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ABSTRACT

In the video recommendation, watch time is commonly adopted
as an indicator of user interest. However, watch time is not only
influenced by the matching of users’ interests but also by other
factors, such as duration bias and noisy watching. Duration bias
refers to the tendency for users to spend more time on videos with
longer durations, regardless of their actual interest level. Noisy
watching, on the other hand, describes users taking time to deter-
mine whether they like a video or not, which can result in users
spending time watching videos they do not like. Consequently, the
existence of duration bias and noisy watching make watch time an
inadequate label for indicating user interest. Furthermore, current
methods primarily address duration bias and ignore the impact of
noisy watching, which may limit their effectiveness in uncovering
user interest from watch time. In this study, we first analyze the
generation mechanism of users’ watch time from a unified causal
viewpoint. Specifically, we considered the watch time as a mixture
of the user’s actual interest level, the duration-biased watch time,
and the noisy watch time. To mitigate both the duration bias and
noisy watching, we propose Debiased and Denoised watch time
Correction (D?Co), which can be divided into two steps: First, we
employ a duration-wise Gaussian Mixture Model plus frequency-
weighted moving average for estimating the bias and noise terms;
then we utilize a sensitivity-controlled correction function to sep-
arate the user interest from the watch time, which is robust to
the estimation error of bias and noise terms. The experiments on
two public video recommendation datasets and online A/B testing
indicate the effectiveness of the proposed method.
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1 INTRODUCTION

The rising of video content platforms has attracted billions of users
and become more frequent in the daily use of users nowadays [7,
8,16, 17]. In order to better satisfy the information needs of users
and improve their engagement, an accurate and personalized video
recommendation plays a significant role. Unlike the traditional
recommendation scenario, the video recommendation adopts a
streaming play pattern [9, 11]. That is, a recommender system
switches to the next video and plays it automatically when the
user finishes playing the previous one. This feature makes the
widely used implicit feedback (e.g., user click) no longer suitable as
a label to measure user interest. Compared to clicks, users’ watch
time indicates how much attention the user is willing to spend
on this video and has been considered a better indicator of user
interest [7, 24, 32, 33].

However, the length of watch time is not only determined by user
interest alone but also affected by other non-interest factors. On the
one hand, users tend to spend more time watching engaging videos
with longer durations, resulting in longer average watch time for
long videos. This phenomenon is referred to as duration bias [35,
39]. As shown in Fig. 1(a), all three videos vy, v3, v3 are of interest to
users but have different durations. It can be seen that users have a
longer watch time for engaging videos with longer duration (e.g., v3).
If we regard watch time as the indicator of user interest, the duration
bias will mislead the recommendation models leans to recommend
more long videos. On the other hand, users need time to perceive
whether they like newly recommended videos. As a result, they
may watch videos they are not interested in for a while, commonly
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(a) Duration Bias (b) Noisy Watching

Figure 1: The illustration of duration bias and noisy watching,.
(a) the user watches different videos. (b) the user watches the
same video.
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Figure 2: The evidence of the existence of duration bias and
noisy watching in the subset of the KuaiRand dataset. We
calculate the mean watch time for videos that are/aren’t in-
teresting to users in different duration.

referred to as noisy watching [14]. Fundamentally, noisy watching
results from the users’ trust in the recommender system itself [1] or
the clickbait content at the beginning of videos [26]. As shown in
Fig. 1(b), users tend to believe that the newly recommended videos
engage them when the video starts playing. Consequently, they
may begin watching this video and take some time (e.g., 10s) to
realize they are not interested in it. The presence of noisy watching
results in users spending time watching videos they do not like,
which can also mislead the recommendation models if we regard
watch time as the indicator of user interest.

To verify the existence of the aforementioned duration bias
and noisy watching, we conducted a pilot study on the KuaiRand
dataset [9], a large-scale public video recommendation dataset col-
lected from Kuaishou. For detecting the duration bias, we first aim
to find records in the dataset that are engaging to users. Although
we do not know users’ latent interest behind each record, there is
still some behavior feedback [38] in the dataset. Specifically, we
treat one record as of interest to the user if one of the positive
behavior feedback in like, follow, forward, comment, profile enter
is presented. Then, we calculate the mean watch time in different
duration on this subset. As shown in Fig. 2(a), the mean watch
time of engaging videos increases with the duration growth, which
verified the existence of duration bias. Similarly, for detecting noisy
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watching, we first regard records with negative behavior feedback
like hate as not engaging to the user. Then, we calculate the mean
watch time on this subset. As shown in Fig. 2(b), the mean watch
time of videos that users aren’t interested in is not zero, verifying
the existence of noisy watching. Meanwhile, we can find that the
curve in Fig. 2(b) increases as the duration grows. This is because
longer videos usually have richer video content or a more prolonged
beginning, which makes users spend more time perceiving their
level of interest.

Despite the hazards, duration bias and noisy watching are much
less explored as compared to many other biases in recommender
system research. One heuristic way to address duration bias is to
divide the watch time by the video duration, called Play Complete
Rate (PCR). However, it is worth noting that the trend between
watch time and duration is not a simple linear relationship ac-
cording to Fig. 2. Therefore, simply dividing by duration cannot
eliminate the duration bias. To better address duration bias, Zhan
et al. [35] proposed to transform normal watch time prediction into
duration-grouped watch time quantile to mitigate the negative ef-
fects of duration bias. Zheng et al. [39] proposed standardizing the
watch time according to different video duration and leveraging the
standardized score as the supervision signal to train and evaluate
the video recommendation model. Although effective, there still
has much space for improvement: (i) current studies only focus on
addressing the duration bias while overlooking the noisy watching,
which makes their predicted user interest signals still inaccurate;
(ii) Existing approaches (e.g., [35] and [39]) rely on underlying as-
sumptions (we will discuss this in section 3.3) about the distribution
of user interests for correcting the duration bias. Once these as-
sumptions are violated in practice, their performances cannot be
guaranteed.

