Check for
Updates

HyperBandit: Contextual Bandit with Hypernewtork for

Time-Varying User Preferences in Streaming Recommendation

Chenglei Shen Xiao Zhang®
Gaoling School of Artificial ~ Gaoling School of Artificial
Intelligence Intelligence
Renmin University of Renmin University of
China China

Beijing, China

chengleishen9@ruc.edu.cn

Beijing, China

zhangx89@ruc.edu.cn

ABSTRACT

In real-world streaming recommender systems, user preferences
often dynamically change over time (e.g., a user may have different
preferences during weekdays and weekends). Existing bandit-based
streaming recommendation models only consider time as a times-
tamp, without explicitly modeling the relationship between time
variables and time-varying user preferences. This leads to recom-
mendation models that cannot quickly adapt to dynamic scenarios.
To address this issue, we propose a contextual bandit approach us-
ing hypernetwork, called HyperBandit, which takes time features
as input and dynamically adjusts the recommendation model for
time-varying user preferences. Specifically, HyperBandit maintains
a neural network capable of generating the parameters for esti-
mating time-varying rewards, taking into account the correlation
between time features and user preferences. Using the estimated
time-varying rewards, a bandit policy is employed to make online
recommendations by learning the latent item contexts. To meet
the real-time requirements in streaming recommendation scenar-
ios, we have verified the existence of a low-rank structure in the
parameter matrix and utilize low-rank factorization for efficient
training. Theoretically, we demonstrate a sublinear regret upper
bound against the best policy. Extensive experiments on real-world
datasets show that the proposed HyperBandit consistently out-
performs the state-of-the-art baselines in terms of accumulated
rewards.

CCS CONCEPTS

« Theory of computation — Online learning theory; « Infor-
mation systems — Recommender systems.

“Xiao Zhang is the corresponding author. The work was partially done at Beijing
KeyLaboratory of Big Data Management and Analysis Methods.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10...$15.00
https://doi.org/10.1145/3583780.3614921

2239

Wei Wei Jun Xu
CCIIP Laboratory Gaoling School of Artificial
Huazhong University of Intelligence
Science and Technology Renmin University of
Joint Laboratory of HUST China

and Pingan Property &
Casualty Research (HPL)
Wuhan, China

weiw@hust.edu.cn

KEYWORDS

contextual bandit; hypernetwork; streaming recommendation; time-
varying user preference

Beijing, China

junxu@ruc.edu.cn

ACM Reference Format:

Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu. 2023. HyperBandit: Con-
textual Bandit with Hypernewtork for Time-Varying User Preferences in
Streaming Recommendation. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management (CIKM ’23), Octo-
ber 21-25, 2023, Birmingham, United Kingdom. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3583780.3614921

1 INTRODUCTION

While the demand for personalized recommendations has increased
due to the growth of online platforms and user-generated content,
it is crucial to emphasize that the recommendation models need
to be updated frequently and integrated with online recommender
systems to ensure optimal performance in real-time. This makes
streaming recommendation a highly active area of research aimed at
continuously updating the model based on users’ latest interactions
with the platform and delivering relevant and timely suggestions
to users [6, 7, 19, 34, 35, 40].

Nonetheless, streaming recommendation confronts a significant
challenge in the form of the phenomenon of time-varying user
preferences [9]. Users’ preferences change dynamically over time
due to several factors such as seasonality, holidays, or circadian
rhythm. As illustrated in Fig. 1, users tend to check in at places
such as “Office” and “Coffee Shop” on weekday mornings, while at
places like “Gym / Fitness Center” and “Church” on weekend morn-
ings, demonstrating a weekly periodicity. In contrast to morning
preferences, users tend to visit bars and spend time at home during
evening hours regardless of whether it is a weekday or weekend,
indicating a daily periodicity. Another example of short video rec-
ommendation is that users exhibit a tendency to watch cartoons
specifically on weekends, while preferring other types of content
on weekdays. These recurring patterns highlight the importance
of considering time-varying user preferences to avoid sub-optimal
recommendations. Consequently, devising effective approaches to
address the issue of users’ periodic time-varying preference is criti-
cal for achieving high-quality streaming recommendation.

As a classic framework for online learning, multi-armed ban-
dit (MAB) algorithms have gained significant attention in recent
years. A variation of MAB, known as contextual bandits [21, 22, 36],

https://doi.org/10.1145/3583780.3614921
https://doi.org/10.1145/3583780.3614921
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614921&domain=pdf&date_stamp=2023-10-21

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Medical Center i+ CYM.LFitness &e\gv i
Deli [Bodega
Food & Drink Sh
Efitncie f | C e Gy ,EDN/P]EQ eSs.anter
Building Neighborhood
Bus Station TMovie Theater

Trahgwmtatlon

Home (private)

fficer Clothing Store Park

Subwa

Coliege Xeat

85 Coffee Shop
Food & Drink ShopB a r

“S’ubx)vay |

e Park

Mexican Restaurant Brugstore] Pharma

(a) weekday morning (b) weekday night

Deli/ Bodega Beal 509 =
. st s oo H o m e (pri Zyate)
American Restaurant

Bus smm Qhurc “““ Other-Great-Outdoors

EL’ 0 pr|Vate) Buidng B Train SDtatala?:
=ar elghborhood : e fiouy

Food & Drink Shop

(d) weekend night

Other-Great Ou,tdoors

(c) weekend morning

Figure 1: The illustrations of the periodic shift on points-of-
interest (POI) dataset Foursquare-NYC, representing word
clouds of POI for morning/night on weekdays/weekends.

has achieved considerable success in various online services by
utilizing both user feedback and contextual information related to
users and items, which make it particularly advantageous in stream-
ing recommendation. Most existing contextual bandit algorithms
are constructed under stationary environment, i.e. users’ prefer-
ences remain static over time [1, 15, 22]. However, the environment
is always non-stationary in reality indicating time-varying user
preferences. Some studies have relaxed the assumption to the piece-
wise stationary environment [36, 37], which enables algorithms
to adaptively detect user preferences change points and discard
learned model parameters for relearning. These methods can lead to
performance fluctuations, particularly when dealing with periodic
changes in user preferences. The main issue is their inability to
capture the periodic nature of user preferences in an online fashion,
often triggering model retraining even for previously encountered
periods. Currently, there’s a significant research gap in the field of
streaming recommendations within periodic environments.

In this paper, we focus on a realistic environment setting where
the reward function (i.e., the generation mechanism of user feed-
back) exhibits periodicity over time. Specifically, a large time period
can be divided into multiple smaller periods in a periodic manner
(e.g., based on the specific day of the week and different time slots
within a day), and the reward function demonstrates a similar dis-
tribution whenever the same time period is encountered. Moreover,
these time periods can be observed by the model and utilized for
periodicity modeling and online adjustment of its user preference
module in various streaming recommendation scenarios.

