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Recommender systems are currently widely used in various applications helping people filter information.

Existing models always embed the rich information for recommendation, such as items, users, and contexts

in real-value vectors, and make predictions based on these vectors. In the view of causal inference, the as-

sociations between representation vectors and user feedback are inevitably a mixture of the causal part that

describes why a user prefers an item, and the non-causal part that merely reflects the statistical dependen-

cies, for example, the display ranking position and sales promotion. However, most recommender systems

assume the user-item interactions are only affected by user preferences, neglecting the striking differences

between these two associations. To address this problem, we propose a model-agnostic causal learning frame-

work called IV4Rec+ that can effectively decompose the embedding vectors into these two parts. Moreover,

two strategies are proposed to utilize search queries as instrumental variables: IV4Rec+(I) only decomposes

the item embeddings, while IV4Rec+(UI) decomposes both user and item embeddings. IV4Rec+ is a model-

agnostic design that can be applied to many existing recommender systems, e.g., DIN, NRHUB, and SRGNN.

Extensive experiments on three datasets show that IV4Rec+ significantly facilitates the performance of rec-

ommender systems and outperforms state-of-the-art frameworks.
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1 INTRODUCTION

With overwhelming information from the Internet, recommender systems and search engines are
two prevailing approaches for users to filter and retrieve the information they are interested in. In
the past decades, recommendation and search services were traditionally deployed as two separate
systems, serving different users with different information objectives. In recent years, there has
been a tendency for content platforms to provide search and recommendation services simultane-
ously. Meanwhile, heterogeneous user behaviors from two services can be connected via the same
sets of users and items. Early studies showed that jointly optimizing both recommendation and
search models can lead to improvements in their respective performances [48, 49].

Traditional recommender systems assume that user historical behaviors contain user interests
and leverage interacted item sequences to capture user preferences [35, 38, 56]. However, the user-
item interaction data is affected bymany factors, such as the exposuremechanism, sales promotion,
and display position. Many existing models embed the rich information from the user, the item,
and the context into real-value embedding vectors and make predictions using these vectors, e.g.,
using dot product between the user and item embeddings. From the perspective of causal anal-
ysis, the signals characterized by the embeddings can be decomposed into two parts: the causal
association part, which describes why a user prefers an item under the context, and the non-causal
association part, which reflects other factors influencing the user-item interaction. Thus the causal
part reflects the true user preference, and the non-causal part reflects the statistical dependencies
between the user-item pair and feedback. The striking differences between causal and non-causal
associations lead to their distinctive roles in recommender systems. On the one hand, the causal
association part predominantly contributes to the outcomes (e.g., clicks); on the other hand, the
non-causal association part still influences the outcomes via the unobserved confounders. In order
to attain optimal performance, an ideal recommender system should handle these two associations
with different methods. Existing recommender systems, however, mostly ignored the differences
between the two parts and used the embeddings as a whole.
Fortunately, the fact that search and recommendation services are deployed in the same content

platform provides us with a chance to address this problem. The key difference between user
search and recommendation activities is that users issue queries in search scenarios. A conspicuous
feature of the search queries is that users actively issue their queries, which means that queries
are composed of user intents or interests, which should not be affected by the confounders in the
recommender, e.g., exposure mechanisms. Therefore, the user search queries can be employed to
distinguish the above-mentioned two associations in the embeddings of the recommender.
In this article, we propose a model-agnostic framework IV4Rec+ that can effectively decompose

the embedding vectors into two parts by jointly considering user behaviors in search and recom-
mendation. Specifically, adopting the concepts in causal analysis, the search queries are employed
as instrumental variables (IVs) to decompose original embedding vectors in recommendation,
i.e., treatments, into two parts. Queries are embedded by pre-trained language models and then
regressed on treatments. The fitted part is unrelated to the confounders because IVs (queries) are
not affected by confounders. The residual part reflects the confounders because the residual is ob-
tained by subtracting treatments from the fitted part. These two parts correspond to the causal
association and non-causal association, respectively. Considering that the causal and non-causal
parts both contribute to the final outcome, we reconstruct treatments using these two parts to
mine their different roles in prediction by combining them with different weights learned by deep
neural networks. Finally, the reconstructed treatment vectors are fed into the recommendation
models for making the final prediction.
In causal inference, IVs methods have been widely used to learn the cause-effects between con-

founded treatment and outcome variables [12, 42]. After identifying IVs, which affect the outcome
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only through treatment and not the confounders, the IV regression can estimate the causal rela-
tionship by first regressing treatment on the instrument, and then regressing the outcome on the
treatment conditioned on the instrument. Treatment variables can be split into two parts: the fit-
ted value in regression, which has a causal correlation, and the residual in regression, which has a
non-causal correlation. In recent years, more and more platforms have deployed their search and
recommendation together, serving the same set of users and items. Though issued in the search sce-
nario, the queries reflect the user’s true preference in both search and recommendation scenarios.
Therefore, it is plausible to utilize user search activities as IVs.

