE.
Table 1 reports the performance with different number of changed
tags. From the results, we can see that original user embedding
gradually fails to represent user’s new preference as the number of
changed tags increases, while CVAE can precisely reconstruct new
embedding with modified tag preference. The results also showed
that CVAE outperformed simple MLP significantly, indicating its ef-
fectiveness of reconstructing user embedding as generation model.

To answer RQ2, we demonstrate how LIME provides explana-
tions given item predictions. For each tag ¢, we randomly sample an
item o from V; and calculate the importance scores for all the tags.
Table 2 reports the average importance scores over 100 users. From
the results, we find that LIME assigns the largest value to the tag
associated with the given item, indicating that the recommendation
model predicts item score mostly based on its related tag preference,
which is consistent with our setting of the model.

4.2 Experiments on Real Data

We also conducted experiments on real datasets and applied TPECR
to different models to answer the following questions?:

RQ3: Can the generation model learn from the recommendation
model and express user’s tag preference in latent space?

RQ4: Can TRECR incorporate user’s feedback effectively?

RQ5: How does TRECR explain different models?

4.2.1 Datasets and Recommendation Models Being Explained. We
used two datasets, Movielens-10M [9] and Goodreads-Comics [33].
Movielens-10M contains 10 million user-movie interactions and
provides category information of each movie, which is used as
tags. Goodreads-Comics contains user-book interactions for comics
books with shelf names and we selected the informative shelf names
as tags to ensure tag quality [23]. We filtered out the items with
fewer than 5 interactions and the users fewer than 10 interactions.
Table 3 reports the final statistics of these two datasets.

We applied TPECR framework to two widely-used latent factor
models, Matrix Factorization (MF) and Neural Collaborative Filter-
ing (NCF) [10], and one variant of factorization machine (FM) used

2We focus more on evaluating the generation model since LIME can generate better
explanations if the generation model approximates the composite function defined in
Equation (3) more accurately.
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Table 4: MAPE and MSE of tag scores calculated with gener-
ated embeddings.

Dataset Movielens
Model MF NCF FM
Metrics MSE MAPE MSE MAPE MSE MAPE
Original | 0.0662 6.2693 | 27.2638 | 0.7515 0.3464 | 4.8758
MLP 0.0096 2.5566 | 24.6689 | 0.7035 0.0138 0.8933
CVAE 0.0001 | 0.0700 | 1.8922 | 0.1027 | 0.0012 | 0.0854
Dataset Goodreads
Model MF NCF M
Metrics MSE MAPE MSE MAPE MSE MAPE
Original | 0.0493 5.4942 7.5577 0.3706 1.0327 7.7594
MLP 0.0262 4.2085 6.2366 0.3296 0.0323 0.7988
CVAE 0.0001 | 0.0879 | 1.2410 | 0.1345 | 0.0019 | 0.1556

in previous conversational recommender systems as recommenda-
tion model [13, 30]. MF and NCF only predict item scores, while FM
can also predict tag scores. To learn from user’s implicit feedback,
the MF and FM model are trained with BPR loss [25], and the NCF
model is trained with binary cross-entropy loss [10]. We set the
size of latent vector d = 64 for all the models.

To train the generation model, we split all users into train-
ing data (80%), validation data (10%) and test data (10%). We use
Adam [11] as optimizer to train the generation model with loss
function defined in Equation (5). MLP4 and MLP are Multi-Layer
Perceptrons with two hidden layers whose size is 128 and the size
of latent variable z,, is 48. We choose LeakyReLU as activation func-
tions of MLP layers. For CVAE trained with MF, the learning rate
is 0.0002 and the regularization parameter Ay; is 0.0001. For CVAE
trained with NCF, the learning rate is 0.001 and A; is 0.001.

