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Recently, there has been an increasing interest in leveraging physics-informed neural networks (PINNs) for 
modeling dynamical systems. However, limited studies have been conducted along this horizon on seismic wave 
modeling tasks. A critical challenge is that these geophysical problems are typically defined in large domains (i.e., 
semi-infinite), which leads to high computational costs. We present a new PINN model for seismic wave modeling 
in semi-infinite domain without the need for labeled data. Specifically, the absorbing boundary condition is 
introduced into the network as a soft regularizer for handling truncated boundaries. To scale up, we consider a 
sequential training strategy via temporal domain decomposition to improve the scalability of the network and 
solution accuracy. Moreover, we design a novel surrogate modeling strategy to account for parametric loading, 
which estimates the wave propagation in semi-infinite domain given the seismic loading at different locations. 
Various numerical experiments are implemented to evaluate the performance of the proposed PINN model in the 
context of forward modeling of seismic wave propagation. In particular, we use diverse material distributions 
to test the versatility of this approach. The results demonstrate excellent solution accuracy under distinctive 
scenarios.
1. Introduction

Understanding seismic wave propagation is crucial for the commu-

nities of seismology and earthquake engineering. Typically, we record 
seismic signals with seismometers and derive various information about 
the composition of the Earth, e.g., the discovery of Mohorovicic dis-

continuity which separates the crust and the mantle of the Earth. For 
decades, we have observed significant advancements in the theoreti-

cal investigation of seismic wave physics. Furthermore, the theoretical 
breakthrough also brings about the rapid development of numerical 
modeling of seismic wave propagation for applied seismology and engi-
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neering practices, such as finite difference [1,2], finite element [3] and 
spectral element [4,5] methods. In general, these traditional numerical 
methods employ finite sets of basis functions (e.g., polynomials) and 
the corresponding parameters to approximate the derivatives of differ-

ential equations in computing their solutions. They have achieved high 
solution accuracy for a range of ordinary or partial differential equa-

tions (ODEs/PDEs). However, these methods may be less suitable for 
surrogate modeling and inverse analysis due to the need for repeated 
forward model runs, resulting in expensive computations.

Thanks to the great progress in artificial intelligence (AI), in particu-

lar machine learning (ML), many scientists started to explore the poten-
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tial of using ML to address seismic wave propagation problems [6–13]. 
For example, Fourier Neural Operator (FNO) [14] has been investigated 
for forward and inverse analysis of 2D acoustic wave equation [15]. 
Nevertheless, these research efforts rely on large amounts of high-

fidelity labeled data, which are usually difficult to compute or collect. It 
has been a pressing task to develop novel ML methods for dealing with 
imperfect measurement data (e.g., sparse and potentially noisy).

The recent development of PINNs [16,17] has shed new light on sci-

entific computing with limited labeled data. The general principle of 
PINNs is to integrate deep neural networks (DNNs) and physical laws 
to learn the underlying consistent dynamics from small or zero labeled 
data. The advent of PINNs provides a new perspective for training neu-

ral networks, where the introduction of physical laws into the network 
strengthens the constraint for optimization for small data regimes. For 
instance, the latest research work [18–23] attempt to solve PDE systems 
when the full physics knowledge is accessible, i.e., governing equations, 
initial and boundary conditions (I/BCs). In addition, we observe the ex-

plosive research of applying this paradigm to miscellaneous scientific 
domains, including fluid flows [24–30], solid mechanics [31–34], multi-

scale and multi-physics modeling [35–37], heat transfer [38], subsur-

face transport [39,40] equation discovery [41–44] and data augmen-

tation [45–48]. Although PINNs have shown great success in various 
scientific problems, it is also noteworthy that they are not competent in 
comparison with traditional numerical methods for forward simulations 
in terms of solution accuracy. Their huge potential lies in tackling sur-

rogate modeling and inverse analysis with a tradeoff between accuracy 
and computational efficiency [49], especially when only sparse data are 
recorded.

In this paper, we present a PINN approach for forward modeling 
of seismic wave propagation, as a basis for possible inverse imple-

mentations (e.g., full waveform inversion, a.k.a., FWI). Recently, a few 
studies [50–53] show the efficacy of PINN succeeding in solving FWI 
problems in the context of acoustic wave equations. Note that the acous-

tic wave equation is generally used to model wave propagation in the 
deep subsurface (e.g., at the km scale), which is sometimes inapplicable 
to near-surface waveform simulation and inversion [54]. Elastic wave 
equations provide a solution to near sub-surface wave propagation mod-

eling. To this end, we establish a PINN model for solving elastic wave 
equations (i.e., a more complex PDE system) in semi-infinite domain 
with inhomogeneous material profiles. We also design a PINN-based 
surrogate model to directly infer the full waveforms given diverse load-

ing locations, which, to the best of our knowledge, is the first attempt 
in the context of seismic wave propagation modeling. The main contri-

butions of this paper are three-fold. First, we introduce the absorbing 
boundary condition (ABC) into PINN to deal with truncated boundaries 
in semi-infinite domain, which works as a soft regularizer in network 
optimization, to enable reliable wave propagation. Second, a temporal 
decomposition training strategy is presented to improve the scalability 
and solution accuracy of our PINN architecture for large-scale model-

ing. Lastly, we validate the effectiveness of our approach for elastic 
wave propagation modeling compared with the reference numerical re-

sults under various scenarios (e.g., different material distributions and 
loading conditions).