Compared to existing IVs methods, the proposed IV4Rec+ has two striking differences. First, ex-
isting IVs methods focus on identifying cause-effects, while the goal of IV4Rec+ is to boost predic-
tion performance. Therefore, IV4Rec+ applies a multi-task schema, including the recommendation
prediction task and the causal learning task, to inject queries as IVs into recommendation models.
Second, original IVs methods only use the fitted part of IVs regression to estimate the causal asso-
ciation between treatments and outcomes. To obtain better performance, IV4Rec+ leverages both
the fitted and residual parts to make predictions.
Our main contributions are summarized as follows:

—We propose a model-agnostic causal learning framework, IV4Rec+, which leverages search
queries to enhance the recommendation models. By considering search queries as IVs, we
inject user search activities into the learning of the recommendation model in a causal learn-
ing manner. Moreover, an end-to-end multi-task learning schema is developed to learn the
model parameters.

—We propose two variants of IV4Rec+, which use search queries to decompose different em-
beddings in recommendation. One decomposes item embeddings, and another decomposes
both user and item embeddings.

—We conduct extensive experiments on two real-world industrial datasets and a public bench-
mark dataset. Experimental results validate that the proposed IV4Rec+ can consistently en-
hance different recommendation models. In addition, IV4Rec+ outperforms existing SOTA
approaches which assist recommendation with search.

This article is an extended version of our previous work [27] published at the WWW 2022.
We expand the IV4Rec framework proposed in the original article to the IV4Rec+, with major
extensions: (1) We propose an end-to-end multi-task learning schema to train models with the
recommendation task and causal learning task. The original IV4Rec solves the IV regression with
analytical solutions. To obtain better performance, IV4Rec+ conducts the regression with deep
neural networks and is optimized with gradient descent. (2) In IV4Rec+, we develop two strategies
to incorporate search queries as IVs for users and items, called IV4Rec+(UI) and IV4Rec+(I). The
two strategies make IV4Rec+ more flexible in real-world applications. (3) We conduct statistical
analysis to verify the feasibility of using search queries as IVs for recommendation. Besides, we
illustrate the causal graphs with details and discuss the feasibility of using search queries as IVs.
(4) We conduct more experiments and analyses on a larger real-world industrial dataset and apply
IV4Rec+ over an extra underlying model. All of the experiments demonstrate the effectiveness of
IV4Rec+.

2 RELATEDWORK

Generally, this article is highly related to three research lines: the joint modeling of search and
recommendation, IVs regression, and causal learning for recommendation.We briefly review these
research fields in this section.
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2.1 Joint Modeling of Search and Recommendation

On par with search engines, recommender systems are widely deployed to help users filter the
overwhelming information, alleviating the information overload issue. Traditionally, researchers
and practitioners design search and recommendation services as two distinct systems. Search en-
gines [8, 19, 21] and recommender systems [5, 10, 24, 43] have been developed under the design.
Both services are ubiquitous inmodern society. Early studies [11, 41] pointed out that search (infor-
mation retrieval) and recommendation (information filtering) are the two sides of the same coin.
These two services share the common goal: providing users with information objects to match
their needs (which may or may not explicitly contain a query). The key difference between them
is whether the users issue queries.
Unified recommendation and search model.Motivated by the similarities and connections

between recommendation and search, unifiedmodels have been proposed. In e-commerce, an early
work [32] designs a unified recommendation and search system to utilize complementary infor-
mation from two tasks by integrating recommendation features and search features. A unified
framework using deep convolution neural networks [26] was deployed at Flipkart, India’s largest
e-commerce company, to serve for visual search and recommendation. Zamani and Croft [48] as-
sume that search and recommendation models could potentially benefit from each other. And a
joint learning framework is proposed to train these two models simultaneously by optimizing a
joint loss. Zamani and Croft [49] extend this work into a multi-task framework that learns a re-
trieval model from user-item interaction data and reconstructs item description texts that can be
used for item retrieval. Yao et al. [45] design an approach called USER that mines user interests
from the integrated user behavior sequences and accomplishes these two tasks in a unified way,
alleviating the data sparsity problem and improving user satisfaction in both tasks.
One service facilitating the other. Since there exist heterogeneous user behaviors in two ser-

