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ABSTRACT
Reinforcement learning (RL) has gained popularity in recommender
systems for improving long-term performance by effectively explor-
ing users’ interests. However, modern recommender systems face
the challenge of different user behavioral patterns among millions
of items, making exploration more difficult. For example, users with
varying activity levels require different exploration intensities. Un-
fortunately, previous studies often overlook this aspect and apply a
uniform exploration strategy to all users, which ultimately hampers
long-term user experiences. To tackle these challenges, we propose
User-Oriented Exploration Policy (UOEP), a novel approach that
enables fine-grained exploration among user groups. We first con-
struct a distributional critic that allows policy optimization based on
varying quantile levels of cumulative reward feedback from users,
representing user groups with different activity levels. Using this
critic as a guide, we design a population of distinct actors dedicated
to effective and fine-grained exploration within their respective
user groups. To simultaneously enhance diversity and stability dur-
ing the exploration process, we also introduce a population-level
diversity regularization term and a supervision module. Experi-
mental results on public recommendation datasets validate the
effectiveness of our approach, as it outperforms all other baselines
in terms of long-term performance. Moreover, further analyses re-
veal the benefits of our approach, including improved performance
for low-activity users and increased fairness among users.
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1 INTRODUCTION
Recommender Systems (RS) are integral components embedded
within an array of web services, encapsulating e-commerce [18, 36],
social media [51, 52], streaming music [10, 57], and news feed-
ing [49, 50], among others. In recent years, there has been a no-
table surge in the interest in Reinforcement Learning (RL) given
its distinctive ability to explore user interests and elevate long-
term performance within RS. In contrast to traditional supervised
methods [32, 53] that optimize immediate user feedback, RL-based
RS [5, 7, 40, 58, 59] treats the streaming recommendation problem
as an interactive process, focusing on maximizing the cumulative
rewards of users in the long term. RL-based methods provide a
deeper understanding of user preferences, enabling recommender
systems to generate personalized recommendations that align with
long-term user satisfaction.

Unlike other RL-based tasks, applying RL to RS in practical
scenarios suffers from large action space and sparse user feed-
back [13, 31], which contribute to intricate user behavioral patterns.
For instance, most users and items exhibit only a limited number of
interactions, whereas a minority of highly active users or popular
items contribute to a small fraction of the total. This difference in
user behavior results in a long-tailed return distribution, which
in turn adds difficulties to the task of learning user preferences.
Therefore, an effective RL-based recommender is expected to learn
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Figure 1: Illustration Experiment. We resorted users based on their activity levels (total number of clicks) and selected the five
bottom 𝛼-quantile (𝛼 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}) of user groups. We then trained two RL algorithms, DDPG and TD3, on these five
groups under four varying noise levels. We conducted all experiments with four different seeds and reported average results.

diverse policies that exploit more for the active users while explor-
ing more for the inactive ones.

To better illustrate the differences among users, we conduct ex-
periments with the quantile-based grouping of users on a public
short video dataset named KuaiRand. Specifically, we arrange users
by their total number of clicks. Subsequently, we select users from
various bottom quantiles (0 ∼ 𝛼) of this sorted outcome, which
represents users with the bottom 𝛼 activity levels. We then evaluate
the performance of two typical RL algorithms under different levels
of noise on these user groups, where the larger noise represents
more intense exploration. Figure 1 demonstrates that as the quan-
tile decreases, indicating users with lower activity levels, there is
a tendency for them to exhibit a preference for higher levels of
noise. The observation suggests that the optimal exploration inten-
sity varies significantly across different user groups, emphasizing
the importance of implementing more effective and fine-grained
exploration in RL-based recommender systems.

Despite its critical significance, the effective exploration strate-
gies at the user level remain largely uninvestigated. Traditional
reinforcement learning exploration strategies, such as noise per-
turbation and 𝜖-greedy, introduce randomness mainly during the
selection of actions [56]. Recent studies have made strides in this
area by employing decomposition techniques that make RL more
manageable with recommendation slates, or by using alignment
methods to balance the trade-off between exploration and exploita-
tion in the latent action representation space [13, 19, 31]. However,
these methods have primarily concentrated on the regularization
of action space, overlooking return distribution variations among
users and thus not effectively enabling user-oriented exploration.

Based on the above observations, in this paper, we propose a
novel approach called UOEP for reinforcing user-oriented explo-
ration in recommender systems. UOEP employs the return distribu-
tion under different quantiles to explicitly characterize the activity
level of users and group them according to the quantile. In this way,
multiple actors can be learned and each actor corresponds to a spe-
cific user group with a predefined level of activity. Specifically, we
first introduce a distributional critic to learn the return distribution
instead of an expected return. Given the return distribution, mul-
tiple actors are learned where each actor subsequently optimizes
towards different target quantiles within the return distribution.
This approach enables us to customize the exploration intensity for

different groups. Then, a population diversity regularization term
is introduced to encourage diversity among the different actors,
promoting effective exploration in the action space. Considering
that introducing multiple actors at once may cause the instability
of the training, we also incorporate a supervision module to ensure
the stability during the actor learning process. We evaluate the
performance of our approach and compare it with state-of-the-art
recommendation approaches through comprehensive experiments
on various public and industrial recommendation datasets. The ex-
perimental results demonstrate its advantages in terms of long-term
performance. Further analyses demonstrate our model’s ability to
improve the experience for low-active users and enhance overall
fairness, highlighting the additional advantages of our approach.

