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ABSTRACT
In pursuit of fairness and balanced development, recommender

systems (RS) often prioritize group fairness, ensuring that specific

groups maintain a minimum level of exposure over a given period.

For example, RS platforms aim to ensure adequate exposure for new

providers or specific categories of items according to their needs.

Modern industry RS usually adopts a two-stage pipeline: stage-1

(retrieval stage) retrieves hundreds of candidates from millions of

items distributed across various servers, and stage-2 (ranking stage)

focuses on presenting a small-size but accurate selection from items

chosen in stage-1. Existing efforts for ensuring amortized group

exposures focus on stage-2, however, stage-1 is also critical for the

task. Without a high-quality set of candidates, the stage-2 ranker

cannot ensure the required exposure of groups. Previous fairness-

aware works designed for stage-2 typically require accessing and

traversing all items. In stage-1, however, millions of items are dis-

tributively stored in servers, making it infeasible to traverse all of

them. How to ensure group exposures in the distributed retrieval

process is a challenging question. To address this issue, we intro-

duce a model named FairSync, which transforms the problem into a

constrained distributed optimization problem. Specifically, FairSync

resolves the issue by moving it to the dual space, where a central

node aggregates historical fairness data into a vector and distributes

it to all servers. To trade off the efficiency and accuracy, the gradient

descent technique is used to periodically update the parameter of

the dual vector. The experiment results on two public recommender

retrieval datasets showcased that FairSync outperformed all the

baselines, achieving the desired minimum level of exposures while

maintaining a high level of retrieval accuracy.
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1 INTRODUCTION
In recent times, the need for fair recommender systems (RS) has

gained prominence in industrial requirements [21, 33]. Among

these requirements, RS platform has the demands of guaranteeing

that specific groups achieve a minimum level of exposure to items

within a defined period, aligning with the perspective of amortized

group max-min fairness (MMF) [2, 18, 25, 38, 41]. For instance,

certain studies propose to ensure minimum item exposures for new

providers [4, 28, 38, 39] for attracting providers to join, while others

focus on enhancing the visibility of specific item categories [45]

for promoting certain festivals. Such “minimum wage policy” [32]

significantly contributes to the enhancement of RS, fostering the

creation of a more equitable and robust ecosystem.

In modern RS, two-stage pipelines have been widely adopted, as

shown in Figure 1 (a). The primary objective of stage-1 (retrieval)

is to efficiently generate a small set of candidates from millions

of items in a distributed manner within milliseconds [5, 8, 20, 23]

while stage-2 (ranking) more accurately deals with the candidates

selected in stage-1 and generates the final recommendations (usu-

ally single-digit items) [38, 45]. Regarding ensuringminimum group

exposures in RS, most existing studies [4, 9, 26, 28, 37, 38, 45] pri-

marily concentrated on stage-2.

Existing studies revealed that the fairness task in stage-2 can

be compromised if stage-1 fails to retrieve a sufficient number of

items [36]. We also conduct a simulation to examine how the mini-

mum exposure in stage-1 affects the minimum exposure in stage-2.
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Figure 1: (a) The two-stage pipelines of recommender system,
including retrieval (stage-1) and ranking (stage-2). (b) Sim-
ulations depicting the changes for the minimum exposures
across two stages.

Specifically, we conduct a simulation using Amazon
1
dataset to as-

sess the minimum exposure of groups across two stages. In stage-1,

we leverage the YoutubeDNN [8] model and employ a rule-based

method to regulate the retrieved exposures of item categories. In

stage-2, we implement an oracle ranking model, ensuring the at-

tainment of the highest minimum exposure of groups. The x-axis

represents the minimum exposures of item categories in stage-1,

while the y-axis corresponds to the exposures of these categories

in stage-2. The results reported in Figure 1 (b) indicate that there

exists a robust positive correlation between the minimum group

exposure of the two stages. In simpler terms, if stage-1 is unable

to retrieve required item categories effectively, it will also pose

challenges for stage-2 in ensuring the exposure of certain groups.

Though critically important, existing approaches designed for

stage-2 [9, 26, 28, 37, 38] cannot be directly applied to stage-1 be-

cause they ensure the amortized group exposures by traversing all

items and adjusting exposures through aggregating information.

During stage-1, however, traversing all items (usually millions of

items) is infeasible because (1) these items are distributively stored

at different servers, and (2) accessing millions of items causes sub-

stantial computational cost. While some heuristic approaches have

employed strict rules or adjusted group weights, they still lack the

capacity to effectively address the challenge.

In this paper, we introduce a novel model named FairSync, which

can ensure the minimum amortized group exposure requirements

in the retrieval stage of RS. FairSync converts the problem into a

constrained distributed optimization and addresses the problem by

transferring it to the dual space. In such space, we aggregate past

fairness information into a vector and distribute it to servers. Based

on the vector, each server independently conducts the item retrieval.

Theoretical analysis shows that, even with local and distributive

search, FairSync can still achieve global fairness.

In particular, the RS platform first sets a target to ensure that

every group attains a minimum level of exposure. Then we ap-

proach the problem by formulating it as a distributed resource

allocation problem [1, 38], with the constraint of required expo-

sures. Subsequently, we can transform the constrained optimization

problem into an unconstrained dual problem. Then, a constructed

dual vector, storing the past fairness information, is combined with

1
http://jmcauley.ucsd.edu/data/amazon/

user embeddings to form a query vector. Each item, along with its

embeddings, is concatenated with the group embedding to form

the new item embeddings which will be distributed across servers.

After that, each server conducts KNN search for identifying can-

didate items within milliseconds by using the dense retrieval [42]

architecture. Finally, the outcomes are aggregated into a set of can-

didate items for stage-2. As for the learning procedure, we employ

the gradient descent method [17] to update the parameters of dual

vector periodically to trade-off the efficiency and effectiveness.

We summarize the major contributions of this paper as follows:

(1) We emphasize the critical importance of incorporating the

assurance of minimum exposure for specific groups into the dis-

tributed stage-1 (retrieval) of RS.

(2) We introduce a model named FairSync which is tailored to

meet the distributed, efficient, and online demands of the prevalent

dense retrieval architecture in stage-1 of RS.

(3) The experimental results on two publicly available large-scale

recommendation datasets clearly demonstrate that FairSync out-

performs the baseline models, attaining the desired minimum level

of exposures while preserving a high level of retrieval accuracy.

2 RELATEDWORK
Fairness has emerged as a prominent research theme within rec-

ommender systems. In this realm, two predominant aspects are

often explored: individual fairness [22, 24], which concentrates on

equitable treatment for individuals, and group fairness, which cate-

gorizes items into various groups such as providers [4, 26, 28, 37–

39], and item categories [11, 30, 36]. In group fairness, there are

usually two criteria. One is egalitarian proposes [11, 24, 26, 36, 37],

which aims to equalize the outcome of different groups, another is

Rawl’s principle [18], which aims to improve the utility of worst-off

groups [4, 28, 38, 39]. In real application of RS, amortized fair-

ness [3, 4, 28, 38, 39] is more realistic, which achieves fairness over

a period of time, rather than enforcing it strictly on a single ranking

list. In our research, wemainly focused on the amortized groupmax-

min fairness, which is used to support new providers or enhance

the visibility of specific item categories.