To jointly model both duration bias and noisy watching, we first
conduct a causal analysis of the generation mechanism of users’
watch time. Unlike current methods, which only notice the duration
bias in watch time, we considered the watch time as a mixture of the
user’s actual interest level, the duration-biased watch time, and the
noisy watch time. Then we propose a model called Debiased and
Denoised watch time Correction (D?Co) to mitigate the duration
bias and noisy watching. Specifically, we propose to regard the
distribution of watch time in each duration length as a mixture
of latent bias and noise distributions. A duration-wise Gaussian
mixture model is employed to estimate the parameters of these
latent distributions. Since the adjacent value of duration should
have similar properties, a frequency-weighted moving average is
used to smooth the estimated bias and noise parameters sequence.
Then we utilized a sensitivity-controlled correction function to
separate the user interest from the watch time, which is robust to
the estimation error of bias and noise parameters.

Compared to existing methods, D?Co enjoys the advantages of
correcting the duration bias and noisy watching simultaneously in
video recommendation and does not require critical assumptions
on the distributions of the user interest. The major contributions
of the paper include the following:

(1) We analyze the existence of duration bias and noisy watching
in the video recommendation and provide a unified causal view
for modeling the bias and noise simultaneously.
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(2) We propose D?Co, a method for mitigating both the duration
bias and noisy watching. D?Co can obtain user interest from
watch time and does not rely on the critical assumption of user
interest distribution.

(3) We conducted offline experiments on two public video recom-
mendation datasets and an online A/B test on the real video
product. Experimental results verified the effectiveness of the
proposed model and theoretical conclusions.

2 RELATED WORKS

Video Recommendation With the rapid growth of video content,
personalized recommendation is widely used to provide videos of
interest to users in video applications. The key challenge for video
recommendation is to mine user interest from various signals [23].
In a classic recommendation scenario, Click-Through-Rate (CTR) is
an effective metric for measuring user interest [6, 12, 19, 22]. How-
ever, since the video recommendation scenario adopts a streaming
play pattern, clicks are no longer a reliable indicator of user interest.
Instead, users’ watch time is commonly used as a substitute indi-
cator of user engagement [7, 24, 32, 33]. For instance, Covington
et al. [7] treated the watch time as a weight of each impressed video
and utilized a weighted logistic regression for predicting watch
time. Wu et al. [32] investigated the bias of watch time as well as
watch percentage from an aggregated level and defined relative
engagement to measure the video quality. Moreover, other trials
utilized multiple user behaviors to enhance video recommendation.
For example, Zhao et al. [38] proposed a large-scale multi-objective
ranking system for recommending what video to watch next on an
industrial video-sharing platform. Li et al. [15] designed a graph-
based sequential network to simultaneously model users’ dynamic
and diverse interests. Wei et al. [30] considered the interactions
between users and items and the item contents from various modal-
ities.

Debiasing in Information Retrieval Alleviating the bias is of
great importance in current information retrieval systems. Most
efforts are devoted to address the position bias [2, 13, 34], pop-
ularity bias [29, 37, 40] and selection bias [20, 21, 27] in recent
studies. Inspired by causal inference [31], a large number of debi-
asing methods are proposed for mitigating aforementioned biases,
which includes propensity-based methods [13, 36], backdoor adjust-
ment methods [29, 37] and causal embedding methods [4, 5, 40]. As
we discussed before, the bias in video recommendation is mainly du-
ration bias. However, only a few studies [35, 39] are focused on this
bias in video recommendation. In contrast to our approach, existing
methods for addressing duration bias rely on critical assumptions
to achieve their unbiasedness.

Denoising in Information Retrieval To denoise data for im-
proving model performance has been an emerging research topic
in recent years. In general, the noised data is defined as the false-
positive and false-negative samples among the dataset. The core
idea of current studies is to mine noise data based on Memorization
Effect [3]. That is, models can easily remember clean samples but
have difficulty remembering noisy samples. For instance, Wang et al.
[25] tried to mine noisy samples from the loss value and designed an
adaptive threshold mechanism for truncating these samples of high
loss values. Wang et al. [28] proposed to discover noisy samples
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from the disagreement of different models. Gao et al. [10] proposed
a self-guided learning framework to collect memorized interactions
at the early stage of the training. However, the above studies aim
to develop a generic approach without specifically analyzing the
noise in the video recommendation scenario.

3 PROBLEM STATEMENTS

3.1 Problem Formulization

The problem of video recommendation can be described as follows.
Given a user u and a recalled video v with duration d, each user-
video pair (u,v) is described by an n-dimensional feature vector
x = ¢(u,0) € R™ The interest of u in v can be represented by
an unobserved variable R. Without loss of generality, we assume
that R € {0, 1} is a binary variable, which is sampled from latent
Bernoulli distribution Pr(R = 1 | x). The users’ watching behavior
on videos can be recorded as the log data D = {(x;, w;, di)}f.il,
where x;, w;, d; respectively denote the i-th user-video pair’s feature
vector, user’s watch time on this video, and the duration of this
video (e.g., in seconds)

Ideally, a scoring function f(x) : R — R could be learned by
minimizing the following ideal point-wise loss:

L = 751 > ~rlog [0 (F(0)]~(1-n) log [1~ & (Fx)]. (1)
D] 45

where r is the unobserved user’s true interest in a video, o is the
sigmoid function. Equation (1) cannot be minimized because the
interest indicator r is unobserved. An alternative way is naively
fitting the prediction to the observed watch time w in D:

1 w
Lnave = 7 ;—m log [ (f(x))]

w

-(1- )log[1-0a (f(x)], @)

Wmax

where wpax is the maximum watch time in the whole D. Note
that since the value of watch time w is not between 0 and 1, it is
scaled into the interval [0, 1] by simply dividing with wmnax. As has
been discussed, there exists a gap between the optimal solution of
Laive and that of L£;ge, because the watch time w suffers from
both duration bias and noisy watching. The goal of this paper is to
mitigate the bias and noise, i.e., uncovering the user interest from
watch time for learning better scoring function f(x).