2 PROBLEM FORMULATION
We focus on the task of session-based recommendation in this paper.
Formally, given an item candidate pool I, the recommender system
aims to select a list of items 𝑥𝑢𝑡 = {𝑖1, . . . , 𝑖𝑛} for the current user 𝑢
at each time step 𝑡 . Here, 𝑖𝑘 ∈ I for 1 ≤ 𝑘 ≤ 𝑛, and 𝑛 represents
the list size, which denotes the number of items provided to the
user during each interaction within the session. The goal of the
learning is to encourage users to engage in more interactions within
a session (depth) and maximize their cumulative rewards, such as
clicks or purchases over the sessions (return). We formulate this
problem as the Markov Decision Process (MDP), which consists of
5-tuple ⟨S,A,P,R, 𝛾⟩:
• S is the continuous state space, where 𝑠 ∈ S indicates the state
of a user including static features such as gender and dynamic
features such as historical interactions.

• A is the action space, where 𝑎 ∈ A is possible recommendation
lists in a single interaction within a session, i.e., A = I𝑛 .

• P : S×A×S → R is the state transition function, where 𝑝 (𝑠′ |𝑠, 𝑎)
specifies the probability of transitioning from the current state 𝑠
to a new state 𝑠′ after taking action 𝑎.

• R : S × A → R is the reward function that maps a user state 𝑠
and an action 𝑎 to an immediate reward 𝑟 (𝑠, 𝑎), which is related
to the user feedback, such as clicks or likes.

• 𝛾 is the discount factor for weighting future rewards relative to
immediate rewards.

The policy function 𝜋 (𝑎 |𝑠) : S → A represents the probability of
selecting action 𝑎 given state 𝑠 . We define Z𝜋 (𝑠, 𝑎) to represent
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Figure 2: The proposed approach UOEP. It includes a popu-
lation of𝑚 actors, where𝑚 is the population size and each
actor𝑖 outputs an action 𝑎𝑖 based on the current user state 𝑠.
The action 𝑎𝑖 along with state 𝑠 is fed into the distributional
critic. Utilizing both its quantile value 𝛼𝑖 and the critic’s out-
put 𝑍 (𝑠, 𝑎𝑖 ; ·), actor𝑖 calculates the conditional value at risk
(CVaR) measure to derive its policy gradients.

the return distribution under 𝜋 given state 𝑠 and action 𝑎, equaling
in distribution

∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ). The objective of standard RL is to
learn an optimal policy 𝜋∗ (𝑎 |𝑠) that maximizes the expectation
of Z𝜋 , denoted as max𝜋∗ JE (𝜋∗) := E [Z𝜋 ]. However, as previ-
ously stated, due to the complex distribution of user feedbacks
in RS, solely maximizing expectations results in ineffective and
coarse-grained exploration. In this paper, we turn to facilitate the
exploration by improving the distortion of the return distribution,
as opposed to focusing solely on the expectation. This can be rep-
resented as max𝜋∗ JD (𝜋∗) := D [Z𝜋 ]. where D is a distortion
operator that maps the reward distribution to real numbers. Since
our goal is to improve the effectiveness of exploration under dif-
ferent user groups, a better choice of the distortion operator D is
CVaR𝛼 , which captures the expected return when experiencing a
given bottom 𝛼-quantile of the possible outcomes [43]. Mathemati-
cally, it can be represented as follows:

CVaR𝛼 (Z𝜋 ) = 1
𝛼

∫ 𝛼

0
𝐹−1 (Z𝜋 ;𝜏)d𝜏, (1)

where 𝛼 ∈ [0, 1] and the quantile function, denoted as 𝐹−1 (Z𝜋 ; ·),
is the inverse function of the cumulative distribution function (CDF)
of the return distribution Z𝜋 . It maps a quantile value 𝜏 ∈ [0, 1] to
the corresponding value within the distribution. When 𝛼 = 1, the
CVaR value is equal to the expectation of the entire distribution.

3 UOEP: THE PROPOSED APPROACH
In this section, we introduce our approach: User-Oriented Explo-
ration Policy (UOEP). As depicted in Figure 2, UOEP primarily
comprises a population of actors and a distributional critic. Each
actor within this population operates independently to offer distinct
recommendations to users. Additionally, each actor is assigned a
unique 𝛼 value, which is utilized for optimization targeting distinct
bottom 𝛼-quantiles of the return distribution, denoted as CVaR𝛼 .
This approach ensures that each actor learns within user groups

characterized by different activity levels. To enable effective explo-
ration among actors in the population and ensure stability during
the learning process, we introduce two regularization terms. We
first incorporate a population diversity regularization loss Ldiv to
facilitate effective exploration through diversified actors. Then, we
introduce a supervision module Lsta to stabilize the learning pro-
cess. We delve into the learning process for the distributional critic
in Section 3.1. Next, in Section 3.2, we define the actor loss, which
relies on a more effective distortion operator, CVaR, applied to the
acquired return distribution and optimize it using a gradient-based
approach. Then, we introduce the two regularization terms, Ldiv
and Lsta in Section 3.3. Finally, We summarize the training and
inference procedure in Section 3.4.