As a specific solution to the aforementioned process, we propose
a novel contextual bandit algorithm called HyperBandit, which
consists of two levels of model structures: 1). A bandit policy is de-
signed to learn the latent features of items in an online fashion and
combine them with the user preference matrix to execute online
recommendations with effective exploration. 2). A hypernetwork
takes the information of the time period as inputs and generates

2240

Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu

the parameters of the user preference matrix in the bandit policy.
This hypernetwork captures the periodicity of user preferences
over time and enables efficient online updating through low-rank
factorization. Through extensive experiments on streaming recom-
mendation tasks, such as short video and POI recommendations,
we showcase the efficiency and effectiveness of HyperBandit.

2 RELATED WORK

Hypernetworks (HNs) have been introduced by Ha et al. [14],
drawing inspiration from the genotype-phenotype relation in cel-
lular biology. HNs present an approach of using one network (hy-
pernetwork) to generate weights for a second network (target net-
work). In recent years, HNs are widely used in various domains
such as computer vision [20], language modeling [30], sequence
decoding [24], continual learning [31], federated learning [28],
multi-objective optimization [8, 25], and hyperparameter optimiza-
tion [23]. Navon et al. [25] proposed a unified model to learn the
Pareto front based on HNs that can be applied to a specific objective
preference at inference time. von Oswald et al. [31] presented a
task-aware method for continual reinforcement learning using HNs,
which allows the entire network to change between tasks as well
as retaining performance on previous tasks. HNs have been widely
applied in offline learning, but there is a lack of research on how to
enhance the controllability of models through hypernetworks in
online learning and streaming applications.

Bandits in non-stationary environment have attracted exten-
sive attention in both theory and applications in recent years. One
common setting for non-stationary environments is the abruptly
changing or piecewise-stationary environment, where the environ-
ment undergoes sudden changes at unknown time points while
remaining stationary between consecutive change points. Under
the piecewise-stationary assumption, the problem has been well
studied in the classical context-free setting [13, 17, 29, 39]. Yu et
al. [39] proposed a windowed mean-shift detection algorithm to
identify potential abrupt changes in the environment. They pro-
vided an upper bound on regret of O (I'r log(T)) for their algorithm,
where I'r represents the number of ground-truth changes up to
time T. Within the contextual bandit setting, limited attention has
been given to addressing non-stationary environments [16, 36, 37].
Wau et al. [36] developed a hierarchical bandit algorithm capable of
detecting and adapting to changes by maintaining multiple contex-
tual bandits. More recently, Xu et al. [37] addressed the challenge
of time-varying preferences by employing a change-detection pro-
cedure to identify potential changes on the preference vectors.
However, little attention has been given to addressing the issue of
periodic reward drift that this paper focuses on.

3 PROBLEM FORMULATION

3.1 Bandit-based Streaming Recommendation

Streaming recommendation can be formulated as a problem of
sequential decision making, where the online service platform rec-
ommends the most relevant item a € A (such as videos, music,
or POIs) to a user u € U in an online manner. Contextual bandit
algorithms are well-suited for addressing streaming recommenda-
tion problems. More specifically, the candidate item set A could
be viewed as the action space of the bandit algorithm, while the

HyperBandit

context space S summarizes the feature information of users and
items, where each item a and user u can be associated with context
feature vectors denoted by ¢, and ¢y, respectively. At time step ¢,
given a subset of the action space A; C A and a user, an item is
selected by a recommendation policy and recommended to the user.
After one item is recommended, the item may be clicked by the user
(i.e, positive user feedback) or skipped (i.e, negative user feedback).
Thereafter the true reward defined on the user feedback is received
and could be used for updating the current recommendation policy,
which will be adopted for the next recommendation.

The above process can be formalized as a contextual bandit
problem for streaming recommendation, and represented using a
4-tuple (A, S, m,1):

Action space A denotes a given candidate action set, where
each action (also called arm) corresponds to a specified candidate
item. At each time step, a dynamic action space is selected as the
candidate item set for recommendation. That is, at time step t,
a candidate item set A; C A is recalled by some strategy, and
choosing an action aj, from A; means that the corresponding item
is recommended to the user, where I; € |A;| denotes the index of
the recommended item at time ¢.

Context space S summarizes the context feature information
of users and items, denoted by ¢;, € R% and ¢, € R%, respectively.
In this paper, in particular, we consider splitting the item context
cq € R% into two parts: the observed features s, € R%, and
the latent features x, € Rl that needs to be learned. Here, ¢, =
[s2,x4(t)T]T and the dimension of ¢, is given by d; = 04 + L.

Policy 7 : & — A describes the decision-making rule of an
agent (i.e., the recommendation model), which selects an action
for execution according to the relevance score of each action. at
time ¢, given a candidate item set A; and user u € U, a relevance
score function f; treats context features of user and item in context
space (i.e., ¢, and ¢,) as inputs and determines which action to
take: ay, := argmaxge 7, fi (cu,ca).

Reward r is defined upon the user feedback. Specifically, at
time t, after recommending the item aj, € A; to a user u, a cor-
responding reward r(u, aj,) € {0, 1} is observed, which implicitly
indicates whether the user feedback is negative or positive to the
item ay,. However, the feedbacks from the same user towards the
same item at different time may be quite different, which means
that time-varying user preferences exist in it.

Table 1 summarizes the notations used throughout the paper.

3.2 Time-Varying User Preferences

In this section, we formally describe the time-varying user prefer-
ences mentioned in the introduction.

As defined in Table 1, we first introduce the time period variable
p to measure specific temporal patterns, including hours of the day
and different days of the week. Specifically, we divide a week into
seven days, from Monday to Sunday, and further divide each day
into the following five sessions: the morning (8:00 AM to 11:30 AM),
the noon (11:30 AM to 2:00 PM), the afternoon (2:00 PM to 5:30
PM), the night (5:30 PM to 10:00 PM), and the remaining period.
Then, the time period variable, p, encompasses 35 distinct values
spanning from 0 to 34 in a sequential order. Each time period can

2241

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Table 1: A summary of notations.

Symbol | Explanation
[n] [n]=[12...,n]
t Time step t € [T]
A Action space, i.e., the candidate item set
| Al The cardinality of set A
¢, € R% | Context feature vector of a user u
cq € R | Context feature vector of a candidate item a
sq € Roa Observed features of a candidate item a
xq € Rla Latent features of a candidate item a
cp Time period variable, takes values in the range P :=
p {0, 1,...,34}, representing the 35 time periods within a week
sp € R% | Time period embedding of time period p
G);, True user preference matrix at the time period p

be encoded to derive its respective time period embedding, denoted
assp € R%.

Under the traditional assumption of a stationary environment,
the mechanism of user feedback should be consistent at every time
period. That is, the reward generation probability, represented as
Pr{r(u,a) = 1| cy,cq}, is assumed to remain constant across all
time step ¢ € [T]. This implies that the level of preference that user
u has for the recommended item a is independent of the specific
time at which the recommendation is made. However, in real-world
streaming recommender systems, users’ preferences change with
time periodically, which has been observed in [12]. For example,
users usually visit office at weekday morning and bars at night. That
is, the user feedback towards office may be different at different
time period. In other words, given the context ¢y, ¢4, the current
time period p and the corresponding time period embedding s,
the following inequality may hold:

Pr {r(u, a)=1]| Cu,ca,spzi} # Pr {r(u, a)=1]cy,cq, Sp:j} , (D)

wherei # jandi, j € {0,...,34},and Pr {r =1] cu,ca,sp} denotes
the time-varying reward generation probability indicating how much
the user u prefers the recommended item a at time period p.