3.2 Causal Analysis of Watch Time

Next, we analyze how the duration bias and noisy watching affect
the watch time based on the causal graph [18] shown in Figure 3.
Given a user-video pair (u,v), its feature vector x decides both
duration D and user interest R. This is reasonable because the
video duration is part of the endogenous features of this video, and
the level of user interest in this video can be considered as the
matching extent between the user feature and the video feature.
Then duration D and user interest R decide the watch time W
together, as we discussed before. Since the user interest R is an
unobserved variable in the dataset, watch time W is leveraged as a
surrogate label of R. Unfortunately, besides the relevance R, W is
also affected by the video duration D, which leads to duration bias
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Figure 3: Causal graph of users’ watch time in video recom-
mendation. The gray node denotes the unobserved variable
R. The red arrow denotes the effect that the recommendation
model needs to estimate.

X — Feature of (u,v)
D — Duration
W — Watch time

R — User interest

and noisy watching. Therefore, directly fitting watch time W will
result in an erroneous video recommendation model.

According to this causal graph, we can formulate the expected
watch time for a given user-video pair as follows:

E(W|x)=ZwPr(W=w|x)
w
:ZW
w
Dlw
w

Z ZwPr(W:w | d,R) | Pr(R | x)

Z Pr(W = w | D,R) Pr(D | x) Pr(R | x)
D Re{0,1}

Z Pr(W = w | d,R)Pr(R | x)
Re{0,1}

Re{0,1} \'W
= Z E(W | d,R) Pr(R | x).
Re{0,1}

©)
The first equation is the definition of expectation; the second equa-
tion is the decomposition of Pr(W = w | x) based on the Figure 3;
the third equation is based on the fact that one video only has
a unique duration and the fourth equation is the multiplication
switching law. Finally, we decomposed E(W | x) into the mixture
of E(W | d,R = 1) and E(W | d,R = 0), which is weighted by
Pr(R =1 |x) and Pr(R = 0 | x), respectively.

Specifically, the E(W | d,R = 1) represents the average time
users will watch a video of duration d due to their interest, which
indicates the length of duration-biased watch time. Meanwhile, the
E(W | d, R = 0) represents the average time users will watch a video
of duration d they are not interested in, which indicates the length
of noisy watch time. Pr(R = 1 | x) indicates the user’s interest level
for a video. For the ease of notation, we denote E(W | x) as w,
E(W |d,R=1)asw},E(W | d,R=0)asw; and Pr(R=1x) as
p% in future formulation. Then we have:

w=piws + (1= pwy. )
Eq. (4) provides a unified formulation of duration bias and noisy
watching rather than treating them as two separate mechanisms,
which is beneficial for developing a unified method for addressing

them simultaneously. Based on decomposition on Eq. (4), we next
give the error analysis of watch time as follows:
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THEOREM 1 (ERROR OF WATCH TIME). for a given (u,v), the error
between scaled watch time —*— and its unobserved interest probabil-
max

ity py is:

+ _
w il _ | Wd = Wmax Wa 1 r
—Px| = px+t ( - px)
Wmax Wmax Wmax
Wmax—w? w
d r d r
< ——  pxt (1-px).
Wmax Wmax
[ — ——

error of duration bias error of noisy watching

The proof of the Theorem is apparent based on Eq. (4). As illus-
trated in Theorem 1, the upper bound of watch time’s error can be
divided as the linear combination of the error caused by duration
bias and the error caused by noisy watching. The total error of
watch time can be further reduced when both two errors are re-
duced. This error analysis proved the need to develop an approach
to address both duration bias and noisy watching.

3.3 Analysis of Existing Methods

Methods have been proposed to address the issue brought by the
duration bias, including Play Complete Rate, Watch Time Gain [39]
and Duration-Deconfounded Quantile-based Method [35]. How-
ever, the noisy watching is usually overlooked in these methods.
Moreover, these methods uncover users’ true interests with some
critical assumptions on the user interest distribution, which are not
always true in the real world, as shown in the following sections.

3.3.1 Play Complete Rate. In fact, the problem brought by duration
bias is the different magnitude of different duration levels. In order
to mitigate the effect of the magnitude, one direct idea is to scale
each watch time w with its corresponding video duration d and
employ this ratio as a surrogate label of user interest, which is called
Play Complete Rate (PCR). For a given (u,v), its PCR is formulated
as: w
et (5)
Compared with naively adopting watch time as the indicator of user
interest, PCR takes a step towards scaling the magnitude according
to each duration group and achieves better results. However, it can
be shown that PCR can uncover user interest from watch time if
and only if w = C;d and w; = Cud, where C; and C; are two
constants. The detailed analysis can be found in Appendix A.1
In practice, the underlying assumptions of PCR can hardly be
satisfied. As shown in Fig 2, the curve of W; and w with duration
d is not a linear function. As a consequence, the performance of
PCR cannot be guaranteed.

3.3.2  Watch Time Gain. Watch time gain (WTG) [39] is a newly
proposed state-of-the-art method for eliminating the duration bias.
The core idea of WTG is to conduct standardization after video
duration grouping, thus scaling the magnitude of watch time in
each duration into the same interval. For a given (u, v), its WTG is

formulated as:
T2 Y bl ©
aw(d)
where y1,,(d) is the average watch time and o,,(d) is the standard
deviation of watch time for the videos with duration d. Different
from PCR, which only considers the watch time magnitude of the
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current sample, WTG is a method that aims to get a relative score
among each duration group, thus further reducing the influence
of duration bias. However, it can be shown that WTG can uncover
user interest from watch time if and only if the distribution of user
interest at each duration has the same expectation and standard
deviation. The detailed analysis can be found in Appendix A.2.

In fact, it is unreasonable to assume that every duration group
has a consistent user interest distribution. As illustrated in Fig 3,
both user interest R and video duration D are determined by the
feature of (u, v). Therefore, the distribution of R and the distribution
of D are still correlated, which violates the assumption of WTG.