3.1 Learning Distributional Critic
To learn a distributional critic, we first introduce the distributional
Bellman equation:

Z𝜋 (𝑠, 𝑎) D
= 𝑟 (𝑠, 𝑎) + 𝛾Z𝜋 (𝑠′, 𝑎′), (2)

where random variables 𝑠′, 𝑎′ are drawn according to 𝑠′ ∼ 𝑝 (·|𝑠, 𝑎)
and 𝑎′ ∼ 𝜋 (·|𝑠′), and 𝐴 D

= 𝐵 denotes the equality in probability
distribution between the random variables 𝐴 and 𝐵 [3]. In prac-
tice, we choose to represent the return distribution by learning
its implicit quantile function using an Implicit Quantile Network
(IQN) [8, 45]. This approach offers computational advantages for
efficiently calculating CVaR. Specifically, we learn the distributional
critic 𝑍𝜃 (𝑠, 𝑎;𝜏) parameterized by 𝜃 , to approximate the quantile
function 𝐹−1 (Z𝜋 (𝑠, 𝑎); ·) at a given quantile 𝜏 ∈ [0, 1]. Formally,
for each sampled transition (𝑠, 𝑎, 𝑟, 𝑠′), the temporal difference (TD)
error can be computed as follows:

𝛿𝜏,𝜏 ′ = 𝑟 + 𝛾𝑍 ′
𝜃 ′

(
𝑠′, 𝑎′;𝜏 ′

)
− 𝑍𝜃 (𝑠, 𝑎;𝜏), (3)

where 𝑎′ ∼ 𝜋 (·|𝑠′), 𝜏 , 𝜏 ′ are independently sampled from the uni-
form distribution, i.e., 𝜏, 𝜏 ′ ∼ U(0, 1) and 𝑍 ′ is a target network
whose parameters are soft-updated to match the corresponding
models [14]. To accurately learn the relationships between quan-
tiles, we utilize the 𝜏-quantile Huber Loss as proposed by [9]. The
loss function is defined as:

L𝜅 (𝛿 ;𝜏) =
��𝜏 − 1{𝛿<0}

��︸         ︷︷         ︸
quantile loss

·
{
𝛿2/2𝜅 if |𝛿 | ≤ 𝜅,
|𝛿 | − 𝜅/2 otherwise,︸                           ︷︷                           ︸

Huber loss

(4)

where𝜅 > 0 is a hyperparameter that controls the growth rate of the
loss, and it is typically set to 1. We approximate the critic loss for all
levels 𝜏 by sampling𝑁 independent quantiles 𝜏 and𝑁 ′ independent
target quantiles 𝜏 ′, resulting in the following expression:

Lcritic (𝜃 ) = E(𝑠,𝑎,𝑟,𝑠′,𝑎′ )∼𝜋


1
𝑁 · 𝑁 ′

𝑁∑︁
𝑖=1

𝑁 ′∑︁
𝑗=1

L𝜅
(
𝛿𝜏𝑖 ,𝜏 ′𝑗

;𝜏𝑖
) . (5)

3.2 Optimizing Population of Policies Towards
CVaR

Now, we can start optimizing the population of actors. Building
upon our previous observation, we aim to have each actor learn
towards different 𝜏-quantile return distributions, which can be
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achieved by computing CVaR𝛼 . Given a reliable distributional critic,
the CVaR can be efficiently approximated using a sampling-based
scheme from its quantile representation. Similar as Eq. (1), for each
state-action pair (𝑠, 𝑎), we can use the critic’s output 𝑍𝜃 (𝑠, 𝑎;𝜏) to
compute CVaR𝛼 by Monte Carlo sampling:

CVaR𝛼
(
Z𝜋 (𝑠, 𝑎)

)
=

1
𝛼

∫ 𝛼

0
𝑍𝜃 (𝑠, 𝑎;𝜏)d𝜏

≈ 1
𝐾

𝐾∑︁
𝑘=1

𝑍𝜃 (𝑠, 𝑎;𝜏𝑘 ) , 𝜏𝑘 ∼ U(0, 𝛼),
(6)

where𝐾 is the sampling times. Hence, considering an actor 𝜋𝜙𝑖 (𝑎 |𝑠)
parameterized by 𝜙𝑖 along with its assigned quantile 𝛼𝑖 , the actor
loss can be written as:

Lactor (𝜙𝑖 ) = −E(𝑠,𝑎)∼𝜋𝜙𝑖
[
CVaR𝛼𝑖

(
Z𝜋 (𝑠, 𝑎))

) ]
, 𝑖 ∈ {1, . . . ,𝑚},

(7)
where𝑚 is the population size. Under the guidance of Eq. 7, each
actor within the population learns for a specific quantile value, en-
suring fine-grained exploration of user groups with varying activity
levels. Furthermore, during the training process, we observed that
directly setting a low value for 𝛼 makes it difficult for the trained
actors to perform well. This phenomenon is known as the blindness
to success problem [15], which refers to the tendency to overlook
successful cases and get stuck in local optima. To mitigate this issue,
we have incorporated a soft mechanism into our actors. Instead of
using a fixed level, the actor will optimize the 𝛼 ′ value gradually
decreasing from 1 to 𝛼 during training. With this setting, we can
compute 𝛼𝑡 during training using:

𝛼𝑡 = max
{
𝛼, 1 − 𝛽 · (1 − 𝛼) · 𝑡

}
, (8)

where 𝛽 is the quantile decay ratio and 𝑡 is the current time. Intu-
itively, it becomes clear that all actors undergo initial optimization
across the complete return distribution, after which they progres-
sively fine-tune their optimization within their respective desig-
nated quantiles. Furthermore, it’s worth noting that all actors share
a common replay buffer. This buffer stores transitions (𝑠, 𝑎, 𝑟, 𝑠′)
from interactions between actors and the environment, which are
used for training the distributional critic.

3.3 Facilitating Diversity and Stability for
Population

A population of actors learning across different quantiles of the
return distribution simplifies the exploration process. This is be-
cause each actor focuses on a smaller subset of users, rendering
the exploration task more effective. However, this approach brings
forth new challenges. One challenge emerges when each actor
within the population learns individually. This could lead to vari-
ous members of the population sharing overlapping portions of the
explored action space or continually switching between different
behavioral patterns [20, 35]. Such scenarios could potentially under-
mine the efficiency of the exploration process. Another challenge
is the potential instability introduced by multiple actors learning
simultaneously. Therefore, it becomes crucial to ensure that the
actor population maintains both Diversity and Stability.