The rest of the paper is organized as follows, apart from this In-

troduction section. Section 2 formulates the scientific problem of seis-

mic wave propagation. Section 3 presents the details of the specific 
PINN model, an introduction to ABC, the sequential training scheme 
via domain decomposition, and the strategy for parametric surrogate 
modeling. In Section 4, we show the results of extensive numerical 
experiments to evaluate the performance of our proposed method. Sec-

tion 5 discusses the advantages and limitations of the current method 
as well as directions for future research. Section 6 concludes the entire 
2
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2. Problem formulation

In this paper, we aim to investigate the potential of PINN for seismic 
wave propagation modeling in 2D elastic media. The specific governing 
equations of interest are given by [55]
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(1)

where {𝑥, 𝑦} and 𝑡 denote the spatial and temporal coordinates, respec-

tively; {𝑢0, 𝑢1} are the two displacement variables (horizontal and ver-

tical, respectively). 𝜌 is the density and {𝜆, 𝜇} represent Lamé constants 
of the medium. Regarding the setting of boundary conditions (BCs), we 
provide a detailed illustration in Section 3.2. In addition, Eq. (1) can 
also be rewritten in a matrix formulation, which is summarized as:

𝐮𝑡𝑡 =𝐃1𝐮𝑥𝑥 +𝐇𝐮𝑥𝑦 +𝐃2𝐮𝑦𝑦, (2)

where 𝐮 = [𝑢0, 𝑢1]⊤ is the displacement vector and the subscripts denote 
the partial derivatives, e.g., 𝐮𝑥𝑥 = 𝜕2𝐮∕𝜕𝑥2. Moreover, {𝐃1, 𝐃2, 𝐇} refer 
to the coefficient matrices associated with material properties, which 
are expressed as

𝐃1 =
[
𝛼2 0
0 𝛽2

]
, 𝐃2 =

[
𝛽2 0
0 𝛼2

]
, 𝐇 =

[
0 𝛼2 − 𝛽2

𝛼2 − 𝛽2 0

]
. (3)

Herein, 𝛼 and 𝛽 represent the longitudinal and transverse wave speeds, 
respectively, which can be calculated through

𝛼 =

√
𝜆+ 2𝜇
𝜌

, 𝛽 =
√
𝜇

𝜌
. (4)

We observe that Eq. (1) is characterized by many second-order 
derivatives, which could result in a large computational graph for 
PINNs. The previous work [26] has demonstrated that reducing the or-

der of automatic differentiation (i.e., the order of derivatives in the 
governing equations) can effectively improve the learnability and the 
solution accuracy of PINNs. Hence, we re-formulate the governing equa-

tions in Eq. (1) to an equivalent state-space form, which is given by

𝜌𝐯𝑡 =𝐐𝝈,

𝝈𝑡 =𝐂𝝐𝑡,

𝐮𝑡 = 𝐯,

(5)

where 𝐮 = [𝑢0, 𝑢1]⊤ and 𝐯 = [𝑣0, 𝑣1]⊤ refer to the displacement and ve-

locity vectors, respectively. {𝝈, 𝝐𝑡} denote the corresponding stress and 
strain rate vectors, which are expressed as

𝝈 =
[
𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦

]⊤
,

𝝐𝑡 =
[
𝜕𝑣0
𝜕𝑥
,
𝜕𝑣1
𝜕𝑦
,
𝜕𝑣0
𝜕𝑦

+
𝜕𝑣1
𝜕𝑥

]⊤
.

(6)

Note that {𝜎𝑥𝑥, 𝜎𝑦𝑦} represent the normal stresses along 𝑥-dimension 
and 𝑦-dimension, respectively; 𝜎𝑥𝑦 is the shear stress. In addition, 𝐐 is 
an operator matrix and 𝐂 represents the constitutive tensor, which are 
formulated as

𝐐 =

[ 𝜕
𝜕𝑥

0 𝜕
𝜕𝑦

0 𝜕
𝜕𝑦

𝜕
𝜕𝑥

]
,

𝐂 =
⎡⎢⎢⎣
𝜆+ 2𝜇 𝜆 0
𝜆 𝜆+ 2𝜇 0
0 0 𝜇

⎤⎥⎥⎦.
(7)

In essence, Eq. (5) represent the governing equations of elastodynamics 
under the assumption of plane strain [56].

Our objective is to leverage PINN for forward simulation of elastic 

wave propagation, including solving the specific PDEs and paramet-
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ric surrogate modeling. To be more precise, we aim to solve the seismic 
wave propagation equations in elastic media (as shown in Eq. (1) or (2)) 
using PINN in a given semin-infinite domain. We only rely on accessi-

ble physical principles (i.e., governing equations and I/BCs) to optimize 
the entire network without any labeled data. In the part of parametric 
surrogate modeling, we build a PINN architecture to extrapolate the 
seismic responses with respect to different loading positions. Herein, a 
new variable 𝐱𝑐 is introduced into PINNs apart from the typical coordi-

nation information (e.g., {𝑡, 𝑥, 𝑦}). Here, 𝐱𝑐 is used to mark the specific 
spatial loading location of interest, which serves for both training and 
extrapolation.

3. Methodology

In this section, we introduce a new PINN architecture for forward 
modeling of elastic wave propagation in semi-infinite domain. Consid-

ering the characteristics of seismological tasks, the ABC is applied on 
the truncated boundaries to eliminate wave reflection due to bound-

ary effect. A domain decomposition training strategy is then intro-

duced to handle large-scale simulations. Furthermore, we also propose 
a specifically-designed DNN-based framework for parametric surrogate 
modeling, which is slightly different from vanilla PINN used for solving 
generic PDEs.

3.1. PINNs

DNNs have received considerable attention in the scientific com-

puting community thanks to their theoretical universal approximation 
theory [57,58]. Previous implementations of DNNs for scientific tasks 
generally rely on a large amount of labeled data. Nevertheless, the re-

cent breakthrough of PINNs [16] has enabled learning in a “small data” 
regime by incorporating physical constraints (e.g., governing equations 
and I/BCs) into the networks. Typically, a PINN architecture is com-

posed of an input layer, multiple hidden layers and an output layer. 
Each layer is designated with specific number of neurons. For instance, 
the mathematical formulation of the connection between the (𝑖 − 1)-th 
and the 𝑖-th hidden layer is given by

𝐗𝑖 = 𝜎
(
𝐖𝑖𝐗𝑖−1 + 𝐛𝑖

)
, 𝑖 ∈ [1, 𝑛], (8)

where {𝐖𝑖, 𝐛𝑖} denote the corresponding weight matrix and bias vector 
at the 𝑖-th layer, respectively; 𝜎(⋅) is a nonlinear activation function; 𝑛 is 
the number of hidden layers. Here, {𝐗𝑖−1, 𝐗𝑖} are the input and output 
variables at the 𝑖-th layer, respectively. Note that there is no activation 
function for the output layer (i.e., the last layer). The general goal of 
PINNs is to leverage DNNs to approximate the solutions of PDEs of in-

terest with spatial or spatiotemporal input coordinates (e.g., {𝑡, 𝑥, 𝑦} for 
2D time-dependent dynamics). Herein, the difference between general 
DNN-based solvers and PINNs lies in the introduction of the physics loss 
apart from data loss. The physics loss is obtained based on the strong 
form of PDEs and the derivative terms of interest are calculated via 
automatic differentiation [59]. We discuss the specific network archi-

tecture for our tasks in Section 3.3.