3.3.3 Duration-Deconfounded Quantile-based Method. Duration-
Deconfounded Quantile-based Method (D2Q) [35] is another state-
of-the-art method for alleviating duration bias. Unlike WTG, D2Q
transforms the original watch time into the quantile score in each
equal-frequency duration bin. For a given (u,v), its D2Q label is
formulated as:
D20 _ |D| M”m(w), @
DI

where | D] is the total number of samples in the whole dataset, M
is the number of equal-frequency duration bins, 7, (w) : R —
{1,2,--+, %} is a descending ranking function of watch time for
current bin m. Similar to WTG, D2Q is also a kind of method for
obtaining relative scores among each bin group. However, it can be
shown that D2Q can uncover user interest from watch time if and
only if all bins have the same ranking function of user interest. See
the analysis in Appendix A.3 for the details.

In order to hold the condition, it is necessary to reduce the
number of bins, which in turn reduces the performance of debiasing.
Moreover, the assumption is difficult to be tested in most cases.

4 OUR APPROACH: D*CO

To jointly mitigate the duration bias and noisy watching and relax
the above assumptions, we propose Debiased and Denoised watch
time Correction (D?Co). Specifically, we first employ a duration-
wise Gaussian Mixture Model plus frequency-weighted moving
average for estimating the bias and noise terms. Then, we utilize a
sensitivity-controlled correction function to separate user interest
from watch time, which can reduce the sensitivity to estimation
error.

4.1 Estimating the Bias and Noise Terms

As illustrated in Eq. (4), the expected watch time w of a given (u, v)
can be decomposed as the mixture of duration-biased watch time w;
and noisy watch time w;. From the perspective of probability, the
distribution of watch time Pr(W = w | x) for a given (u, v) can also
be considered as the mixture of two latent distributions: Pr(W =
w | d,R=1)and Pr(W = w | d,R = 0), which is formulated as

follows:

Pr(W=w|x) = Z Pr(R| x)Pr(W =w | d,R),
Re{0,1}

®

where Pr(W = w | d,R = 1) is the distribution of the watch time
due to the user’s interest in videos with duration d, which suffers
duration bias; Pr(W = w | d,R = 0) is the distribution of the
watch time that user watches videos with duration d they are not
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interested in, which is controlled by noisy watching. The weight
of each component is the user interest probability Pr(R = 1|x) and
Pr(R = 0|x).

To uncover user interest from the watch time, we need to esti-
mate the parameters of the latent distributions. Here, we assume
that Pr(W = w | d,R = 1) and Pr(W = w | d,R = 0) are two
latent Gaussian distributions, which is a wild assumption. Then the
Gaussian Mixture Model (GMM) can be utilized for estimating the
parameters of latent mixture Gaussian distribution. However, Eq. (8)
lies on the individual level, which means we don’t have enough
samples to estimate the parameters of GMM for each individual. To
this end, we transform the individual-level GMM equivalently to
the duration level:

Pr(W = w | d) ZPr(x | d)Pr(W = w | d,x)

Z Pr(x) Pr(W = w | x)

xeXy

Z Pr(x) Z Pr(R | x)Pr(W = w | d,R)

xeXy Re{0,1}

Z Z Pr(x) Pr(R | x) |[Pr(W =w | d,R).

Re{0,1} \xe Xy

©)

Here, ¥ xe x, Pr(x) Pr(R | x) can be regarded as the average user
interest in videos of duration d. We can find that the latent distri-
butions Pr(W =w | d,R=1) and Pr(W = w | d,R = 0) are still the
same as Eq. (8). As a result, we can estimate GMM parameters at the
duration-level. To verify the rationality of the adoption of duration-
level GMM, we show statistics on the distribution of watch time on
the KuaiRand dataset. Fig. 4(a) shows the watch time distribution
of different duration groups(e.g., Duration = 20s, 30s, 40s, 50s). A
significant bimodal phenomenon appears on those hist diagrams.
However, as shown in Fig. 4(b), this bimodal phenomenon disap-
pears if we go to the watch time distribution of duration range (e.g.,
Duration < 50s). This supports the rationality of regarding the
watch time distribution as a mixture distribution in the duration-
level.

Furthermore, considering that adjacent duration should have
similar duration-biased watch time and noisy watch time, we em-
ploy a bi-directional frequency-weighted moving average to smooth
the estimated sequence of duration-biased watch time w; and noisy
watch time v‘v;. That is:

. Nt e + Nt e . Nt
|D17T|Wdi7T + + IDl|Wdi + + |D1+T|Wdi”_

|Di—r|+- - +|Dil + -+ + Dyl ’
1Di-rlwy _ +---+|Dilwy +---+|Diyr|w

Wg,
- (10)
divT
[Digl+ -+ 1D+ + Dprl
where T denotes the window size of moving average. The smoothed
W and w7 are leveraged to separate user interest from watch time
in the next section.

Wy =

4.2 Separating User Interest from Watch Time

Based on Eq. (4), we can obtain the user interest with the bias
term Tv; and noise term W(; via affine correction, which named as
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Figure 4: The distribution of watch time in a different subset of KuaiRand.

D?Co(A): . Algorithm 1: The pipeline of DCo
2 w—w
r,? CO(A)(W, 171/2, wy) = ﬁ (11) Input: User interactions D = {(x;, w;, di)}?zfl, moving
d d average windows size T, sensitivity control term «

If we estimate both the bias term and noise term accurately, TWHe { LW {}, Re—{}

Eq. (11) undoubtedly equals user interest. As shown in the following 2 ford € {dp; dmax} do
min» > “max

theorem: i 3 D’ ={(xs,wi,di) | xi,wi,di) € DA(di=d)};

TuEOREM 2 (UNBIASEDNESS). Given (u,v), r,l() Co(A) is unbiased 4 WH[d],W™ [d] « GMM(D’, components = 2) ;
if the bias and noise terms are accurately estimated: 5 end

