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Towards artificial general intelligence via a
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The fundamental goal of artificial intelligence (AI) is to mimic the core cognitive activities of

human. Despite tremendous success in the AI research, most of existing methods have only

single-cognitive ability. To overcome this limitation and take a solid step towards artificial

general intelligence (AGI), we develop a foundation model pre-trained with huge multimodal

data, which can be quickly adapted for various downstream cognitive tasks. To achieve this

goal, we propose to pre-train our foundation model by self-supervised learning with weak

semantic correlation data crawled from the Internet and show that promising results can be

obtained on a wide range of downstream tasks. Particularly, with the developed model-

interpretability tools, we demonstrate that strong imagination ability is now possessed by our

foundation model. We believe that our work makes a transformative stride towards AGI, from

our common practice of “weak or narrow AI” to that of “strong or generalized AI”.
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Science fictions and sci-fi films, that describe highly intelli-
gent computer minds, robots, or even human-shaped ones,
can be said to understand or have primitive cognitive

abilities analogous to human intelligence. Since this form of
human-level artificial intelligence (AI) is too far from reality
hitherto, researchers change to set a less ambitious goal of
achieving artificial general intelligence (AGI). Despite not being
precisely defined, AGI is broadly agreed to have several key
features1 including: (1) matching or exceeding human perfor-
mance across a broad class of cognitive tasks (e.g., perception,
reading comprehension, and reasoning) in a variety of contexts
and environments; (2) possessing the ability to handle problems
quite different from those anticipated by its creators; and (3)
being able to generalize/transfer the learned knowledge from one
context to others. As we can imagine, devising and obtaining an
AGI system would not only accelerate the AI research itself, but
also benefit a wide range of AI+ fields including neuroscience,
healthcare, and biomedicine.

In recent years, deep learning2 has achieved tremendous suc-
cesses in various AI research areas such as computer vision (CV)
and natural language processing (NLP). For example, deep resi-
dual networks (ResNets)3 have already surpassed human per-
formance on image classification. The language model RoBERTa4

has also outperformed human on several natural language
understanding tasks of the GLUE benchmark5. Relation
networks6 devised by DeepMind have achieved super-human
performance on a relational reasoning dataset. However, most of
existing AI advances only focus on approaching or exceeding
human intelligence on single cognitive ability (e.g., image classi-
fication, language understanding, or relational reasoning). To
overcome such a limitation and take a solid step to AGI, we
develop a foundation model pre-trained with huge multimodal
(visual and textual) data such that it can be quickly adapted for a
broad class of downstream cognitive tasks.

Our motivations are two-fold: (1) Foundation models7 (also
well-known as pre-trained models) are established because they
are exactly designed to be adapted (e.g., finetuned) to various
downstream cognitive tasks by pre-training on broad data at
scale. Importantly, foundation models are closely related to two
breakthroughs of MIT Technology Review’s “10 Breakthrough
Technologies 2021”8: GPT-39 (a pre-trained language model) and
multi-skilled AI. (2) Our choice of learning from huge multi-
modal data is inspired by the fact that most human intelligent
behaviors are exhibited in a multimodal context using visual-
textual content as the primary carrier of knowledge and means of
communication (see Fig. 1a). Indeed, researchers have reported
that a subset of neurons in the human medial temporal lobe can
be selectively activated by representations of a specific object/
scene across different sensory modalities (e.g., pictures, written
names, and spoken names)10,11. Although the mechanism of
cross-modal alignment in our brain is unknown, this still suggests
that human brain neurons are able to process multimodal
information and encode concepts into invariant representations.
Overall, we believe that pre-training a large-scale multimodal
foundation model is indeed a potential approach to achieving
AGI.

Multimodal (visual and textual) foundation models12,13 typi-
cally take image-text pairs as input and model the correlation
between two different modalities in their pre-training data.
Although existing multimodal foundation models have shown
promising results on fast learning/transfer and cross-modal
understanding tasks, the majority of them12,14–18 make the
assumption of strong semantic correlation over the input image-
text pairs (e.g., image-caption pairs) and expect exact matches
between the objects/regions in an image and the words in a piece
of text (see Fig. 1b). This seriously limits these models’

generalization abilities because the strong semantic correlation
assumption is often invalid in the real world and multimodal data
following this assumption is limited (e.g., only millions of image-
caption pairs are collected by years of human annotation). This
situation becomes worse when latest multimodal foundation
models12,17,19–21 often employ object detectors to obtain mean-
ingful image regions and adopt a single-tower network archi-
tecture for better modeling the fine-grained region-word
matching (i.e., taking the concatenation of image regions and text
words as input). These two common practices (i.e., object
detectors and the single-tower architecture) are both computa-
tionally costly and thus unsuited for real-world applications.
Particularly, as for the latter, given a query in cross-modal
retrieval (text-to-image or image-to-text), all possible query-
candidate pairs need to be fed into the model to compute
matching scores, resulting in large latency in retrieval.

To address the above issues, we develop a large-scale multi-
modal foundation model dubbed Bridging-Vision-and-Language
(BriVL) by self-supervised learning22–25 from huge multimodal
data. Firstly, to build our pre-training data collection, we choose
to exploit weak semantic correlation data (see Fig. 1b) available
on the Internet without any need of human annotation (i.e., we
crawl a total of 650 million image-text pairs from the web).
Importantly, such huge weak semantic correlation data contains
complicated/abstract human emotions and thoughts. Therefore,
comparing to modeling strong semantic correlation data by direct
image-to-text “translation” in previous works12,17,19–21, modeling
weak semantic correlation data by image-text matching would
help us obtain a more cognitive model. Secondly, to design our
network architecture, since there do not necessarily exist fine-
grained region-word matches between image and text modalities,
we drop the time-consuming object detectors and adopt a simple
two-tower architecture (instead of the single-tower one), which
encodes image and text inputs using two separate encoders (see
Fig. 1a). Note that the two-tower architecture has a clear
advantage in efficiency during inference, as the embeddings of
candidates can be computed and indexed before querying,
meeting the latency requirement of real-world applications.
Thirdly, with the advancement of large-scale distributed training
techniques26,27 and self-supervised learning22–25, learning from
huge unannotated multimodal data becomes possible. Specifically,
to model the weak image-text correlation and learn a unified
semantic space where global-level image/text embeddings are
aligned, we devise a cross-modal contrastive learning (CL) algo-
rithm, where CL is a special form of self-supervised learning that
is initially developed in single-modality (i.e., images)28–31 with
the learning objective of keeping the positive samples close and
pushing away the negative ones. The proposed network and
algorithm designs are detailed in Methods.