In RS, there are many methods proposed to alleviate amortized

group MMF. FairRec [28] and its extension FairRec+ [4] proposed

an offline recommender model to guarantee equal frequency for

all items in a series of ranking lists. Yang and Ai [40] proposed a

marginal optimizing approach to conduct amortized MMF in the

learning-to-rank process. TFROM [37] and CP-Fair [26] proposed

a Linear Programming (LP)-based method to ensure the group

fairness, see also [2, 9, 41]. P-MMF [38], LTP-MMF [39] proposed

an online mirror gradient descent to improve worst-off provider’s

exposures in the dual space. Nonetheless, all of these proposals have

been introduced within the context of stage-2 scenarios, making

them impractical for application in stage-1 due to their substantial

computational overhead.

In large RS, the significance of stage-1 (retrieval) cannot be

overstated, as the performance of stage-2 is heavily reliant on

it [5, 19, 20, 36, 43]. There are also some works that proposed in-

spiring approaches to solve fairness issues in stage-1. Wang and

Joachims [36] proposed an uncertainty quantification approach to
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control the threshold of each retrieval channel in one retrieval pro-

cess. Hao et al. [13], Rastegarpanah et al. [29] proposed a fairness-

related matrix factorization method to adjust the weight of the

retrieval model. In resource allocation, Balseiro et al. [1], Cheung

et al. [7] proposed a mirror-descent method to solve in the dual

space. However, these methods either fall into addressing amortized

group max-min fairness well or are unsuitable for implementation

within the retrieval systems that require distributive, efficient, and

online capabilities.

3 PROBLEM FORMULATION
In RS, letU,I be the set of users and items, and each item 𝑖 ∈ I is

associated with a unique group 𝑔 ∈ G. The set of items associated

with a specific group 𝑔 is denoted as I𝑔 . When a specific user𝑢 ∈ U
accesses the retrieval system, the system will retrieve items from

distributed servers and aggregate them into a list of candidate items

with a predefined size of 𝐾 , denoted by 𝐿𝐾 (𝑢) ∈ I𝐾 , which is then

prepared for stage-2 for detailed ranking.

In real-world applications, the users arrive at the RS sequentially.

Assume that at time 𝑡 , user 𝑢𝑡 arrives. The RS aims to ensure that

the exposure of a specific group 𝑔 remains at or exceeds a threshold

of𝑚𝑔 throughout the entire time horizon from 𝑡 = 1 to 𝑇 , all the

while optimizing to retain enough relevant items within a single

candidate retrieval list. At the same time, we require an online

solution, where at time step 𝑡 , the RS responds to a request from

user 𝑢𝑡 by providing a candidate list without waiting for input

from a second user 𝑢𝑡+1. An online retrieval algorithm ℎ produces

a real-time decision candidates 𝐿𝐾 (𝑢𝑡 ) based on the current user

𝑢𝑡 and the previous history H𝑡−1 = {𝑢𝑠 , 𝐿𝐾 (𝑢𝑠 )}𝑡−1𝑠=1
:

𝐿𝐾 (𝑢𝑡 ) = ℎ(𝑢𝑡 | H𝑡−1,M),

where M = {𝑚𝑔 |𝑔 ∈ G} is the factor set by the platform.

State-of-the-art recommender retrieval models [5, 19, 20, 43] usu-

ally employ the distributive dense retrieval architecture, wherein

an item 𝑖 is represented as an embedding 𝒆𝒊 ∈ 𝑅𝑑 using complex

neural networks, such as transformers [35]. These embeddings are

indexed on each server 𝑆𝑛, 𝑛 ∈ [1, 2, · · · , 𝑀] in a distributed man-

ner, with 𝑑 ∈ 𝑁 +
being the predefined dimension and 𝑀 is the

server number. For the user 𝑢, a simple network is employed to

represent them as an embedding 𝒆𝑢 ∈ 𝑅𝑑 , typically utilizing their

historical browsing information in state-of-the-art systems. The

user-item relevance score 𝑟𝑢,𝑖 is calculated as the distance between

𝒆𝑖 and 𝒆𝑢 locally in each server 𝑆𝑛 . The retrieval model’s objective

is to identify candidate items whose embeddings 𝒆𝑖 are in close

proximity to the embedding of the user 𝒆𝑢 , i.e., finding the highest

possible relevance scores 𝑟𝑢,𝑖 in the candidate list for the stage-2

ranking process.

Generally, the RS will establish the offline index [16] for items

to efficiently search the desired ones from each server. Previous

research [9, 28, 38] focus on ensuring amortized group exposureM
by traversing all items 𝑖 and their corresponding groups 𝑔, where

𝑖 ∈ I𝑔 . However, in a distributed dense retrieval architecture, these

methods are no longer suitable.

4 OUR APPROACH
In this section, we will introduce our approach FairSync.

4.1 Distributed Dense Retrieval Architecture
In themainstream recommender retrieval architectures, the primary

objective is to identify items whose embeddings 𝒆𝑖 , are in close

proximity to the embedding of the user 𝒆𝑢 distributively. Formally,

the problem can write as:

𝐿𝐾 (𝑢) = argmin

𝐿⊂{1,2,..., | I | }, |𝐿 |=𝑘

∑︁
𝑖∈𝑆𝑛,∀𝑛

𝑑 (𝒆𝑢 , 𝒆𝑖 ), (1)

where 𝐿 is the set of indices of the 𝐾 nearest neighbors, 𝑑 (𝒆𝑢 , 𝒆𝑖 )
is the distance between embedding 𝒆𝑢 , 𝒆𝑖 , 𝑖-th the commonly used

distance metric being the dot-product locally on each server, i.e.

𝑑 (𝒆𝑢 , 𝒆𝑖 ) = −𝑒⊤𝑢 𝒆𝑖 , and the 𝒆𝑢 and 𝒆𝑖 are calculated by a complex

model, such as Deep Neural Network [8], Recurrent Neural Net-

work [15], Capsule Network [20], i.e.

𝒆𝑢 =𝑚𝑢 (𝑢), 𝒆𝑖 =𝑚
𝑖 (𝑖),

where𝑚𝑢 (·) and𝑚𝑖 (·) are two embedding extraction networks.

Typically, the item embeddings 𝒆𝑖 are pre-calculated and dis-

tributively indexed on servers [16], whereas the user embedding 𝒆𝑢
requires online inference using complex recommendation models,

see [5, 8, 20, 43]. In real application [5], Equation (1) is computed

by performing KNN search in the embedding space efficiently.