6 W* «— Moving_Average(W*,T) (Eq.(10));

rDzCo(A)(W o
X > d = . _
7 W~ « Moving_Average(W~,T) (Eq.(10)) ;

wy) =py W =wiAw, =wy.
On the basis of Eq. (4), the proof of this theorem is apparent. s for (x;, wi,d;) € D do
However, we can hardly accurately estimate the bias and noise lf b lD2C0 (s) = —

term in practice. Once the estimation error occurs, then the above 9 ‘ R[i]  ry (wi, W*[d;], W™ [di], @) (Eq. (12)) ;

theorem will not hold. To this end, we analyzed the parameter 10 end

2
sensitivity of r,l() Co(A) towards W; and W respectively, which is u return R

given by the following theorem:

THEOREM 3 (PARAMETER SENSITIVITY). For a given disturbance
. L ; —4
(i.e., estimation error) 5@; and 5%— of the predict value of w} and

~— ~— ~4 . D2Co ;. =+ ~— . 2
Wy ifwe [Wd , Wd]’ the sensitivity of ry tow; and Wy I8 where « is the sensitivity control term. We can prove that, r,l() Co(S)
2 — ~ — has a lower sensitivity to parameters w* and w_, compared to
ardCo(y, whLwy) w=wy 5 ytop d d P
Sgt = wt| = )5~+), D*Co(A) through the following proposition
w (Wd w (WZ_W;)Z w5 Iy ough the following proposition.
. 9 r)I?ZCO(,W’ whw) Wh—w s ProposITION 1 (D?Co(S) HAS L;)WER SENS,ITIVITY).I For a given
- = — | = == — w1 u,v), denoting the sensitivity of D“Co(S) as S’ , and S’ -, we have:
w; aw; w; (W;._w;)z‘ Wd’ (u,0) 4 yof (S) wh w3
N o e D2Co ;. ~+ ~— .
where SW; and Sw& is the sensitivity of g tow and w} respec S:W < SW;’ if o < 0,
d

tively.
. o Sh- < Sy, ifa>o.
The proof of Theorem 3 is based on the definition of parameter d d

sensitivity. This theorem indicates that the estimation error of bias
and noise terms has different effects at different watch time. For
SW;, it has large value with the growth of w. In contrast, Sw;y has

Due to the limitation of the page, proof Proposition 1 can be
found in supplementary material. In practice, we need to tune the

. PO 2 +
lower value with the growth of w. From the perspective of the value of & for controlling the sensitivity of D*Co(S) towards wj

entire dataset, the dataset with the majority of short watch time is and wy. . ) . .
mainly affected by w7 . In contrast, the dataset with the majority of The pipeline of our m.ethodnls shown' m Alg"“thm 1. In sum-
mary, we employ a duration-wise Gaussian Mixture Model and a
frequency-weighted moving average to estimate the bias and noise
terms. Then, we utilize a sensitivity-controlled correction function
instead of a standard affine correction to better separate user inter-
, (12) est from watch time. The separated user interest can be utilized as
the supervision signal for learning a better recommendation model.

long watch time is mainly affected by w;. To this end, we proposed
a sensitivity-controlled correction function that adjusts sensitivity
preferences according to the proportion of watch time in the dataset:

L exp(aw) — exp(aw’)
r)]()2C()(S) (w, W;lr’ w(;) _ d

exp(avT):;) - exp(av?‘;)
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Table 1: Statistics of the datasets adopted in this study

Dataset  #Users #Videos #Interactions Duration Ranges(s)
KuaiRand 26,988 6,598 1,266,560 [5,240]
WeChat 20,000 96,418 7,310,108 [5,60]

5 EXPERIMENTS AND RESULTS

5.1 Experimental setting

5.1.1 Datasets. For evaluating the performance of proposed D?Co,
we utilize two public real-world datasets: WeChat! and KuaiRand?.
They are respectively collected from two large micro-video plat-
forms, Wechat Channels and Kuaishou. We list their statistic infor-
mation in Table 1. The details of these two datasets are as follows:

WeChat. This dataset is released by WeChat Big Data Challenge
2021, containing the Wechat Channels logs within two weeks. Fol-
lowing the practice in [39], we split the data into the first 10 days,
the middle 2 days, and the last 2 days as training, validation, and test
set. The adopted input features include userid,feedid,device,authorid,
bgm_song_id,bgm_singer_id,user_type, like, read_comment, forward.

KuaiRand [9]. KuaiRand is a newly released sequential recom-
mendation dataset collected from KuaiShou. As suggested in [9], we
utilized one of the subsets KuaiRand-pure in this study. To mitigate
the sparsity problem, we selected data from which the video dura-
tion is up to 4 minutes. We split the data into the first 14 days, the
middle 7 days, and the last 10 days as training, validation, and test
set. The adopted input features include user_id, video_id, author_id,
music_id, video_type,upload_type,tab,is_like, is_follow, is_comment,
is_forward, is_profile_enter,is_hate, most_popular_tag.

5.1.2  Evaluation. As we discussed before, the watch time is an
unreliable label for measuring user interest. For evaluating the per-
formance of mitigating the duration bias and noisy watching in
watch time, we need to know the true user interest in the recom-
mended video. Since the explicit feedbacks suffer the spareness
problem, we cannot directly utilize them as ground truth labels in
our experiments. To this end, we adopt the definition of long_view
from the KuaiRand dataset [9] as the user interest indicator, which
defines the user interest for a given (u, v) as follows:

1,
rx = 0

It is worth noting that this kind of definition is close to Valid
Viewing (VV), which is one of the online metrics we leveraged in
online A/B testing (section 5.6). Unlike the RMSE used in [35] and
WTG used in [39], we are mainly concerned about whether the
recommendation model can rank interesting videos in top-ranking
positions, so the GAUC and nDCG@k are utilized as the evaluation
metric of recommendation performance.

if (d<18sAw=d)V (d>18s Aw > 18s); 13
13

else;

5.1.3 Baselines. As have been described in Section 4.2, D*Co has
two versions D?Co(A) and D2Co(S). In our experiments, we will
compare our proposed method with these baselines: PCR, D2Q [35]
and WTG [39]. To investigate the generalization of our method
and baselines, we integrate them with different backbone models.