Although OpenAI CLIP13 and Google ALIGN32 are most
closely related to our BriVL, there exist two main differences
between BriVL and these two latest models: (1) We follow the
weak semantic correlation assumption and construct a huge
dataset crawled from the Internet, and only pornographic/sensi-
tive data are filtered out in our collected dataset. In contrast, CLIP
only keeps image-text pairs with high word frequency (i.e., the
long-tail concepts are discarded), while ALIGN also filters its pre-
training dataset by some rules (e.g., excluding texts shared by
more than 10 images, excluding texts with extremely low word
frequency, and excluding texts that are too long or too short). Our
dataset thus preserves a data distribution closer to that of the real
world. (2) Inspired by the single-modal contrastive learning (CL)
algorithm MoCo29, our BriVL model adopts a momentum
mechanism to dynamically maintain queues of negative samples
across different training batches. In this way, we have a large
negative sample size (crucial for CL) while using a relatively small
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batch size (to reduce GPU memory footprint). On the contrary,
both CLIP and ALIGN use negative samples within each training
batch, requiring a large batch size (i.e., a great demand for GPU
memories/resources). More technical differences can be found in
Methods.

We conduct extensive experiments on various downstream
cognitive tasks (e.g., news classification in single-modal and visual
question answering in cross-modal) and show that our founda-
tion model BriVL achieves promising results, demonstrating its
cross-modal understanding ability and cross-domain learning/
transfer ability. Although our BriVL is only pre-trained with an
image-text matching learning objective, its strong generalization
ability has already satisfied some of the key features that an AGI
system should have. Importantly, with a couple of model-
interpretability tools developed in this work, we manage to
visually reveal how a multimodal foundation model reasonably
and logically imagines when words or sentences are told, showing
that our BriVL exhibits strong imagination ability. A closer
examination reveals that the possession of strong imagination is
mainly due to the fact that our BriVL leverages weak semantic
correlation data in large-scale multimodal pre-training. Overall,
these findings indicate that pre-training a multimodal (visual and
textual) foundation model can make a giant stride towards AGI.
With more sensory modalities exploited for multimodal pre-
training and further exploration on more advancing foundation
models, we believe that we are approaching AGI and our work
will have a broad impact on a variety of AI+ fields including
neuroscience, healthcare, and biomedicine.

Results
Our BriVL model has been pre-trained based on a huge weak
semantic correlation dataset collected from public web sources.
The resulting model possesses excellent imagination ability, evi-
denced by Neural Network Visualization, Text-to-Image Gen-
eration and multiple downstream tasks (i.e., remote sensing scene
classification, news classification, cross-modal retrieval, and visual
question answering), which are discussed in detail in this section.

Pre-training data collection. We construct a huge web-crawled
multi-source image-text dataset called weak semantic correlation
dataset (WSCD) as our pre-training data collection. WSCD

collects Chinese image-text pairs from multiple sources on the
web, including news, encyclopedia, and social media. Concretely,
images from these data sources, together with their correspond-
ing/surrounding text descriptions, are used to form image-text
pairs. Since the obtained image-text pairs are crawled from the
web, the image and the text of each pair are expected to be weakly
correlated. For example, an image from social media that contains
people having a good time with friends tends to have a simple
title of “What a nice day!”, without any finer-grained description
of the image content. Note that we only filter out the porno-
graphic/sensitive data from WSCD, without any form of editing/
modification to the raw data to preserve the natural data dis-
tribution. Totally, WSCD has around 650 million image-text pairs
covering a wide range of topics such as sports, lifestyle, and movie
posters. Since WSCD is based on Chinese, English texts of all
experiments in this section are translated into Chinese for our
BriVL. Furthermore, we pre-train our BriVL on an English
dataset and show results on English tasks in Supplementary Note
Fig. S3, indicating that our foundation model also provides a
feasible solution closer to AGI beyond specific languages.

Neural network visualization. Humans have the ability (or even
instinct) that scenes, e.g., in the context of images, come into our
minds when we hear words or descriptive sentences. As for our
BriVL, once pre-trained on such a vast amount of loosely aligned
image-text pairs (see Methods), we are fascinated by what exactly
it would imagine when texts are given. Instead of examining it
indirectly through downstream tasks, we extend Feature Visua-
lization (FeaVis)33 to see the visual responses (i.e., imagination)
of BriVL to semantic inputs directly. FeaVis is an algorithm
designed only to visualize the features of convolutional neural
networks (CNNs). However, given a large-scale cross-modal
foundation model like our BriVL, we can visualize any text input
by using the joint image-text embedding space as the bridge.
Concretely, we first input a piece of text and obtain its text
embedding through the text encoder of BriVL. Next, we ran-
domly initialize a noisy image and also get an image embedding
through the image encoder. Since the input image is randomly
initialized, its embedding does not match that of the input text.
We thus define the objective of matching the two embeddings
and back-propagate the resultant gradients to update the input
image. Note that we do not use any additional module or data for

Fig. 1 Overarching concept of our BriVL model with weak training data assumption. a Comparison between the human brain and our multimodal
foundation model BriVL (Bridging-Vision-and-Language) for coping with both vision and language information. b Comparison between modeling weak
semantic correlation data and modeling strong semantic correlation data.
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visualization, while the pre-trained BriVL is frozen during the
whole process. The finally obtained image thus depicts a clear
picture of what BriVL imagines about the input text. The visua-
lizations of different semantic inputs are shown in Fig. 2. Note
that the input texts are originally in Chinese and translated into
English for illustration purpose.

We first present the imagination ability of BriVL to high-level
concepts in Fig. 2a. It can be seen that, even though these
concepts are rather abstract, the visualizations are able to show
concrete embodiment of these concepts (e.g., “nature”: plants like
grass; “time”: a clock; “science”: a face with glasses and a conical
flask; “dream”: cloud, a bridge leading to a door, and the dream-
like atmosphere). This ability to generalize an abstract concept to
a series of more concrete objects is a sign of learned common
sense and an indication of the effectiveness of our multimodal
pre-training using only weak semantic correlation data (which
expose the model with abstract concepts).

In Fig. 2b, we show the imagination of sentences. The
visualization of “Every cloud has a silver lining.” not only
embodies the sunlight behind dark clouds literally, but also seems
to show a dangerous situation on the sea (the ship-like object and
the waves on the left), expressing the implicit meaning of this
sentence. In the visualization of “Let life be beautiful like summer
flowers.”, we can see a flower shrub. The next two text inputs
describing more complicated scenes are both from ancient
Chinese poems written with completely different grammar from
most other texts in the dataset. It seems that BriVL also
understands them well: for “A few peach flowers start to blossom
outside the bamboo grove.”, there are bamboos and pink flowers;
for “The sun goes down below the mountains, and the Yellow

River flows into the sea.”, we can see mountains with trees hiding
the sunset, and a small boat on the river. Overall, we find that
BriVL possesses strong capability of imagination given a
complicated sentence as prompt.