Formally, we can represent the observed reward generated by
the time-varying reward generation probability as r(u, a, p). Given
auser u, a item a, and a time period p, the generation process of the
observed reward can be formalized as r(u,a,p) := r*(w,a,p) + 1,
where r*(u, a, p) represents the true reward, and 7 is a random vari-
able drawn from a distribution with zero mean. This additional error
term 7 captures the noise or uncertainty present in the observations.
Clearly, we have the following expected reward:

E[r(u, ap)] =r*(u,a,p) =Pr {r(u, ap)=1]| cu,ca,sp}.

Next, we make specific assumptions about the form of the ex-
pected reward E[r(u, a, p)], i.e., the true reward. One straightfor-
ward approach is to concatenate the time period embedding with
the context feature vectors. However, existing research [10] has
shown that directly concatenating features from different spaces
can make it difficult to capture meaningful information (i.e., time-
varying information in this paper). To address this issue, we extend
the existing linear expected reward in the contextual bandit setting
by introducing the true user preference matrix @;‘,. Then, we can
specify the true reward as the following time-varying true reward:

@)

r*(u,a,p) = C;@;Cu,

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

where the true user preference matrix 9;; € R¥a*du js ytilized to map
the user contexts through a linear mapping, taking into account
the time period p as well as its embedding s, as conditions. By
applying this mapping, the resulting vector @;cu can effectively
capture the time-varying user preferences across different time
periods. In particular, when d; = d;, and ©j is the identity matrix,
the time-varying true reward degenerates to a fixed true reward in
the traditional contextual bandit setting.

4 HYPERBANDIT: THE PROPOSED ALGORITHM

4.1 Algorithm Overview

Fig. 2 illustrates the structure of HyperBandit. Given the current
time period as input, a hypernetwork generates a user preference
matrix that maps user context features to a time-aware preference
space. The mapped features, along with the item context features,
are then utilized by the bandit policy to recommend a suitable item
to the current user.

HyperBandit consists of the following two components. Firstly, it
utilizes a bandit policy to update the latent features of items at each
time step, enabling the preservation of time-varying latent features
to capture distribution shifting. Secondly, it employs a hypernet-
work that is trained in a mini-batch manner to adaptively adjust
the user preference matrix in the bandit policy for a given time
period. The algorithm’s detailed procedure is outlined in Algorithm
1.It’s important to note that the user preference matrix is estimated
using two low-rank matrices during training. This specific training
technique will be discussed in detail in Sec. 4.3.

4.2 Hypernetwork Assisted Bandit Policy

4.2.1 Bandit Policy using User Preference Matrix. To estimate the
time-varying true reward and account for the user preference shift
in each time period, we propose a novel bandit policy that utilizes an
estimate of the true user preference matrix O;‘, in Eq. (2). Specifically,
the estimated user preference matrix, denoted as 0, € Rd“Xd“,
captures the changes in user preferences during time period p.
We estimate ©, using a hypernetwork, which will be introduced
in Sec. 4.2.2. The estimated user preference matrix allows us to
adapt our bandit policy to the evolving user preferences. Formally,
assuming that time step t belongs to time period p, given a user
context ¢;, € R% and the estimated user preference matrix, the
following ridge regression over the current interaction history is
employed to estimate the item context c,4(¢) at time t € [T]:

¢q(t) = argmin

2
mi [ci®peu —r(wap)]”+Aleallz: (5
€a€R% (yar)eH,

where Fyqp = ¢j ©pc, denotes the estimated time-varying reward,
H; = {(uk, ar,, rk)}ke[t] represents the interaction history up to
time t, (ug, ag, , rx.) denotes that the policy recommended item a,
to user uy at time k and received a reward rg, and A > 0 is the
regularization parameter.

To reduce the uncertainty of user preference estimations, we
introduce the observed item features. Specifically, we split the con-
text c,4(t) at time ¢ of item a € A; into two parts, represented as
ca(t) = [s),xa()T]T € RY% which includes: the observed fea-
tures s; € R, and the latent features x,4(t) € Rla that needs to

2242

Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu

Hypernetwork (/\’) Recommend N
-------------------------- D) ety
Time Pel_”“)d 3 User u, Recommended Item
Embedding

Reward Execute

Bandit Policy]

Observed Features 5ge
Latent Features xaemt ‘
)
M l Actiu‘n a; ‘ l Actio‘n a, ‘ lActlo; a“”‘ ‘

Action Space A,

Figure 2: The structure of HyperBandit at time ¢.

be learned online, where d; = 04 + ;. Accordingly, we redefine
the estimated user preference matrix as 0, = [G);T, @;T] T, where
6; € ROa*du corresponds to the observed item features sq, and
G)f,f € Rlaxdu corresponds to the latent item features x, (). As a
result, we can rewrite the ridge regression in Eq. (3) as follows:

xq(t)

= arg min
xq€Rla (u,a,r)eH,;

4)
2
{[sd,%a(1)T1Opcu = r(u,a,p)}° + Allxall3
. 2 2
= arg min [s; 0 ¢y +xa(t)TO cu — r(u, a,p)] + Mlxall3-
xq€Ra (wa,r)eH;
To solve the ridge regression Eq. (4), we can easily derive the

. -1
closed-form solutions as x4 ; = (‘I’a’t) bg,:, where
T

Vo= Z (@;cu) (@;cu) +AI,
ueUy;

by = Z (@;cu) [r(u, a,p) — (@);,cu)T sa] ,
(u,a,r)eH;

where U, ; denotes the set of users (possibly with duplicates) who
have been recommended item a until time ¢, and I, € Rlaxla i 5
identity matrix. The statistics (‘I’a)t, ba,t) can be updated incremen-
tally and the detailed computation can be found in Algorithm 1.
According to the UCB policy in bandit algorithms [22, 33, 41],
we define the following UCB-based relevance score function for
executing action (i.e., online recommendation) at time ¢:
1
T -1 2
fi(eusca(t)) = [s3,xa(t)T]| Opey + [(G);cu) (Par) G)”fcu]
where a > 0 is the exploration parameter, and the term multiplied
by «a is the exploration term. In this way, the executed action at
time ¢ can be selected by aj, = argmax,¢ z, fi (cu, ca(t)).

4.2.2 Hypernetwork for Time-Varying Preference. In the last sec-
tion, we describe the bandit policy given parameter matrix @, in
time period p. In this section, we explain how the hypernetwork
generates the parameter matrix ©. The main concept involves uti-
lizing a hypernetwork that takes the embedding of the current time
period as input and generates the parameters of the user preference
matrix in the bandit policy. This enables the policy to adapt and
adjust itself to accommodate changes in the distribution of user
preferences over time.