Diversity. Following [35], we measure the diversity of the popu-
lation of actors using individual behavior embeddings to compute

the volume of the kernel matrix between actors. By utilizing it as a
regularization term, we prevent actors from becoming too similar,
thereby promoting diversity and enabling a broader exploration of
potential actions.

The behavior embedding, denoted as Φ(𝜋) = {𝜋 (·|𝑠)}𝑠∈S , serves
as a vectorized representation of an actor’s behavior. This repre-
sentation is embedded within the behavior space, facilitating the
measurement of similarity between different actors. However, in
the context of recommender systems, the state space is exception-
ally vast and complex. To manage this challenge, a subset of states
is sampled, with the number of samples significantly smaller than
the size of the overall state space. Utilizing the subsequent formula,
we approximate the behavior embedding through an expectation:

Φ̂ (𝜋) = E𝑠∼S [{𝜋 (·|𝑠)}] . (9)

In practice, we will sample a batch of states from the shared replay
buffer of the population. We then execute all actors on these sam-
pled states to approximate their respective behavioral embeddings.
Once these approximations are obtained, we use a specific metric
to quantify the diversity within the actor population. To compare
two different actors, we employ a kernel function K to map their
behavioral embeddings into a higher-dimensional feature space. In
this space, we choose the squared exponential (SE) kernel, which is
defined as follows:

KSE (𝑥1, 𝑥2) = exp
(
− ∥𝑥1 − 𝑥2∥2

2𝑙2

)
, (10)

where 𝑙 is a hyperparameter satisfying 𝑙 > 0. Then we compute a
kernel matrix K among the actors within the population, defined as
K = KSE

(
Φ̂
(
𝜋𝜙𝑖

)
, Φ̂(𝜋𝜙 𝑗

)
)𝑚
𝑖,𝑗=1

. Geometrically, the determinant of

this matrix, det(K), corresponds to the volume of a parallelepiped
defined by the feature maps of the chosen kernel function. A larger
volume indicates a higher perceived degree of diversity within the
actor population. We optimize population diversity as a regulariza-
tion term in the population loss function. Specifically, this loss is
defined as:

Ldiv (𝜙1, . . . , 𝜙𝑚) = − log det(K)

= − log det
(
KSE

(
Φ̂
(
𝜋𝜙𝑖

)
, Φ̂(𝜋𝜙 𝑗

)
)𝑚
𝑖,𝑗=1

)
.
(11)

Stability. To ensure stability in the learning process, we introduce
a supervision module Lsta. Its objective is to align the outputs of
the actors with the user response. With the help of the supervision
module, each actor can more effectively utilize the detailed user
feedback on every item. One simple approach to achieve this is to
combine the cross-entropy loss of each actor, defined as follows:

Lsta (𝜙𝑖 ) = E(𝑠,𝑎)∼𝜋𝜙𝑖
[
𝑦 log𝜋𝜙𝑖 (𝑎 |𝑠)

+ (1 − 𝑦) log
(
1 − 𝜋𝜙𝑖 (𝑎 |𝑠)

) ]
, 𝑖 ∈ {1, . . . ,𝑚},

(12)

where 𝑦 is the supervision signal such as user clicks.
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Table 1: Statistics of datasets after preprocessing.
Dataset Users Items # of record List size 𝑛
KuaiRand 986 11,643 96,532 10
MovieLens-1M 6041 3953 97,382 10
RL4RS - 283 781,367 9

Balancing Stability and Diversity. With the diversity loss and
stability loss calculated, the total population loss can be written as:

Ltotal (𝜙1, . . . , 𝜙𝑚) =
𝑚∑︁
𝑖=1

(
Lactor (𝜙𝑖 )

+ 𝜆1Lsta (𝜙𝑖 )
)
+ 𝜆2Ldiv (𝜙1, . . . , 𝜙𝑚),

(13)

where the coefficients 𝜆1 and 𝜆2 are coefficients dynamically tuned
through a two-armed bandit framework. In this context, we con-
sider the two losses, Ldiv and Lsta, as the two arms of the bandit.
During training iterations, we alternate between optimizing the
model based on the diversity loss and the stability loss. These loss
functions have distinct training objectives. If we notice declining
performance, indicating reduced model effectiveness, we prioritize
the stability loss by setting 𝜆2 to 0, aiming to minimize the impact
of excessive exploration and improve stability. Conversely, if we
observe performance improvements, suggesting enhanced model
performance, we prioritize the diversity loss by setting 𝜆1 to 0, en-
couraging the model to explore more extensively and search for
potential optimization directions.

3.4 Algorithm Implementation
We train an online environment simulator and choose the DDPG
algorithm as the backbone of our UOEP algorithm.

Training Procedure. The training procedure of UOEP is outlined
in Algorithm 1. Particularly, we assign a target network to both
the critic and each actor. In each epoch, the critic loss and total
population loss are calculated, and gradient descent and soft update
operations are performed.

Inference Procedure. Inference procedure of UOEP is show in
Algorithm 2. Only the trained distributional critic and actor popula-
tion are used during execution. Each time the recommender system
receives the user’s status, we use a critic-trusted method to select
the optimal action. Specifically, all actors provide action 𝑎 to the
critic, which then selects the one with the largest return expectation
to execute. The calculation of return expectation and the selection
of the optimal action are shown in Eq. (14) and Eq. (15):

𝑄 (𝑠, 𝑎) = E [Z(𝑠, 𝑎)] ≈ 1
𝐾

𝐾∑︁
𝑘=1

𝑍 (𝑠, 𝑎;𝜏𝑘 ) , 𝜏𝑘 ∼ U(0, 1), (14)

𝑎∗ = argmax
𝑎𝑖

𝑄 (𝑠, 𝑎𝑖 ) , 𝑖 ∈ {𝑖, . . . ,𝑚}. (15)

4 EXPERIMENTS
In this section, we conduct experiments on public and industrial
datasets to verify the effectiveness of the UOEP. We mainly focus
on the following questions: Q1. Can UOEP consistently outperform
previous state-of-the-art methods (Section 4.2)? Q2. How does UOEP
work and how do each of its components contribute (Section 4.3)? Q3.