3.2. Absorbing boundary condition

As the seismic wave propagation problem commonly features a 
semi-infinite domain (e.g., in Earth), the computational domain needs 
to be truncated to avoid unnecessary computation. Nevertheless, one 
of the main obstacles is to guarantee that the wave propagates out 
the computational domain without interfering with the upstream field 
when it passes through truncated boundaries. To overcome this issue 
in numerical simulations, researchers have developed various math-

ematical formulations [55,60–62] to describe ABCs on the truncated 
3

boundaries. Recent research on PINNs [53,63] has started to explore 
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Fig. 1. Illustrative diagram of the absorbing boundary condition. The local co-

ordinate system is determined by 𝑥′ (tangential direction) and 𝑦′ (outer normal 
direction) axes. The 𝑥 and 𝑦 axes define the global coordinate.

the integration of ABCs in wave propagation applications. The illustra-

tive diagram of the ABC is presented in Fig. 1. In this paper, we consider 
one of the most popular ABCs, which is given by

𝐮𝑡𝑦′ +𝐂1𝐮𝑡𝑡 +𝐂2𝐮𝑡𝑥′ +𝐂3𝐮𝑥′𝑥′ = 𝟎, (9)

where 𝑥′ (tangential direction) and 𝑦′ (outer normal direction) axes 
determine the local coordinate system. In addition, {𝐂1, 𝐂2, 𝐂3} are co-

efficients matrices reflecting the material properties of the medium, 
written as

𝐂1 =
[
1∕𝛽 0
0 1∕𝛼

]
, 𝐂2 = (𝛽 − 𝛼)

[
0 1∕𝛽

1∕𝛼 0

]
, 𝐂3 =

1
2

[
𝛽 − 2𝛼 0

0 𝛼 − 2𝛽

]
.

(10)

Note that the ABC described in Eq. (9) is defined by using the local 
coordinate system. Therefore, a proper coordinate transformation is re-

quired for automatic differentiation in PINNs. By introducing the ABC 
into the network, we are free from simulating a large computational 
domain with PINNs. Moreover, since the PINN deals with the strong 
form of the governing equation, Eq. (9) can be used readily to impose 
the corresponding BCs. In contrast, the variational form of the analyt-

ical law is required in traditional finite element analysis (FEA), which 
brings additional complexity to numerical implementation.

3.3. Network architecture

Furthermore, the overall architecture of our designed PINNs for 
modeling seismic wave propagation is presented in Fig. 2. Three sep-

arate DNNs are employed to approximate the variables of displacement 
𝐮, velocity 𝐯, and stress 𝝈 considering their different numerical scales. 
After obtaining these field variables, we utilize the automatic differen-

tiation [59] to evaluate the partial derivatives of interests with respect 
to the input coordinates. Based on the differential terms, we construct 
a loss function (𝐖, 𝐛) of the concerned physical laws in PINN, includ-

ing the governing equations and I/BCs (including the ABCs). In specific, 
𝑒(𝐖, 𝐛) is a mean square error (MSE) loss that follows the analytical 
expressions of elastodynamics as shown in Eq. (5). Such a loss compo-

nent helps preserve the inherent PDE structure. The I/BC loss 𝑐(𝐖, 𝐛)
is also in MSE form that measures the misfit in the context of the given 
I/BCs. It is noteworthy that this type of PINNs does not rely on ob-

servation data loss in forward simulation. Namely, only 𝑒 and 𝑐 are 
sufficient to constrain the network and also respect the consistent phys-

ical principles. The optimal network parameters {𝐖∗, 𝐛∗} are learned 
by minimizing the combined loss function, as follows

{𝐖∗,𝐛∗} = argmin
{𝐖,𝐛}

{𝜂0𝑒(𝐖,𝐛) + 𝜂𝑐(𝐖,𝐛)}, (11)

where 𝜂0 and 𝜂 are weighting coefficients (i.e., user-defined hyperpa-

rameters).

3.4. Sequential training via domain decomposition

In this part, we present the sequential training scheme via domain 

decomposition. The reasons for applying domain decomposition are 



Computer Physics Communications 295 (2024) 109010P. Ren, C. Rao, S. Chen et al.

Fig. 2. Overview of the proposed PINN framework for seismic wave propagation, including the network architecture and the physics-informed loss function. Three 
separate DNNs are used to approximate the displacement 𝐮, velocity 𝐯, and stress 𝝈, respectively. Automatic differentiation is exploited for obtaining the derivative 
terms and further constructing the loss function. Note that the governing equations are formulated in the first-order representation, while the ABC is expressed in 
the second-order formulation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
two-fold. Firstly, the scientific problems in geophysics are usually de-

fined in large physical domains, especially seismic wave propagation. 
Thus, the computational cost of numerically estimating the solutions 
of such tasks could be extremely high, which poses a major challenge 
to PINNs. In addition, the global approximation property of PINNs 
would lead to a heavy burden on the computational memory of comput-

ers/servers. To overcome these computation bottlenecks in large-scale 
scientific problems, we propose a scalable sequential training strategy 
via domain decomposition, as shown in Fig. 3. The domain decompo-

sition approach has been employed in prior research works [64–66]

within spatial domains, where interface points are sampled to constrain 
the continuity of solutions. It can reduce the computational cost and 
facilitate the convergence of PINNs. Noteworthy, domain decomposi-

tion is a well-established concept in traditional numerical methods for 
parallel computation of PDEs [67].