4.2 Dual Space of Retrieval
After the platform gives the minimum exposure requirement for

each group, i.e., requiring the exposure of a specific group 𝑔 to

remain at or exceed a threshold of𝑚𝑔 throughout the entire time

horizon from 𝑡 = 1 to 𝑇 . Therefore, we write the equation (1) as a

distributed resource allocation problem:

max

𝑥𝑢𝑡 ,𝑖

𝑇∑︁
𝑡=1

∑︁
𝑖∈𝑆𝑛,∀𝑛

𝑥𝑢𝑡 ,𝑖𝑟𝑢𝑡 ,𝑖

s.t.

∑︁
𝑖∈𝑆𝑛,∀𝑛

𝑥𝑢𝑡 ,𝑖 = 𝐾, ∀𝑡 ∈ [1, 2, . . . ,𝑇 ]

𝑟𝑢𝑡 ,𝑖 = −𝑑 (𝒆𝑢𝑡 , 𝒆𝑖 )

𝑒𝑔 =

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑔

𝑥𝑢𝑡 ,𝑖 , ∀𝑔 ∈ G

𝑒𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G
𝑥𝑢𝑡 ,𝑖 ∈ {0, 1},∀𝑡 ∈ [1, 2, . . . ,𝑇 ], 𝑖 ∈ I

(2)

where 𝑒𝑔 can be seen as the total number of exposed items of group

𝑔, accumulated over the period 1 to 𝑇 , 𝑥𝑢𝑡 ,𝑖 ∈ {0, 1} is the decision
vector for user𝑢𝑡 . Specifically, for each item 𝑖 , 𝑥𝑢𝑡 ,𝑖 = 1 if it is added

to the candidate list 𝐿𝐾 (𝑢𝑡 ), otherwise 𝑥𝑢𝑡 ,𝑖 = 0.

Theorem 1. The dual problem objective𝑊 Dual of Equation (2)

can be write as

min

𝝁


𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

(𝑟𝑢𝑡 ,𝑖 −𝑨𝝁)[𝑘 ] +
∑︁
𝑔∈G

𝑚𝑔𝝁𝑔 +max

𝑔
{𝝁𝑔}(𝑇𝐾 −

∑︁
𝑔∈G

𝑚𝑔)
 ,

(3)

where we can have a dual variable 𝝁 ∈ R | G | , A ∈ R | I |× |G | is the
item-group adjacent matrix, and 𝐴𝑖𝑔 = 1 indicates item 𝑖 ∈ I𝑔 , and 0
otherwise. Moreover, the dual problem is a strong-dual problem, that
is the optimal value of Equation (3) is the same as Equation (2).

1094



WWW ’24, May 13–17, 2024, Singapore, Singapore Chen Xu, Jun Xu, Yiming Ding, Xiao Zhang, & Qi Qi

Orinal Space
Project

Dual Space

K=2

𝑚𝑔=1

Query

Group 1

Group 2

(a）Illustrative Example

Items

Item embedding extraction 𝑚𝑖

𝑖1 𝑖2 𝑖𝑛

Item 

embebeddings
𝑒𝑖1 𝑒𝑖2 𝑒𝑖𝑛

1 0 0 0 1 0 0 1 0
Group 

embebeddings

Concat

𝐴1 𝐴2 𝐴𝑛
Store

Servers

(c）Offline Item Servers

User 𝑢𝑡

User embedding extraction 𝑚𝑢

User

embebeddings 

Concat

Dual vector

𝑒𝑢𝑡

𝜇𝑡

Query vector𝑞𝑡
KNN search

ResultCandidate 

list 𝐿𝐾(𝑢𝑡)

Update

(b）Online Retrieval Process

Figure 2: FairSync Framework. Sub-figure (a) illustrates an example to show the intuitive example of how FairSync works.
Sub-figure (b) illustrates that the online retrieval process when user 𝑢𝑡 arrives, while sub-figure (c) depicts the offline item
embeddings in the dual space construction process.

Remark 1 (Distributed solution in dual space). After the
transformation of the original problem (Equation (1)) into its dual
form (Equation (1)), we can convert the problem into an unconstrained
optimization problem, simplifying the optimization process signifi-
cantly. We can also observe that different items are independent of
each other. Therefore, the problem can be effectively solved in a dis-
tributed manner. The value 𝝁 can be regarded as the accumulated
exposure information and be distributed to each server during the
retrieval process.

Remark 2 (Small computational costs). The original problem
(Equation (1)) is computationally intensive due to its nature as a
constraint integral linear problem, and it involves a vast variable
space of size 𝑇 × |I| given that the retrieval process may encompass
millions of items. However, in the dual problem (2), we observe that
the variable size has been significantly reduced to |G| ≪ 𝑇 × |I|, and
thanks to the sparsity of A, the computation of A𝝁 is highly efficient.
This operation serves to project the variable 𝝁 from the group space
into the item spaces.

The detailed proof can be seen in the Appendix A.2.

4.3 FairSync Algorithm
Figure 2 shows the framework of the FairSync. FairSync will

retrieve items from the transformed dual space. Next, we will illus-

trate the inference phase and online learning phase, respectively.

4.3.1 Inference phase. we will provide illustrative examples to

demonstrate how FairSync works and present a detailed inference

workflow of FairSync.

Firstly, Figure 2 (a) provides an illustrative example to demon-

strate the functioning of the FairSync algorithm in an intuitive

manner. In this example, we simplify the problem by retrieving two

items from a corpus containing four items (depicted as circles in the

figure), each assigned to different groups, represented by distinct

colors in the figure. A user 𝑢𝑡 arrives at the recommender system,

and this user is represented as the red pentagram. The system’s

requirement is to ensure that there is at least one exposure of each

group. From the original space, the user and items are represented

as the embedding 𝒆𝑢 , 𝒆𝑖 in Section 4.1. In such space, the retrieval

system will find the top-2 closest items, i.e. orange items to users.

However, in the dual space, FairSync will project the user and item

Algorithm 1: FairSync Algorithm

Input: User arriving order {𝑢𝑡 }𝑇𝑡=1, item corpus I, candidate size
𝐾 , batch size 𝐵, optimizer Opt with learning rate 𝜂, trained

user item embedding network𝑚𝑢 (·),𝑚𝑖 (·) item-group

adjacent matrix A, minimum group exposure requirement

{𝑚𝑔}𝑔∈G .
Output: The candidate lists for every user {𝐿𝐾 (𝑢𝑡 )}𝑇𝑡=1
1: Calculate items embeddings {𝒆𝑖 =𝑚𝑖 (𝑖),∀𝑖 ∈ I}
2: Re-construct and distributively index the item embeddings

{𝒉𝑖 = 𝒆𝑖 ∥𝑨𝑖 ,∀𝑖 ∈ I}.
3: Initialize update count 𝑏 = 0.