In Fig. 2c, a few similar text inputs containing a shared prompt
are used for network visualization. For “mountains with forests”,
there is more green area in the image; for “mountains with
stones”, the image is more rocky; for “mountains with snow”, the
ground turns into white/blue around the trees in the center; for
“mountains with waterfall”, we can see blue water falling down
with even vapor visible. These imagination results indicate that
our model is capable of linking specific objects with more general
visual context.

We also present the neuron visualization results with semantic
constraints in Fig. 2d. Concretely, in addition to the image-text
matching loss described above, we select neurons (i.e., channels)
in the feature map of the last layer before the pooling layer (LLP,
short for “Last Layer before Pooling”) in our image encoder and
maximize the value of each neuron. Since each text input may
contain many semantic contents, we can see what it is equivalent
to activating one neuron under certain semantic constraint. Three
neurons LLP-108, LLP-456, and LLP-678 (the number means the
position of each channel in the feature map) are selected for
neuron visualization. The two columns in Fig. 2d show the
visualizations with text inputs “forest” and “mountains”,
respectively. We can clearly see that even with the same semantic
constraint, activating different neurons leads to different
imagination results, indicating that each text input has rich
semantics with different aspects being captured by different
neurons.

Fig. 2 Network and neuron visualizations of our BriVL’s imagination. a Visualizations of the final embedding layer of BriVL w.r.t. high-level concepts.
b Visualizations of the final embedding layer of BriVL w.r.t. free-form text inputs. c Visualizations of the final embedding layer of BriVL with semantic
restrictions related to “mountains with”. d Visualizations for different neurons of BriVL with semantic restrictions “forest” and “mountains”.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30761-2

4 NATURE COMMUNICATIONS |         (2022) 13:3094 | https://doi.org/10.1038/s41467-022-30761-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Text-to-image generation. Network/neuron visualizations of the
imagination are straightforward but sometimes can be hard to
interpret. Here, another visualization/interpretability method is
developed to make the imagined visual contents of our BriVL
better understood by us human. Specifically, we utilize VQGAN34

to generate images under the guidance of our BriVL and contrast
them with those generated with CLIP13. A VQGAN pre-trained
on the ILSVRC-201235 dataset is excellent in generating photo-
realistic images given a sequence of tokens. Each of such token is
a vector from the pre-trained token set (i.e., codebook) of
VQGAN. We first randomly sample a sequence of tokens, and
obtain a generated image from the pre-trained VQGAN. Next, we
input the generated image into the image encoder of CLIP/BriVL
and also input a piece of text into the text encoder. Finally, we
define the objective of matching the image and text embeddings,
and back-propagate the resultant gradients to update the initial
token sequence. Like network/neuron visualization, both
VQGAN and CLIP/BriVL are frozen during the generation
process. The generated examples are presented in Fig. 3.

In Fig. 3a, b, we select four text inputs and show the results
obtained by CLIP and our BriVL, respectively. CLIP and BriVL

both understand the texts well; however, we also observe two
major differences. Firstly, cartoon-styled elements tend to appear
in the generated images of CLIP, while images generated by our
BriVL are more real and natural. Secondly, CLIP tends to simply
put elements together while BriVL-generated images are more
coherent globally. The first difference may be due to the
differences in the training data used by CLIP and BriVL. The
images in our training data are crawled from the Internet (most
are real photos), while there may be a fair amount of cartoon
images in the training data of CLIP. The second difference lies in
the fact that CLIP uses image-text pairs with strong semantic
correlation (by word filtering) while we use weakly correlated
data. This means that during multimodal pre-training, CLIP is
more likely to learn the correspondence between objects (in
images) and words (in texts) while BriVL is trying to understand
each image with the given text as a whole.

In Fig. 3c, we consider a significantly more challenging task
where a series of images should be generated according to
multiple coherent sentences. Although each image in Fig. 3c is
generated independently, we can observe that all four generated
images are visually coherent and of the same style. This finding

Fig. 3 Text-to-image generation examples of clearer imagination. a Generation examples of VQGAN inversion with CLIP (w/ ResNet-50x4).
b Generation examples of VQGAN inversion with our BriVL. c A series of generation examples by VQGAN inversion with our BriVL. d More generation
examples by VQGAN inversion with our BriVL, where concepts/scenes are rarely seen by us humans (e.g., “blazing sea” and “glowing forest”) or even do
not exist in real life (e.g., “cyberpunk-styled city” and “castle in the clouds”). Note that VQGAN is pre-trained on ILSVRC-2012. BriVL, CLIP and VQGAN are
all frozen during text-to-image generation.
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demonstrates another advantage of our BriVL model: although
the environment and background in an image are hard to
explicitly mention in the associated text, they are not neglected in
our large-scale multimodal pre-training.

We present more text-to-image generation examples obtained
by VQGAN inversion with our BriVL in Fig. 3d. Specifically, we
choose concepts/scenes rarely seen by us humans (e.g., “blazing
sea” and “glowing forest”) or even those not existing in real life
(e.g., “cyberpunk-styled city” and “castle in the clouds”). We find
that our proposed model can generate images quite consistent
with our imagination about the input concepts/scenes, indicating
its strong generalization/imagination ability. This also provides
evidence that the superior performance of BriVL is not due to
overfitting the pre-training data since the text inputs here
correspond to concepts/scenes that even do not exist in real life.
In addition, these generation examples again demonstrate the
advantage of pre-training BriVL on weak semantic correlation
data (otherwise the fine-grained region-word matching would
harm the imagination ability of BriVL).

Remote sensing scene classification. To show the cross-domain
knowledge transfer ability and the out-of-domain imagination
ability of our pre-trained BriVL, we conduct zero-shot experi-
ments on two remote sensing scene classification benchmarks.
The first dataset is UC Merced Land-Use (UCM)36, which has 21
classes and 100 images for each class. The size of each image in
UCM is 256 × 256. The second dataset is AID37, which has 30
classes and 10,000 images in total. The size of each image in AID
is 600 × 600. AID is a multi-source dataset, which makes it more
challenging for scene classification than the single-source UCM.
Concretely, images of each class in AID are extracted from dif-
ferent countries and regions around the world, and also at dif-
ferent times and seasons of the year under different imaging
conditions. This leads to larger intra-class data diversity in AID.
For each dataset, we first obtain class embeddings by inputting
class names into the text encoder of CLIP/BriVL. Then for each

test image, we obtain its image embedding via the image encoder
of CLIP/BriVL, and compute its cosine similarity with each class
embedding to predict the class that it belongs to. Note that since
the class names of these two datasets are all English, we need to
translate them into Chinese to fit our BriVL (but the original class
names are directly used for CLIP).

