Check for
Updates

FairSync: Ensuring Amortized Group Exposure in
Distributed Recommendation Retrieval

Chen Xu Jun Xu” Yiming Ding
Gaoling School of Artificial Gaoling School of Artificial Gaoling School of Artificial
Intelligence Intelligence Intelligence
Renmin University of China Renmin University of China Renmin University of China
xc_chen@ruc.edu.cn junxu@ruc.edu.cn dingym97@ruc.edu.cn

Xiao Zhang
Gaoling School of Artificial
Intelligence
Renmin University of China
zhangx89@ruc.edu.cn

ABSTRACT

In pursuit of fairness and balanced development, recommender
systems (RS) often prioritize group fairness, ensuring that specific
groups maintain a minimum level of exposure over a given period.
For example, RS platforms aim to ensure adequate exposure for new
providers or specific categories of items according to their needs.
Modern industry RS usually adopts a two-stage pipeline: stage-1
(retrieval stage) retrieves hundreds of candidates from millions of
items distributed across various servers, and stage-2 (ranking stage)
focuses on presenting a small-size but accurate selection from items
chosen in stage-1. Existing efforts for ensuring amortized group
exposures focus on stage-2, however, stage-1 is also critical for the
task. Without a high-quality set of candidates, the stage-2 ranker
cannot ensure the required exposure of groups. Previous fairness-
aware works designed for stage-2 typically require accessing and
traversing all items. In stage-1, however, millions of items are dis-
tributively stored in servers, making it infeasible to traverse all of
them. How to ensure group exposures in the distributed retrieval
process is a challenging question. To address this issue, we intro-
duce a model named FairSync, which transforms the problem into a
constrained distributed optimization problem. Specifically, FairSync
resolves the issue by moving it to the dual space, where a central
node aggregates historical fairness data into a vector and distributes
it to all servers. To trade off the efficiency and accuracy, the gradient
descent technique is used to periodically update the parameter of
the dual vector. The experiment results on two public recommender
retrieval datasets showcased that FairSync outperformed all the
baselines, achieving the desired minimum level of exposures while
maintaining a high level of retrieval accuracy.
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1 INTRODUCTION

In recent times, the need for fair recommender systems (RS) has
gained prominence in industrial requirements [21, 33]. Among
these requirements, RS platform has the demands of guaranteeing
that specific groups achieve a minimum level of exposure to items
within a defined period, aligning with the perspective of amortized
group max-min fairness (MMF) [2, 18, 25, 38, 41]. For instance,
certain studies propose to ensure minimum item exposures for new
providers [4, 28, 38, 39] for attracting providers to join, while others
focus on enhancing the visibility of specific item categories [45]
for promoting certain festivals. Such “minimum wage policy” [32]
significantly contributes to the enhancement of RS, fostering the
creation of a more equitable and robust ecosystem.

In modern RS, two-stage pipelines have been widely adopted, as
shown in Figure 1 (a). The primary objective of stage-1 (retrieval)
is to efficiently generate a small set of candidates from millions
of items in a distributed manner within milliseconds [5, 8, 20, 23]
while stage-2 (ranking) more accurately deals with the candidates
selected in stage-1 and generates the final recommendations (usu-
ally single-digit items) [38, 45]. Regarding ensuring minimum group
exposures in RS, most existing studies [4, 9, 26, 28, 37, 38, 45] pri-
marily concentrated on stage-2.

Existing studies revealed that the fairness task in stage-2 can
be compromised if stage-1 fails to retrieve a sufficient number of
items [36]. We also conduct a simulation to examine how the mini-
mum exposure in stage-1 affects the minimum exposure in stage-2.
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Figure 1: (a) The two-stage pipelines of recommender system,
including retrieval (stage-1) and ranking (stage-2). (b) Sim-
ulations depicting the changes for the minimum exposures
across two stages.

Specifically, we conduct a simulation using Amazon ! dataset to as-
sess the minimum exposure of groups across two stages. In stage-1,
we leverage the YoutubeDNN [8] model and employ a rule-based
method to regulate the retrieved exposures of item categories. In
stage-2, we implement an oracle ranking model, ensuring the at-
tainment of the highest minimum exposure of groups. The x-axis
represents the minimum exposures of item categories in stage-1,
while the y-axis corresponds to the exposures of these categories
in stage-2. The results reported in Figure 1 (b) indicate that there
exists a robust positive correlation between the minimum group
exposure of the two stages. In simpler terms, if stage-1 is unable
to retrieve required item categories effectively, it will also pose
challenges for stage-2 in ensuring the exposure of certain groups.

Though critically important, existing approaches designed for
stage-2 [9, 26, 28, 37, 38] cannot be directly applied to stage-1 be-
cause they ensure the amortized group exposures by traversing all
items and adjusting exposures through aggregating information.
During stage-1, however, traversing all items (usually millions of
items) is infeasible because (1) these items are distributively stored
at different servers, and (2) accessing millions of items causes sub-
stantial computational cost. While some heuristic approaches have
employed strict rules or adjusted group weights, they still lack the
capacity to effectively address the challenge.

In this paper, we introduce a novel model named FairSync, which
can ensure the minimum amortized group exposure requirements
in the retrieval stage of RS. FairSync converts the problem into a
constrained distributed optimization and addresses the problem by
transferring it to the dual space. In such space, we aggregate past
fairness information into a vector and distribute it to servers. Based
on the vector, each server independently conducts the item retrieval.
Theoretical analysis shows that, even with local and distributive
search, FairSync can still achieve global fairness.