HyperBandit

Algorithm 1: HyperBandit

INPUT: Latent features of items x,c 4 = Olﬂ,data buffer
Dp=1=0, ®aeca=1 = Olaxla, baeAt=1= 0la, {Tn}ne[stet
of time steps in each updating part, regularization parameter
A > 0, exploration parameter & > 0.

1: Initialize hypernetwork parameters &,-;1 with Xavier Normal
2: forn € [N] do
3: fort=1toT, do

4 Receive the user u; and the time period embedding s,
5: Obtain the set of candidate items A,
6: Obtain the observed features sg, Va € A;
7 Obtain the latent features x,(t),Va € Ay
8: Estimated the user preference matrix
(n) _ [gs(MT1 ox(m)1]T
0,, =10, .0 — hg,(sp,)
9: Recommend item aj, € Ay to user u; following
aj, «— argmaxge A, [Sq.%a(1)7| G)g:)cut +
1
x(n) T -1 ~x(n) 2
a [(th Cu,) (Par) 0y, cut]
10: Observe reward r; = r(us, az,, pr)
11: Dy — Dn U {(ur,ay,. pr. 11, A}
12: // Bandit Policy Updating
T
13: Get the user preference vector Py «— (G;SH)CW) € Rla
for the latent item features ;
14: Get the user preference vector Q; «— (Oj,gn)cu ,) € RO
for the observed item features
15: gy, 141 — Pay, t + P/ Pr, Yo 141 — AL+ gy 111
16: baltst+1 — balt,t + Pl:r (r, - Q[sah
-1
17: xa[t,t+1 — (‘I’all,t+1) ba][,t+l

18: end for

19: // Hypernetwork Updating

20: Update hypernetwork parameter &,4+1 < A(&,) using
efficient training method via low-rank factorization (in
Sec. 4.3.2) and the Adam optimizer on Dy,

21: Release D, and set D41 «— 0

22: end for

To ensure stability in online recommendation, we incrementally
update the hypernetwork A in mini-batches, where the total T time
steps are divided into N parts, and the n-th part, n € [N], contains
T, time steps, corresponding to T,, interaction histories. In this
way, the hypernetwork h is updated N times, and during the n-th
update, the data buffer Dy, := {(ut, ar,, e, e, :?[t)}te (T.] is used as
the training data!, where r; = r(uz, ag,, pt). Then, given the time
period embedding sy, the hypernetwork after the (n — 1)-th update,
denoted by hg,, can be represented by:

05" = hg, (sp),)
where &, represents the model parameters of the hypernetwork,
and the superscript (n) on G);,") indicates that it is generated by hg,,.
As illustrated in Figure 2, we implement the hypernetwork h using

!t is important to note that the interaction history corresponding to the same index ¢
in different data buffers 9,, may be different.

2243

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

a Multi-Layer Perceptron (MLP). In this way, the MLP acts like a
condition network, inputting the embedding of current time period,
outputting the corresponding user preference matrix. Besides, the
time period embedding s, is generated via GloVe model [26] by
imputing the current time period p.

To train the hypernetwork, we take inspiration from the Listnet
loss design [3] to quantify the discrepancy between the estimated re-
ward and the true label for each candidate item in A; at time ¢. Spe-
cially, we use the estimated time-varying reward f,, o = ¢; ©pcy
in Eq. (3), and construct the true labels according to the following
rules: if the user u clicks on the recommended item a in time period
p, the label is set to 1; if the user skips the recommended item, the
label is set to -1; if the item is a candidate but not recommended, the
label is set to 0. Formally, yy qp = 1if ryap = L yuap = —1if ruap
=0; Yyap =0 if it is a candidate item but not recommended. Then,
assuming that the number of actions is M := |A;| = -+ = |Ar|,
during the n-th incremental update, the loss function on the data
buffer D, could be shown as follows:

T, M
Lén) = _Z ZP (Yur.ape) 108 P (Fuyarp.)
=1 k=1

where £ represents the hypernetwork parameters that need to be
optimized, p; corresponds to the time period where index t in D,
is located, and

exp (Yuyai.p:)
Z?;Il exp (yut,di,Pt)

exp (Fuy,aip:)

o P Wuraep) =
2?11 exp (rut,ai,Pt) bt

ﬁ(futﬂk,ﬁt) =

4.3 Efficient Training via Low-Rank Factorization

4.3.1 Analysis of Low-Rank Structure of User Preference Matrix.
Since the user preference matrix @, € RéaXdu jg generated by the
hypernetwork in Eq. (5), a large output dimension (i.e., dg X dy)
would incur significant training costs. Hence, we consider repre-
senting the entire user preference matrix using a smaller number
of parameters. Based on this motivation, it is natural to investi-
gate whether the user preference matrix @, exhibits a low-rank
structure. To verify the presence of low-rank structures, we per-
form singular value decomposition (SVD) on G);,N) across different
time periods. As shown in Fig. 3, it is apparent that the distribu-
tion of singular values is concentrated in the first few dimensions,
which is far less than the dimensionality of the user preference
matrices®. Hence, we deduce the existence of low-rank structures
within the user preference matrices, suggesting that a low-rank
representation of the matrix @, effectively preserves the majority
of its informational content.

4.3.2 Training Process with Low-Rank Factorization. Based on the
analysis above, we try to improve the training efficiency of hy-
pernetwork through explicitly modeling the low-rank structure in
the user preference matrix @ (for ease of exposition, we omit the

superscript of G)I(,n) below). Specifically, we propose to approximate
©, with its low-rank approximation. Here, we leverage matrix
factorization approach to achieve the approximation. Given the es-
timated rank T > 0, we model the low-rank structure of 0, with the

2Following the setting of baselines [16, 22, 33, 36], we set d; = d,, = 25, thus @, is a
square matrix.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

5
I4

Mon. morning Mon. morning

Tue. morning Tue. morning

Wed. morning L3 Wed. morning
@

° X] °

-2 Thu.morning 23 -2 Thu.morning
o z o

& 5 &

v S [

£ Fri. morning -1 © £ Fri. morning
= s =

Sat. morning -0 Sat. morning

Sun. morning Sun. morning

13 5 7 9 11131517 19 21 23 25
Index of Singular Value

(a) KuaiRec

13 5 7 9 11131517 19 21 23 25
Index of Singular Value

(b) NYC

Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu

Mon. morning

Tue. morning

‘3 Wed. morning
3 3 3 3
28 2 Thu.morning g
ER 25
‘1B £ Fri. morning El
£ F £
»n 1 &
-0 Sat. morning

Sun. morning
1 3 5 7 9 11131517 19 21 23 25
Index of Singular Value

(c) TKY

Figure 3: The distribution of singular eigenvalues (SEs) of user preference matrices across different time periods. The horizontal
axis represents the index of SEs, arranged in descending order, while the vertical axis represents the time periods. The darkness
of the colors corresponds to the magnitude of the singular values.

product of two rank-r latent matrices A, € R%XT and By € R&XT,
ie, @, % APBIT,, as shown in Fig. 4.