Lhttps://algo.weixin.qq.com/
Zhttp://kuairand.com/
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Specifically, we use the classical linear recommendation model
FM [19], the classical deep recommendation model DeepFM [12]
and the state-of-the-art recommendation model AutoInt [22] as
our backbone recommendation model.

Moreover, considering that the existing baselines overlook the
noisy watching, we equip those baselines with denoise capability
via data post-processing. Specifically, we treat all samples with
less than 5 seconds of watch time as 0 values after calculating
the value of baseline labels. This simple post-processing divides
the noise samples by threshold so that the baselines have denoise
capability, and they are denoted as PCR-denoise, D2Q-denoise,
and WTG-denoise.

5.1.4 Implementation Details. We implement all the backbones
with pytorch-fim3, an open-source library for factorization machine
models. We employ Binary Cross Entropy Loss for all baselines and
our methods for fair comparisons. In particular, we transform WTG
into probability via the cumulative density function ®(-) of standard
Gaussian distribution. For D2Co(A) and D®Co(S), we clip their value
into the interval [0, 1]. For D2Q, the group number is set to 60 in
KuaiRand and 30 in WeChat. We utilize Adam as the optimizer and
set the initial learning rate as 0.001. The batch size is set as 512. For
all the backbone models, we set their latent embedding dimension
to 10. For all methods with neural networks, the hidden units are
set to 64 while the dropout ratio is set to 0.2. The value of moving
average window size T is tuned in the interval [1, 5], and the value
of sensitivity control term « is tuned in the interval [1e72, 5¢72]
in WeChat dataset and [—1e 2, —5¢ 2] in KuaiRand dataset. We
tune our hyper parameters on the validation set while evaluating
the performance on the test set. The source code is available at
https://github.com/hyz20/D2Co.git.

5.2 Overall Performance

Table 2 illustrates the recommendation performance of proposed
D2Co and other baselines. According to the result in Table 2, our pro-
posed D2Co(S) obtains the best performance on both KuaiRand and
WeChat datasets and all backbones significantly. In addition, the rec-
ommendation models trained with debiased labels PCR, D2Q, and
WTG outperform those trained by Watch Time by a large margin
since they mitigate the duration bias. Then, Our proposed D?Co(A)
and D?Co(S) further outperform these debias baselines since our
proposed methods consider the noisy watching. Furthermore, our
proposed D?Co(S) has better performance than D?Co(A) in both
datasets. This shows the superiority of our sensitivity-controlled
correction. In section 5.4, we will reveal the intrinsic reasons why
D?Co(S) exceeds D2Co(A).

It is worth noting that those baselines equipped with denoise
post-processing (PCR-denoise, D2Q-denoise, WTG-denoise) have
different degrees of improvement compared to their original meth-
ods. This phenomenon clearly confirms the existence of noisy
watching. However, the denoise post-processing is just a heuristic
truncation of the short watch time samples, which only removes
part of the noise. Hence, there still exist performance gaps between
D?Co(S) and most denoised baselines. Moreover, the gap between
original baselines and Watch Time is larger than that between

Shttps://github.com/rixwew/pytorch-fm
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Table 2: The recommendation performance of D>Co and other baselines in KuaiRand and WeChat. Boldface means the best
performed methods (excluding Oracle), while underline means the second best performed methods, superscripts { means the
significance compared to the second best performed methods with p < 0.05 of one-tailed ¢-test .

KuaiRand WeChat
Backbone | Methods GAUC nDCG@1 nDCG@3 nDCG@5 | GAUC nDCG@1 nDCG@3 nDCG@5
Watch Time | 0.584 0.402 0.461 0.501 0.506 0.538 0.542 0.547
PCR 0.626 0.432 0.482 0.517 0.532 0.557 0.560 0.565
PCR-denoise | 0.636 0.437 0.487 0.521 0.532 0.560 0.563 0.567
D2Q 0.628 0.433 0.484 0.519 0.533 0.546 0.553 0.560
EM D2Q-denoise | 0.641 0.441 0.490 0.524 0.538 0.559 0.563 0.569
WTG 0.635 0.437 0.486 0.520 0.541 0.556 0.562 0.569
WTG-denoise | 0.645 0.442 0.491 0.525 0.545 0.564 0.567 0.572
DZCo(A) 0.650 0.446 0.493 0.527 0.551 0.577 0.578 0.583
D2Co(S) 0.6537  0.451% 0.497% 0.530 | 0.5567  0.581" 0.5861 0.590"
Oracle 0.664 0.456 0.502 0.535 0.556 0.585 0.587 0.590
Watch Time | 0.593 0.402 0.464 0.503 0.506 0.554 0.555 0.560
PCR 0.628 0.435 0.483 0.518 0.531 0.559 0.562 0.568
PCR-denoise | 0.637 0.440 0.488 0.523 0.532 0.559 0.562 0.569
D2Q 0.635 0.437 0.489 0.522 0.532 0.550 0.554 0.562
DeepEM D2Q-denoise | 0.642 0.443 0.492 0.525 0.537 0.564 0.565 0.572
WTG 0.635 0.436 0.486 0.520 0.542 0.561 0.564 0.571
WTG-denoise | 0.647 0.444 0.493 0.526 0.544 0.571 0.570 0.577
D2Co(A) 0.653 0.447 0.496 0.528 0.551 0.574 0.576 0.583
D2Co(S) 0.6567  0.451% 0.499% 0.532 | 05557  0.5877 0.587% 0.593"
Oracle 0.666 0.459 0.505 0.537 0.556 0.583 0.585 0.591
Watch Time | 0.592 0.398 0.461 0.501 0.506 0.559 0.557 0.562
PCR 0.624 0.429 0.480 0.515 0.532 0.555 0.559 0.567
PCR-denoise | 0.639 0.441 0.489 0.524 0.533 0.561 0.563 0.570
D2Q 0.633 0.436 0.486 0.521 0.535 0.553 0.556 0.564
Autolnt | D2Q-denoise | 0.641 0.438 0.490 0.524 0.539 0.563 0.566 0.573
WTG 0.637 0.437 0.487 0.521 0.544 0.562 0.563 0.570
WTG-denoise | 0645 0441 0491 0525 | 0547 0569 0571 0578
DZCo(A) 0.653 0.448 0.496 0.529 0.551 0.575 0.578 0.585
D2Co(S) 0.658"  0.453" 0.499" 0.532" | 0.5567  0.5817 0.586" 0.593"
Oracle 0.665 0.459 0.502 0.536 0.557 0.585 0.587 0.594