Algorithm 1 Training procedure of UOEP
Input: Shared replay buffer B; Critic 𝑍𝜃 and critic-target 𝑍𝜃 ′ ;

Population P includes 𝑚 actors 𝜋𝜙1 , . . . , 𝜋𝜙𝑚 , actor-targets
𝜋𝜙 ′

1
, . . . , 𝜋𝜙 ′

𝑚
and corresponding quantile levels 𝛼1, . . . , 𝛼𝑚 ; On-

line simulator S.
Output: Optimal population P∗ includes𝑚 actors learned from

their each quantile level 𝛼𝑖 .
1: for 𝑡 = 1, . . . do
2: for 𝑖 = 1, . . . ,𝑚 do
3: Execute action according to 𝜋𝜙𝑖 and current state.
4: Get reward and new state from S then store the transition

in B.
5: end for
6: Sample a random minibatch of 𝐵 transitions from B.
7: Compute critic loss Lcritic (𝜃 ) by Eq. (5).
8: Gradient step 𝜃 with Lcritic (𝜃 ).
9: Compute total population loss Ltotal (𝜙1, . . . , 𝜙𝑚) by Eq. (13).

10: Gradient step 𝜙1, . . . , 𝜙𝑚 with Ltotal (𝜙1, . . . , 𝜙𝑚).
11: Perform soft-update on 𝜃 ′ and 𝜋 ′

𝜙1
, . . . , 𝜋 ′

𝜙𝑚
.

12: end for
13: return P∗.

Algorithm 2 Inference procedure of UOEP
Input: Critic 𝑍𝜃 ; Population P includes actors 𝜋𝜙1 , . . . , 𝜋𝜙𝑚 ; Cur-

rent state 𝑠 .
Output: Optimal action 𝑎∗
1: for 𝑡 = 1, . . . , m do
2: Select action 𝑎𝑖 = 𝜋𝜙𝑖 (𝑠) according to 𝜋𝜙𝑖 and 𝑠 .
3: Calculate 𝑄 (𝑠, 𝑎𝑖 ) through Eq. (14).
4: end for
5: Choose action through Eq. (15)
6: return 𝑎∗.

What potential does UOEP have (Section 4.5)? The source code of
experiments is shared at https://github.com/lyingCS/UOEP.

4.1 Experimental Settings
Datasets. To facilitate the testing of RL-based methods’ long-

term performance, we select three public recommendation datasets:
KuaiRand1K1 is a recent dataset for sequential short-video rec-
ommendation, and we use the 1K version with irrelevant videos
removed. ML1M2 is a subset of the MovieLens dataset, which con-
sists of 1 million user ratings of movies. RL4RS3 is a session-based
dataset that was introduced in the BigData Cup 2021 to promote
recommendation research in RL. We preprocess them into the se-
quential recommendation format and split the data based on the
recorded timestamps, with the first 75% used for training and the
last 25% for evaluation. The preprocessing methods are described
in Appendix A.1 and the statistics are provided in Table 1. Note
that the RL4RS dataset provides user profile features instead of user
IDs, so it does not have a count of unique users in the dataset.
1https://kuairand.com/
2https://grouplens.org/datasets/movielens/1m/
3https://github.com/fuxiAIlab/RL4RS
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Table 2: Overall performance of the proposed UOEP and all the baselines on three datasets. The best performance is shown in
bold, second best performance is underlined. Experiments are repeated 5 times with different random seeds, and the average
and standard deviation are reported.

Algorithms KuaiRand ML1M RL4RS
Total Reward Depth Total Reward Depth Total Reward Depth

SL 14.16±0.05 14.78±0.04 14.85±0.46 15.40±0.41 7.76±0.25 9.06±0.23
A2C 9.48±0.18 10.60±0.17 13.00±0.46 13.72±0.41 7.83±0.12 9.16±0.11
DDPG 10.66±2.98 11.66±2.66 15.34±0.68 15.83±0.61 7.77±0.95 9.07±0.88
TD3 11.46±1.37 12.38±1.23 15.36±0.45 15.85±0.41 7.62±0.46 8.99±0.38
Wolpertinger 12.44±0.81 13.25±0.72 15.84±0.46 16.27±0.41 7.77±0.43 9.08±0.43
HAC 13.49±0.52 14.18±0.46 15.96±0.32 16.38±0.28 7.66±0.74 9.00±0.64
UOEP 14.39±0.10 14.98±0.09 16.59±0.11 16.95±0.10 8.48±0.53 9.60±0.50
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Figure 3: Learning curves for 5 actors of UOEP, HAC, and Wolpertinger on three datasets.

Online Environment Simulator. Following [31], we construct on-
line simulators based on the datasets to capture the reward signals
obtained from interactions with users in each round. Specifically,
we train a user response model Ψ : S × A → R𝑛 for each dataset.
The user state is derived from static user features and dynamic
historical interactions. Ψ outputs the probabilities that the user will
provide positive feedback for each item in the recommended list 𝑎𝑡 .
The final user response, represented by a binary vector y𝑡 ∈ 0, 1𝑛
(e.g., click or no click), is uniformly sampled from these probabili-
ties. Notably, our focus here leans towards online evaluation rather
than offline settings [11].