In the field of zero-shot learning (ZSL)38, datasets typically
follow the split of unseen and seen classes. Conventional ZSL
models are thus trained with seen class data and evaluated on
unseen class data. Although we do not need to train on seen
classes, we still follow the common practice and split each dataset
with different unseen/seen class ratios (the seen classes are simply
not used). Under the split settings where the number of seen
classes are not zero, we randomly sample 25 splits and report the
standard deviations in brackets along with average accuracy.

The zero-shot classification results on UCM are shown in
the table of Fig. 4a. Our BriVL is compared to a strong baseline
ZSSC39 specially designed for zero-shot remote sensing scene
classification, and also CLIP with different CNN backbones.
We can see that large-scale cross-modal foundation models
achieve far higher rates compared with ZSSC, indicating their
strong cross-domain knowledge transfer abilities. Moreover, our
classification rates are also higher than those of all CLIP models
with different CNNs, which is impressive considering the loss in
English-to-Chinese translation and also cultural differences (CLIP
is trained on English data while we use data crawled from Chinese
Internet). Results on another dataset AID are shown in the table
of Fig. 4b. Since we did not find methods conducting ZSL
experiments on AID, we only make comparisons with CLIP
variations. As we have mentioned, AID is more challenging than
UCM, which is also reflected by the much worse performance of
CLIP variations on AID than on UCM. However, our BriVL
achieves similar performance on the two datasets when evaluated
over all data, and the gap between BriVL and CLIP is larger on
AID than that on UCM. This means that BriVL has stronger
generalization ability and can cope with more complicated
situations.

Fig. 4 Zero-shot remote sensing scene classification results. a Zero-shot accuracies (%) on UCM with different unseen/seen class ratios. b Zero-shot
accuracies (%) on AID with different unseen/seen class ratios. c Visualizations of “baseball field”. For (a) and (b), we report standard deviations in
brackets over 25 random splits. Highest results in (a) and (b) are highlighted in bold.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30761-2

6 NATURE COMMUNICATIONS |         (2022) 13:3094 | https://doi.org/10.1038/s41467-022-30761-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Furthermore, we deploy the aforementioned network visuali-
zation technique to clarify the visual responses of our BriVL to
remote sensing related concepts. Concretely, we select one class
“baseball field”, and add the prompt “viewed from above” to the
class name as the text input. The imagined visual content of our
BriVL is shown in Fig. 4c along with one example of this class.
We can see that remote sensing scenes are very different from
traditional photos, mainly in the perspective of cameras. Despite
this, we can observe from BriVL’s imagination that there is a
small sector-shaped area (marked with red lines) in “baseball field
viewed from above”. This provides direct explanation to the
impressive performance of our BriVL on remote sensing scene
classification. In addition, we search the keyword “baseball field”
in our pre-training dataset WSCD and find that most of the
related images are taken in a normal camera perspective. Given
that there is hardly any remote sensing data in our WSCD, this
finding suggests that BriVL has somehow learned to generalize
transformation of perspectives to unseen domains during pre-
training. This again shows the strong imagination ability and
even hints of common sense reasoning ability of our BriVL.

News classification. To demonstrate how large-scale multimodal
learning can benefit single-modal skills and also improve the
imagination ability on single-modal tasks, we conduct zero-shot
experiments on two Chinese news classification datasets. The first
dataset is Toutiao News40, which has 15 classes and a total of
around 380K samples. The second dataset is THUCNews41,
which has 14 classes and around 840K samples in total. Since the
contents in these two datasets are all texts, we only need the text
encoder of our BriVL. Concretely, we first obtain class

embeddings by inputting class names into the text encoder.
Further, for each piece of news, we only use its title to obtain its
embedding via the text encoder. Finally, we compute the cosine
similarities between each title embedding and class embeddings to
make predictions.

The following methods are chosen for comparison: (1)
RoBERTa-base:42 it is an off-the-shelf Chinese language model
pre-trained by the original authors on a large Chinese dataset
with a total of 5.4B words. (2) RoBERTa-base (finetune): we
finetune the pre-trained RoBERTa-base on a subset of our WSCD
dataset (i.e., only the text data of 22M image-text pairs is used).
(3) BriVL w/ RoBERTa-base: it is a small version of our standard
BriVL as we reduce the CNN from EfficientNet-B743 to
EfficientNet-B5 and also the text backbone from RoBERTa-
large to RoBERTa-base. We pre-train this small version with the
aforementioned 22M image-text pairs. (4) RoBERTa-large: it is
the larger version of RoBERTa-base and is also pre-trained by the
original authors. Its pre-training data is the same as that of
RoBERTa-base. (5) BriVL w/ RoBERTa-large: our standard BriVL
pre-trained on the whole WSCD.

The zero-shot classification results on Toutiao News and
THUCNews are shown in Fig. 5a. It can be seen that: (1) The
results of RoBERTa-base are lower than those of RoBERTa-large,
which is expected since the latter has more parameters and a
larger model capacity. (2) On both datasets, RoBERTa-base
(finetune) has limited performance gains over RoBERTa-base,
while BriVL w/ RoBERTa-base outperforms RoBERTa-base by
large margins. This clearly indicates the advantage of cross-modal
learning over single-modal learning, given that the finetuning
data of RoBERTa-base (finetune) and BriVL w/ RoBERTa-base is
both from the 22M subset of WSCD. (3) When it comes to

Fig. 5 Zero-shot news classification results. a Zero-shot news classification results (%) on two Chinese news datasets. b Zero-shot accuracy gain/loss
(%) of BriVL w/ RoBERTa-large comparing to RoBERTa-large on each category of Toutiao News. c Top-30 phrase retrieval results of “sports” (top) and
“automobile” (bottom) using RoBERTa-large and BriVL w/ RoBERTa-large, respectively. The candidate phrase list is obtained from Jieba, which consists of
347,728 Chinese phrases. We translate the results into English for presentation clarity. Highest results in (a) are highlighted in bold.
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RoBERTa-large, our BriVL w/ RoBERTa-large also leads to much
better results than RoBERTa-large.

Moreover, in Fig. 5b, we present the performance gain/loss of
our BriVL w/ RoBERTa-large comparing to RoBERTa-large on
each category of Toutiao News. We can observe that the
performance of BriVL decreases only on 5 categories but
increases on the other 10, validating that the single-modal
imagination/association ability can be improved by multimodal
learning. Further, in Fig. 5c, we show top-30 phrase retrieval
results of the category names “sports” and “automobile” using
these two models to take a closer look. Concretely, we use a
Chinese phrase list from Jieba44 as the candidate list, which
contains 347,728 phrases. Then we obtain the text embeddings of
all candidates using RoBERTa-large and BriVL w/ RoBERTa-
large, respectively. For each model and each category name, we
compute the category name embedding and retrieve top-30
phrases by comparing it with all candidate embeddings using the
cosine similarity. Finally, we visualize the results with the UMAP
algorithm45. For “sports”, we can see that our BriVL relates it to
phrases with a higher variety than RoBERTa-large does. However,
for “automobile”, the retrieved top-30 phrases of our BriVL are
more monotonous.