4.2.2  Performance of Generation Model. To answer RQ3, we change
user’s tag preference ¢, ; by adding different values d to it and see
how the rank of item v € V; changes with different tag preference
cu,t +d. If d > 0, the user prefers the tag t more and the generated
embedding should make the recommendation model rank items in
V; higher. Otherwise, items in V; should be ranked lower. Following
[20], we use V; to label ground truth “relevance”, and Falling MAP
(F-MAP) and Falling Recall (F-Recall) are calculated to measure the
ranking difference of item set V;:

F-MAP(u,t,K) = MAP@K,/*"* - MAP@K;)"*"
F-Recall(u,t,K) = Recall@K‘b,ffore - Recall@K&fter

We also calculate F-MAP(u, t’,K) and F-Recall(u,t’, K) of another
randomly sampled tag ¢’ to see whether the change of ¢, ; mainly
affects the items related to tag t. Specifically, K is set as 1000. We
randomly sample 1000 users from test data. For each user, we sample
two tags: one is treated as the changed tag t and the other is the
unrelated tag t’. The value d is taken from -0.5 to 0.5 at intervals
of 0.1 for MF and from -1. to 1. at intervals of 0.2 for NCF and FM.

Figure 4 shows how F-MAP and F-Recall vary with different value
d on two datasets. From the results, we can see that F-MAP and F-
Recall gradually decrease when the value d increases from negative
value to positive value, indicating that the items in V; are ranked
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lower when d < 0 and ranked higher when d > 0. Moreover, the
rank of item in V; changes more with larger absolute value of d. We
also find that when d = 0 (reconstructing the original embeddings),
the generated embeddings produced similar rank lists with original
ones (F-MAP and F-Recall close to 0), which means that CVAE can
faithfully reconstruct original user embeddings. This phenomenon
is observed in CVAE trained with all the models on both datasets.
On the other hand, the rank of item in V- is hardly affected. We
note that F-MAP(u,t’,K) and F-Recall(u,t’, K) slightly increase
with the value d, because higher rank of item in V; leads to lower
rank of other items v ¢ V; and item in Vi € V' \ V; may be pulled
down. From the results, we can see that CVAE can generate new
user embedding based on the change of tag preference accordingly.

We also conducted experiments to see whether the generated
embedding can represent user’s new preference when he changes
multiple tag preference. For each user, we randomly sampled an-
other user’s tag preference ¢}, as modified preference and generated
new user embedding e;, with generation model. We treated c;, as
ground-truth scores and evaluated the tag scores calculated with
user embedding e;,. Mean squared error (MSE) and mean absolute
percentage error (MAPE) are used as evaluation metrics. We ran-
domly samples 5000 users from test data and reported the average
MSE and MAPE. We also use a MLP as baseline generation model,
which generates new embedding based on the concatenation of
user embedding and modified tag preference like CVAE.

Table 4 reports the experimental results on both datasets. We
can see that CVAE outperformed baseline MLP on both datasets.
CVAE also achieved better performance of generating embeddings
given different recommendation models, which demonstrated the
generalization ability of CVAE as the generation model. From the
results, we can see that CVAE can learn how to express user’s
tag preference in the latent space and generate user embedding
consistent with his tag preference.

4.2.3  Performance of Recommendation Refinement. To answer RQ4,
we compare the recommendation result given user’s original tag
preference ¢, and modified tag preference c;, after training. Due to
the lack of real user feedback in dataset, we simulate user feedback
on tags and similar methods are adopted in previous works [13, 30,
37]. We compare our method with directly updating user embedding
e, to find out whether updating user’s tag preference ¢, can refine
the recommendation effectively.

Specifically, we select user-item pairs from the test data and treat
the item as user’s target item representing his current interest. The
user is assumed to like the tags associated with the target item
and dislike others. He will provide feedback to inform the system
whether it models his tag preference incorrectly. For example, if
the tag preference ¢, ; is lower than the average score of all items,
the recommendation model may think the user dislikes the tag
t. When user’s target item is related to the tag t, he will provide
positive feedback to point out that he likes the tag t and we refer
to this scenario as "PosTag". Similarly, "NegTag" means that the
user provides negative feedback if he dislikes the tag ¢t and the
tag preference c, s is higher than the average score. We conduct
experiments in both scenarios. Besides using F-MAP@K and F-
Recall@K to evaluate the ranking difference of items in V;, we also
report the ranking difference of the target item as F-Rank. Here,
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Figure 4: F-MAP and F-Recall when adding different values to tag preference.
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Table 5: Performance of Recommendation Refinement (M: Movielens, G: Goodreads).