In particular, the RS platform first sets a target to ensure that
every group attains a minimum level of exposure. Then we ap-
proach the problem by formulating it as a distributed resource
allocation problem [1, 38], with the constraint of required expo-
sures. Subsequently, we can transform the constrained optimization
problem into an unconstrained dual problem. Then, a constructed
dual vector, storing the past fairness information, is combined with

Thttp://jmcauley.ucsd.edu/data/amazon/
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user embeddings to form a query vector. Each item, along with its
embeddings, is concatenated with the group embedding to form
the new item embeddings which will be distributed across servers.
After that, each server conducts KNN search for identifying can-
didate items within milliseconds by using the dense retrieval [42]
architecture. Finally, the outcomes are aggregated into a set of can-
didate items for stage-2. As for the learning procedure, we employ
the gradient descent method [17] to update the parameters of dual
vector periodically to trade-off the efficiency and effectiveness.

We summarize the major contributions of this paper as follows:

(1) We emphasize the critical importance of incorporating the
assurance of minimum exposure for specific groups into the dis-
tributed stage-1 (retrieval) of RS.

(2) We introduce a model named FairSync which is tailored to
meet the distributed, efficient, and online demands of the prevalent
dense retrieval architecture in stage-1 of RS.

(3) The experimental results on two publicly available large-scale
recommendation datasets clearly demonstrate that FairSync out-
performs the baseline models, attaining the desired minimum level
of exposures while preserving a high level of retrieval accuracy.

2 RELATED WORK

Fairness has emerged as a prominent research theme within rec-
ommender systems. In this realm, two predominant aspects are
often explored: individual fairness [22, 24], which concentrates on
equitable treatment for individuals, and group fairness, which cate-
gorizes items into various groups such as providers [4, 26, 28, 37—
39], and item categories [11, 30, 36]. In group fairness, there are
usually two criteria. One is egalitarian proposes [11, 24, 26, 36, 37],
which aims to equalize the outcome of different groups, another is
Rawl!’s principle [18], which aims to improve the utility of worst-off
groups [4, 28, 38, 39]. In real application of RS, amortized fair-
ness [3, 4, 28, 38, 39] is more realistic, which achieves fairness over
a period of time, rather than enforcing it strictly on a single ranking
list. In our research, we mainly focused on the amortized group max-
min fairness, which is used to support new providers or enhance
the visibility of specific item categories.

In RS, there are many methods proposed to alleviate amortized
group MMF. FairRec [28] and its extension FairRec+ [4] proposed
an offline recommender model to guarantee equal frequency for
all items in a series of ranking lists. Yang and Ai [40] proposed a
marginal optimizing approach to conduct amortized MMF in the
learning-to-rank process. TFROM [37] and CP-Fair [26] proposed
a Linear Programming (LP)-based method to ensure the group
fairness, see also [2, 9, 41]. P-MMF [38], LTP-MMF [39] proposed
an online mirror gradient descent to improve worst-off provider’s
exposures in the dual space. Nonetheless, all of these proposals have
been introduced within the context of stage-2 scenarios, making
them impractical for application in stage-1 due to their substantial
computational overhead.

In large RS, the significance of stage-1 (retrieval) cannot be
overstated, as the performance of stage-2 is heavily reliant on
it [5, 19, 20, 36, 43]. There are also some works that proposed in-
spiring approaches to solve fairness issues in stage-1. Wang and
Joachims [36] proposed an uncertainty quantification approach to
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control the threshold of each retrieval channel in one retrieval pro-
cess. Hao et al. [13], Rastegarpanah et al. [29] proposed a fairness-
related matrix factorization method to adjust the weight of the
retrieval model. In resource allocation, Balseiro et al. [1], Cheung
et al. [7] proposed a mirror-descent method to solve in the dual
space. However, these methods either fall into addressing amortized
group max-min fairness well or are unsuitable for implementation
within the retrieval systems that require distributive, efficient, and
online capabilities.

3 PROBLEM FORMULATION

In RS, let U, I be the set of users and items, and each item i € 7 is
associated with a unique group g € G. The set of items associated
with a specific group g is denoted as Z;. When a specific user u € U
accesses the retrieval system, the system will retrieve items from
distributed servers and aggregate them into a list of candidate items
with a predefined size of K, denoted by Lx (1) € 7K, which is then
prepared for stage-2 for detailed ranking.

In real-world applications, the users arrive at the RS sequentially.
Assume that at time ¢, user u; arrives. The RS aims to ensure that
the exposure of a specific group g remains at or exceeds a threshold
of myg throughout the entire time horizon fromt =1to T, all the
while optimizing to retain enough relevant items within a single
candidate retrieval list. At the same time, we require an online
solution, where at time step ¢, the RS responds to a request from
user u; by providing a candidate list without waiting for input
from a second user us4+1. An online retrieval algorithm h produces
a real-time decision candidates Lg (u;) based on the current user
u; and the previous history H;—1 = {us, Lx (us) 2;11:

Ly (ur) = h(uz | Hr-1, M),

where M = {my|g € G} is the factor set by the platform.

State-of-the-art recommender retrieval models [5, 19, 20, 43] usu-
ally employ the distributive dense retrieval architecture, wherein
an item i is represented as an embedding e; € R? using complex
neural networks, such as transformers [35]. These embeddings are
indexed on each server S, n € [1,2, -+, M] in a distributed man-
ner, with d € N* being the predefined dimension and M is the
server number. For the user u, a simple network is employed to
represent them as an embedding e, € R4, typically utilizing their
historical browsing information in state-of-the-art systems. The
user-item relevance score ry, ; is calculated as the distance between
e; and e, locally in each server Sj,. The retrieval model’s objective
is to identify candidate items whose embeddings e; are in close
proximity to the embedding of the user ey, i.e., finding the highest
possible relevance scores ry; in the candidate list for the stage-2
ranking process.