Evaluation Metrics and Baselines. We evaluate long-term perfor-
mance using two metrics: Total Reward (sum of rewards in a user
session) and Depth (number of interactions in a session). These
metrics are obtained by simulating user sessions in an online en-
vironment with the learned policy. Higher values indicate better
performance in both metrics. Appendix A.2 provides detailed infor-
mation on reward and session designs. Our method is compared
with various baselines, including supervised learning method, clas-
sic reinforcement learning methods (A2C, DDPG, TD3), Wolper-
tinger method for large discrete action space, and exploration-based
reinforcement learning method HAC:
• Supervised Learning model is optimized using observed expo-
sure and user feedback via binary cross-entropy loss.

• A2C [33] combines policy gradients and value-based methods
using an actor-critic architecture.

• DDPG [29] handles continuous action spaces using deterministic
policy gradients.

• TD3 [14] enhances DDPG with twin critics and delayed updates
to improve stability.

• Wolpertinger [13] embeds discrete actions into a continuous
space for efficient reinforcement learning.

• HAC [31] decomposes item list generation into hyper-action
inference and effect-action selection steps.

4.2 Overall Performance
We train UOEP with𝑚 = 5 actors and assign their quantile values
𝛼 = 0.2, 0.4, 0.6, 0.8, 1.0, respectively. For each model, we conduct a
grid search on the hyperparameters to pick the setting with the best
results and perform experiments with 5 random seeds, reporting
the mean performance in Table 2. We can observe that our UOEP
framework consistently achieves the best performance across all
datasets. Compared to the best baselines, it improves performance
by 1.6%, 3.9%, and 8.3% on three datasets, indicating the effective-
ness of our proposed algorithm. Notably, on the KuaiRand dataset
with the largest action space (11643 items), only our algorithm
overperforms the supervised learning algorithm, demonstrating
the stronger exploration capability in large action space.

For RL-based baselines, A2C demonstrates excellent performance
in RL4RS. However, it performs poorly on datasets with larger ac-
tion space, such as KuaiRand and ML1M. On the other hand, DDPG
improves the performance on these datasets by utilizing a deter-
ministic policy. TD3 exhibits similar behavior to DDPG and slightly
enhances the quality of recommendations. Wolpertinger, designed
for large discrete action space, outperforms other classical reinforce-
ment learning methods in KuaiRand and ML1M datasets. Moreover,
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Figure 4: The t-SNE visualization of the population.
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Figure 5: Ablations for the number of actors (denoted by𝑚)
in UOEP on KuaiRand.

compared with other baselines, HAC further enhances performance
on datasets with large amount of items such as KuaiRand andML1M,
by emphasizing its exploration design. We also provide the learn-
ing curve of UOEP, HAC, and Wolpertinger in Figure 3. It can be
observed that the learning of all five actors in UOEP is faster and
more stable across all three datasets compared to the other two
baseline methods. The learning processes of HAC andWolpertinger
exhibit significant fluctuations in ML1M and RL4RS, respectively,
further demonstrating the effectiveness and stability of UOEP.

4.3 Further Analysis and Ablation Studies
How does UOEP work? To understand the working process of

UOEP, we plot t-SNE embeddings [46] of the five actors learned
by UOEP for generating actions. During the testing phase, we ran-
domly sample a subset of users and serve themwith the five learned
actors. The generated actions, displayed in different colors in Fig-
ure 4, form distinct clusters for each actor. This clustering behavior
demonstrates that UOEP effectively explores a broad action space
customized for different users.

Effect of the Distributional Critic. In our method, we employ a dis-
tributional critic that allows actors to optimize at different quantile
levels of cumulative rewards. To explore the effects of the distribu-
tional critic and the role of optimizing at different quantile levels of
cumulative rewards, we disabled the distributional critic in UOEP
and replaced it with a deterministic critic. In other words, all our
actors optimized the expectation of the cumulative return distribu-
tion. We provide the recommendation quality of the distributional
and deterministic critic in Table 3. Notably, using the deterministic
critic results in a significant decrease in recommendation quality,
emphasizing the importance of exploration in different user groups.

Number of Actors in UOEP. The number of actors in UOEP sig-
nificantly impacts performance. To explore this effect, we conduct
experiments to find the optimal number that achieves the best per-
formance. Specifically, we choose number of actors𝑚 ∈ {2, 3, 4, 5, 6}
and set the quantiles to { 1

𝑚 ,
2
𝑚 , . . . , 1} accordingly. The results are

Table 3: Ablations for the distributional critic in UOEP on
KuaiRand.

Critic Total Reward Depth
Distributional 14.39 ± 0.10 14.98 ± 0.09
Deterministic 13.01 ± 0.42 13.76 ± 0.37

Table 4: Ablations for the regularization losses in UOEP on
KuaiRand.

Total Reward Depth
UOEP 14.39 ± 0.10 14.98 ± 0.09
w/o Ldiv 14.03 ± 0.20 14.66 ± 0.18
w/o Lsta 13.11 ± 0.62 13.85 ± 0.56
w/o Ldiv, Lsta 11.50 ± 0.90 12.41 ± 0.81
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Figure 6: Q-value estimation. We randomly sample an initial
state, take all items (11643 in total) as actions, and then sam-
ple 100 tau values between 0 and 1 into the distributional
critic of the trained UOEP (w/o overlap) and UOEP (original),
and then take the average over all actions. We have tested
for all five random seeds. The horizontal axis is 𝜏 , and the
vertical axis is the q value estimated by the critic.

shown in Figure 5. It can be seen that with the increase in the num-
ber of actors, the quality of recommendation basically shows an
upward trend, indicating that a finer grouping of users eases the
exploration process and improves long-term performance. Notably,
the performance achieves its peak when𝑚 = 5 and then declines,
probably due to the increased difficulty of learning UOEP as the
population size grows. Furthermore, since the training of each actor
is independent, parallelizing UOEP is not difficult to implement,
allowing us to easily accelerate the training speed.