Cross-modal retrieval. Here we conduct experiments on the
cross-modal retrieval downstream task, which is exactly what we
train our BriVL to do. Since our BriVL is pre-trained with Chi-
nese data, we choose the only available multimodal Chinese
dataset AIC-ICC46 for performance evaluation. AIC-ICC is ori-
ginally designed for image captioning, which was first released in

AI Challenger 2017, a competition organized by Sinovation
Ventures, Sogou, and Toutiao (ByteDance). The training set of
AIC-ICC has 300K images and the validation set has 30K images.
Each image has 5 Chinese captions. Since the test set is not
released, we take the first 10K images along with their corre-
sponding 50K pieces of texts from the validation set for testing.

The cross-modal retrieval results on AIC-ICC are shown in the
table of Fig. 6a. The method “BriVL (direct training)” means that
we directly train a randomly-initialized BriVL model on the
training set of AIC-ICC rather than using the pre-trained BriVL.
Moreover, the results of three “BriVL (pre-train & finetune)”
variations are all obtained by finetuning our pre-trained BriVL on
the training set of AIC-ICC with different finetuning strategies.
We only consider two finetuning factors: whether to fix all the
batch normalization (BN) layers in the CNN (i.e., EfficientNet-
B7), and how many blocks should be unfixed in the CNN. We
perform both image-to-text and text-to-image retrieval for
evaluation, and report the results with Recall@k (k= 1, 5, 10) as
well as Recall@SUM (i.e., the summation of six Recall@kmetrics).

We can observe from the table of Fig. 6a that image-to-text
retrieval results are generally higher than text-to-image ones,
which is expected because like us humans, describing a given
image is easier than imagining a picture from a sentence. We can
also see that three “BriVL (pre-train & finetune)” variations
achieve far better results than “BriVL (direct training)” for all
evaluation metrics, indicating the usefulness of large-scale
multimodal pre-training. In addition, using pre-trained models
like our BriVL is more beneficial to image-to-text retrieval than to
text-to-image retrieval, which may be due to the fact that image-
to-text retrieval is an easier task. From the performance of three

Fig. 6 Cross-modal retrieval and visual question answering (VQA) results. a Cross-modal retrieval results (%) on the Chinese dataset AIC-ICC. b VQA
results on Visual7W. Overall accuracies (%) along with results on each question type are reported. The dataset is translated into Chinese. c VQA examples
of our BriVL model regarding whether it is pre-trained to validate the strong imagination ability of our pre-trained BriVL. Highest results in (a) and (b) are
highlighted in bold.
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“BriVL (pre-train & finetune)” variations, we find that different
finetuning strategies do affect the final results, which should be
kept in mind when we finetune pre-trained models for different
downstream tasks.

Visual question answering. We consider another multimodal
downstream task called visual question answering (VQA)47 to
further validate the strong imagination ability of our pre-trained
BriVL on the Visual7W dataset48. Visual7W has 47.3K images
from MSCOCO49 and each image comes with a question and four
answer candidates, where only one is the correct answer. The
whole dataset can be divided into “Telling” questions and
“Pointing” ones. Since “Pointing” questions rely on the bounding
boxes of objects in images, we only conduct experiments on the
“Telling” part, which can be further divided into six question
types: “What”, “Where”, “When”, “Who”, “Why”, and “How”.
We randomly make the training and test splits with 70% and
30%, respectively. Since Visual7W is an English dataset, we
translate all of the questions and answer candidates into Chinese.

In the table of Fig. 6b, we report the overall accuracies on the
test set, as well as the results on each question type. Similar to the
situation on the cross-modal retrieval task, three “BriVL (pre-
train & finetune)” variations achieve much better results than
“BriVL (direct training)” for all question types, again indicating
the usefulness of large-scale pre-training on downstream tasks.
We also notice that the best finetuning strategy for cross-modal
retrieval (i.e., fixing BN and keeping 4 blocks of the CNN unfixed)
is no longer the best for VQA. In addition, although the strategy
of not fixing BN and keeping 2 blocks unfixed obtains the best
overall result, it does not achieve the best for all question types.
This is expected as different tasks require different finetuning
strategies.

Furthermore, we present four VQA examples in Fig. 6c. From
these examples, we see our pre-trained BriVL clearly showing the
strong imagination ability and even hints of common sense as it
knows that the train in the picture looks blurry because it is
moving fast, the picture of horses was taken in a field rather than
in a zoo, the boats being tied to the dock are simply not moving
instead of floating, and the traffic is stopped because of the red
light instead of traffic jam. We believe that this is achieved by pre-
training with our weak semantic correlation data: the texts are not
detailed descriptions of their corresponding images, and thus our
BriVL has to figure out the complicated connections hidden
among this weak correlation during pre-training. With large pre-
training data as much as 650 million, our BriVL finally succeeds
in acquiring the ability of reasonably and logically imagining/
associating, and also manages to learn some common sense.

Discussion
We have developed a large-scale multimodal foundation model
called BriVL, which is efficiently trained on weak semantic cor-
relation dataset (WSCD) consisting of 650 million image-text
pairs. We have identified the direct evidence of the aligned image-
text embedding space by neural network visualizations and text-
to-image generation. In addition, we have visually revealed how a
multimodal foundation model understands language and how it
makes imagination or association about words and sentences.
Moreover, extensive experiments on other downstream tasks
show the cross-domain learning/transfer ability of our BriVL and
the advantage of multimodal learning over single-modal learning.
Particularly, our BriVL appears to acquire abilities in imagination
and reasoning. Last but not least, we believe that all of these
advantages are mainly due to the weak semantic correlation
assumption followed by our BriVL. That is, by effectively fusing
the complex human emotions and thoughts from those weakly

correlated image-text pairs, our BriVL is made more cognitive
and general (i.e., much closer to AGI).

We believe that the solid step we take towards AGI would have
a broad impact not only on the AI development community but
also on a wide range of AI+ fields. For the AI research field itself,
based on our GPU-resource-saving multimodal pre-training fra-
mework, researchers could easily extend our BriVL to a larger
capacity with more modalities, leading to more general founda-
tion models. Moreover, with the help of large-scale multimodal
foundation models, it would also be much easier for researchers
to explore novel tasks (especially those without abundant human-
annotated samples). For AI+ fields, such foundation models
could be quickly adapted to specific working context or envir-
onment, thanks to their strong generalization abilities. For
example, in healthcare, multimodal foundation models could
make full use of case data in multi-modality (e.g., computed
tomography data, and blood routine examination data) to
improve the diagnosing accuracy. Moreover, in neuroscience,
multimodal foundation models could even help find out the
mechanism of how multimodal data connect and fuse since
artificial neural networks are much simpler to examine than real
neural systems in human brains.