Generally, the RS will establish the offline index [16] for items
to efficiently search the desired ones from each server. Previous
research [9, 28, 38] focus on ensuring amortized group exposure M
by traversing all items i and their corresponding groups g, where
i€ ]’g However, in a distributed dense retrieval architecture, these
methods are no longer suitable.

4 OUR APPROACH

In this section, we will introduce our approach FairSync.
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4.1 Distributed Dense Retrieval Architecture

In the mainstream recommender retrieval architectures, the primary
objective is to identify items whose embeddings e;, are in close
proximity to the embedding of the user e, distributively. Formally,
the problem can write as:

Li(u) = d(ey,ei), (1)

arg min

Lc {12l TILILI=k 5 vn
where L is the set of indices of the K nearest neighbors, d(ey, e;)
is the distance between embedding e, e;, i-th the commonly used
distance metric being the dot-product locally on each server, i.e.
d(ey,e;) = —e] e;, and the e, and e; are calculated by a complex
model, such as Deep Neural Network [8], Recurrent Neural Net-
work [15], Capsule Network [20], i.e.

ey =m'(u), e =m'(i),

where m*(-) and m!(-) are two embedding extraction networks.
Typically, the item embeddings e; are pre-calculated and dis-

tributively indexed on servers [16], whereas the user embedding e,

requires online inference using complex recommendation models,

see [5, 8, 20, 43]. In real application [5], Equation (1) is computed

by performing KNN search in the embedding space efficiently.

4.2 Dual Space of Retrieval

After the platform gives the minimum exposure requirement for
each group, i.e., requiring the exposure of a specific group g to
remain at or exceed a threshold of m, throughout the entire time
horizon from ¢ = 1 to T. Therefore, we write the equation (1) as a
distributed resource allocation problem:

T
r}g}f:}l( Z _ Z Xug,ilug,i
t=1ieS,,Vn
st. Z xui=K, Vte[12...T]

i€S,.Vn

ru,i = —d(ey,,e;) (2)
T

eg = Z Z Xu,i» V9EG
t=1iel,

eg=2mg, YgEG

Xu,i €{0,1},Vt e [1,2,...,T,ie T
where ¢4 can be seen as the total number of exposed items of group
g, accumulated over the period 1to T, xy,; € {0, 1} is the decision
vector for user u;. Specifically, for each item i, xy,, ; = 1if it is added
to the candidate list Lg (u;), otherwise x,; = 0.

TuroreM 1. The dual problem objective WPl of Equation (2)
can be write as

T K
min | 37> (rui = ARk + D mgttg +max{ug}(TK = 37 mg) |,

=1 k=1 9eG 9eg

®)

where we can have a dual variable p € ngl, A e RIZIXIGI s the
item-group adjacent matrix, and Ajg = 1 indicates item i € I, and 0
otherwise. Moreover, the dual problem is a strong-dual problem, that
is the optimal value of Equation (3) is the same as Equation (2).
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Figure 2: FairSync Framework. Sub-figure (a) illustrates an example to show the intuitive example of how FairSync works.
Sub-figure (b) illustrates that the online retrieval process when user u; arrives, while sub-figure (c) depicts the offline item

embeddings in the dual space construction process.

REMARK 1 (DISTRIBUTED SOLUTION IN DUAL SPACE). After the
transformation of the original problem (Equation (1)) into its dual
form (Equation (1)), we can convert the problem into an unconstrained
optimization problem, simplifying the optimization process signifi-
cantly. We can also observe that different items are independent of
each other. Therefore, the problem can be effectively solved in a dis-
tributed manner. The value p can be regarded as the accumulated
exposure information and be distributed to each server during the
retrieval process.

REMARK 2 (SMALL COMPUTATIONAL COSTs). The original problem
(Equation (1)) is computationally intensive due to its nature as a
constraint integral linear problem, and it involves a vast variable
space of size T X |I'| given that the retrieval process may encompass
millions of items. However, in the dual problem (2), we observe that
the variable size has been significantly reduced to |G| < T X |71 |, and
thanks to the sparsity of A, the computation of Au is highly efficient.
This operation serves to project the variable p from the group space
into the item spaces.

The detailed proof can be seen in the Appendix A.2.

4.3 FairSync Algorithm

Figure 2 shows the framework of the FairSync. FairSync will
retrieve items from the transformed dual space. Next, we will illus-
trate the inference phase and online learning phase, respectively.

4.3.1 Inference phase. we will provide illustrative examples to
demonstrate how FairSync works and present a detailed inference
workflow of FairSync.

Firstly, Figure 2 (a) provides an illustrative example to demon-
strate the functioning of the FairSync algorithm in an intuitive
manner. In this example, we simplify the problem by retrieving two
items from a corpus containing four items (depicted as circles in the
figure), each assigned to different groups, represented by distinct
colors in the figure. A user u; arrives at the recommender system,
and this user is represented as the red pentagram. The system’s
requirement is to ensure that there is at least one exposure of each
group. From the original space, the user and items are represented
as the embedding ey, e; in Section 4.1. In such space, the retrieval
system will find the top-2 closest items, i.e. orange items to users.
However, in the dual space, FairSync will project the user and item
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Algorithm 1: FairSync Algorithm

Input: User arriving order {”t}thl’ item corpus 7, candidate size

K, batch size B, optimizer Opt with learning rate 7, trained
user item embedding network m*(-), m!(-) item-group
adjacent matrix A, minimum group exposure requirement
{mg } gegG-

Output: The candidate lists for every user {Lg (ut)}thl

. Calculate items embeddings {e; = m’(i),Vi € T}

: Re-construct and distributively index the item embeddings

{h; = ej||A;,Vie I}

3: Initialize update count b = 0.

4: Initialize the gradient buffer B; = {}.