Effect of Regularization Loss in UOEP. To explore the effects of
the designed regularization losses, we disable Ldiv, Lsta and both
in UOEP, respectively. As shown in Table 4, removing any regu-
larization loss leads to a significant decrease in performance, with
removing both having an even larger negative impact. This indi-
cates that improving both diversity and stability in exploration is
beneficial for the performance of our algorithm, resulting in higher
recommendation quality. Furthermore, removing the stability loss
resulted in a marked increase in variance, highlighting its role in
minimizing instability during the learning process.

4.4 UOEP Grouping Strategy: Balancing User
Activity Levels and Q-Value Accuracy

UOEP’s strategy of dividing users into groups based on bottom 𝛼

values, where 𝛼 ∈ [0.2, 0.4, 0.6, 0.8, 1.0], results in a nested structure
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Table 5: Overall performance of a non-overlapping version of UOEP against our original (nested) version of UOEP. Experiments
are repeated 5 times with different random seeds, and the average and standard deviation are reported.

Algorithms KuaiRand ML1M RL4RS
Total Reward Depth Total Reward Depth Total Reward Depth

UOEP (w/o overlap) 14.37±0.26 14.97±0.24 16.60±0.06 16.96±0.52 8.24±0.31 9.43±0.28
UOEP (ours) 14.39±0.10 14.98±0.09 16.59±0.11 16.95±0.10 8.48±0.53 9.60±0.50

Table 6: Low-Activity users and fairness performance.

Algorithms KuaiRand ML1M RL4RS
CVaR0.3 CVaR0.4 Gini(%) CVaR0.3 CVaR0.4 Gini(%) CVaR0.3 CVaR0.4 Gini(%)

SL 1.72 5.40 26.81 5.64 8.08 21.28 2.56 4.62 19.04
A2C -0.15 0.08 45.22 4.61 6.50 24.24 1.95 3.61 24.17
DDPG 0.06 1.43 36.56 6.57 8.98 19.69 2.44 4.20 20.61
TD3 0.19 1.57 37.56 6.87 9.24 19.09 2.87 4.20 21.27
Wolpertinger 0.19 2.05 34.32 7.67 10.00 17.66 2.69 4.25 20.88
HAC 0.26 2.30 33.82 7.89 10.23 17.25 1.82 3.39 25.16
UOEP (OURS) 2.48 6.01 25.67 9.51 11.59 14.64 5.94 6.76 10.54

among these groups. For instance, the group with 𝛼 = 0.4 encom-
passes users from the 𝛼 = 0.2 group. This intentional overlap in
grouping is underpinned by two fundamental reasons:

Focus on Low-Activity Users. As discussed in the introduction, we
can directly exploit the well-established preferences of high-activity
users more effectively due to the richer data available. Conversely,
low-activity users stand to gain more from high-intensity explo-
ration, as it helps uncover their latent interests. This observation is
validated by our validation experiments in the introduction section.
In our method, we specifically target the lower activity users by
grouping them based on the bottom quantiles of the return distribu-
tion. This approach ensures that our system consistently prioritizes
the exploration of interests among these users across different ac-
tors in the model. As a result, no matter which actor is served
during the inference phase, the interests of low-activity users are
always taken into account. By targeting the bottom quantiles of the
return distribution, we ensure a concentrated focus on low-activity
users, thereby capturing their interests more effectively.

Overestimation of Q-Values. In RL, Q-learning algorithms often
suffer from Q-value overestimation [12, 23, 24, 28, 38, 47] - the ten-
dency to overestimate the value of actions. Environments with high
levels of noise and uncertainty like recommender systems [21] are
particularly susceptible to this issue. In our case, when users are
grouped into multiple non-overlapping groups, this issue intensi-
fies due to the challenge of accurately evaluating Q-values in more
narrowly defined user groups. Such overestimation leads to incor-
rect assessments of the Q-value, which can impede convergence,
destabilize learning, and reduce the efficiency of exploration. To
empirically validate our method, we compared the performance of
our nested grouping model with a version using non-overlapping
groups. The results, detailed in Table 5, indicate a slight perfor-
mance advantage for the nested model. Furthermore, Figure 6 illus-
trates the Q-value distributions for both models, clearly showing
the heightened overestimation in the non-overlapping version.

In conclusion, while a non-overlapping group approach might
seem more straightforward and less redundant, our nested group-
ing strategy is deliberately chosen. It not only places a targeted
emphasis on low-activity users but also effectively counters the
challenges of Q-value overestimation. This approach ultimately
leads to more effective and stable exploration policies.

4.5 Exploring UOEP’s Potential: Low-Activity
User Experience and Fairness

Our actor training leverages the CVaR values from the distribu-
tional critic, which focuses on the tail-end of the return distribution.
Inspired by recent work that integrates CVaR with collaborative
filtering to enhance the experiences of low-activity users [44], we
hypothesize that UOEP has similar capabilities for long-term perfor-
mance, which we validate through empirical analysis. Furthermore,
we explore UOEP’s potential to improve the fairness of the long-
term performance within the recommender system. We conduct
experiments across 3 datasets with 5 random seeds. To analyze the
model’s performance on low active users, we choose CVaR0.3 and
CVaR0.4 as metrics, representing the average value of the lower 30%
and 40% of the Total Reward distribution over the test set, respec-
tively. For assessing fairness, we utilize the Gini coefficient [48] as
our metric, with lower values indicating greater fairness.