Nevertheless, different from the aforementioned strategy, we adopt 
domain decomposition along the time dimension in this paper. This is 
because we observe more regularity in temporal interfaces compared 
with spatial domains. To be more specific, we keep the temporal inter-

faces between two sub-domains identical, which facilitates the genera-

tion of the interface points used for “stitching” PINNs. Furthermore, a 
particular PINN is employed to approximate the solution of each sub-

domain, and the final global solution is obtained by stitching each local 
solution from every PINN together.

As discussed in [65], there exist several benefits of using the do-

main decomposition scheme, such as better representation capability, 
improved accuracy of solution due to the local approximation, the 
flexibility of choosing hyperparameters for each sub-domain, and the 
convenience for multi-GPU parallelization. However, these benefits are 
enjoyed at the cost of more coding work. Specifically, an additional loss 
component  , interface loss that computes the discrepancy of solu-

tions on interfaces from adjacent sub-domains, is included to guarantee 
the continuity of solutions on the interfaces, e.g., 𝑖 (𝑖 = 1, 2, 3) in Fig. 3. 
Hence, considering 𝑚 subdomains, the overall loss function can be re-
4

written as
Fig. 3. Schematic of temporal domain decomposition.

(𝐖,𝐛) = 𝜂0
𝑚∑
𝑖=1


𝑖
𝑒(𝐖𝑖,𝐛𝑖)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
equation loss

+𝜂1
𝑚∑
𝑖=1


𝑖
𝑐(𝐖𝑖,𝐛𝑖)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
I/BC loss

+ 𝜂2
𝑚−1∑
𝑖=1


𝑖

(𝐖𝑖,𝐖𝑖+1,𝐛𝑖,𝐛𝑖+1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
interface loss

,

(12)

where 𝜂’s denote the loss weighting coefficients; 𝑖𝑒 and 𝑖𝑐 represent 
the residual loss functions of governing equations and I/BCs, respec-

tively, for the 𝑖-th sub-domain. The loss function for the 𝑖-th interface is 
expressed as


𝑖

(𝐖𝑖,𝐖𝑖+1,𝐛𝑖,𝐛𝑖+1) =

𝑁∑
𝑗=1

‖‖‖𝐳𝑖+1
(𝐖𝑖+1,𝐛𝑖+1; 𝑡𝑗 ,𝐱𝑗 ) − 𝐳𝑖


(𝐖𝑖,𝐛𝑖; 𝑡𝑗 ,𝐱𝑗 )

‖‖‖22,

(13)
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Fig. 4. The DNNs part of our proposed surrogate modeling scheme. Here we only consider the spatial variance in 𝑥-dimension of a 2D domain, which means 
𝐱𝑐 = [𝑥𝑐 , 𝑦𝑐 ] and 𝑦𝑐 = 0. In addition, {𝑡, 𝑥, 𝑦} are spatiotemporal coordinates and {𝝈, 𝐯, 𝐮} denote the output variables. There are three different DNNs for learning the 
corresponding solution variables.
Here, {𝑡𝑗 , 𝐱𝑗} denotes the 𝑗-th collocation point on the interface, 𝑗 =
1, 2, ..., 𝑁 ; 𝐳𝑖


and 𝐳𝑖+1


represent the physical variables, e.g., {𝐮, 𝐯, 𝝈}, 

for the 𝑖-th and the (𝑖 + 1)-th sub-domains, respectively. Note that 𝐳 can 
be also augmented to account for the time/spatial derivatives of the 
physical variables to further enhance the continuity condition at the 
interface.

In general, our decomposition strategy on the time domain is easy to 
implement and retains excellent performance in forward seismic wave 
propagation. More details on numerical experiments and results can be 
found in Section 4.

3.5. Surrogate modeling for parametric loading

Previously, Sun et al. [19] presented a new direction for surrogate 
modeling of fluid flows using PINNs. However, the potential of PINNs 
for surrogate modeling in the field of solid mechanics is still under-

explored though the vanilla PINN [16] shows promises for forward and 
inverse analysis of various PDE systems. To this end, we propose a new 
PINN strategy for surrogate modeling of elastic wave propagation. Our 
goal is to directly predict the corresponding seismic responses under 
different loading scenarios based on the well-trained PINN model. In 
particular, we consider different source locations while keeping the load 
profile the same. This is commonly seen in seismic wave inversion at the 
engineering scale (e.g., collecting waveforms given a pre-defined load 
profile applied at different locations on the Earth’s surface [68]).

An overview of our designed surrogate modeling scheme is illus-

trated in Fig. 4. Let us define a new variable 𝐱𝑐 to represent the spatial 
coordinate of the loading position. 𝐱𝑐 is also considered as an input 
variable apart from the spatiotemporal coordinate {𝑥, 𝑦, 𝑡} used in Sec-

tion 3.3. Then, PINNs are utilized to approximate the solutions with 
respect to the loading scenario in the training stage. In the vanilla PINN 
collocation points are usually sampled in the spatiotemporal domain 
to impose the governing equations and I/BCs [16]. As the parametric 
variable (i.e., 𝐱𝑐) is introduced to the surrogate model, we also need to 
sample different values for the parametric variable (e.g., 𝐱𝑐 ∈ {−5, 0, 5}) 
to ensure the governing equations and I/BCs are enforced for differ-

ent loading positions. In other words, 𝐱𝑐 serves as an additional input 
variable to construct the residual loss of the essential BC on the load-

ing area. It is also worthwhile to mention that the computational cost 
increases drastically as the dimensionality of the input increases. After 
training the network, we directly infer the specific seismic responses 
by changing 𝐱𝑐 to other loading positions of interest. The inspiration of 
this scheme is that the loading positions at training and extrapolation 
stages share linear relationships and DNNs are capable of capturing the 
solution variances caused by the change of spatial information [69].