5: fort=1,---,T do

6: Initialize dual solution p =0

7. User u; arrives

8:  Calculate user embedding e,, = m"(u;)

9:  Re-construct query embeddings gy, = ey, ||

10:  //KNN Retrieval: (Equation (4))

1 Ly (ur) = argminge (15 |71y 5|2k Sies 2" (quy hi),
122 Compute the sub-gradient s utilizing the Equation (6)
13:  Store the sub-gradient s into B;

14:  Update countc=c+1

15:  if ¢ =B // Update per B users then

16: u = Opt(p, Xses, )

17: Initialize update count b = 0.

18: Initialize the gradient buffer B = {}

19:  endif

20: end for

embeddings to different points, while ensuring the minimum ex-
posure constraint is satisfied. In the dual space, the dense retrieval
system can efficiently locate the distributed items that meet the
requirements and simultaneously maintain retrieval accuracy.
Formally, from Theorem 1, we can observe that the distance
between the user and item in the dual space transforms to:

dPual = i€l

©)

Therefore, to better adapt to the dense retrieval architecture

d(ey,e;) + Hg;
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Table 1: Statistics of the datasets.

Dataset #User #ltem #Group #Interaction
Amazon-Book 459,133 313,966 165 8,898,041
Taobao 976,779 1,708,530 1246 85,384,110

discussed in Section 4.1, we reconstruct user u; embeddings to qy,
and embedding of item i to h;, where q,, and h; are defined as
follows:

qu, = eu,” - Ut h; =e;i||A;, (5)
where || denotes the concat operator between two vectors and A;
denotes the i-th column vector of adjacent matrix in Theorem 1.
Therefore, we have dP'! = —g[ h;.

Figure 2 (b) illustrates the inference phase of FairSync in a more
visualized way. Firstly, a user u; arrives, then the user embedding
extraction m* module (any retrieval model) will extract the user
embedding e, . Then, at time ¢, we have a dual vector p; to form the
query vector gy, (Equation (5)). Then we will utilize the vector qy,
to utilize k-nearest neighbors (KNN) search on the distributively
indexed item embeddings {h;, Vi € 7'} in the dual space to retrieve
a corresponding list of candidate items (Figure 2 (c)).

4.3.2  Online learning phase. In the online learning phase, we aim
to update the dual vector p; once in a while.

Specifically, we can see that the sub-gradient s € RISl s €
owPual dy; in Equation (3) at time ¢ satisfies:

mg+ZiELK(ut) I(i E_Zg), ifgig
ZieLK(u,) I(i € Iy) + (TK - Zg¢§ mg), else,

where I(-) denotes the indicator function and § = argmax ¢ g pg.

Based on the assumption that user comes to the system ran-
domly [38], we can utilize the sub-gradient s to update y;. In real
applications, however, updating p; at every time step t is chal-
lenged by a large number of asynchronous update operations on
different servers, and when the update frequency is too high, it can
lead to excessively long recall times, thereby impacting the user
experience. Therefore, to trade off the efficiency and effectiveness,
we will update the dual vector p each B steps.

Specifically, we will store the sub-gradient s of each step into a
gradient buffer Bs. For each B steps, we will utilized any optimizer
Opt (in this paper, we utilized the well-performing Adam [17])
to update p utilizing the averaged gradient in the buffer, ie. y =
Opt(p, 2se s, $)-

The detailed FairSync algorithm is shown in Algorithm 1.

Sq

(6)

4.3.3  Discussion. Our algorithm FairSync can be applied with any
other distributed retrieval architecture. We will illustrate the meth-
ods in detail. In retrieval architectures, most of the work commonly
incorporates ANN algorithms, as elucidated in the paper. There are
also tree-based indexing models such as TDM [44] and similar in-
dexing approaches. As we solely map the user embedding and item
embedding to the dual space outlined in Equation (5), our approach
allows for adapting with various distributed retrieval architectures.
This is possible as other methods can easily apply our approach by
indexing the dual item embedding using their preferred indexing
techniques.
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5 EXPERIMENT

We conducted experiments to demonstrate the effectiveness of the
proposed FairSync. The source code and experiments have been

shared at github?.

5.1 Experimental settings

5.1.1 Datasets. Following the practice in Cen et al. [5], the exper-
iments are conducted on one commonly used publicly available
retrieval datasets and one billion-scale industrial dataset, including:

Amazon-Book?3: The subsets (book domains) of Amazon [14]
Product dataset. The item grouping relies on the field “categories”.
Each training sample is truncated at length 20. As a pre-processing
step, we consider groups with fewer than 50 items as a single group,
which we name the “infrequent group”.

Taobao*: collected about 1 million user behaviors data based on
Taobao’s recommender systems [44] during November 25 to De-
cember 03, 2017. The item grouping relies on the field “category ID”.
Each training sample is truncated at length 50. As a pre-processing
step, we consider groups with fewer than 200 items as a single
group, which we name the “infrequent group”.

The statistics of the two datasets are shown in Table 1.

5.1.2  Evaluation. Firstly, following the common practice [5, 19, 20],
we train the embedding extraction network m!(-), m*(-). We sort
all the interactions in the dataset based on their timestamps and
utilize the initial 80% of the interactions as the training data for
m!(-), m*(-) training. The remaining 20% of interactions were split
into two equal parts, with each 10% portion serving as the validation
and test data, respectively, for evaluation.

As for the evaluation metrics, the performances of the models
were evaluated from two aspects: retrieval accuracy, and the mini-
mum group exposure satisfaction (i.e. performance of fairness). Let
T be the test set length and 7, be the set of items for user u.