D?Co(S) and original baselines in KuaiRand dataset. Therefore, we
can conclude that duration bias is more harmful than noisy watch-
ing in the KuaiRand dataset. In contrast, the gap between original
baselines and Watch Time is smaller than that between D2Co(S)
and original baselines in WeChat dataset, which indicate that noisy
watching is the main problem in this dataset. We will further discuss
this conclusion in section 5.3.

5.3 The Effectiveness of Mitigating Bias and
Noise

Although Tabel 2 shows a significant improvement of our D*Co
compared to the baselines, it is still unclear how much of these
improvements come from the denoise that we claim to have taken
into account. In Theorem 1, we analyzed the error of watch time
and divided the overall error into the duration bias-caused error
and noisy watching-caused error. On this basis, we first present
the curve of mean error with video duration in Fig. 5, with the
estimated w? and w, . In Fig. 5(a), the error caused by duration
bias is much larger than that of noisy watching, and the curve of
noisy watching is close to zero. This indicates that duration bias
dominates the error of watch time in KuiaRand. In Fig. 5(b), the
error caused by noisy watching is an increasing curve, while the
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error caused by duration bias is a decreasing curve. This indicates
that the duration bias dominates the overall error of watch time
in short-duration intervals of WeChat. However, in long-duration
intervals of WeChat, the noisy watching dominates the watch time’s
overall error.

Then we split both KuaiRand and WeChat into three equal fre-
quency duration ranges and evaluate the performance of each
method in the corresponding subset. The results are shown in
Table 3. To better reveal the performance difference, we defined the
improve percentage Imp(%)m = %
is the value of current method’s performance, V,,; is the value of
Watch Time’s performance and V, is the value of Oracle’s perfor-
mance. Actually, Imp(%)p, indicates the relative effect of debias and
denoise in the current subset. For KuaiRand, although it has only
duration bias caused error, our method D?Co(A) and D?Co(S) still
exceeds the baseline, which shows the superiority of our method
not relying on the critical assumptions. On WeChat, baselines and
D?Co(A) have similar performance in short duration while D?Co(A)
outperform baselines significantly in long duration. Also note that
for these debiased baselines, their performances in the long dura-
tion of WeChat (e.g., (42, 60]) even showed declines relative to the
Watch Time. As we discussed before, WeChat is affected by duration

in each subset, where V;,,
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Figure 5: The curve of the mean error caused by duration bias and noisy watching with the growth of duration, w.r.t KuaiRand

and WeChat datasets.

Table 3: The nDCG@1 of D?Co and other baselines in three equal frequency duration range. Boldface means the best performed
methods (excluding Oracle), while underline means the second best performed methods, superscripts ¥ means the significance
compared to the second best performed methods with p < 0.05 of one-tailed t-test . The backbone recommendation model is

DeepFM.

Dataset | Duration Range | Watch Time PCR D2Q WTG D2Co(A) D?Co(S) Oracle

(0,32] 0.380 0.389(+32.7%) 0.391(+36.4%) 0.391(+36.8%) | 0.397(+58.5%)"  0.397(+58.3%) | 0.409

KuaiRand (32,94] 0.394 0.398(+20.6%) 0.406(+67.6%) 0.402(+46.9%) | 0.409(+86.9%)  0.411(+99.3%) | 0.411

(94,240] 0.371 0.374(+19.1%)  0.373(+10.0%) 0.375(+20.0%) | 0.382(+58.6%)  0.389(+92.9%)" | 0.390

(0,16] 0.554 0.573(+57.0%) 0.565(+31.6%) 0.569(+44.2%) | 0.579(+74.3%)  0.591(+108.9%)" | 0.588

WeChat (16,42] 0.549 0.555(+28.4%)  0.545(-16.1%)  0.554(+22.9%) | 0.568(+85.6%)  0.569(+91.5%)" | 0.571

(42,60] 0.548 0.546(-20.3%)  0.544(-35.4%)  0.548(-4.8%) | 0.556(+61.5%)  0.558(+70.7%)" | 0.561

bias in short duration and noisy watching in long duration, so the
results on WeChat indicate that our proposed D?Co has the ability
to mitigate the noisy watching, thus outperform other baselines in
a large margin on the long duration videos of WeChat.

5.4 The Effectiveness of Sensitivity Control

In Theorem 3, we argue that the sensitivity of w:; and w produces
different hazards for different datasets, and our sensitivity control
correction reduces the sensitivity by controlling the correspond-
ing sensitive parameters in different datasets. For KuaiRand, it has
many records of the long watch time. These records make the sensi-
tivity mainly dominated by w;. For WeChat, it has many records of
short watch time. These records make the sensitivity mainly domi-
nated by w . Similarly, we divide the datasets into equal-frequency
groups by duration range. The larger the duration, the longer the
average watch time. Fig. 6 we present the GAUC of D?Co(A) and
D?Co(S) in different duration ranges of two datasets. As we dis-
cussed, the bottleneck of KuaiRand is those long watch time records,
so our proposed D?Co(S) mainly outperforms D?Co(A) in a large
duration range (e.g., (94,240]). Meanwhile, the bottleneck of WeChat
is those short watch time records, so our proposed D?>Co(S) mainly
outperforms D?Co(A) in a small duration range (e.g., (0,16]). In
general, our proposed sensitivity-controlled correction is able to
control the parameter sensitivity according to the bottleneck of
different datasets, thus enhancing the original D2Co(A).