Nevertheless, multimodal foundation models still face potential
risks and challenges. Since the performance of foundation models
is based on the data that they are pre-trained on, it is likely that
the models learn prejudices and stereotypes about certain issues,
which should be carefully handled before model training and
monitored/addressed in downstream applications. Moreover, as
foundation models master more and more skills, creators of these
models should be aware of model misuse by ill-intentioned
people (e.g., manipulating or generating fake contents), which
would have a negative influence on the society. In addition, on the
evolution challenges of foundation models academically, it is of
grand challenge for (1) developing model-interpretability tools
deeper into the foundation models, (2) constructing huge pre-
training datasets with more modalities, as well as (3) applying
foundation models to various downstream tasks with more
effective adaptation/finetuning techniques.

Our understanding of what BriVL (or any large-scale multi-
modal foundation model) has learned and what it is capable of
has only just started. There is still much room for further study to
better understand the foundation model and develop more novel
use cases. For instance, since the image can be regarded as a
universally-understood “language”, soliciting an even larger
dataset containing multiple languages could result in a language
translation model obtained as a by-product of multimodal pre-
training. Moreover, additional modalities (e.g., videos and audios)
can be also explored to pre-train a more intelligent model, taking
us even closer to AGI.

Methods
Architecture overview. The notion of pre-training a large-scale machine learning
model and then using it for downstream tasks first appeared in natural language
processing (NLP). As shown in Supplementary Note Fig. S1c, large-scale NLP
models like GPT50, BERT51, and their variants, take Transformers52 as text
encoders to encode input texts into text embeddings, and then design pre-training
objectives on top of these embeddings (e.g., generative loss and masked language
modeling loss). In computer vision (CV), large-scale pre-training also becomes
popular. Models like BiT53 and ViT54 use convolutional neural networks (CNNs)
or Transformers as image encoders to obtain embeddings of input images. Simi-
larly, pre-training losses are computed using the image embeddings (e.g., image
classification loss and masked image patch prediction loss). However, these models
are single-modal and thus only benefit downstream tasks in one modality. For
multimodal (e.g., image, text, and audio) pre-training12–18,32, existing works can be
divided into two groups according to their network architectures: single-tower
models (e.g., UNITER17, OSCAR12, and M618) and two-tower ones (e.g., CLIP13

and ALIGN32). Our BriVL can also be categorized into the two-tower models since
we use separate image and text encoders. But note that we actually adopt two
additional momentum encoders to help with the pre-training process (i.e., to
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dynamically maintain negative sample queues across training batches), resulting in
a four-tower pre-training architecture.

The pre-training goal of our BriVL is to learn two encoders that can embed
image and text inputs into the same semantic space for effective image-text
retrieval. To enforce the image and text encoders to learn better representations in
the same embedding space, we introduce cross-modal contrastive learning with the
InfoNCE loss23 into our BriVL. Specifically, our learning objective is to find the
corresponding image embedding from a batch of them for a given text embedding
and vice versa. By maximizing the cosine similarity of the image and text
embeddings for each ground-truth pair while minimizing the cosine similarities of
the embeddings from negative pairs, we jointly train the image and text encoders to
learn an aligned cross-modal embedding space.

Formally, for the image-text retrieval task, we denote the training set as
D ¼ fðxðiÞi ; xðtÞi Þji ¼ 1; � � � ;Ng, where ðxðiÞi ; xðtÞi Þ is a matched image-text pair, and N
is the size of D. Our BriVL leverages contrastive learning by applying MoCo29 into
the cross-modal scenario, as illustrated in Supplementary Note Fig. S1a. Each
image xðiÞi (or each text xðtÞi ) is encoded by the image encoder f(i) (or the text

encoder f(t)) to obtain its d-dimensional embedding zðiÞi (or zðtÞi ). The image encoder
(see Supplementary Note Fig. S1b) contains a CNN backbone, a successive self-
attention (SA) block, and a multi-layer perceptron (MLP). A sequence of patch
embeddings are first obtained by applying multi-scale patch pooling (MSPP) to the
feature map from CNN. They are then fused/encoded by the SA block. The text
encoder, on the other hand, is stacked by several SA blocks such as BERT51 and
RoBERTa4. A two-layer MLP block with a ReLU55 activation layer is used for
mapping each encoder’s representation into the joint cross-modal embedding
space. The parameters of f(i) and f(t) are denoted as θ(i) and θ(t), respectively.

Image encoder. To obtain better performance in the image-text retrieval task,
most previous methods19–21,56 utilize a bottom-up attention mechanism57 with
object features extracted by the Faster R-CNN detector58. However, extracting
region/object features with a heavy detector is computationally expensive, e.g., a
Faster R-CNN detector typically costs 0.064s (15.6 fps) to extract fine-grained
region information from an image of moderate size. Meanwhile, the image-text
retrieval would be inevitably limited by the detector’s performance, which is not
adaptable to real-world applications. In this paper, we thus introduce a simple yet
effective module named Multi-Scale Patch Pooling (MSPP) to address this
problem.

For each input image x(i), we first split it into multiple patches at different scales
and record the patch coordinates. In all experiments, we take two scales as 1 × 1
and 6 × 6, resulting in a total of 37 patches. Next, we project each set of patch
coordinates onto the feature map that is obtained by the CNN backbone (e.g.,
EfficientNet43) and generate a sequence of 37 region feature maps. Finally, we
apply average pooling to each region feature map and obtain a sequence of patch
features S 2 Rc ´Np , where each column corresponds to a patch, Np is the number
of patches (i.e., Np= 37 in this paper), and c is the number of channels in the
feature map.

To better capture the relationship of image patch features, we deploy a self-
attention (SA) block containing multiple Transformer52 encoder layers. Each
Transformer encoder layer consists of a multi-head attention (MultiHeadAttn)
layer and a feed forward network (FFN) layer:

S0 ¼ LayerNormðSþMultiHeadAttnðSÞÞ ð1Þ

S ¼ LayerNormðS0 þ FFNðS0ÞÞ: ð2Þ
We then fuse the extracted patch features by applying an average pooling layer:

rðiÞ ¼ 1
Np

∑
Np

j¼1
Sj 2 Rc; ð3Þ

where Sj is the j-th column of S. A two-layer MLP block with a ReLU activation
layer is adopted to project r(i) to the joint cross-modal embedding space, resulting
in the final d-dimensional image embedding zðiÞ 2 Rd .