For the retrieval accuracy, following [5, 6], we utilize

e Recall:

T .
Recall@N = 1 Z M
T Ly,
¢ Hit Rate. The HR Rate (HR) is a metric that quantifies the
percentage of recommended items that include at least one
item that the user has previously interacted with [5, 6].
1 I A
HR@N = — Z I(|Lg (ur) N Ty, | > 0).
=
e Normalized Discounted Cumulative Gain. Normalized
Discounted Cumulative Gain (NDCG) is a metric that factors
in the positions of correctly recommended items, providing
a measure that accounts for the item’s relevance and its
position in the recommendation list [5].
1 T
NDCG@N = — »°
T 4 e loctur) log,
telg(u;

1(i € I,)
(pos(i, Li (ur)))

[Z4,

where pos(i, Lx (u;)) is the sorting position of item i in the

Zhttps://github.com/XuChen0427/FairSync
3http://jmcauley.ucsd.edu/data/amazon/
“https://tianchi.aliyun.com/dataset/dataDetail?datald=649&userld=1
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Table 2: Performance comparisons between ours and the baselines on Amazon book subset and Taobao. Our objective is to
guarantee that each group possesses a minimum of 200 exposures to fulfill the ESP metric. The * means the improvements over
the baseline that can guarantee minimum exposure baselines (K-neighbor and Uncalibrated) are statistically significant (t-tests
and p-value < 0.05). The bold number indicates that the accuracy value exceeds that of all the baselines. All the numbers in the

table are percentage numbers with “%” omitted.

Amazon-Book dataset Taobao dataset
Base model Fairness model top-20 top-50 top-20 top-50
Recall NDCG HR ESP Recall NDCG HR ESP Recall NDCG HR ESP Recall NDCG HR ESP
regularized-fair | 452 4.61 10.13 53.94 7.11 5.64 15.55 81.21 3.29 14.85 28.89  58.27 4.97 16.56 39.31 82.83
IPW 455 4.64 10.19 45.45 7.16 5.68 15.66 73.94 3.29 14.85 28.89  57.78 4.97 16.56 39.31 82.66
youtubeDNN K-neighbor 0.09 0.14 0.29 100.00 | 0.14 0.17 0.41 100.00 | 0.15 0.87 173 100.00 | 0.24 1.00 2.51 100.00
Uncalibrated 4.44 453 9.96 100.00 | 7.08 5.62 1551 100.00 | 2.99 13.46 26.18  100.00 | 4.79 15.95 37.87  100.00
FairSync(ours) | 4.55°  4.64*  10.19" 100.00 | 7.16*  5.69"  15.68" 100.00 | 3.29"  1477*  28.74" 100.00 | 4.99* 16.56" 39.32"  100.00
regularized-fair 3.95 4.01 8.70 46.67 6.35 4.94 13.63 77.58 4.73 18.84 35.63  64.93 6.95 20.43 45.99 83.63
IPW 3.97 4.04 8.76 38.79 6.38 4.97 13.70 63.03 4.73 18.84 35.64  64.69 6.95 20.43 45.99 83.55
GRU4REC K-neighbor 0.09 0.13 0.26 100.00 | 0.14 0.15 0.41 100.00 | 0.17 0.79 154  100.00 | 0.24 0.92 2.19 100.00
Uncalibrated 3.90 3.94 8.58 100.00 | 6.32 491 13.55  100.00 | 4.29 17.08 3226 100.00 | 6.69 19.65 4425 100.00
FairSync(ours) | 3.98%  4.04% 8.77*  100.00 | 6.37* 4.97* 13.68*  100.00 | 4.74* 1879  3552" 10000 | 6.96*  20.54*  46.01*  100.00
regularized-fair 6.64 6.58 13.70 41.82 9.64 7.66 19.46 63.64 4.62 18.98 36.15  62.28 6.96 20.70 47.34 79.21
IPW 6.62 6.56 13.67 38.18 9.63 7.63 19.42 58.79 4.62 18.98 36.15  62.28 6.96 20.70 47.34 78.97
MIND K-neighbor 0.10 0.16 0.32 100.00 | 0.15 0.18 0.40 100.00 | 0.17 0.94 180  100.00 | 0.26 1.12 2.60 100.00
Uncalibrated 6.45 6.39 1333 100.00 | 9.52 7.54 19.20  100.00 | 4.20 17.23 32.80  100.00 | 6.69 19.93 4558 100.00
FairSync(ours) | 6.60" 6.60" 13.65°  100.00 | 9.65°  7.69"  19.48"  100.00 | 4.57°  18.82"  3586* 100.00 | 6.98"  20.76° 47.38"  100.00
regularized-fair | 4.92 5.26 10.99 37.58 7.40 6.20 16.03 61.21 5.51 23.49 4225  63.24 7.98 24.85 52.77 80.26
IPW 491 5.24 10.97 33.33 7.41 6.18 16.03 55.15 5.51 23.49 4225 63.24 7.98 24.85 52.76 80.26
ComiRec-DR K-neighbor 0.09 0.14 0.25 100.00 | 0.14 0.16 0.37 100.00 | 0.19 1.01 1.85 100.00 | 0.28 1.18 2.60 100.00
Uncalibrated 4.76 5.10 10.68  100.00 | 7.30 6.10 1582 100.00 | 4.99 21.29 3830 100.00 | 7.67 23.92 50.81  100.00
FairSync(ours) | 4.92*  5.28" 11.0%  100.00 | 7.42"  6.20°  16.08" 100.00 | 547"  23.35°  4220° 100.00 | 8.07°  24.93° 52.80°  100.00
regularized-fair 5.23 3.78 10.83 49.70 8.09 4.93 16.47 75.76 5.49 23.77 4161  63.88 7.76 24.98 51.28 80.10
IPW 5.25 3.79 10.85 44.85 8.10 4.93 16.46 70.91 5.49 23.77 4162 63.80 7.76 24.99 51.28 80.10
ComiRec-SA K-neighbor 0.11 0.14 0.29 100.00 | 0.15 0.75 1.92 100.00 | 0.17 0.90 1.61 100.00 | 0.25 1.10 2.39 100.00
Uncalibrated 5.12 3.70 10.59  100.00 | 8.01 4.88 1630  100.00 | 4.97 21.53 37.65  100.00 | 7.47 24.06 4936  100.00
FairSync(ours) | 5.26°  3.80°  10.81%  100.00 | 8.12*  4.93*  16.47° 100.00 | 545"  23.66° 41.36"  100.00 | 7.76*  24.99" 51.33"  100.00
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Figure 3: The accuracy curve (Recall, NDCG, and HR) of FairSync (ours) and the best baseline Uncalibrated under different
minimum exposure threshold m,. The experiments were conducted based on the best retrieval base model ComiRec-DR.