5.5 The Effect of Hyper-Parameters

There are two hyper-parameters of our proposed D?Co. One is the
size of the windows T of frequency-weighted moving average in
Eq. (10). The larger the T, the smoother the bias and noise terms
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at adjacent times and the less specific the bias and noise terms
themselves. The other is the sensitivity control term « of sensitivity-
controlled correction in Eq (12). The larger the absolute value of
a, the greater the decrease in sensitivity of the corresponding bias
and noise parameter, but the smaller the unbiasedness of estimated
user interest. In most cases, « is set to a very small value. Both T
and « are essential for improving the performance of D?Co. Fig. 7
illustrate the performance change of FM, DeepFM and Autolnt
with different values of T and a. The figure indicates that different
backbone recommendation models may have different reactions to
the change of T and a. For FM (Fig. 7(a)), the best hyper-parameter
isT € {2,3,4} A a = —0.07;For DeepFM (Fig. 7(b)), the best hyper-
parameteris T € {2,3,4} Aa = —0.05; For AutoInt(Fig. 7(c)), the best
hyper-parameter is T = 2 A @ = —0.05. In practice, it is necessary
to adjust the hyper-parameters to make D?Co perform best.

5.6 Online A/B Testing

We conducted online A/B testing by deploying our D?Co(S) in the
video feeds of Huawei browser, a platform with tens of millions of
daily active users (DAU), to evaluate its effectiveness in real video
recommendation products. Specifically, we randomly split the users
into the control and experimental groups. For the control group,
the users were served by a highly-optimized deep CTR model with-
out training by D?Co(S). For the experimental group, the users
were served by the same CTR model trained with D?Co(S). Tabel 4
presents the relative improvements of the base model trained with
D2Co(S) on five online metrics: (1) Impression Volume; (2) Valid
Viewing Volume (VV); (3) Mean Watch Time (MWT); (4) Play Com-
plete Rate (PCR); (5) Click-Through Rate (CTR). The results show
that the base model training with D?Co(S) consistently outperforms
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Figure 6: The effect of sensitivity control in DeCo, w.r.t different backbone models. Left three: KuaiRand; Right three: WeChat.
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Figure 7: Hyper-parameter sensitivity of D?Co(S) w.r.t. different backbones in KuaiRand. Each cell denotes the corresponding

GAUC.

Table 4: Relative improvement (%) of D2Co(S) to product baseline from online A/B testing

Dayl Day2 Day3 Day4 Day5 Day6 Day7 | Average
Impression | 4.60% 6.39% 5.06% 4.49% 7.30% 5.15% 4.90% | 5.41%
\'A% 7.70% 8.71% 8.19% 7.58% 11.70% 8.55%  6.04% | 8.35%
MWT 191% 2.32% 136% -4.00% 0.62% -0.46% 7.43% | 1.31%
PCR 4.72% 537% 3.88% 4.58% 5.09% 547% 4.57% | 4.81%
CTR 2.95% 3.10% 3.00% 2.95% 4.08% 3.24% 1.08% | 2.92%

the baseline by a large margin. One exception is the MWT, which
fluctuates greatly in our A/B testing. The remarkable online im-
provements demonstrate the effectiveness of our proposed D?Co
in uncovering user interest from biased and noised watch time.

6 CONCLUSION

In this study, we aim to discover user interest by watch time. Due
to the effect of video duration, the watch time suffers from duration
bias and noisy watching simultaneously. Current methods can only
address duration bias while overlooking the noisy watching. More-
over, they rely on some critical assumptions to uncover the user
interest, which may not hold in practice. To this end, we propose
D?Co to mitigate both duration bias and noisy watching. Specif-
ically, we first employ a duration-wise Gaussian Mixture Model
plus frequency-weighted moving average for estimating the bias
and noise terms; then, we utilize a sensitivity-controlled correction
function to separate the user interest from the watch time. The
experiments on two public video recommendation datasets and
online A/B testing indicate the effectiveness of the proposed D?Co.
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A DETAILED ANALYSIS OF CURRENT METHODS

This section shows the detailed analysis of the assumptions for the
methods in Section 3.3.

A.1 The assumption of PCR

We can further rewrite PCR as:

PCR _ W wipx +w, (1-p5) (W:; Wf;) r+wl;
T —__—_—— = - — _
x Ty d d a 'ty
Then we have:
+ - - wh o w3 w3
d d Wi, d; d
Vi,j €N, (= - —=2)pk +—=> (=~ - —)pk +—>~
i, j (G~ 3 Pt > 4 4 P+ —
wt o owh w; W
. d; . dj
iffiz—jzcl/\—l:—jzcz
i i i j
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A.2 The assumption of WTG
We can further rewrite WTG as:
wiG W= pw(d) Wy = wipx+wy — (Wi —w)pp(d) —wy
T T @ (Wi —w)ap(d)
_ px — Hp(d)
N Op (C)
where 1 (d) and oy (d) are the mean user interest and standard

deviation of user interest in the video group with duration d, re-
spectively. Then we have:

P%; — Hp(di) . P:r(j - pp(dj)
Up(di) Up(dj)
if f. pp(di) = pp(dj) A op(di) = op(dj)
A.3 The assumption of D2Q

We can further rewrite D2Q as:

Vi,j € N,

r r
= Pk > Pk

1Dl
D20 _ |D| = Mrmm(w) ZkM I(w > wy)
* |D| |D|
22]
ZkM I ((w; - w;)p; +wy > (w; - w;)p;k + w;)

1D
|5
2 Pk > pi) D] = Mam (py)
DI DI
where 7, (p}) is the ranking function of user interest p;. Then we
have:

|D| = M7 i) () y 1D = M) (px;)
|D| |D|

iff Tm) () = Tm(j) ()

where 7, ;) (-) and 7., ;) (-) are the ranking function correspond-

ing to the groups to which sample i and j belong.

r r
= PXi > pXj’

Vi,j €N,
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