Data&Rec | Update PosTag NegTag
F-MAP@1000 | F-Recall@1000 F-Rank F-MAP@1000 | F-Recall@1000 F-Rank
MaMF ey -0.0486+0.0697 | -0.0460+0.0589 30.59+166.58 0.0050+0.0060 | 0.0067+0.0058 2.85+19.60
cy -0.0430+0.0522 | -0.0470+0.0460 36.00+182.07 0.0109+0.0134 | 0.0134+0.0113 7.53+75.12
M+NCF ey -0.0119+£0.0159 | -0.0137+0.0155 15.67+£85.08 0.0018+0.0023 | 0.0039+0.0034 1.13+11.67
Ccy -0.0111+0.0130 | -0.0144+0.0137 23.11+122.45 0.0069+0.0055 | 0.0169+0.0130 2.18+51.26
M+EM ey -0.0570+£0.0695 | -0.0539+0.0587 39.49+164.45 0.0055+0.0085 | 0.0058+0.0067 3.71+25.95
cy -0.0570+0.0551 | -0.0578+0.0434 62.63+182.28 0.0106+0.0138 | 0.0137+0.0128 12.11+80.23
G+MF ey -0.0525+0.0560 | -0.0693+0.0628 122.94+883.55 0.0187+0.0234 | 0.0163+0.0184 | 62.93+254.90
cy -0.0519+£0.0496 | -0.0697+0.0559 | 114.38+1098.46 | 0.0221+0.0279 | 0.0204+0.0240 | 24.20+499.96
G+NCF ey -0.0248+0.0291 | -0.0351+0.0292 57.65+649.35 0.0231+0.0220 | 0.0212+0.0172 | 80.72+309.40
cy -0.0317+0.0350 | -0.0483+0.0399 42.03+951.98 0.0121+£0.0196 | 0.0119+0.0169 | 25.57+267.23
G+FM ey -0.1071£0.0990 | -0.1050+0.0963 170.56+907.58 | 0.0289+0.0363 | 0.0275+0.0296 | 98.28+452.41
cy -0.1554+0.1674 | -0.1434+0.1541 | 194.50+1292.99 | 0.0180+0.0252 | 0.0177+0.0212 | 24.56+387.19

Table 6: Ablation Study of Online Update on Movielens.

MF, PosTag
Metrics | F-MAP@1000 | F-Recall@1000 F-Rank
Areg =0 | -0.1404+0.1372 | -0.1253+0.0992 | -232.12+1001.67
Ours -0.0469+0.0521 | -0.0503+0.0453 34.27+191.52
MF, NegTag
Metrics | F-MAP@1000 | F-Recall@1000 F-Rank
Areg =0 | 0.0194+0.0275 0.0257+0.0224 5.39+125.17
Ours 0.0108+0.0139 0.0135+0.0114 7.93+48.38
NCF, PosTag
Metrics | F-MAP@1000 | F-Recall@1000 F-Rank
Areg =0 | -0.0509+0.0731 | -0.0552+0.0684 | -335.93+883.31
Ours -0.0114+0.0130 | -0.0146+0.0134 9.37+104.81
NCF, NegTag
Metrics | F-MAP@1000 | F-Recall@1000 F-Rank
Areg =0 | 0.0144+0.0189 0.0306+0.0218 4.49+120.02
Ours 0.0066+0.0076 | 0.0161+0.0123 5.00+44.79
FM, PosTag
Metrics | F-MAP@1000 | F-Recall@1000 F-Rank
Areg =0 | -0.2010+0.1732 | -0.1757+0.1176 | -867.56+1849.78
Ours -0.0574+0.0578 | -0.0582+0.0457 42.25+169.64
FM, NegTag
Metrics | F-MAP@1000 | F-Recall@1000 F-Rank
Argg =0 | 0.0211£0.0292 0.0290+0.0269 4.21+158.48
Ours 0.0099+0.0133 0.0132+0.0121 6.62+48.32