Text encoder. Given a sentence x(t), we first tokenize it to obtain a sequence of
tokens T ¼ ftjjj ¼ 1; :::; lg, where l denotes the length of the sentence (e.g., the
number of words) and tj denotes the j-th token of T . A pre-trained Transformer
encoder (e.g., RoBERTa42) is then used to map text tokens to a sequence of feature
vectors (each feature vector corresponds to a word). Similarly, to better capture the
relationship between words, we use the same self-attention mechanism as in the
image encoder to extract the text representation r(t). A two-layer MLP block with a
ReLU activation layer is also used for mapping the text representation r(t) to the
joint cross-modal embedding space, resulting in the final d-dimensional text
embedding zðtÞ 2 Rd .

Contrastive loss. The cross-modal contrastive loss in our BriVL is defined based
on MoCo29, which provides a mechanism of building dynamic sample queues for
contrastive learning. Since the two negative queues used in our BriVL decouple the
queue size from the mini-batch size, we can have a much larger negative sample
size than the mini-batch size (thus GPU-resource-saving).

To maintain large queues of samples coming from different mini-batches and
address the problem that sample features are extracted by encoders with very
different parameters, we need two more smoothly updated encoders, that is,
momentum encoders. The parameters θðiÞm (or θðtÞm ) of the momentum image
encoder f ðiÞm (or the momentum text encoder f ðtÞm ) are updated in each training
iteration with a momentum hyper-parameter m:

θðiÞm ¼ m � θðiÞm þ ð1�mÞ � θðiÞ; ð4Þ

θðtÞm ¼ m � θðtÞm þ ð1�mÞ � θðtÞ: ð5Þ
Further, we maintain two negative sample queues QðiÞ and QðtÞ , which contain

Nq image negatives and Nq text negatives for contrastive learning, respectively. In
each pre-training iteration with the batch size Nb, all Nb image negatives and Nb

text negatives are separately pushed into these two queues. Meanwhile, there are Nb

earliest samples being popped out of each queue. Concretely, at iteration t, the
image and text negatives from the current data batch ðBðiÞ

t ;BðtÞ
t Þ are computed by

respectively forwarding the momentum encoders f ðiÞm and f ðtÞm :

N ðiÞ
t ¼ f ðiÞm ðxðiÞi ÞjxðiÞi 2 BðiÞ

t

n o
; ð6Þ

N ðtÞ
t ¼ f ðtÞm ðxðtÞi ÞjxðtÞi 2 BðtÞ

t

n o
; ð7Þ

where jBðiÞ
t j ¼ jBðtÞ

t j ¼ Nb . The obtained N ðiÞ
t and N ðtÞ

t are then pushed into QðiÞ

and QðtÞ, respectively. Note that although we generally call N ðiÞ
t (or N ðtÞ

t ) image
negatives (or text negatives), there is still one sample being positive to each text (or
image). Here, we denote the positive image sample (or text sample) for the j-th
input text xðtÞj (or the j-th input image xðiÞj ) of the current mini-batch as:

pðiÞj ¼ f ðiÞm ðxðiÞj Þ 2 N ðiÞ
t ; ð8Þ

pðtÞj ¼ f ðtÞm ðxðtÞj Þ 2 N ðtÞ
t : ð9Þ

With the two negative queues, the loss function in each training iteration is thus
computed as follows. For each input image xðiÞi , we define the contrastive loss

between its image embedding zðiÞi and all positive/negative texts in the queue QðtÞ as
an InfoNCE loss23:

Li2t ¼ � 1
Nb

∑
Nb

i
log

exp zðiÞi � pðtÞi =τ
� �

exp zðiÞi � pðtÞi =τ
� �

þ ∑
nðtÞ

exp zðiÞi � nðtÞ=τ
� � ; ð10Þ

where nðtÞ 2 QðtÞ n fpðtÞi g denotes a text negative for each image, τ is the
temperature hyper-parameter, and the vector similarity is measured by dot product
(⋅). Similarly, for each input text xðtÞi , the InfoNCE loss is given by:

Lt2i ¼ � 1
Nb

∑
Nb

i
log

exp zðtÞi � pðiÞi =τ
� �

exp zðtÞi � pðiÞi =τ
� �

þ ∑
nðiÞ

exp zðtÞi � nðiÞ=τ
� � ; ð11Þ

where nðiÞ 2 QðiÞ n fpðiÞi g denotes an image negative for each text.
The total loss function for pre-training our BriVL is then defined as:

Ltotal ¼ Li2t þ Lt2i: ð12Þ
In the test/evaluation stage, given each query image (or text), the cross-modal

retrieval results are obtained simply by the dot product defined over the outputs of
the text (or image) encoder.

Implementation details. Over the input images, we adopt random graying and
random color jittering for data augmentation. All images are resized to 600 × 600
pixels. We adopt EfficientNet-B743 as the CNN backbone in the image encoder and
RoBERTa-Large42 as the basis Transformer in the text encoder. For both image and
text encoders, the self-attention block consists of 4 Transformer encoder layers and
the MLP block has two fully-connected layers with a ReLU activation layer. The
final embedding size of the joint cross-modal space is 2,560. We select the hyper-
parameters heuristically for pre-training our BriVL model due to the computa-
tional constraint: the temperature hyper-parameter τ= 0.07, momentum m= 0.99,
and the queue size Nq= 13, 440. We adopt the Adam optimizer59, with the weight
decay 1e-5 and the learning rate 1e-4. We use a mini-batch size of 192 for each of
the 14 machines (each machine has 8 NVIDIA A100 GPUs), resulting in a total
batch size of 2688 (far smaller than Nq). The resource-saving advantages of such
batch setting are shown by the ablation study results in Supplementary Note Fig.
S2. We also deploy the latest distributed-training framework DeepSpeed26 to
accelerate the pre-training process and save the GPU memories. With 112 NVIDIA
A100 GPUs in total, it takes about 10 days to pre-train our BriVL model over our
WSCD of 650 million image-text pairs.

Differences from CLIP/ALIGN. We have stated two main differences between our
BriVL and CLIP/ALIGN in the Introduction section. Below we give more detailed
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differences technically. (1) We adopt a four-tower network architecture (see Sup-
plementary Note Fig. S1a) for pre-training. By extending the original single-modal
contrastive learning (CL) algorithm MoCo29, we introduce momentum encoders
and negative sample queues for multimodal pre-training in a more GPU-resource-
saving way. In contrast, both CLIP and ALIGN employ the standard two-tower
architecture, which requires large batch size (thus enough negative samples) to be
effective, taking up a mass of GPU memories. (2) We additionally devise a multi-
scale patch pooling (MSPP) module (see Supplementary Note Fig. S1b) to capture
fine-grained image region representations without using object detectors. While
CLIP and ALIGN only consider global-level image embeddings, which impedes
their ability to learn fine-grained/local image features.