4. Numerical experiments and results

In this section, a set of numerical examples are implemented to eval-

uate the capability of our designed PINN architectures for modeling 
5

elastic wave propagation in semi-infinite domain. We consider the 2D 
subsurface for all the numerical experiments. In particular, two distinc-

tive material distributions (i.e., Case 1 and Case 2) are designed for 
solving the elastic wave equations within a truncated domain, and two 
parametric loading experiments (i.e., Case 3 and Case 4) are displayed 
for validating the effectiveness of surrogate modeling. Moreover, the 
ABC described in Section 3.2 is adopted in PINNs to avoid wave re-

flection near the truncated boundaries. We also present the correspond-

ing finite element solutions simulated in enlarged domains to examine 
the accuracy of PINN results. All the numerical experiments are pro-

grammed in TensorFlow [70] and conducted on an NVIDIA Tesla V100 
GPU card (32G) in a standard workstation.

4.1. Domain definition

To simplify, we consider the same physical domain and loading 
scenario for four numerical cases in this paper. The subsurface is ex-

cited by the normal traction of the Ricker wavelet type on the surface, 
which concentrates near the mid-line of the domain (i.e., 𝑥 ∈ [−8, 8], 
unit: [m]). The analytical expression of the normal stress applied on the 
surface is

𝐭𝑛(𝑥,0, 𝑡) = 𝑇0
[
1 − 2𝜋2(𝑡− 𝑡𝑠)2𝐹 2

𝑟

]
e−𝜋

2(𝑡−𝑡𝑠)2𝐹 2
𝑟 −(

𝑥
𝐿
)2 [MPa], (14)

where 𝑇0 is the amplitude of the normal traction, 𝐿 is the length scale 
of the normal traction, 𝑡𝑠 is the offset of the Ricker wavelet and 𝐹𝑟 is 
the frequency of the excitation. To be more specific, we define 𝑇0 = 2.0
[MPa], 𝐿 = 1.8 [m], 𝑡𝑠 = 0.1 [s] and 𝐹𝑟 = 15 [Hz]. Moreover, the material 
density 𝜌 and Poisson’s ratio 𝜈 are set to be 0.002 [g/mm3] and 0.25, 
respectively.

Furthermore, the computational domain is truncated into 𝑥 × 𝑦 ∈
[−25, 25] × [0, 50] (unit: [m]) to avoid unnecessary computation. In ad-

dition to the surface under normal traction, the remaining three edges 
are modeled as absorbing boundaries with the ABC as shown in Eq. (9). 
Note that we adopt the unit system of [mm], [MPa], and [ms] in the 
simulation to ensure the output variables (i.e., displacement, velocity, 
and stress) having similar numerical scales. In addition, the time du-

ration for Case 1 and Case 2 is defined as 400 [ms]. For parametric 
loading, we reduce it to 200 [ms] since our main goal is to evaluate the 
performance of our framework in the context of surrogate modeling. It 
is noteworthy that the material distribution for each case is different 
and described as follows.

4.2. The sampling of collocation points

In this paper, we integrate the traditional LHS method and Gaussian 
Quadrature [71] in FEA for sampling collocation points. The reason for 
such a hybrid strategy is that we observe more uniformly distributed 
collocation points based on Gaussian Quadrature compared with the 
LHS method. Therefore, we discretize the entire spatiotemporal domain 
with quadrilateral and then sample Gaussian points. In addition, we 
consider using the LHS approach as a supplement for adding more col-
location points near the source of the wavefield.
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Fig. 5. The computational domain with a mixed material distribution of linear and Gaussian functions. 𝐚. The spatial domain is defined with 𝑥 × 𝑦 ∈ [−25, 25] × [0, 50]
(unit: [m]). ABC denotes the absorbing boundary condition. 𝐛. The material distribution is presented along the depth 𝑦.

Fig. 6. The results of stress and velocity distributions obtained from our proposed PINN and FEA in Case 1. We select three representative snapshots (i.e., 𝑡 =
6

0.10, 0.20, 0.30) for comparison. 𝐯0 , 𝐯1 , and 𝐯M denote the horizontal velocity, the vertical velocity, and the magnitude respectively.
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Fig. 7. Vertical velocity distributions (i.e., 𝐯1) at various time steps on the surface (𝑦 = 0, left) and mid-line (𝑥 = 0, right) in Case 1. The synthetic measurement is 
obtained from FEA on an enlarged domain (𝑥 × 𝑦 ∈ [−75, 75] × [0, 100], unit: [m]).
7

Fig. 8. Error propagation of our proposed PINN framework for stress and velocity variables in Case 1.
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Fig. 9. The illustrative diagram of the 2D subsurface with two layers. 𝐚. The spatial domain is defined with 𝑥 × 𝑦 ∈ [−25, 25] × [0, 50] (units: [m]). ABC denotes the 
absorbing boundary condition. 𝐛. The material distribution is presented along the depth 𝑦.

Fig. 10. The results of stress and velocity distributions obtained from our proposed PINN and FEA in Case 2. We select three representative snapshots (i.e., 
8

𝑡 = 0.10, 0.20, 0.30 [s]) for comparison. 𝐯0 , 𝐯1 , and 𝐯M denote the horizontal velocity, the vertical velocity, and the magnitude respectively.
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Fig. 11. Vertical velocity distributions (i.e., 𝐯1) at various time steps on the surface (𝑦 = 0, left) and mid-line (𝑥 = 0, right) in Case 2. To obtain the PINN prediction, 
the truncated domain is decomposed into two parts along the time dimension. Each part is modeled with a separate PINN.
4.3. Evaluation metric

We define an accumulative root-mean-square error (a-RMSE) to 
measure the error propagation between the learned waveforms and the 
ground truth, expressed as

a-RMSE(𝑡𝑖) =
√

MSE
(
̂

(1∶𝑖)
−

(1∶𝑖)
ref

)
(15)

where ̂
(1∶𝑖)

and  (1∶𝑖)
ref

denote the predicted and the reference solu-

tions, respectively, from the 1st to the 𝑖th step. It describes the misfit 
of all snapshots before the time instance 𝑡𝑖. Note that the ground truth 
data are simulated with numerical solvers.