As summarized in Table 6, UOEP outperforms on both the CVaR0.3
and CVaR0.4 metrics across all three datasets. Additionally, the
model achieves significant reductions in the Gini coefficient. These
results solidly establish UOEP’s effectiveness in serving low-activity
users and promoting long-term fairness within the system.

5 RELATEDWORK
Reinforcement Learning in Recommender Systems. Deep reinforce-

ment learning, combining deep neural networks with reinforcement
learning, has gained attention in recommender systems research.
Early works like [39] formulated recommendation as an MDP and
experimented with model-based RL. Zheng et al. [60] first applied
DQN for news recommendation. Dulac-Arnold et al. [13] enabled
RL for large discrete action space. Liu et al. [30] tested actor-critic
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methods on recommendation datasets. Recently, RL has shown
success in real-world applications. Chen et al. [5] scaled batch RL
to billions of users. Hu et al. [17] extended DDPG for learning-to-
rank. Liu et al. [31] proposed aligned hyper actor-critic learning in
large action space. Chen et al. [7] enabled adaptive re-ranking with
multi-objective RL without retraining. Overall, deep RL has become
an important technique for building recommender systems.

Exploration in Reinforcement Learning. Balancing exploitation
and exploration is a key challenge in reinforcement learning. Con-
textual Bandit algorithms [26, 27, 54, 61] typically involve calculat-
ing the upper confidence bound of each arm or sampling actions
based on the posterior distribution of observed context. In Deep
RL, classic strategies for exploration include epsilon-greedy [42],
parameter space noise [37], upper confidence bound algorithms [1],
intrinsic motivation techniques like count-based bonuses [2] and
prediction error [4]. Novelty search rewards reaching new states
regardless of external reward [25]. Recent methods optimize ex-
ploration by adapting behavioral diversity [35] or information-
theoretic bonuses [16, 34, 41]. However, the above works primarily
rely solely on context or state and employ reward-irrelevant explo-
ration strategies. These approaches risk overlooking the interests
of users with fewer interactions in the context of recommender sys-
tems. Therefore, many RL-based recommender systems prioritize
exploration, emphasizing it to enhance long-term user engage-
ment [6, 31, 55, 62]. Notably, large-scale experiments by Google [6]
have shown that exploration can significantly enhance user reten-
tion and activity levels. These results underscore the importance of
integrating RL’s exploration capabilities in recommender systems
to improve long-term user experiences.

6 CONCLUSION
In this work, we propose UOEP to reinforce user-oriented explo-
ration in streaming recommender systems. UOEP works by first
characterizing the activity level of users based on the return dis-
tribution under different quantiles. It then learns multiple actors
where each actor corresponds to a specific user group with a prede-
fined level of activity. Moreover, a population diversity regulariza-
tion along with a supervision term is designed to ensure diversity
and stability during the actor learning process. We conduct exten-
sive experiments on various public and industrial recommendation
datasets. Experimental results demonstrate the advantages of UOEP
over previous state-of-the-art algorithms in long-term performance.
Further analyses indicate enhanced experience for low-activity
users and improved fairness.
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A EXPERIMENT SETUP
A.1 Dataset Preprocessing
The three datasets are preprocessed into a unified format, arranging
each record in chronological order to include user features, user his-
tory, exposed items, user feedback, and timestamps. Then we split
them into the first 75% for training and the last 25% for evaluation
according to record timestamps.

Similar to the dataset preprocessing in [31], for theML1Mdataset,
we consider movies rated 4 and 5 by users as positive samples, and
other movies as negative samples. For the KuaiRand dataset, we
first remove videos with less than 50 occurrences and then consider
videos with a watch time ratio greater than 0.8 as positive samples,
and others as negative samples.

For both the ML1M and KuaiRand datasets, we split each user
session into sequences of item lists with a length of 10, in chrono-
logical order. Only the positive samples before each segmented list
are considered historical behavior. The formatted data follows the
same structure as the RL4RS dataset.

A.2 Reward and Session Designs
In each round of the session, the recommender system provides the
user with a list of items, and the user provides feedback. Our reward
function, 𝑟 (𝑠𝑡 , 𝑎𝑡 ), is designed as the average reward obtained from
all items in the list. Specifically, clicked items receive a reward of 1,
while non-clicked items receive a reward of −0.2.

Additionally, each user is assigned an initial temper value at the
beginning of the session. In each interaction, the temper value is
reduced to varying degrees based on the quality of the recommenda-
tion. If the recommendation quality is poor, the user’s temperament
value decreases rapidly until it reaches 0 or lower, which is consid-
ered the end of the user session. Furthermore, there is a maximum
depth limit of 20 rounds for each session.

A.3 Model Architectures
Actor. RL methods use SASRec [22] as the actor backbone. User

history is encoded into a 32-dimensional vector with positional
embeddings, processed by a 2-layer Transformer encoder with 4
heads and a 0.1 dropout rate. The resulting action vector is dot-
producted with item embeddings to select top-k items for the user.

Deterministic Critic. For DDPG and TD3, the critic is an MLP
with two layers (256 and 64 units), taking encoded user state and
action vectors as inputs to output a Q-value.

Value Critic. For A2C, the critic is an MLP with two layers (256
and 64 units), taking the encoded user state vector as input to output
a Q-value.

Implicit Quantile Network. For UOEP, the critic processes user
state, action vectors, and quantile values through two layers (256
and 64 units) to produce a 16-dimensional vector. This vector is
combined with quantile outputs and passed through a 32-unit layer
to output quantile values.
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