4: Initialize the gradient buffer B𝑠 = {}.
5: for 𝑡 = 1, · · · ,𝑇 do
6: Initialize dual solution 𝝁 = 0

7: User 𝑢𝑡 arrives

8: Calculate user embedding 𝒆𝑢𝑡 =𝑚
𝑢 (𝑢𝑡 )

9: Re-construct query embeddings 𝒒𝑢𝑡 = 𝒆𝑢𝑡 ∥𝝁
10: // KNN Retrieval: (Equation (4))

11: 𝐿𝐾 (𝑢𝑡 ) = argmin𝑆⊂{1,2,..., | I | }, |𝑆 |=𝑘
∑
𝑖∈𝑆 𝑑

Dual (𝒒𝑢𝑡 ,𝒉𝑖 ),
12: Compute the sub-gradient 𝒔 utilizing the Equation (6)

13: Store the sub-gradient 𝒔 into B𝑠
14: Update count 𝑐 = 𝑐 + 1

15: if 𝑐 = 𝐵 // Update per B users then
16: 𝒖 = Opt(𝝁,∑𝒔∈B𝑠 𝒔)
17: Initialize update count 𝑏 = 0.

18: Initialize the gradient buffer B𝑠 = {}
19: end if
20: end for

embeddings to different points, while ensuring the minimum ex-

posure constraint is satisfied. In the dual space, the dense retrieval

system can efficiently locate the distributed items that meet the

requirements and simultaneously maintain retrieval accuracy.

Formally, from Theorem 1, we can observe that the distance

between the user and item in the dual space transforms to:

𝑑Dual = 𝑑 (𝒆𝑢 , 𝒆𝑖 ) + 𝝁𝑔, 𝑖 ∈ I𝑔 . (4)

Therefore, to better adapt to the dense retrieval architecture
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Table 1: Statistics of the datasets.

Dataset #User #Item #Group #Interaction

Amazon-Book 459,133 313,966 165 8,898,041

Taobao 976,779 1,708,530 1246 85,384,110

discussed in Section 4.1, we reconstruct user 𝑢𝑡 embeddings to 𝒒𝑢𝑡
and embedding of item 𝑖 to 𝒉𝑖 , where 𝒒𝑢𝑡 and 𝒉𝑖 are defined as

follows:

𝒒𝑢𝑡 = 𝒆𝑢𝑡 ∥ − 𝝁𝑡 , 𝒉𝑖 = 𝒆𝑖 ∥𝑨𝑖 , (5)

where ∥ denotes the concat operator between two vectors and 𝑨𝑖
denotes the 𝑖-th column vector of adjacent matrix in Theorem 1.

Therefore, we have 𝑑Dual = −𝒒⊤𝑢𝑡𝒉𝑖 .
Figure 2 (b) illustrates the inference phase of FairSync in a more

visualized way. Firstly, a user 𝑢𝑡 arrives, then the user embedding

extraction𝑚𝑢 module (any retrieval model) will extract the user

embedding 𝒆𝑢𝑡 . Then, at time 𝑡 , we have a dual vector 𝝁𝑡 to form the

query vector 𝒒𝑢𝑡 (Equation (5)). Then we will utilize the vector 𝒒𝑢𝑡
to utilize k-nearest neighbors (KNN) search on the distributively

indexed item embeddings {𝒉𝑖 ,∀𝑖 ∈ I} in the dual space to retrieve

a corresponding list of candidate items (Figure 2 (c)).

4.3.2 Online learning phase. In the online learning phase, we aim

to update the dual vector 𝝁𝑡 once in a while.

Specifically, we can see that the sub-gradient 𝒔 ∈ R | G |
, 𝒔 ∈

𝜕𝑊 Dual/𝜕𝝁𝑡 in Equation (3) at time 𝑡 satisfies:

𝒔𝑔 =

{
𝑚𝑔 +

∑
𝑖∈𝐿𝐾 (𝑢𝑡 ) 𝐼 (𝑖 ∈ I𝑔), if 𝑔 ≠ 𝑔∑

𝑖∈𝐿𝐾 (𝑢𝑡 ) 𝐼 (𝑖 ∈ I𝑔) + (𝑇𝐾 −∑
𝑔≠𝑔𝑚𝑔), else,

(6)

where 𝐼 (·) denotes the indicator function and 𝑔 = argmax𝑔∈G 𝝁𝑔 .
Based on the assumption that user comes to the system ran-

domly [38], we can utilize the sub-gradient 𝒔 to update 𝝁𝑡 . In real

applications, however, updating 𝝁𝑡 at every time step 𝑡 is chal-

lenged by a large number of asynchronous update operations on

different servers, and when the update frequency is too high, it can

lead to excessively long recall times, thereby impacting the user

experience. Therefore, to trade off the efficiency and effectiveness,

we will update the dual vector 𝝁 each 𝐵 steps.

Specifically, we will store the sub-gradient 𝒔 of each step into a

gradient buffer B𝑠 . For each 𝐵 steps, we will utilized any optimizer

Opt (in this paper, we utilized the well-performing Adam [17])

to update 𝝁 utilizing the averaged gradient in the buffer, i.e. 𝝁 =

Opt(𝝁,∑𝒔∈B𝑠 𝒔).
The detailed FairSync algorithm is shown in Algorithm 1.

4.3.3 Discussion. Our algorithm FairSync can be applied with any

other distributed retrieval architecture. We will illustrate the meth-

ods in detail. In retrieval architectures, most of the work commonly

incorporates ANN algorithms, as elucidated in the paper. There are

also tree-based indexing models such as TDM [44] and similar in-

dexing approaches. As we solely map the user embedding and item

embedding to the dual space outlined in Equation (5), our approach

allows for adapting with various distributed retrieval architectures.

This is possible as other methods can easily apply our approach by

indexing the dual item embedding using their preferred indexing

techniques.

5 EXPERIMENT
We conducted experiments to demonstrate the effectiveness of the

proposed FairSync. The source code and experiments have been

shared at github
2
.

5.1 Experimental settings
5.1.1 Datasets. Following the practice in Cen et al. [5], the exper-

iments are conducted on one commonly used publicly available

retrieval datasets and one billion-scale industrial dataset, including:

Amazon-Book3: The subsets (book domains) of Amazon [14]

Product dataset. The item grouping relies on the field “categories”.

Each training sample is truncated at length 20. As a pre-processing

step, we consider groups with fewer than 50 items as a single group,

which we name the “infrequent group”.

Taobao4: collected about 1 million user behaviors data based on

Taobao’s recommender systems [44] during November 25 to De-

cember 03, 2017. The item grouping relies on the field “category ID”.

Each training sample is truncated at length 50. As a pre-processing

step, we consider groups with fewer than 200 items as a single

group, which we name the “infrequent group”.

The statistics of the two datasets are shown in Table 1.

5.1.2 Evaluation. Firstly, following the common practice [5, 19, 20],

we train the embedding extraction network𝑚𝑖 (·),𝑚𝑢 (·). We sort

all the interactions in the dataset based on their timestamps and

utilize the initial 80% of the interactions as the training data for

𝑚𝑖 (·),𝑚𝑢 (·) training. The remaining 20% of interactions were split

into two equal parts, with each 10% portion serving as the validation

and test data, respectively, for evaluation.

As for the evaluation metrics, the performances of the models

were evaluated from two aspects: retrieval accuracy, and the mini-

mum group exposure satisfaction (i.e. performance of fairness). Let

𝑇 be the test set length and
ˆI𝑢 be the set of items for user 𝑢.