4.4. Solving equations

4.4.1. Case 1 – linear and Gaussian material distribution

In the first example, we consider a 2D subsurface with the mate-

rial property following a combination of linear and Gaussian functions, 
9

where the Lamé constants of the media are given by
𝜆(𝑥, 𝑦) = 𝜇(𝑥, 𝑦) = 80 + 0.64𝑦+ 38.4e−
(𝑦−25)2
250 [MPa]. (16)

The graphic illustration of the physical domain and the material dis-

tribution is exhibited in Fig. 5. Note that this material distribution is 
relatively simple and smooth. Therefore, domain decomposition is not 
applied here since there is no harsh requirement for network size and 
collocation points. In specific, we employ two separate deep networks 
for learning the displacement 𝐮 and the velocity 𝐯. Each network con-

sists of four hidden layers with 16, 80, 80, and 80 neurons respectively. 
Moreover, another independent network is designed for approximat-

ing the stress variable 𝝈, where four hidden layers (24, 120, 120, and 
120 neurons) are used. Noteworthy, a larger network is considered for 
learning 𝝈 due to the inherent complexity of the stress variable. We 
sample 218, 084 collocation points within the physical domain to en-

force the governing equations, among which 50, 000 points are near 
the wave source. In addition, 10, 000, 58, 431, and 12, 000 points are 
sampled on IC, each absorbing boundary and the surface boundary, 
respectively. The sampling method for collocation points is slightly dif-
ferent from the Latin hypercube sampling (LHS) strategy [72], which is 



Computer Physics Communications 295 (2024) 109010P. Ren, C. Rao, S. Chen et al.

Fig. 12. Error propagation of our proposed PINN framework for stress and velocity variables in Case 2.
typically used in PINN applications. The related details are elaborated 
in 4.2.

Furthermore, we apply Adam [73] and L-BFGS-B [74] optimizers to 
sequentially train the networks. In Case 1, 4, 500 Adam and 35, 000 L-

BFGS-B iterations are used. Note that we consider the sine activation 
function [63,75] in the networks. The selection of hyper-parameters is 
described in Appendix A. What’s more, to generate the reference solu-

tion, we also perform the numerical simulation of this problem by FEA 
using an enlarged computational domain (i.e., 𝑥 ×𝑦 ∈ [−75, 75] ×[0, 100], 
unit: [m]), where the waves propagate out the truncated domain natu-

rally.

The comparative results of snapshots are shown in Fig. 6. It is obvi-

ous that the solution of PINN matches the ground truth very well. The 
excellent performance is further validated by comparing the vertical ve-

locity distributions on the surface (i.e., 𝑦 = 0 [m]) and the mid-line (i.e., 
𝑥 = 0 [m]) (see Fig. 7). The zoom-in results also exhibit a remarkable 
agreement between the prediction of PINN and the reference solution. 
In addition, we showcase the error propagation curves of stress 𝝈 and 
velocity 𝐯 in Fig. 8. The a-RMSE errors of the snapshots increase mildly 
and remain generally small (i.e., < 0.005). For Case 1, with a relatively 
simple material distribution (i.e., linear and Gaussian function), the 
example shows the excellent solution accuracy of our proposed PINN 
architecture.

4.4.2. Case 2 – two-layer material distribution

The second numerical case is a two-layer subsurface model as shown 
in Fig. 9. More precisely, we prescribe the material property of the sub-

surface as

𝜆(𝑥, 𝑦) = 𝜇(𝑥, 𝑦) = 80 + 80
1 + e−10(𝑦−25)

, (17)

which is under the assumption of elasticity. In this case, due to the 
complexity of the material property, we consider using more collocation 
points than those in Case 1. Hence, in spite of being truncated, the 
computational domain is still very large and cannot fit into the memory 
(i.e., 32 GB) of one single Tesla V100 GPU. Therefore, we decompose 
the spatiotemporal domain into two parts along the time dimension 
(i.e., 𝑡 ∈ [0, 0.2] ∪ [0.2, 0.4], units: [s]). The solution of each subdomain is 
approximated by a separate PINN as described in Sub-section 3.4.

Herein, we utilize the identical network architecture employed in 
Case 1 to learn the displacement (𝐮), the velocity (𝐯), and the stress 
(𝝈) variables. Besides, 200, 188 collocation points are sampled within 
the domain to evaluate the residual of the governing equations. 4, 000
points are sampled on each absorbing boundary while 8, 000 points are 
generated for the surface. In addition, 6, 135 interface points are used 
to guarantee the continuity of the solution. Each PINN is trained with 
150, 000 iterations of L-BFGS-B. Note that the configuration introduced 
in this part is specified for each sub-domain.

Fig. 10 presents snapshots of the velocity and stress fields predicted 
by PINN and FEA at different time steps. We can see that the overall pre-
10

diction by PINN agrees with the reference solution (i.e., FEA) very well. 
Fig. 13. The illustrative diagram of the 2D subsurface with homogeneous ma-

terial for parametric loading. The yellow stars denote the centers of the loading 
areas. The truncated boundaries are regarded as free boundaries due to the ho-

mogeneous nature of the medium. The absorbing boundary condition is not 
required here.

It is interesting to point out that for 𝑡 = 0.30 [s], the reference solution 
of FEA is characterized by more details on the reflected wave compared 
with the learned solution by PINN. This is because the reflected wave 
has a much smaller scale than the incident wave, which poses a major 
challenge to the optimization of the loss function [49]. This observation 
implies the limitation of the point-wise global approximation property 
of PINN. When scientific problems feature fine-scale patterns, the PINN 
that leverages fully-connected NNs as approximators might be unable 
to capture some delicate phenomena. The comparisons of the velocity 
distribution on the surface (i.e., 𝑦 = 0 [m]) and mid-line (i.e., 𝑥 = 0 [m]) 
are shown in Fig. 11 to quantitatively examine the accuracy of the pro-

posed PINN. We observe that the prediction of PINN matches perfectly 
with the reference solution, which demonstrates its excellent accuracy. 
Moreover, the error propagation is displayed in Fig. 12. The error evo-

lution is relatively larger than those of Case 1 due to a more complex 
material distribution, but the solution performance is still satisfactory 
thanks to the domain decomposition strategy.