list Lg (u), starting from 1 to K and Z; represents a normal-
ization constant that denotes the ideal discounted cumulative
gain (IDCG@N), which signifies the highest achievable value
for the numerator in the metric at time ¢.
For the minimum group exposure satisfaction, we apply:

¢ Enough Satisfaction Groups. Enough satisfaction groups
(ESP) aims to estimate whether each candidate generation
policy selects enough items that satisfy the minimum group

exposure requirement, similar to the enough relevant items
(ER) metric in [36]:

ZI ZT: Z I(iely)| >my

geG \[t=1lieLlk(u;)

1

ESP = —
G

5.1.3 Baselines and Base Models. In this section, we mainly intro-
duce the controllable retrieval baselines and base models used for
extraction user and item embeddings.
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For the distributed retrieval baseline, we mainly choose four
heuristic methods: regularized-fair [38]: at each time step ¢, a
regularized-based dual variable to reduce the exposure gaps be-
tween all items and the worst-off item. IPW [36]: selected the
group exposure as the item’s inverse propensity weighted (IPW)
during the retrieval process. However, the two aforementioned base-
lines fail to ensure the necessary minimum exposures for groups,
as employing different trade-off coefficients A reveals an inability
to comprehensively fulfill the fairness constraint.

The next baselines are the two heuristic methods used to ensure
that the required minimum exposures of groups are guaranteed in
the retrieval process. K-neighbor [28]: at each time step t, Only
the items on each server associated with the top-K group, having
the lowest cumulative exposure, are retrieved. Uncalibrated [36]:
each step ¢ only chooses the items whose group does not satisfy the
required exposures. For a fair comparison, we also retrieve them
using the KNN search method.
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Figure 4: The three sub-figures in the first row illustrate the t-SNE visualization item embeddings and user embeddings of
Comirec-DR and our model FairSync using Comirec-DR as the base model under different time ¢. The three sub-figures in
the final row depict the category exposures under different time steps ¢. The experiment was conducted on the Amazon-book

dataset with retrieval number K = 50.
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Figure 5: Inference time per user w.r.t. w.r.t. batch size B.

For the retrieval base models, we utilize: Youtube DNN [8]:
the most commonly used retrieval models in industrial recom-
mender systems; GRU4Rec [15]: utilized the recurrent neural net-
work (RNN) to model the user sequential behaviors in the retrieval
process; MIND [20]: aimed to model user’s diverse interests by
designing a multi-interest extractor layer based on the capsule
routing mechanism [12]; ComiRec-SA [5]: the recent state-of-
the-art retrieval models, which captured user diverse interests by
the self-attention mechanism. ComiRec-DR [5]: the variant of
ComiRec-SA, which used the dynamic routing method to model
user’s sequential behaviors.

5.1.4 Implementation details. As for the hyper-parameters in all
models, the learning rate n was tuned among [1le — 2, le — 4], and
the batch size for updating dual vector B was tuned among [1,512].
For training the base retrieval model, we utilize the best parame-
ters reported in the original papers of the models. We implement
FairSync with the most common faiss [16] KNN-search package.
The gradient descent package used Pytorch [27] to apply the auto-
gradient. The experiments were conducted under a server with a

16 32 64 128 256 512
Batch size

(a) K=20

16 32 61 128 236 512
Batch

size

(b) K=50

Figure 6: Recall, NDCG, HR and ESP curves of FairSync under
different top-K ranking w.r.t. batch size B.

single NVIDIA GeForce RTX 3090.

5.2 Experimental Results on Full Datasets

Firstly, we conduct experiments to show the performance of
FairSync and other baselines under the same minimum exposure
requirement (my = 200,Vg € G) across all retrieval base models.
Table 2 presents the experimental outcomes for our FairSync model
and the baseline methods across all datasets, while ensuring that
each group maintains a minimum of 200 exposures as a require-
ment. To make fair comparisons, all the baselines were tuned their
hyperparameters to obtain the best performance under our settings.

Based on the reported findings, it becomes evident that our
model FairSync effectively fulfills the requirement of each group
maintaining a minimum of 200 exposures (i.e., ESP=100%). Further-
more, FairSync significantly outperforms the baseline techniques
intended for guaranteeing minimum exposure (K-neighbor and
Uncalibrated) across all datasets and various base retrieval models,
encompassing different top-K retrieval numbers, as reflected in
accuracy metrics including Recall, NDCG, and HR. Simultaneously,
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FairSync exhibits accuracy performance that is comparable with
other fairness baselines (regularized-fair and IPW), even though
these methods do not strictly ensure the required minimum ex-
posure of groups. The experiments conclusively demonstrate that
FairSync effectively guarantees the minimum exposure requirement
without significantly compromising the accuracy of the retrieval
process.