For the retrieval accuracy, following [5, 6], we utilize

• Recall:

Recall@N =
1

𝑇

𝑇∑︁
𝑡=1

|𝐿𝐾 (𝑢𝑡 ) ∩ ˆI𝑢𝑡 |
ˆI𝑢𝑡

.

• Hit Rate. The HR Rate (HR) is a metric that quantifies the

percentage of recommended items that include at least one

item that the user has previously interacted with [5, 6].

HR@N =
1

𝑇

𝑇∑︁
𝑡=1

𝐼 ( |𝐿𝐾 (𝑢𝑡 ) ∩ ˆI𝑢𝑡 | > 0) .

• Normalized Discounted Cumulative Gain. Normalized

Discounted Cumulative Gain (NDCG) is a metric that factors

in the positions of correctly recommended items, providing

a measure that accounts for the item’s relevance and its

position in the recommendation list [5].

NDCG@N =
1

𝑇

𝑇∑︁
𝑡=1

∑︁
𝑖∈𝐿𝐾 (𝑢𝑡 )

𝐼 (𝑖 ∈ 𝐼𝑢𝑡 )
log

2
(pos(𝑖, 𝐿𝐾 (𝑢𝑡 )))

/𝑍𝑡 ,

where pos(𝑖, 𝐿𝐾 (𝑢𝑡 )) is the sorting position of item 𝑖 in the

2
https://github.com/XuChen0427/FairSync

3
http://jmcauley.ucsd.edu/data/amazon/

4
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
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Table 2: Performance comparisons between ours and the baselines on Amazon book subset and Taobao. Our objective is to
guarantee that each group possesses a minimum of 200 exposures to fulfill the ESP metric. The ∗means the improvements over
the baseline that can guarantee minimum exposure baselines (K-neighbor and Uncalibrated) are statistically significant (t-tests
and 𝑝-value < 0.05). The bold number indicates that the accuracy value exceeds that of all the baselines. All the numbers in the
table are percentage numbers with “%” omitted.

Base model Fairness model

Amazon-Book dataset Taobao dataset

top-20 top-50 top-20 top-50

Recall NDCG HR ESP Recall NDCG HR ESP Recall NDCG HR ESP Recall NDCG HR ESP

youtubeDNN

regularized-fair 4.52 4.61 10.13 53.94 7.11 5.64 15.55 81.21 3.29 14.85 28.89 58.27 4.97 16.56 39.31 82.83

IPW 4.55 4.64 10.19 45.45 7.16 5.68 15.66 73.94 3.29 14.85 28.89 57.78 4.97 16.56 39.31 82.66

K-neighbor 0.09 0.14 0.29 100.00 0.14 0.17 0.41 100.00 0.15 0.87 1.73 100.00 0.24 1.00 2.51 100.00

Uncalibrated 4.44 4.53 9.96 100.00 7.08 5.62 15.51 100.00 2.99 13.46 26.18 100.00 4.79 15.95 37.87 100.00

FairSync(ours) 4.55∗ 4.64∗ 10.19∗ 100.00 7.16∗ 5.69∗ 15.68∗ 100.00 3.29∗ 14.77
∗

28.74
∗

100.00 4.99∗ 16.56∗ 39.32∗ 100.00

GRU4REC

regularized-fair 3.95 4.01 8.70 46.67 6.35 4.94 13.63 77.58 4.73 18.84 35.63 64.93 6.95 20.43 45.99 83.63

IPW 3.97 4.04 8.76 38.79 6.38 4.97 13.70 63.03 4.73 18.84 35.64 64.69 6.95 20.43 45.99 83.55

K-neighbor 0.09 0.13 0.26 100.00 0.14 0.15 0.41 100.00 0.17 0.79 1.54 100.00 0.24 0.92 2.19 100.00

Uncalibrated 3.90 3.94 8.58 100.00 6.32 4.91 13.55 100.00 4.29 17.08 32.26 100.00 6.69 19.65 44.25 100.00

FairSync(ours) 3.98∗ 4.04∗ 8.77∗ 100.00 6.37
∗ 4.97∗ 13.68

∗
100.00 4.74∗ 18.79

∗
35.52

∗
100.00 6.96∗ 20.54∗ 46.01∗ 100.00

MIND

regularized-fair 6.64 6.58 13.70 41.82 9.64 7.66 19.46 63.64 4.62 18.98 36.15 62.28 6.96 20.70 47.34 79.21

IPW 6.62 6.56 13.67 38.18 9.63 7.63 19.42 58.79 4.62 18.98 36.15 62.28 6.96 20.70 47.34 78.97

K-neighbor 0.10 0.16 0.32 100.00 0.15 0.18 0.40 100.00 0.17 0.94 1.80 100.00 0.26 1.12 2.60 100.00

Uncalibrated 6.45 6.39 13.33 100.00 9.52 7.54 19.20 100.00 4.20 17.23 32.80 100.00 6.69 19.93 45.58 100.00

FairSync(ours) 6.60
∗ 6.60∗ 13.65

∗
100.00 9.65∗ 7.69∗ 19.48∗ 100.00 4.57

∗
18.82

∗
35.86

∗
100.00 6.98∗ 20.76∗ 47.38∗ 100.00

ComiRec-DR

regularized-fair 4.92 5.26 10.99 37.58 7.40 6.20 16.03 61.21 5.51 23.49 42.25 63.24 7.98 24.85 52.77 80.26

IPW 4.91 5.24 10.97 33.33 7.41 6.18 16.03 55.15 5.51 23.49 42.25 63.24 7.98 24.85 52.76 80.26

K-neighbor 0.09 0.14 0.25 100.00 0.14 0.16 0.37 100.00 0.19 1.01 1.85 100.00 0.28 1.18 2.60 100.00

Uncalibrated 4.76 5.10 10.68 100.00 7.30 6.10 15.82 100.00 4.99 21.29 38.30 100.00 7.67 23.92 50.81 100.00

FairSync(ours) 4.92∗ 5.28∗ 11.0∗ 100.00 7.42∗ 6.20∗ 16.08∗ 100.00 5.47
∗

23.35
∗

42.20
∗

100.00 8.07∗ 24.93∗ 52.80∗ 100.00

ComiRec-SA

regularized-fair 5.23 3.78 10.83 49.70 8.09 4.93 16.47 75.76 5.49 23.77 41.61 63.88 7.76 24.98 51.28 80.10

IPW 5.25 3.79 10.85 44.85 8.10 4.93 16.46 70.91 5.49 23.77 41.62 63.80 7.76 24.99 51.28 80.10

K-neighbor 0.11 0.14 0.29 100.00 0.15 0.75 1.92 100.00 0.17 0.90 1.61 100.00 0.25 1.10 2.39 100.00

Uncalibrated 5.12 3.70 10.59 100.00 8.01 4.88 16.30 100.00 4.97 21.53 37.65 100.00 7.47 24.06 49.36 100.00

FairSync(ours) 5.26∗ 3.80∗ 10.81
∗

100.00 8.12∗ 4.93∗ 16.47∗ 100.00 5.45
∗

23.66
∗

41.36
∗

100.00 7.76∗ 24.99∗ 51.33∗ 100.00
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Figure 3: The accuracy curve (Recall, NDCG, and HR) of FairSync (ours) and the best baseline Uncalibrated under different
minimum exposure threshold𝑚𝑔. The experiments were conducted based on the best retrieval base model ComiRec-DR.

list 𝐿𝐾 (𝑢𝑡 ), starting from 1 to 𝐾 and 𝑍𝑡 represents a normal-

ization constant that denotes the ideal discounted cumulative

gain (IDCG@N), which signifies the highest achievable value

for the numerator in the metric at time 𝑡 .