Formalization of neural network visualization. Neural network visualization is
developed to directly show the visual response/imagination of BriVL w.r.t. the
semantic input. Formally, given the pre-trained image and text encoders f(i) and f(t)

of BriVL, we first input a piece of text x(t) and obtain its text embedding
zðtÞ ¼ f ðtÞðxðtÞÞ 2 Rd . In the mean time, we randomly initialize a noisy image
xðiÞ 2 R600 ´ 600 ´ 3, which contains all the learnable parameters throughout the
entire visualization process. Further, we obtain the image embedding zðiÞ ¼
f ðiÞðxðiÞÞ 2 Rd and define the learning objective by matching the two embeddings:

Lvis ¼ � cos zðiÞ; zðtÞ
� �

; ð13Þ
where cosð�; �Þ computes the cosine similarity between two vectors. With the
resultant gradients, we are able to update the input image x(i) by back-propagation.
After repeating the above updating step with multiple iterations, we finally obtain
an image x(i), which can be regarded as BriVL’s response/imagination about the
input text. The algorithm for neural network visualization is summarized in
Algorithm 1.

Algorithm 1. Neural Network Visualization
Input: The pre-trained image and text encoder f(i) and f(t) of our BriVL

A piece of text x(t)

A randomly initialized image x(i)

A learning rate parameter λ
Output: The updated input image
1: Obtain the text embedding z(t)= f(t)(x(t));
2: for all iteration = 1, 2,⋯ , MaxIteration do
3: Obtain the image embedding z(i)= f(i)(x(i));
4: Compute Lvis with Eq. (13);
5: Compute the gradients ∇xðiÞLvis ;
6: Update x(i) using gradient descent with λ;
7: end for
8: return the updated input image.

Formalization of text-to-image generation. To make BriVL’s response/imagina-
tion on input texts better understood, we further adopt VQGAN34 to help generate
more photo-realistic images. The reason of utilizing VQGAN instead of other
GANs60 is as follows. Although classic GANs are able to generate high quality images
under specific domains (e.g., natural sceneries or human faces), they tend to fail when
complex scenarios are involved. In contrast, VQGAN alleviates this problem and
performs better under complex scenarios by combining VQVAE61 and GAN. For our
text-to-image generation, we only need a codebook C and a CNN generator g of the
VQGAN pre-trained on ILSVRC-201235. The pre-trained codebook C ¼ fck 2
Rdc jk ¼ 1; 2; � � � ;Ncg is a collection of tokens/codes, where dc is the dimension of
each code andNc is the number of codes in the codebook (dc= 256 andNc= 1, 024 in
our case). The pre-trained CNN generator g takes a spatial collection of codebook
entries U 2 Rh ´w ´ dc as input to generate an image (U can also be regarded as a
sequence of hw codes, h=w= 16 in our case), where each element uij 2 Rdc

(i= 1, 2, � � � ; h and j= 1, 2, � � � ; w) must come from the codebook C (i.e., uij 2 C).
With the pre-trained image and text encoders f(i) and f(t) of BriVL, we first input a
piece of text x(t) and obtain its text embedding zðtÞ ¼ f ðtÞðxðtÞÞ 2 Rd . Meanwhile, we
randomly initialize an input code collection U, which is the only parameter matrix to
be learned. Afterwards, we generate an image from the generator x(i)= g(U) and
further obtain its image embedding zðiÞ ¼ f ðiÞðxðiÞÞ 2 Rd . The learning objective is to
maximize the similarity between two embeddings:

Lt2i ¼ � cos zðiÞ; zðtÞ
� �

: ð14Þ
After updating the input U and obtaining U0 by back-propagation, we need to

perform an element-wise quantization of each spatial code u0ij 2 Rdc in U0 onto its
closest codebook entry ck:

uij ¼ argmin
ck2C

ku0ij � ckk: ð15Þ
By repeating the above updating step with multiple iterations, we finally obtain

an image x(i) generated with the updated U. The algorithm for text-to-image
generation is summarized in Algorithm 2.

Algorithm 2. Text-to-Image Generation
Input: The pre-trained image and text encoder f(i) and f(t) of our BriVL

The codebook C and the CNN generator g of the pre-trained VQGAN
A piece of text x(t)

A randomly initialized collection of codebook entries U
A learning rate parameter λ

Output: The image generated with the updated U
1: Obtain the text embedding z(t)= f(t)(x(t));
2: for all iteration = 1, 2,⋯ , MaxIteration do
3: Generate an image x(i)= g(U);
4: Obtain the image embedding z(i)= f(i)(x(i));
5: Compute Lt2i with Eq. (14);
6: Compute the gradients ∇ULt2i ;
7: Obtain U0 by updating U using gradient descent with λ;
8: Obtain U by performing element-wise quantization on U0 with Eq. (15);
9: end for
10: return the image generated with the updated U.

Neural network visualization vs. text-to-image generation. The intrinsic dif-
ference between neural network visualization and text-to-image generation lies in
that they produce images following different data distributions. Not utilizing extra
modules or data, neural network visualization exhibits BriVL’s primitive visual
understanding of a given piece of text. However, the VQGAN34 used for text-to-
image generation is pre-trained on ILSVRC-201235 (i.e., the classic ImageNet
dataset), which generates images following the data distribution of ImageNet and
thus being more photo-realistic. Due to such an intrinsic difference, we present the
visualization results of these two tasks for different purposes in this paper. Speci-
fically, neural network visualization allows us to see what exactly a pre-trained
multi-modal foundation model imagines about semantic concepts and sentences,
while text-to-image generation is used to generate images matched with given texts
in a more human-friendly way.

Data availability
The availability of datasets used in this study is detailed as follows: (1). Two remote
sensing scene classification datasets: UC Merced Land-Use (UCM, http://weegee.vision.
ucmerced.edu/datasets/landuse.html) and AID (https://captain-whu.github.io/AID/). (2).
Two news classification datasets: THUCNews (http://thuctc.thunlp.org/) and Toutiao
News (https://github.com/aceimnorstuvwxz/toutiao-text-classfication-dataset). (3). The
Chinese cross-modal retrieval dataset AIC-ICC is available at https://github.com/neilfei/
brivl-nmi. (4). The VQA dataset Visual7W is available at http://ai.stanford.edu/yukez/
visual7w/. (5). The dataset used for pre-training our model is available at https://resource.
wudaoai.cn/home. Please note that the available datasets (1) – (4) are sufficient for
finetuning our pre-trained BriVL model in order to interpret, verify and extend our
research.

Code availability
The pre-trained BriVL and its inference code are available at https://github.com/neilfei/
brivl-nmi under Creative Commons Attribution-Non Commercial-No Derivatives 4.0
International Licence (CC BY-NC-ND).
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