4.5. Parametric loading

4.5.1. Case 3 – homogeneous material

For the parametric loading case, we consider a homogeneous ma-

terial in the physical domain (see Fig. 13), where Young’s modulus 
𝐸 is defined as 200 [MPa]. The spatial domain size is also set as 
𝑥 × 𝑦 ∈ [−25, 25] × [0, 50] (unit: [m]). The time duration for this case is 
0.2 [s]. The domain decomposition is not applied here due to the rela-

tively small domain size. Moreover, the loading follows the formulation 
of Eq. (14) with 𝑇0 = −2.0 [MPa], 𝐿 = 5.0 [m]. However, different from 
solving seismic wave propagation, we incorporate three excitation po-

sitions in 𝐱𝑐 (e.g., [−5, 0, 5], unit: [m]) in addition to the spatiotemporal 

coordinate information (i.e., {𝑥, 𝑦, 𝑡}), which works as loading parame-
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Fig. 14. The snapshots of stress and velocity from our proposed PINN and FEA in Case 3. We present two interpolation (𝑥 = 0, 5 [m]) and two extrapolation (𝑥 = 10, 15
11

[m]) results. The time step is select at 𝑡 = 0.2 [s].
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Fig. 15. Error propagation of our proposed PINN framework for stress and velocity variables in Case 3. Four loading scenarios are selected in the diagram, i.e., 
𝑥 = 0, 5, 10, 15 [m].
𝑐

ters for the surrogate modeling. Each location is defined as the center 
of the loading area.

We apply three distinct fully-connected NNs to approximate three 
variables {𝐮, 𝐯, 𝝈} respectively, with five hidden layers per network. 
Each layer includes 100 neurons. We sample 152, 043 collocation points 
over the spatiotemporal domain and additional 50, 000 points near the 
wave source to evaluate the residual of the governing equations. More-

over, 10, 500 and 88, 236 points are sampled for IC and the surface 
boundary condition, respectively. We train the network with 60, 000 L-

BFGS-B epochs until convergence. In specific terms, we define three 
loading positions of 𝐱𝑐 = {−5, 0, 5} (unit: [m]) to train the network. 
Based on the trained model, we directly infer/extrapolate the dynamics 
under other loading positions (e.g., 𝐱𝑐 = 10, 15 [m]).

The results of parametric loading are shown in Figs. 14 and 15. We 
show representative snapshots (i.e., 𝑡 = 0.2 [s]) of two training (𝑥𝑐 = 0, 5
[m]) and two extrapolation scenarios (𝑥𝑐 = 10, 15 [m]). As shown in 
Fig. 14, both the training and extrapolation results from our proposed 
PINN match the corresponding ground truth well. It is worthwhile to 
mention that the extrapolation of 𝑥𝑐 = 15 [m] maintains excellent solu-

tion accuracy, which proves the capability of our method for surrogate 
modeling. In addition, the propagation error in Fig. 15 further validates 
the great performance in the context of solving the wave equations 
under parametric loading. In particular, the error propagations of ex-

trapolation present similar evolving patterns as those of the training 
scenarios. The errors of the stress variable increase mildly, while the er-

rors of the velocity variable show relatively large increases but are still 
acceptable.

4.5.2. Case 4 – inhomogeneous material

We further assess the effectiveness of our proposed method on an 
inhomogeneous material with properties identical to Case 1. The linear 
and Gaussian distribution of the material is mathematically described 
in Eq. (16). Other experimental details remain consistent with Case 3.

In Case 4, we employ two separate 4-layer fully-connected neural 
networks to learn the displacement and velocity variables (𝐮,𝐯). Each 
network consists of hidden neurons arranged as 16, 100, 100, and 100. 
Additionally, another 4-layer network is utilized to estimate the stress 
variable (𝝈), with hidden neurons set to 16, 150, 150, and 150. The 
configuration of collocation points remains the same as in Case 3. For 
training, we utilize 60,000 L-BFGS-B epochs, and we consider three 
excitation locations at 𝐱𝑐 ([−5, 0, 5], unit: [m]) to learn the surrogate 
model. Furthermore, we extrapolate the seismic dynamics to other load-

ing positions (e.g., 𝐱𝑐 = 10, 15 [m]).

Fig. 16 displays the representative snapshots at 𝑡 = 0.2 [s] for two 
training scenarios (𝑥𝑐 = 0, 5 [m]) and two extrapolation scenarios (𝑥𝑐 =
10, 15 [m]). The proposed PINN approach demonstrates excellent agree-

ment with the corresponding ground truth in both training and extrapo-

lation. Similarly to Case 3, even at 𝑥𝑐 = 15 [m], the extrapolation results 
also match the ground truth well, which further validates the effective-
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ness of our surrogate modeling strategy. Moreover, Fig. 17 illustrates 
Table 1

Root mean square error of the PINN prediction against the 
finite element solution. The prediction error is evaluated on 
the entire spatiotemporal domain and absorbing boundaries 
(i.e., left, right and lower edges).

Model Entire domain Boundaries

Velocity Stress Velocity Stress

w/ ABC 5.2 × 10−3 3.7 × 10−3 7.2 × 10−3 6.2 × 10−3

w/o ABC 8.1 × 10−3 6.0 × 10−3 1.0 × 10−2 9.3 × 10−3

the error propagation of stress and velocity variables under parametric 
loading. While the extrapolation shows slightly larger error propagation 
compared to the training scenarios, the overall performance remains 
satisfactory.

4.6. Ablation study

In this part, we present an ablation study to verify the effectiveness 
of the absorbing boundary condition (ABC) introduced in Section 3.2. 
Specifically, we train a network without the ABC being enforced2 us-

ing the numerical example of Case 1. Note that the other settings (e.g., 
collocation points, network size, optimizer, etc.) are kept the same for 
these two networks. Table 1 compares the prediction error against the 
finite element solution between the regular and ablated PINN. It can be 
seen that the proposed PINN (w/ ABC) consistently outperforms the ab-

lated PINN regarding the prediction error on the entire spatiotemporal 
domain and on the artificial boundaries. In addition, the comparison of 
the velocity distribution at the lower edge is provided in Fig. 18 where 
the result with ABC agrees well with the reference solution. To con-

clude, the introduction of ABC is critical to the accurate prediction of 
PINN.