For the minimum group exposure satisfaction, we apply:

• Enough Satisfaction Groups. Enough satisfaction groups

(ESP) aims to estimate whether each candidate generation

policy selects enough items that satisfy the minimum group

exposure requirement, similar to the enough relevant items

(ER) metric in [36]:

ESP =
1

|G|
∑︁
𝑔∈G

𝐼
©­«

𝑇∑︁
𝑡=1

∑︁
𝑖∈𝐿𝐾 (𝑢𝑡 )

𝐼 (𝑖 ∈ I𝑔)
 > 𝑚𝑔

ª®¬ .
5.1.3 Baselines and Base Models. In this section, we mainly intro-

duce the controllable retrieval baselines and base models used for

extraction user and item embeddings.

For the distributed retrieval baseline, we mainly choose four

heuristic methods: regularized-fair [38]: at each time step 𝑡 , a

regularized-based dual variable to reduce the exposure gaps be-

tween all items and the worst-off item. IPW [36]: selected the

group exposure as the item’s inverse propensity weighted (IPW)

during the retrieval process. However, the two aforementioned base-

lines fail to ensure the necessary minimum exposures for groups,

as employing different trade-off coefficients 𝜆 reveals an inability

to comprehensively fulfill the fairness constraint.

The next baselines are the two heuristic methods used to ensure

that the required minimum exposures of groups are guaranteed in

the retrieval process. 𝐾-neighbor [28]: at each time step 𝑡 , Only

the items on each server associated with the top-K group, having

the lowest cumulative exposure, are retrieved. Uncalibrated [36]:

each step 𝑡 only chooses the items whose group does not satisfy the

required exposures. For a fair comparison, we also retrieve them

using the KNN search method.
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Figure 4: The three sub-figures in the first row illustrate the t-SNE visualization item embeddings and user embeddings of
Comirec-DR and our model FairSync using Comirec-DR as the base model under different time 𝑡 . The three sub-figures in
the final row depict the category exposures under different time steps 𝑡 . The experiment was conducted on the Amazon-book
dataset with retrieval number 𝐾 = 50.

1 2 4 8 16 32 64 128 256 512
Batch size

0.0

0.5

1.0

1.5

2.0

In
fe

re
n

ce
ti

m
e

p
er

u
se

r
(m

s)

Comirec-DR
Comirec-DR+FairSync

(a) K=20

1 2 4 8 16 32 64 128 256 512
Batch size

0.0

0.5

1.0

1.5

2.0

In
fe

re
n

ce
ti

m
e

p
er

u
se

r
(m

s)

Comirec-DR
Comirec-DR+FairSync

(b) K=50

Figure 5: Inference time per user w.r.t. w.r.t. batch size 𝐵.

For the retrieval base models, we utilize: Youtube DNN [8]:

the most commonly used retrieval models in industrial recom-

mender systems; GRU4Rec [15]: utilized the recurrent neural net-

work (RNN) to model the user sequential behaviors in the retrieval

process; MIND [20]: aimed to model user’s diverse interests by

designing a multi-interest extractor layer based on the capsule

routing mechanism [12]; ComiRec-SA [5]: the recent state-of-

the-art retrieval models, which captured user diverse interests by

the self-attention mechanism. ComiRec-DR [5]: the variant of

ComiRec-SA, which used the dynamic routing method to model

user’s sequential behaviors.

5.1.4 Implementation details. As for the hyper-parameters in all

models, the learning rate 𝜂 was tuned among [1𝑒 − 2, 1𝑒 − 4], and
the batch size for updating dual vector 𝐵 was tuned among [1, 512].
For training the base retrieval model, we utilize the best parame-

ters reported in the original papers of the models. We implement

FairSync with the most common faiss [16] KNN-search package.

The gradient descent package used Pytorch [27] to apply the auto-

gradient. The experiments were conducted under a server with a
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Figure 6: Recall, NDCG, HR and ESP curves of FairSync under
different top-K ranking w.r.t. batch size 𝐵.

single NVIDIA GeForce RTX 3090.

5.2 Experimental Results on Full Datasets
Firstly, we conduct experiments to show the performance of

FairSync and other baselines under the same minimum exposure

requirement (𝑚𝑔 = 200,∀𝑔 ∈ G) across all retrieval base models.

Table 2 presents the experimental outcomes for our FairSync model

and the baseline methods across all datasets, while ensuring that

each group maintains a minimum of 200 exposures as a require-

ment. To make fair comparisons, all the baselines were tuned their

hyperparameters to obtain the best performance under our settings.

Based on the reported findings, it becomes evident that our

model FairSync effectively fulfills the requirement of each group

maintaining a minimum of 200 exposures (i.e., ESP=100%). Further-

more, FairSync significantly outperforms the baseline techniques

intended for guaranteeing minimum exposure (K-neighbor and

Uncalibrated) across all datasets and various base retrieval models,

encompassing different top-K retrieval numbers, as reflected in

accuracy metrics including Recall, NDCG, and HR. Simultaneously,
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FairSync exhibits accuracy performance that is comparable with

other fairness baselines (regularized-fair and IPW), even though

these methods do not strictly ensure the required minimum ex-

posure of groups. The experiments conclusively demonstrate that

FairSync effectively guarantees theminimum exposure requirement

without significantly compromising the accuracy of the retrieval

process.

Secondly, we conduct experiments to demonstrate the perfor-

mance of FairSync and the best baseline (Uncalibrated) under

varying minimum exposure requirements under the best retrieval

base model ComiRec-DR. Figure 3 reports the accuracy (Recall,

NDCG, and HR) curve of our model FairSync and the best base-

line Uncalibrated under different minimum exposure threshold

𝑚𝑔 ∈ [10, 200],∀𝑔 ∈ G. Both FairSync and Uncalibrated are able to

satisfy the minimum exposure requirements.

From the curves presented in Figure 3 (a-d), it is evident that

our model FairSync consistently outperforms Uncalibrated with a

large margin across various accuracy metrics, datasets, and retrieval

numbers (𝐾 = 20, 50). The experiment demonstrates that our model

FairSync consistently exhibits better accuracy when ensuring the

minimum exposure requirements of different groups.

5.3 Experiment analysis
We also conduct experiments to analyze FairSync on Amazon-book

dataset under the best retreival base model ComiRec-DR. For other

analysis, please see Appendix C.