Item. ? User Preference Matrices Approximated User Preference Matrix
Dimension

| |~ T T T T T T
Rank =2 Low-Rank Matrix B

I

|

|

|

|

|
Sunday Night }
[[|
|

|

|

|

|

|

|

Monday Morning

|

|

Monday Night }
[1 |
|

|

|

|

1 User
— Sunday Night Dimension
- F——»

l=—> I Low-Rank

Approximated by AB” | Matrix A
|
|

%
s

//Time Period

Figure 4: User preference matrix estimation using low rank
factorization: An example with estimated rank 7 = 2.

In the implementation of the hypernetwork, given a time pe-
riod p € P, the hypernetwork outputs a vector represented by
Concat(Vec(Ap), Vec(Bp)) € R74a*7du wwhere Concat(-) denotes
the concatenation operation. Then, the vector Vec(A,) € R7a ig
reshaped into a matrix A, € R9%*T and the vector Vec(By) € R7u
is reshaped into a matrix B, € R&XT Finally, the product APB;
is obtained to estimate ©. This matrix factorization reduces the
output dimension of the hypernetwork h (defined in Eq. (5)) from
dady, to 1(dg + dy), effectively alleviating the training efficiency
issues.

5 REGRET ANALYSIS

The regret bound serves as a fundamental theoretical guarantee
for online learning algorithms [2, 5, 18, 27, 42]. In this section, we
provide a regret bound of the proposed HyperBandit. First, we
define the regret as follows:

Reg(T) = Z [r*(us, aj, pe) = r* (us,ar,. po)] .
te[T]

(©)

where a; represents the action with the highest time-varying true
reward r* (defined in Eq. (2)) at time ¢, u; denotes the user for
whom the item is recommended at time ¢, and p; represents the

2244

time period to which ¢ belongs. Recalling that I; denotes the index
of the action executed by HyperBandit at time ¢, the regret in Eq. (6)
measures the difference between the accumulated time-varying
true rewards of the best policy and our policy.

TuEOREM 5.1 (REGRET UPPER BOUND OF HYPERBANDIT). Assume
that the dimension of the latent features is l; = L,¥a € A. The
sequence of the actions executed by HyperBandit enjoys the following
regret upper bound: with probability at least 1 - 9,

CeC?,T \/7

Uu

—— |+ Cxn[= § E
2ALS)+ *\ 7 m ()

ne[N]
where 1). Cx = maxqe sy [%a(T) — xillw, . Ixlly = VT ¥x
denotes the elliptic norm of x with respect to the matrix ¥, xJ, is

Reg(T) < 2Cx4|2LT In (1 +

2
the true latent features of item a, and Cg = maX,c[N| peP H@I(,n) HF
—e*

Cuu = maxyeqr leallys 2 En = Sicpr, (05 - €5,) cusa
denotes the error caused by the hypernetwork updated N times using
T, examples in the n-th update, and the subscript (-);, denotes the
time step i € [T,,] after the (n — 1)-th update.

The error Ej, in Eq. (7) caused by the hypernetwork can be decom-
posed into the sum of the following three parts. 1). Approximation
error measures the discrepancy between the optimal hypothesis in
hypernetwork space and the target function that generates G);‘,cu
in E,,. From the results in [10], we obtain that the approximation
error of the hypernetwork h (defined in Eq. (5)) with ReLU acti-
vation function is ¢, providing that the number of trainable pa-

~U/[S* | ~PIS*

rameters in the hypernetwork is Q (s) where we

assume d, = U,Yu € U, dp = P,Vp € P, and S* denotes the or-
der of smoothness of the target function. 2). Optimization error:
measures the accumulated deviation between the hypernetwork
parameters obtained through the online optimization algorithm
and those of the optimal hypothesis in the hypernetwork space.
Our HyperBandit equipped with a mini-batch first-order optimiza-
tion method incurs an accumulated optimization error of order
O(T/N), assuming that each data buffer D, n € [N] contains an
equal number of examples. 3). Estimation error measures the the

HyperBandit

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

T 8 14 SRR
- 3.0 ! | | ° e e ° ~/ H
© i i H © © i
+ n H 3 212 H
E, 25 LA 2 A & ;
: ; : o©6 ° ;
E 7 : i 2 N// g 10 Lt
520 o 5 & L ;
: | 3 g Peg
5 - ' : | =1 S - TR
g e g R g4 g LR i
< 7 S : i < // ' <6 7 : |
B 1o é/// —1 —— LinUCB T AT —— LinucB 2 S 7 LinUCB
N !/Vyﬁﬁ HybridLinUCB % , f//// HybridLinUCB Ny /" HybridLinUCB
g —— DLinUCB £ A ~— DLinUCB g 97 —— DLinUCB
505 —— ADTS 5 y@ ~— ADTS 5 2 ADTS
= FactorUCB = FactorUCB = / FactorUCB
0.0 —— HyperBandit 0 I —— HyperBandit 0 [—— HyperBandit
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000 175000 [100000 200000 300000 400000
Time Steps Time Steps Time Steps
(a) KuaiRec (b) NYC (c) TKY

Figure 5: Normalized accumulated reward of baselines, and the proposed HyperBandit on three datasets, KuaiRec & NYC &
TKY. Note that The grey dashed lines represent the boundaries between weekdays and weekends. The x-axis represents the
interaction data arranged in chronological order, and the y-axis represents the normalized accumulated reward.

error caused by the estimated user preference matrix using low-
rank factorization. According to the analyses in Sec. 4.3.1, the user
preference matrix exhibits a low-rank structure. Assuming that the
maximum rank of the user preference matrices is R, if the estimated
rank 7 in the low-rank factorization discussed in Sec. 4.3.2 is set to
7 > R, and the best rank-7 approximation can be obtained, then the
estimation error would be zero.

Setting the number of trainable parameters in the hypernetwork

as Q (\/T vis + TP/S), the number of hypernetwork training

iterations N = O(VT), and the estimated rank 7 > R, we can derive
an upper bound for the error term Y ,c|n] En in Eq. (7) of order
O(VT). This, in turn, leads to a sublinear regret upper bound of
order O(VT) for HyperBandit.

6 EXPERIMENTS

We conducted experiments to evaluate the performance of Hyper-
Bandit on short video recommendation and point-of-interest (POI)
recommendation.

6.1 Experimental Settings

6.1.1 Baselines. HyperBandit was compared with several algo-
rithms that constructed in stationary or piecewise-stationary envi-
ronment:
LinUCB [22] is a classical contextual bandit algorithm that
addresses the problem of personalized recommendation.
HybridLinUCB [22] is a variant algorithm of LinUCB that takes
into account both shared and non-shared interests among users.
DLinUCB [36] is built upon a piecewise stationary environment,
where each user group corresponds to a slave model. Whether to
discard a slave model is based on the detection of “badness”.
ADTS [16] is a bandit algorithm based on Thompson sampling,
which tend to discard parameters before the last change point.
FactorUCB [33] leverages observed contextual features and
user interdependencies to improve the convergence rate and help
conquer cold-start in recommendation.