Secondly, we conduct experiments to demonstrate the perfor-
mance of FairSync and the best baseline (Uncalibrated) under
varying minimum exposure requirements under the best retrieval
base model ComiRec-DR. Figure 3 reports the accuracy (Recall,
NDCG, and HR) curve of our model FairSync and the best base-
line Uncalibrated under different minimum exposure threshold
myg € [10,200], Vg € G. Both FairSync and Uncalibrated are able to
satisfy the minimum exposure requirements.

From the curves presented in Figure 3 (a-d), it is evident that
our model FairSync consistently outperforms Uncalibrated with a
large margin across various accuracy metrics, datasets, and retrieval
numbers (K = 20, 50). The experiment demonstrates that our model
FairSync consistently exhibits better accuracy when ensuring the
minimum exposure requirements of different groups.

5.3 Experiment analysis

We also conduct experiments to analyze FairSync on Amazon-book
dataset under the best retreival base model ComiRec-DR. For other
analysis, please see Appendix C.

5.3.1 Visualization of embeddings under original and dual space.

In this section, we aim to visualize and illustrate the effective
dual projection of FairSync (with ComiRec-DR as the base model,
i.e. ComiRec+FairSync) by randomly sampling 5 item categories
and setting the requirement my = 200,Vg € G. Figure 4 utilizes
t-SNE [34] to visually represent user and item embeddings e, and
e; in the original space (sub-figures in first rows), as well as user
and item embeddings gy, and h; in the dual space (sub-figures in
second rows), across various time steps t. We also show the category
exposures under different time steps ¢ (sub-figures in third rows).
Note that ComiRec-DR is a multi-interest retrieval model [5, 20],
where we set four user embeddings generated to represent different
user interests per time step t.

Figure 4 (a) illustrates that at the initial retrieval process (¢ = 30),
the exposure levels for various categories (as depicted in the third
column’s bar plots) are nearly equalized. Such equalized exposure,
in turn, leads to FairSync’s reconstructed embeddings in the dual
space (ComiRec-DR+FairSync embeddings) closely mirroring the
patterns of the original embeddings (ComiRec-DR embeddings) to
maintain retrieval accuracy.

Figure 4 (b, c) illustrates the intermediary and ending stage
(t = 3000, 30000) of stage-1, during which category 3 dominates in
exposure levels, whereas the other categories exhibit a lower level
of exposure. In the original space (ComiRec-DR embeddings), it
is evident that the user embeddings are closely aligned with the
embeddings of category 3. However, in the dual space (ComiRec-
DR+FairSync embeddings), the user embeddings are in closer prox-
imity to lower categories (1,2), thereby ensuring that other cate-
gories meet the minimum exposure requirements.
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The experiment clearly demonstrated that throughout the re-
trieval process, our model FairSync dynamically adjusts the user em-
bedding’s position based on category exposure, enhancing retrieval
accuracy while maintaining the minimum exposure requirement.

5.3.2  Ablation study on batch size. In this section, we aim to con-
duct experiments to show the performance and inference time
influenced by different online batch size B, since B controls the
dual vector p’s updating frequency. Figure 5 and Figure 6 depict the
variations in inference time and performance, respectively, with
respect to the batch size B € [1,512].

Firstly, Figure 5 illustrates the online inference time per user w.r.t.
batch size under different retrieval numbers K. From the displayed
curve, it is evident that when the batch size is smaller (B < 8),
FairSync still demands approximately [0.2, 1] ms more time in
comparison to the base model. When the batch size is relatively
large (B > 8), the inference times of both FairSync and the base
model are comparable, typically remaining below 0.25 ms. This
satisfies the inference time requirements for industrial applications.

Secondly, Figure 6 illustrates that accuracy (Recall, NDCG and
HR) curve and ESP (my = 200) curve w.r.t. batch size under different
retrieval number K. Based on the depicted curve, it is apparent
that the retrieval accuracy curve decreases as the batch size varies
within the range B € [1, 8], whereas for batch sizes within the
range B € [8,512], the accuracy curve exhibits an increase. It is
also worth noting that the minimum exposure requirement is no
longer satisfied as the batch size increases beyond B > 64.

Therefore, we observe that the online batch size B is a trade-
off co-efficient for performance and inference time. In real-world
applications, we must carefully control the online batch size B, as
larger values can reduce inference time but may result in poorer
performance, while smaller values can have the opposite effect.

6 CONCLUSION

This paper emphasizes the importance of considering amortized
fairness in stage-1 of RS. Then, we propose a novel retrieval model
called FairSync that aims to maintain accuracy while ensuring the
minimum exposure for specific groups in the distributed retrieval
process. In FairSync, we transform the problem into a constrained
distributed optimization problem and resolve the issue in the dual
space of the problem in a distributed manner. Extensive experi-
ments conducted on two large-scale datasets consistently show-
cased FairSync’s superior performance over baseline models across
various retrieval base models. Importantly, FairSync manages to
maintain minimal computational costs in real-world applications.
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Algorithm 2: regularized-fair Algorithm

Input: User arriving order {ut}thl, item corpus 7, candidate size

K, batch size B, trained user item embedding network
m*“(-), m(-) item-group adjacent matrix A, trade-off
coeflicient A.
Output: The candidate lists for every user {LK(ut)}Z;l
1. Calculate items embeddings {e; = m’(i),Vi € I}
2: Re-construct and distributively index the item embeddings
{h; = e;||A;,Vi € I} utilizing the Equation (5).
3: fort=1,---,T do
User u; arrives
Calculate user embedding e,,, = m*(u;)
Compute p = A[A(e — (mingeg eng)]
Re-construct query embeddings gy, = ey, || — pr-
// KNN Retrieval: (Equation (4))
o Ly (u) = argminge 15 |71}, s=k Dies 4°* (qup, hi),
10: end for

A APPENDIX
A.1 Lemmal

Firstly, we prove a lemma before we start the proof of Theorem 1.