5.3.1 Visualization of embeddings under original and dual space.
In this section, we aim to visualize and illustrate the effective

dual projection of FairSync (with ComiRec-DR as the base model,

i.e. ComiRec+FairSync) by randomly sampling 5 item categories

and setting the requirement 𝑚𝑔 = 200,∀𝑔 ∈ G. Figure 4 utilizes

t-SNE [34] to visually represent user and item embeddings 𝒆𝑢𝑡 and
𝒆𝑖 in the original space (sub-figures in first rows), as well as user

and item embeddings 𝒒𝑢𝑡 and 𝒉𝑖 in the dual space (sub-figures in

second rows), across various time steps 𝑡 . We also show the category

exposures under different time steps 𝑡 (sub-figures in third rows).

Note that ComiRec-DR is a multi-interest retrieval model [5, 20],

where we set four user embeddings generated to represent different

user interests per time step 𝑡 .

Figure 4 (a) illustrates that at the initial retrieval process (𝑡 = 30),

the exposure levels for various categories (as depicted in the third

column’s bar plots) are nearly equalized. Such equalized exposure,

in turn, leads to FairSync’s reconstructed embeddings in the dual

space (ComiRec-DR+FairSync embeddings) closely mirroring the

patterns of the original embeddings (ComiRec-DR embeddings) to

maintain retrieval accuracy.

Figure 4 (b, c) illustrates the intermediary and ending stage

(𝑡 = 3000, 30000) of stage-1, during which category 3 dominates in

exposure levels, whereas the other categories exhibit a lower level

of exposure. In the original space (ComiRec-DR embeddings), it

is evident that the user embeddings are closely aligned with the

embeddings of category 3. However, in the dual space (ComiRec-

DR+FairSync embeddings), the user embeddings are in closer prox-

imity to lower categories (1,2), thereby ensuring that other cate-

gories meet the minimum exposure requirements.

The experiment clearly demonstrated that throughout the re-

trieval process, our model FairSync dynamically adjusts the user em-

bedding’s position based on category exposure, enhancing retrieval

accuracy while maintaining the minimum exposure requirement.

5.3.2 Ablation study on batch size. In this section, we aim to con-

duct experiments to show the performance and inference time

influenced by different online batch size 𝐵, since 𝐵 controls the

dual vector 𝝁’s updating frequency. Figure 5 and Figure 6 depict the
variations in inference time and performance, respectively, with

respect to the batch size 𝐵 ∈ [1, 512].
Firstly, Figure 5 illustrates the online inference time per user w.r.t.

batch size under different retrieval numbers 𝐾 . From the displayed

curve, it is evident that when the batch size is smaller (𝐵 ≤ 8),

FairSync still demands approximately [0.2, 1] ms more time in

comparison to the base model. When the batch size is relatively

large (𝐵 > 8), the inference times of both FairSync and the base

model are comparable, typically remaining below 0.25 ms. This

satisfies the inference time requirements for industrial applications.

Secondly, Figure 6 illustrates that accuracy (Recall, NDCG and

HR) curve and ESP (𝑚𝑔 = 200) curve w.r.t. batch size under different

retrieval number 𝐾 . Based on the depicted curve, it is apparent

that the retrieval accuracy curve decreases as the batch size varies

within the range 𝐵 ∈ [1, 8], whereas for batch sizes within the

range 𝐵 ∈ [8, 512], the accuracy curve exhibits an increase. It is

also worth noting that the minimum exposure requirement is no

longer satisfied as the batch size increases beyond 𝐵 > 64.

Therefore, we observe that the online batch size 𝐵 is a trade-

off co-efficient for performance and inference time. In real-world

applications, we must carefully control the online batch size 𝐵, as

larger values can reduce inference time but may result in poorer

performance, while smaller values can have the opposite effect.

6 CONCLUSION
This paper emphasizes the importance of considering amortized

fairness in stage-1 of RS. Then, we propose a novel retrieval model

called FairSync that aims to maintain accuracy while ensuring the

minimum exposure for specific groups in the distributed retrieval

process. In FairSync, we transform the problem into a constrained

distributed optimization problem and resolve the issue in the dual

space of the problem in a distributed manner. Extensive experi-

ments conducted on two large-scale datasets consistently show-

cased FairSync’s superior performance over baseline models across

various retrieval base models. Importantly, FairSync manages to

maintain minimal computational costs in real-world applications.
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Algorithm 2: regularized-fair Algorithm

Input: User arriving order {𝑢𝑡 }𝑇𝑡=1, item corpus I, candidate size
𝐾 , batch size 𝐵, trained user item embedding network

𝑚𝑢 (·),𝑚𝑖 (·) item-group adjacent matrix A, trade-off
coefficient 𝜆.

Output: The candidate lists for every user {𝐿𝐾 (𝑢𝑡 )}𝑇𝑡=1
1: Calculate items embeddings {𝒆𝑖 =𝑚𝑖 (𝑖),∀𝑖 ∈ I}
2: Re-construct and distributively index the item embeddings

{𝒉𝑖 = 𝒆𝑖 ∥𝑨𝑖 ,∀𝑖 ∈ I} utilizing the Equation (5).

3: for 𝑡 = 1, · · · ,𝑇 do
4: User 𝑢𝑡 arrives

5: Calculate user embedding 𝒆𝑢𝑡 =𝑚
𝑢 (𝑢𝑡 )

6: Compute 𝝁𝑟 = 𝜆[A(𝑒 − (min𝑔∈G 𝑒𝑔1⊤)]
7: Re-construct query embeddings 𝒒𝑢𝑡 = 𝒆𝑢𝑡 ∥ − 𝝁𝑟 .
8: // KNN Retrieval: (Equation (4))

9: 𝐿𝐾 (𝑢𝑡 ) = argmin𝑆⊂{1,2,..., | I | }, |𝑆 |=𝑘
∑
𝑖∈𝑆 𝑑

Dual (𝒒𝑢𝑡 ,𝒉𝑖 ),
10: end for

A APPENDIX
A.1 Lemma 1
Firstly, we prove a lemma before we start the proof of Theorem 1.

Lemma 1. Let 𝒂 [𝑖 ] denotes the 𝑖-th largest element of 𝒂. Consider-
ing the function with the 𝒙 ∈ R𝑁 as the input,Top-K(𝒙) = ∑𝐾

𝑘=1
𝒙 [𝑘 ] .

We demonstrate that the function 𝑓 (𝒙) exhibits concavity w.r.t. 𝒙 .