6.1.2 Hyperparameter Settings. We implemented the hypernet-
work h in Eq. (5) using a MLP. The MLP consists of 1 input layer,
8 hidden layers, and 1 output layer. The number of nodes in the

2245

each layer is as follows: 30, 256, 512, 1024, 1024, 1024, 1024, 512,
256, 25 * T * 2. We applied ReLU activation function after each hid-
den layer. We trained the hypernetwork every 2000 time steps (i.e.,
T,, = 2000, n € [N]) on KuaiRec and NYC, while T;, = 5000 on TKY.
Early stopping is applied in training process to avoid overfitting.

For the parameters in bandit policy, we set the exploration pa-
rameter « to 0.1 and the regularization parameter A to 0.1 for all the
algorithms. The size of the candidate item set A;, Vt € [T] at each
time step was set to 25 in all algorithms. The dimensions of both
the context features of users and the context features of items were
set to 25. In FactorUCB and HyperBandit, the dimensions of latent
features of items were set to 10, and the dimensions of observed
features of items were set to 15.

6.1.3 Evaluation Protocol. The accumulated reward (AR) was uti-
lized to assess the recommendation accuracy of algorithms, which
denotes the sum of the observed reward from the beginning to the
current step. The normalized accumulated reward refers to the AR
normalized by the corresponding logged random strategy.

6.2 Experiments on Short Video Recommendation

We employed KuaiRec3 for evaluation, that is a real-world dataset [11]
collected from the recommendation logs of the video-sharing mo-
bile app Kwai. The dense interaction matrix we used contains 1411
users, 3327 items and 529 video categories (i.e., tags). Following
the settings in [32], we used video categories (tags) as actions. In
this experiment, we treated watch ratio higher than 2.0 as positive
feedback. If the action received positive feedback in other time
periods but not in the current period, we assumed that the current
user would give negative feedback to it.

To fit the data into the contextual bandit setting, we pre-processed
it first. We encoded all the user features provided by KuaiRec, which
contain information like user activity level, number of followed
users and others. Subsequently, we applied PCA to reduce the di-
mensionality of the context feature vectors. We retained the first 25
principal components and applied the same procedure to attain the
context feature vectors of items (i.e., d; = dy, = 25). For a particular
time step, the video tag having positive feedback was picked and the

3https://github.com/chongminggao/KuaiRec

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu

Table 2: Comparisons of normalized accumulated reward, running time (sec., mean) and training time (sec., mean) of hypernet-
work on KuaiRec, Foursquare (NYC) and Foursquare (TKY). The “Running Time of BP” means the average time cost of online
recommendation and updating by Bandit Policy at each time step, and the “Training Time of HN” means the average time cost

“«_»

for training HyperNetwork at each time step.

means the corresponding algorithm has no hypernetwork.

Algorithm Normalized Accumulated Reward Running Time of BP Training Time of HN
KuaiRec [NYC [TKY KuaiRec [Foursquare | KuaiRec [Foursquare
LinUCB 2.56 £0.04 | 4.86+0.05 | 10.15+0.10 | 3.09¢e—04 3.08e—04 - -
HybridLinUCB 2.29+0.03 | 4.05+0.07 | 9.33+x0.03 | 2.52e—02 2.65e—02 - -
DLinUCB 1.84+£0.03 | 3.63+0.08 | 7.39+0.08 | 3.51e—04 3.55e—04 - -
ADTS 1.50 £0.02 | 3.80+0.10 | 8.63+0.09 | 6.52e—03 6.69¢—03 - -
FactorUCB 2.70 £0.05 | 4.19+0.04 | 10.22+0.03 | 1.01e—01 1.11e-01 - -
HyperBandit (r = 1) 3.79+0.18 | 6.46 +£0.45 | 13.37 +£0.22 | 1.65e—03 1.62e—-03 1.45e—-04 1.06e—04
HyperBandit (r = 5) 3.51+0.06 | 8.08+0.09 | 13.99+0.29 | 1.60e—03 1.63e—03 1.58e—04 1.21e-04
HyperBandit w/o Low-Rank | 3.24 £0.11 | 8.27 +0.17 | 14.49 £ 0.07 | 1.63e—03 1.62e-03 1.72e—-04 1.73e—-04

remaining 24 were randomly sampled from the tags which would
get negative feedback in the current time step. Besides, we extracted
data for one week from August 10th, 2020, to August 16th, 2020.
From each time period within that week, we randomly sampled
several events to reconstruct the data. This sampling process was
repeated 10 times to generate 10 weeks’ data.

As shown in Fig. 5a and Table 2, HyperBandit outperformed all
the other baselines on KuaiRec in terms of rewards. Both DLin-
UCB and ADTS were worse than others since these two algorithms
were designed for the piecewise stationary environment (i.e., they
abandon the knowledge acquired during past periods instead of
utilizing). As more observations recurrent, LinUCB quickly catched
up, because it is better to regard periodic environment as a station-
ary environment rather than piecewise environment. Furthermore,
FactorUCB utilizes observed contextual features and interdepen-
dencies among users to enhance the algorithm’s convergence rate,
resulting in strong initial performance. However, this improvement
comes at the cost of increased time consumption, as it necessitates
updating all user parameters in each time step.

6.3 Experiments on POI Recommendation

Foursquare NYC & TKY dataset [38] includes long-term (about 10
months) check-in data in New York city (NYC) and Tokyo (TKY)
collected from Foursquare* from 12 April 2012 to 16 February 2013.
Table 3 shows the statistics of two check-in datasets: NYC and TKY.

Table 3: The statistics of the Foursquare NYC & TKY.

Dataset #Users #POIs #POI Categories #Check-ins
NYC 1,083 38,333 400 227,428
TKY 2,293 61,858 385 573,703

Similarly, we used POI categories as actions. The ground-truth
categories of the check-ins were considered positive samples of
the current step while the rest categories were considered negative.
Initially, instead of following the setting in [4] that used TF-IDF for
representation construction, we employed the GloVe model [26]
to craft a 300-dimensional feature vector, enhancing item context

4https://foursquare.com/

2246

representation. Subsequently, PCA reduced vector dimensional-
ity, retaining the initial 25 principal components. Since these two
datasets do not contain user profiles, we used the interaction data
from the first week to construct the contextual features of users.
Specifically, we used the average vector of all the POI category
feature vectors that the user checked in during the first week as
the user context feature vector. For the candidate action set at each
time step, we selected the ground-truth check-in tag and randomly
extracted 24 negative categories of the current step. We used all the
data from April 10th, 2012 to February 16th, 2013 (except data from
the first week) to construct a data streaming.

As illustrated in Fig. 5b and Fig. 5c, similar conclusions can
be drawn as in KuaiRec. Additionally, we conducted an analysis
of time cost for all algorithms and compared the performance of
different estimated rank (r 1, ¢ = 5 and w/o Low-Rank) of
HyperBandit. The corresponding results are presented in Table 2.
Notably, HyperBandit consistently outperformed the baselines in
terms of normalized accumulated reward, while the running time of
BP (bandit policy) remained acceptable. Furthermore, HyperBandit
(r = 1) and HyperBandit (r = 5) reduced the training time of HN
by 15.7%, 8.1% in KuaiRec and 38.7%, 30.1% on Foursquare dataset
compared to HyperBandit (w/o Low-Rank), which provided strong
evidences of the training efficiency with low-rank factorization.