LEMMA 1. Let a;) denotes the i-th largest element of a. Consider-
ing the function with the x € RN as the input, Top-K(x) = Zle X[k
We demonstrate that the function f(x) exhibits concavity wr.t. x.

ProOF. By the definition, for any 0 < A < 1 we have

K
Top-K(Ax + (1= A)y) = ¥ (Ax + (1= Dy) )

k=1
K K
< Alekj +(1 —A)Zy[kj
k=1 k=1

= ATop-K(x) + (1 — 1) Top-K(y),

that is the sum of the first k elements of two vectors added together
is less than the sum of the first k elements of the two vectors
individually added. O

A.2 Proof of Theorem 1

Proor. We can utilize the Lagrangian condition [1, 38] to de-
compose the relation between e; and Zthl Ziejg Xuy it

T |1]
w < wP4el = max min Z Z (Fupi — A] p)xy, i + Z Hgey
Xund€X M T 9eG
st eg = myg, Vge G
D eg=TK.
9€G

Where X = {xy, ilxy,;i = {0,1}, Xje 1 *u,,i = K} is the feasible
region of xy,; and the p € RIG! is the dual vector. Note that
the condition ;¢ 5 eg = TK should be satisfied before the dual
transformation. This precaution is necessary because without this
condition e4 could easily diverge, therefore, we introduce an upper
bound for ey.
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Let’s consider the following program:

max aTx
X

)

st. 1Tx=K0<x<1,

This problem is a well-studied knapsack problem [31], whose
optimal objective should be Z,K: 1 91i]- The equation tells us that
only the top K items that user u; have the highest preference for
every group p will be recommended for every user.

Thus, we can easily observe that the objective W of the target
about x;; is a top-K function in lemma 1 and from lemma 1, we
can observe that W is concave with respect to x and convex with

respect to the variable y. From the minimax theorem [10], we can
re-write the equation as:

T K
W = min max ZZ (Tuyi —AiTy)[kJ + Z Hgeq

K € t=1 k=1 gegG
s.t. eg = mg, Vge G )
Dleg=TK
9eG
Now, consider the following problem:
L =max Z Hgeg
9eG
s.t. Z eg =TK,eq = my, Vg e G,

9egG
which is a well-studied knapsack problem [31], with the optimal

solution
Z mgllg + Z mg).

9eG 9€G
Finally, we can take the optimal solution into Equation (8), we
get wDual 45

T
miny Z

=1k

max TK —
ma{ iy}

M=

(rugi = AP (k] + Z mgpg + max{pg}(TK - Z mg)| .
1 9eG I 9eG
O

B REGULARIZED-FAIR ALGORITHM

In this section, we propose a heuristic method for distributed ap-
proach for improving the worst-off group exposures in retrieval pro-
cess, aligning with the concept amortized max-min fairness [9, 38],
named regularized-fair. Similar with the dual form of FairSync, it
introduced a dual variable y, that measures the exposure gaps
between the target group and the worst-groups. The detailed algo-
rithm is shown in Algorithm 2.

C ADDITIONAL EXPERIMENTAL ANALYSIS

C.1 FairSync performance under extreme
scenario

In the context of amortized fairness in our settings, an extreme
scenario might occur where there is a group for which all users
express a unanimous dislike for the items associated with that
group. So we conducted a toy experiment to show how our method
FairSync will perform under such extreme cases. Let’s assume there
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Table 3: The performance of FairSync and ComiRec-DR un-
der an extreme case. All the numbers in the table are percent-
age numbers with % omitted.

Model Recall ESP
ComiRec-DR 1.0 50.0
ComiRec-DR+FairSync(ours)  0.96  100.0

Table 4: The performance of FairSync and other baseline
performances when my is randomly sampled from [1,200]
for every g € G under K = 20. All the numbers in the table
are percentage numbers with % omitted.

Model Recall NDCG HR  ESP
K-neighbor 0.09 0.14 0.25 100.0
Uncalibrated 4.82 5.15 10.8  100.0
FairSync(ours) 4.91 5.24 11.0 100.0

are two groups: g1 and gz, and each group has 5 items. Meanwhile,
10, 000 users are accessing the retrieval system, and each user is
conducting retrievals for a set of K = 5 items. Each user’s embed-
dings will exhibit proximity (distance ranging from 0 to 0.4) to the
item embeddings belonging to category g;, while maintaining a

1102

WWW ’24, May 13-17, 2024, Singapore, Singapore

distance (ranging from 0.4 to 1.0) from the item embeddings asso-
ciated with category g . Every group will require 2000 exposures
(m1=m2=2000). Our experiment results are shown in Table 3.
From the experiments, we can see the recall will be 0.96 (decrease
4% = % compared to methods without fairness constraints), and
the fairness constraints will also be satisfiable (g1 will get 48000 ex-
posures while g2 will get 2000 exposures). Certainly, incorporating
constraints incurs a marginal reduction in recall without adversely
impacting latency. However, as detailed in the subsequent question,
our method supports query-level constraints. This enables the plat-
form to strategically decrease the requirement my on gz to achieve
higher accuracy, presenting a trade-off decision for the platform.

C.2 Performance on group-level requirements.

In our main experiments, we have chosen to maintain a constant
value for my across all groups g. We can make different user groups
to select different m, to achieve the group-level constraints. We
conduct an experiment to randomly sample from [1,200] for every
group g to show our effectiveness for K = 20.

From Table 4, the reported results indicate that our method,
FairSync, continues to effectively address group-level constraints,
demonstrating superior retrieval accuracy compared to other base-
lines such as K-neighbor and Uncalibrated.
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