5. Discussions

We herein discuss the current limitations of the proposed PINN 
framework and the outlook of our future work. Generally, the main 
potential concerns come from (1) the soft imposition scheme of en-

forcing I/BCs and (2) the issues of slow convergence and scalability 
due to the setting of fully-connected NNs. More precisely, the typical 
PINNs consider the physical principles as loss regularizer terms in the 
optimization. However, it is challenging for such an implementation 
to guarantee the learned dynamics rigorously following the underly-

ing physical laws. This observation is empirically validated by a recent 
work [76] which analyzes the failure modes of PINNs. Therefore, in-

stead of using a soft enforcement strategy, we would like to explore 
the possibility of encoding the known physics (e.g., the PDE structure) 
2 The loss function Eqn. (A.1) would no longer have 𝑎𝑏𝑐 term.
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Fig. 16. The snapshots of stress and velocity from our proposed PINN and FEA in Case 4. We present two interpolation (𝑥 = 0, 5 [m]) and two extrapolation (𝑥 = 10, 15
[m]) results. The time step is select at 𝑡 = 0.2 [s].
into the networks [44]. In addition, PINNs employ fully-connected NNs 
for approximating the solution of PDEs, which can be essentially re-
13

garded as a continuous learning scheme. They are excellent in capturing 
global patterns but show inferior performance in learning local de-

tails compared with discrete learning methods (e.g., convolution-based 

NNs) [23]. Moreover, applying discrete learning has the potential to 
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Fig. 17. Error propagation of our proposed PINN framework for stress and velocity variables in Case 4. Four loading scenarios are selected in the diagram, i.e., 
𝑥𝑐 = 0, 5, 10, 15 [m].

Fig. 18. Vertical velocity distribution on the lower edge.
mitigate the computation burden of learning seismic wave propagation 
in large domains.

Noteworthy, it is also challenging for the current PINN architectures 
to simulate high-frequency seismic wave propagation. For instance, 
when considering a near-surface model with a depth of 50 m, the com-

mon peak frequency is around 100 Hz. This limitation arises due to the 
low-frequency bias of existing PINNs [77]. To address this issue, the 
utilization of physics-informed discrete learning shows promise, as it 
enables the learning of multi-scale features and information across dif-

ferent frequencies. In the future, we will put more research efforts into 
building discrete learning frameworks (e.g., convolutional and graph 
NNs) for forward analysis of spatiotemporal dynamics. In addition, our 
future work will also be placed on extending the proposed model to 
solve full-wave inversion problems.

6. Conclusions

We proposed a new PINN architecture for forward modeling of seis-

mic wave propagation in a semi-infinite domain. It is capable of both 
solving the elastic wave equations and parametric surrogate modeling 
within truncated domains. There are three characteristics highlighted: 
(1) the introduction of the ABC into the network as a soft constraint 
to eliminate boundary effect and avoid expensive computation in semi-

infinite domains; (2) a new sequential training scheme via temporal 
domain decomposition to improve scalability and solution accuracy; 
(3) a parametric surrogate modeling scheme to predict the seismic 
responses under different loading scenarios. Note that the entire net-

work is trained without any labeled data. Furthermore, we evaluate the 
performance of our proposed PINN architectures on various numerical 
cases with different material distributions. The results demonstrate the 
effectiveness of our approach in the context of solution accuracy and 
14

extrapolation capability.
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Appendix A. The selection of hyper-parameters

The general principle of selecting hyper-parameters (i.e., the weight-

ing coefficients for loss terms) is to ensure that each weighted loss term 
shares a similar numerical scale. In our implementation, we first ini-

tialize the entire network with Xavier’s method [78] and then train the 
specific PINN with one iteration in order to evaluate the magnitudes of 

loss terms. Next, the weighting coefficients are defined by making the 

https://github.com/paulpuren/seismic_modeling
https://github.com/paulpuren/seismic_modeling
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Fig. B.1. Convergence curves of loss functions.
Table A.1

The details of weighting hyper-parameters for four numerical cases. “N/A” 
represents being inapplicable to the specific index.

𝜂0 𝜂1 𝜂2 𝜂3 𝜂4 𝜂5 𝜂6

Case 1 10000 1 10000 5 10 10 10000000

Case 2 10000 1 10000 5 10 10 10000000

Case 3 4000000 200 1000000 200 400 400 N/A

Case 4 4000000 200 1000000 200 400 400 10000000

products of the coefficients and the corresponding loss terms close to 
unity. The hyper-parameters used in this study are presented in Ta-

ble A.1. We extend the loss function in Eq. (11) to a more specific 
formulation, which is defined as

 = 𝜂0𝑒 + 𝜂1𝑖𝑐 + 𝜂2𝑠 + 𝜂3𝑣 + 𝜂4𝑛𝑏 + 𝜂5𝑠𝑟𝑐 + 𝜂6𝑎𝑏𝑐 , (A.1)

where {𝑖𝑐 , 𝑠, 𝑣, 𝑛𝑏, 𝑠𝑟𝑐 , 𝑎𝑏𝑐} denote the loss terms for IC, displace-

ment-stress equation, velocity-displacement equation, natural boundary 
condition, wave source condition and the absorbing boundary condi-

tion, respectively. {𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5, 𝜂6} are their corresponding hyper-

parameters. Note that absorbing boundary condition is not required for 
homogeneous material distribution [22] in Case 3 (i.e., parametric load-

ing experiment).

Appendix B. Convergence history

Fig. B.1 displays the convergence history of the four numerical cases. 
In Case 1, the ADAM optimizer is used for the first 4,500 iterations. For 
Cases 2 to 4, L-BFGS-B is used throughout the training to minimize the 
loss function.
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