6.4 Ablation Experiments

In this section, we empirically studied the proposed HyperBandit
by addressing the following research questions:

RQ1: Is HyperBandit efficient enough to meet the real-time require-
ments of online recommendations?

RQ2: How does the estimated rank 7 of low-rank factorization
affect HyperBandit?

RQ3: What is the impact of key components in HyperBandit on
the recommendation performance?

6.4.1 RQI1: Running Time. In streaming recommendation sce-
narios, running time is another important metric. We reports the
running time of bandit policy and the training time of hypernet-
work in Table 2. From the results, we conclude that the time cost of
HyperBandit was on the order of milliseconds (ms), indicating that

HyperBandit

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

B Normalized Accumulated Reward ~ —e— Average Epoch
7

>
o
[

w

o
N
°

o
]

w
o

Py
o
Average Epoch

N
3

w
o
Normalized Accumulated Reward

g
o

Normalized Accumulated Reward
o
o

ol
n

11 2 3 4 5 6 7 8 9 1011 12 13 14
Estimated Rank T

(a) KuaiRec

E=E Normalized Accumulated Reward

11 2 3 4 5 6 7 8 9 1011 12 13 14
Estimated Rank T

(b) NYC

*— Average Epoch E=9 Normalized Accumulated Reward —e— Average Epoch

-
Y

-
[

5.5

o
[N
o
o

,_.
o
Average Epoch

Average Epoch
Normalized Accumulated Reward
[T
5 B

©

11 2 3 4 5 6 7 8 9 1011 12 13 14
Estimated Rank T

(c) TKY

Figure 6: Performance of low-rank factorization in HyperBandit on different estimated rank across three datasets. Note that
the bar chart shows normalized accumulated reward, while the line chart shows average epoch in training process (a larger
average epoch indicates a longer training time of hypernetwork). The first data point (with an x-coordinate of “~1”) represents

the result obtained without utilizing low-rank factorization.

HyperBandit met the real-time requirements in streaming recom-
mendations. Furthermore, the training time of the hypernetwork
exhibits a decreasing trend as the estimated rank 7 decreases from
full rank to 1, validating its efficiency in low-rank updating.

6.4.2 RQ2: Impact of Estimated Rank r. Fig. 6 explored the
impact of different estimated rank of low-rank factorization on
the performance in terms of normalized accumulated reward and
training time. The observations from the experimental results can
be summarized as follows: 1). With an increase in the estimated
rank 7, our HyperBandit demonstrated an overall improvement
in normalized accumulated reward on Foursquare datasets. Fur-
thermore, HyperBandit with ranks from 1 to 9 even outperformed
the algorithm without low-rank factorization in terms of rewards
on the KuaiRec dataset. These results validate the effectiveness of
the low-rank factorization approach, which maintains excellent
performance. 2). The average epoch, which measures the training
time of the hypernetwork, also exhibits an overall upward trend as
the estimated rank 7 increases, although it is significantly smaller
than that without low-rank factorization. This observation high-
lights the benefits of efficient training via low-rank factorization as
described in Sec. 4.3.2.

6.4.3 RQ3: Impact of Key Components in HyperBandit. Hy-
perBandit consists of two key components for online updating: one
is to update the latent features of items via ridge regression, and
the other is to update the parameters of the hypernetwork through
gradient descent. To investigate the interplay between these two
updating components, an ablation experiment was conducted with
the following settings: 1). Disable ridge regression updating: The
dimension of the latent item features was set to zero. 2). Disable hy-
pernetwork updating: The hypernetwork parameters were frozen
to their initial state. The results are presented in Table 4. Based on
the results, the following conclusions can be drawn: 1). Employing
both updating components independently enhances the recommen-
dation performance. 2). Irrespective of whether ridge regression
was enabled or disabled, the utilization of the hypernetwork can
lead to performance improvements.

2247

Table 4: The results of the ablation experiment on key com-
ponents of HyperBandit. The ridge regression updating in
the bandit policy is denoted by “RR”, and the hypernetwork
updating is denoted by “HN”. The symbol v signifies the
inclusion of a particular update process, while the symbol
X indicates its exclusion.

Normalized Accumulated Reward
RR | HN
KuaiRec | NYC | TKY
X X 0.93+0.08 | 0.87 +0.08 1.14 £ 0.44
v X 1.09 £ 0.08 | 5.62+0.52 | 13.26 +£0.23
X v 1.86 £0.09 | 490 £0.28 | 10.91 +0.35
v v 3.24+0.11 | 8.27+0.17 | 14.49 +0.07

7 CONCLUSION

This paper aims to model the user preference shift in periodic
non-stationary streaming recommendation scenarios. Specifically,
we propose an online learning approach called HyperBandit. The
proposed HyperBandit leverages a hypernetwork to dynamically
adjust user preference parameters for estimating time-varying re-
wards, employs a bandit policy for online recommendation with
a regret guarantee, and utilizes a low-rank factorization method
to efficiently train the model. Experimental results demonstrated
the effectiveness and efficiency of HyperBandit in steaming recom-
mendation. The proposed HyperBandit has opened up a promising
avenue for advancing controllable online learning.

ACKNOWLEDGMENTS

This work was funded by the National Key R&D Program of China
(2022ZD0114802), Beijing Outstanding Young Scientist Program NO.
BJJWZYJH012019100020098, Intelligent Social Governance Interdis-
ciplinary Platform, Major Innovation & Planning Interdisciplinary
Platform for the “Double-First Class” Initiative, Renmin University
of China. Supported by fund for building world-class universities
(disciplines) of Renmin University of China. Supported by Public
Computing Cloud, Renmin University of China. Supported by the
Fundamental Research Funds for the Central Universities, and the
Research Funds of Renmin University of China (23XNKJ13).

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

REFERENCES

(1]

[2

[

=
0

[10]

[13]

[17]
(18]

[19]

[20]

[21]
[22]

Santiago Balseiro, Negin Golrezaei, Mohammad Mahdian, Vahab Mirrokni, and
Jon Schneider. 2019. Contextual Bandits with Cross-Learning. In Advances in
Neural Information Processing Systems 32. 9679-9688.

Sébastien Bubeck and Nicold Cesa-Bianchi. 2012. Regret Analysis of Stochastic
and Nonstochastic Multi-armed Bandit Problems. Journal of Foundations and
Trends in Machine Learning 5 (2012), 1-122.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
International Conference on Machine learning. 129-136.

Nicolo Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. 2013. A gang of
bandits. (2013), 2265-2279

Nicolo Cesa-Bianchi and Gabor Lugosi. 2006. Prediction, learning, and games.
Cambridge University Press.

Badrish Chandramouli, Justin J Levandoski, Ahmed Eldawy, and Mohamed F
Mokbel. 2011. Streamrec: A real-time recommender system. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data. 1243-1246.
Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-
Johnson, and Thomas S Huang. 2017. Streaming Recommender Systems. In
Proceedings of the 26th International Conference on World Wide Web. 381-389.
Sirui Chen, Yuan Wang, Zijing Wen, Zhiyu Li, Changshuo Zhang, Xiao Zhang,
Quan Lin, Cheng Zhu, and Jun Xu. 2023. Controllable Multi-Objective Re-ranking
with Policy Hypernetworks. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 3855-3864.

Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015. Learning in
nonstationary environments: A survey. Journal of IEEE Computational Intelligence
Magazine 10 (2015), 12-25.

Tomer Galanti and Lior Wolf. 2020. On the modularity of hypernetworks. (2020),
10409-10419.

Chongming Gao, Shijun Li, Wengiang Lei, Jiawei Chen, Biao Li, Peng Jiang,
Xiangnan He, Jiaxin Mao, and Tat-Seng Chua. 2022. KuaiRec: A Fully-Observed
Dataset and Insights for Evaluating Recommender Systems. In Proceedings of
the 31st ACM International Conference on Information & Knowledge Management.
540-550.

Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. 2013. Exploring temporal effects
for location recommendation on location-based social networks. In Proceedings
of the 7th ACM conference on Recommender Systems. 93-100.

Aurélien Garivier and Eric Moulines. 2008. On upper-confidence bound policies
for non-stationary bandit problems. arXiv preprint arXiv:0805.3415 (2008).
David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv preprint
arXiv:1609.09106 (2016).

Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose Blanchet, Peter W Glynn,
and Yinyu Ye. 2020. Sequential batch learning in finite-action linear contextual
bandits. arXiv preprint arXiv:2004.06321 (2020).

Negar Hariri, Bamshad Mobasher, and Robin Burke. 2015. Adapting to user
preference changes in interactive recommendation. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence. 4268-4274.

C. Hartland, S. Gelly, N. Baskiotis, O. Teytaud, and M. Sebag. 2006. Multi-armed
Bandit, Dynamic Environments and Meta-Bandits. (2006).

Elad Hazan. 2016. Introduction to online convex optimization. Journal of Foun-
dations and Trends in Optimization 2 (2016), 157-325.

Martin Jakomin, Zoran Bosnic, and Tomaz Curk. 2020. Simultaneous Incremental
Matrix Factorization for Streaming Recommender Systems. Journal of Expert
Systems with Applications 160 (2020), 113685.

Sylwester Klocek, Lukasz Maziarka, Maciej Wolczyk, Jacek Tabor, Jakub Nowak,
and Marek Smieja. 2019. Hypernetwork functional image representation. In
Proceedings of 28th International Conference on Artificial Neural Networks. 496—
510.

John Langford and Tong Zhang. 2007. The epoch-greedy algorithm for contextual
multi-armed bandits. (2007), 96-1.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of

2248

[23

[24

[25]

[26]

(28]

[29

(30]

(31]

(32]

[33

&
=

[35

(36]

(37]

w
&,

(39]

(40]

[41]

Chenglei Shen, Xiao Zhang, Wei Wei, and Jun Xu

the 19th International Conference on World Wide Web. 661-670.

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse.
2019. Self-tuning networks: Bilevel optimization of hyperparameters using
structured best-response functions. arXiv preprint arXiv:1903.03088 (2019).
Eliya Nachmani and Lior Wolf. 2019. Hyper-graph-network decoders for block
codes. (2019), 2326-2336.

Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. 2021. Learning
the Pareto Front with Hypernetworks. In Proceedings of the 9th International
Conference on Learning Representations.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing. 1532-1543.

Shai Shalev-Shwartz. 2011. Online learning and online convex optimization.

Journal of Foundations and Trends in Machine Learning 4 (2011), 107-194.
Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. 2021. Personalized

federated learning using hypernetworks. In Proceedings of the 38th International
Conference on Machine Learning. 9489-9502.

Aleksandrs Slivkins and Eli Upfal. 2008. Adapting to a Changing Environment:
the Brownian Restless Bandits.. In COLT. 343-354.

Joseph Suarez. 2017. Language modeling with recurrent highway hypernetworks.
Advances in neural information processing systems 30 (2017), 3267-3276.
Johannes von Oswald, Christian Henning, Jodo Sacramento, and Benjamin F.
Grewe. 2020. Continual learning with hypernetworks. In Proceedings of the 8th
International Conference on Learning Representations.

Yongquan Wan, Junli Xian, and Cairong Yan. 2021. A Contextual Multi-armed
Bandit Approach Based on Implicit Feedback for Online Recommendation. In
Proceedings of the 15th Knowledge Management in Organizations. 380-392.
Huazheng Wang, Qingyun Wu, and Hongning Wang. 2017. Factorization ban-
dits for interactive recommendation. In Proceedings of the AAAI Conference on
Artificial Intelligence.

Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao Wang, and Zi Huang.
2018. Neural memory streaming recommender networks with adversarial train-
ing. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2467-2475.

Weiging Wang, Hongzhi Yin, Zi Huang, Qinyong Wang, Xingzhong Du, and
Quoc Viet Hung Nguyen. 2018. Streaming ranking based recommender systems.
In Proceedings of the 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 525-534.

Qingyun Wu, Naveen Iyer, and Hongning Wang. 2018. Learning contextual
bandits in a non-stationary environment. In Proceedings of the 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval. 495
504.

Xiao Xu, Fang Dong, Yanghua Li, Shaojian He, and Xin Li. 2020. Contextual-
bandit based personalized recommendation with time-varying user interests. In
Proceedings of the AAAI Conference on Artificial Intelligence. 6518-6525.

Dinggqi Yang, Daging Zhang, Vincent. W. Zheng, and Zhiyong Yu. 2015. Modeling
User Activity Preference by Leveraging User Spatial Temporal Characteristics in
LBSNs. Journal of IEEE Transactions on Systems, Man, and Cybernetics: Systems
45 (2015), 129-142

Jia Yuan Yu and Shie Mannor. 2009. Piecewise-stationary bandit problems with
side observations. In Proceedings of the 26th Annual International Conference on
Machine Learning. 1177-1184.

Xiao Zhang, Sunhao Dai, Jun Xu, Zhenhua Dong, Quanyu Dai, and Ji-Rong Wen.
2022. Counteracting user attention bias in music streaming recommendation
via reward modification. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2504-2514.

Xiao Zhang, Haonan Jia, Hanjing Su, Wenhan Wang, Jun Xu, and Ji-Rong Wen.
2021. Counterfactual reward modification for streaming recommendation with
delayed feedback. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 41-50.

Xiao Zhang, Yun Liao, and Shizhong Liao. 2019. A survey on online kernel
selection for online kernel learning. WIREs Data Mining and Knowledge Discovery
9(2019), e1295

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Bandit-based Streaming Recommendation
	3.2 Time-Varying User Preferences

	4 HyperBandit: The Proposed Algorithm
	4.1 Algorithm Overview
	4.2 Hypernetwork Assisted Bandit Policy
	4.3 Efficient Training via Low-Rank Factorization

	5 Regret Analysis
	6 Experiments
	6.1 Experimental Settings
	6.2 Experiments on Short Video Recommendation
	6.3 Experiments on POI Recommendation
	6.4 Ablation Experiments

	7 Conclusion
	Acknowledgments
	References