the items are ranked in descending order according to their scores.
Specifically, we randomly sample 1000 user-item pairs and select
a tag related to item for "PosTag" or "NegTag" as discussed above.
We set the online update loss function as BPR loss for MF and FM
model, and BCE loss for NCF model, and the training dataset are
constructed as introduced in Section 3.3.3.

Table 5 reports the performance of recommendation refinement?.
We observe that online training user’s tag preference ¢, achieves
comparable performance with directly updating user embedding

3We try updating user embedding with the regulation term, and the results are similar.
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ey, indicating that TPECR can incorporate user feedback and refine
recommendations effectively by modifying user’s tag preference.
We find that both positive and negative feedback help to refine rec-
ommendations and positive feedback contributes more considering
the F-Rank value, since it directly reflects the characteristics of the
target item [37]. However, we also note that online update isn’t
always helpful when the target item is already ranked high [13].
We further conduct an ablation study on Movielens dataset to
see the contribution of the regulation term £,y defined in Equa-
tion (7). The regulation term is removed by setting A,y = 0 and
Table 6 reports the results. For "PosTag" scenario, the online up-
date without £¢g4 can incorporate user feedback well but user’s
target item is ranked lower, which means that the generated em-
bedding e;, = G(c;,) focuses on user’s current feedback only and
forgets user’s long-term preference. For "NegTag" scenario, since
the training dataset Dyeq contains user’s historically interacted
items, the generated embedding e;, is less likely to forget long-term
preference completely. However, without L4, the generated em-
bedding e, pays more attention to pulling down the rank of item
in V; instead of ranking the target item higher. The experimental
results show that introducing the regulation term £, ¢4 helps online
update balance user’s long-term and short-term preference.

4.2.4 Qualitative Evaluation of Explanation. To answer RQ5, we
qualitatively evaluate the generated explanations. We demonstrate
the importance scores assigned to different tags and draw the distri-
bution of them. Specifically, we randomly sample 10000 user-item
pairs and utilize LIME introduced in Section 3.3.2 to calculate the
importance scores of all the tags with respect to item prediction.
The size of Vi is 99, which consists of randomly sampled items.

Figure 5 demonstrates the distribution of importance scores. As
shown in blue lines, we count the number of tags having importance
scores in each interval and the number of tags related to the item
being explained. The red lines represent the ratio of related tag
count over all tag count in each interval, and the horizon one
represents the average ratio of related tag count among all sampled
items, i Soevnre Tol/ (Vsamptel * IT):

From these figures, we observe that most importance scores are
centered around zero, indicating that only part of tag preference is
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Figure 5: Distribution of Importance Scores.

important when the recommendation model makes prediction. We
also find that the ratio of related tags is higher than the average
ratio when importance scores are larger than zero and it gradually
increases considering higher importance scores interval. This phe-
nomenon demonstrates that the tags related to the explained item
usually have larger positive contributions than other unrelated tags,
indicating that the recommendation model is more likely to rank
the given item higher if the user prefers its related tags more.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a tag-based post-hoc framework for ex-
plainable conversational recommendation (TPECR), which enables
black-box recommendation model to provide explanations and re-
fine recommendations based on user’s tag preference. TPECR con-
tains a generation model to generate user embedding given his
tag preference, and utilizes it to estimate the contributions of tag
preference and generate new embedding considering user feedback.
Experiments are conducted on both synthetic and real datasets, and
the results validate the effectiveness of proposed framework.

Our work took the first step towards post-hoc framework for
explainable conversational recommendation. In the future, we will
explore other models besides CVAE as the generation model. We
will also try to extend TPECR with more complex form of feedback,
like pairwise tag interactions [2].
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