Proof. By the definition, for any 0 ≤ 𝜆 ≤ 1 we have

Top-K(𝜆𝒙 + (1 − 𝜆)𝒚) =
𝐾∑︁
𝑘=1

(𝜆𝒙 + (1 − 𝜆)𝒚)[𝑘 ]

≤ 𝜆

𝐾∑︁
𝑘=1

𝒙 [𝑘 ] + (1 − 𝜆)
𝐾∑︁
𝑘=1

𝒚[𝑘 ]

= 𝜆Top-K(𝒙) + (1 − 𝜆)Top-K(𝒚),
that is the sum of the first k elements of two vectors added together

is less than the sum of the first k elements of the two vectors

individually added. □

A.2 Proof of Theorem 1
Proof. We can utilize the Lagrangian condition [1, 38] to de-

compose the relation between 𝑒𝑔 and
∑𝑇
𝑡=1

∑
𝑖∈I𝑔 𝑥𝑢𝑡 ,𝑖 :

𝑊 ≤𝑊𝐷𝑢𝑎𝑙 = max

𝒙𝑢𝑡 ,𝑖 ∈X
min

𝝁

𝑇∑︁
𝑡=1

| I |∑︁
𝑖=1

(𝑟𝑢𝑡 ,𝑖 −𝑨⊤
𝑖 𝝁)𝒙𝑢𝑡 ,𝑖 +

∑︁
𝑔∈G

𝝁𝑔𝑒𝑔


s.t. 𝑒𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G∑︁

𝑔∈G
𝑒𝑔 = 𝑇𝐾.

Where X = {𝒙𝑢𝑡 ,𝑖 |𝒙𝑢𝑡 ,𝑖 = {0, 1},∑𝑖∈I 𝒙𝑢𝑡 ,𝑖 = 𝐾} is the feasible

region of 𝒙𝑢𝑡 ,𝑖 and the 𝝁 ∈ R | G |
is the dual vector. Note that

the condition

∑
𝑔∈G 𝑒𝑔 = 𝑇𝐾 should be satisfied before the dual

transformation. This precaution is necessary because without this

condition 𝑒𝑔 could easily diverge, therefore, we introduce an upper

bound for 𝑒𝑔 .

Let’s consider the following program:

max

𝒙
𝒂⊤𝒙

s.t. 1𝑇 𝒙 = 𝐾, 0 ≤ 𝒙 ≤ 1,
(7)

This problem is a well-studied knapsack problem [31], whose

optimal objective should be

∑𝐾
𝑖=1 𝒂 [𝑖 ] . The equation tells us that

only the top 𝐾 items that user 𝑢𝑡 have the highest preference for

every group 𝑝 will be recommended for every user.

Thus, we can easily observe that the objective𝑊 of the target

about 𝑥𝑡,𝑖 is a top-K function in lemma 1 and from lemma 1, we

can observe that𝑊 is concave with respect to 𝑥 and convex with

respect to the variable 𝝁. From the minimax theorem [10], we can

re-write the equation as:

𝑊 = min

𝝁
max

𝑒𝑔

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

(𝑟𝑢𝑡 ,𝑖 −𝑨⊤
𝑖 𝝁)[𝑘 ] +

∑︁
𝑔∈G

𝝁𝑔𝑒𝑔


s.t. 𝑒𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G∑︁

𝑔∈G
𝑒𝑔 = 𝑇𝐾

, (8)

Now, consider the following problem:

𝐿 =max

𝒆

∑︁
𝑔∈G

𝝁𝑔𝑒𝑔

s.t.

∑︁
𝑔∈G

𝒆𝑔 = 𝑇𝐾, 𝒆𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G,

which is a well-studied knapsack problem [31], with the optimal

solution ∑︁
𝑔∈G

𝑚𝑔𝝁𝑔 +max

𝑔∈G
{𝝁𝑔}(𝑇𝐾 −

∑︁
𝑔∈G

𝑚𝑔) .

Finally, we can take the optimal solution into Equation (8), we

get𝑊𝐷𝑢𝑎𝑙
as

𝑚𝑖𝑛𝜇


𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

(𝑟𝑢𝑡 ,𝑖 −𝑨𝝁)[𝑘 ] +
∑︁
𝑔∈G

𝑚𝑔𝝁𝑔 +max

𝑔
{𝝁𝑔}(𝑇𝐾 −

∑︁
𝑔∈G

𝑚𝑔)
 .

□

B REGULARIZED-FAIR ALGORITHM
In this section, we propose a heuristic method for distributed ap-

proach for improving the worst-off group exposures in retrieval pro-

cess, aligning with the concept amortized max-min fairness [9, 38],

named regularized-fair. Similar with the dual form of FairSync, it

introduced a dual variable 𝝁𝑟 that measures the exposure gaps

between the target group and the worst-groups. The detailed algo-

rithm is shown in Algorithm 2.

C ADDITIONAL EXPERIMENTAL ANALYSIS
C.1 FairSync performance under extreme

scenario
In the context of amortized fairness in our settings, an extreme

scenario might occur where there is a group for which all users

express a unanimous dislike for the items associated with that

group. So we conducted a toy experiment to show how our method

FairSync will perform under such extreme cases. Let’s assume there
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Table 3: The performance of FairSync and ComiRec-DR un-
der an extreme case. All the numbers in the table are percent-
age numbers with % omitted.

Model Recall ESP

ComiRec-DR 1.0 50.0

ComiRec-DR+FairSync(ours) 0.96 100.0

Table 4: The performance of FairSync and other baseline
performances when𝑚𝑔 is randomly sampled from [1,200]
for every 𝑔 ∈ G under 𝐾 = 20. All the numbers in the table
are percentage numbers with % omitted.

Model Recall NDCG HR ESP

K-neighbor 0.09 0.14 0.25 100.0

Uncalibrated 4.82 5.15 10.8 100.0

FairSync(ours) 4.91 5.24 11.0 100.0

are two groups: 𝑔1 and 𝑔2, and each group has 5 items. Meanwhile,

10, 000 users are accessing the retrieval system, and each user is

conducting retrievals for a set of 𝐾 = 5 items. Each user’s embed-

dings will exhibit proximity (distance ranging from 0 to 0.4) to the

item embeddings belonging to category 𝑔1, while maintaining a

distance (ranging from 0.4 to 1.0) from the item embeddings asso-

ciated with category 𝑔2 . Every group will require 2000 exposures

(𝑚1=𝑚2=2000). Our experiment results are shown in Table 3.

From the experiments, we can see the recall will be 0.96 (decrease

4% =
𝑚2

𝐾𝑇
compared to methods without fairness constraints), and

the fairness constraints will also be satisfiable (𝑔1 will get 48000 ex-

posures while 𝑔2 will get 2000 exposures). Certainly, incorporating

constraints incurs a marginal reduction in recall without adversely

impacting latency. However, as detailed in the subsequent question,

our method supports query-level constraints. This enables the plat-

form to strategically decrease the requirement𝑚2 on 𝑔2 to achieve

higher accuracy, presenting a trade-off decision for the platform.

C.2 Performance on group-level requirements.
In our main experiments, we have chosen to maintain a constant

value for𝑚𝑔 across all groups 𝑔. We can make different user groups

to select different𝑚𝑔 to achieve the group-level constraints. We

conduct an experiment to randomly sample from [1,200] for every

group 𝑔 to show our effectiveness for 𝐾 = 20.

From Table 4, the reported results indicate that our method,

FairSync, continues to effectively address group-level constraints,

demonstrating superior retrieval accuracy compared to other base-

lines such as K-neighbor and Uncalibrated.
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