vices, it is reasonable to incorporate behaviors in one service to improve the performance of the
other. An early work [46] leverages search keywords of new users to address the cold-start prob-
lem in recommendation. Wu et al. [35] have proposed an approach to combining search history
and browsing history logs to enhance the recommendation task. Wu et al. [40] propose a zero-shot
heterogeneous transfer learning framework that transfers the learned knowledge from recommen-
dation model to the search engine and addresses the cold-start problem in search. In this article,
we also use the search data as external information to enhance the recommendation model.

2.2 Causal Learning for Recommendation

Recently, the causal inference [23] has been adapted to recommendation. Many researchers fo-
cus on causal embedding for recommendation [3, 14, 37, 55]. They are interested in finding the
optimal treatment recommendation policy that maximizes the reward concerning the control rec-
ommendation policy for each user [3] or learning a fair or unbiased representation of items and
users for recommendation [14, 37, 55]. Many recent works leverage the causal graph [23], an ef-
fective tool to depict cause effects and to identify the effect of bias in recommendation. A few
studies [33, 51–53, 55] demonstrate the mechanism of biases, e.g., popularity bias and exposure
bias, with the causal graph. Liu et al. [20] illustrate the generation process of biased and unbiased
user-item interactions via two causal graphs and thenmitigate the bias through an information bot-
tleneck approach. Other researchers [34, 44] formulate the procedure of user behaviors in a causal
inference framework and boost the model performance with data augmentation. Zhang et al. [50]
propose a counterfactual method to learn accurate and robust user representation. Currently, some
researchers [53–55] utilize user conformity and item popularity to facilitate recommendation mod-
els, which reveals that biases are not always harmful and can be beneficial with tailored usage. This
article integrates the causal and non-causal relationships to improve the model performance.
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2.3 IVs Regression

The IVs regression [4, 7, 12, 31] is a popular method in causal inference, which has been widely
applied in statistics, econometrics, and epidemiology. This method allows for (unobserved) con-
founding bias and leverages external information as IVs to identify the causal relationship be-
tween treatment and outcome variables [23]. Two-stage least squares (2SLS) procedure [18] is a
representative method for instrumental variable regression with linear models. Many researchers
have explored this method in machine learning. Venkatraman et al. [31] adapt IVs regression to
online learning which can update the estimator with streaming data instead of the whole dataset.
McCulloch et al. [22] develop a flexible framework for IVs regression which uses Bayesian Addi-
tive Regression Trees in machine learning to serve for IVs model. IVs regression is also capable
of assisting reinforcement learning. The offline policy evaluation in reinforcement learning can
be improved with IVs to address the confounding bias in Q-function estimates [6]. With the de-
velopment of deep learning methods, many recent works extend 2SLS with deep neural networks,
whichmeans the regression procedure can be non-linear and high-dimensional. Hartford et al. [12]
propose a remarkable work to estimate cause-effect using IVs through deep learning techniques.
Singh et al. [28] design a single-stage kernel-based IVs method that relaxes linear assumptions and
offers a theoretical guarantee under mild assumptions. Xu et al. [42] provide an alternating train-
ing regime to combine 2SLS and deep learning methods and attain good end-to-end performance
in high-dimensional image data and off-policy reinforcement learning tasks. Yuan et al. [47] utilize
mutual information to automatically learn representations of IVs and confounder variables, which
are used as inputs for 2SLS with neural network structure. In this article, we utilize IVs regression
with deep neural networks.

3 PROBLEM FORMULATION

This section formalizes the problem of recommendation with search queries as IVs.

3.1 Preliminaries

3.1.1 Recommendation and Search in One Platform. In recent years, many content platforms
have provided both search and recommendation services, which serve the same set of users with
the same set of items. Thus user search and recommendation activities can be connected through
a common set of users or items.
From the viewpoint of recommendation, when a user u ∈ U accesses the platform, the system

provides a list of items i ∈ I with an existing recommendation model, where U and I denote
the sets of all users and items respectively. Usually, a user u interacts with items in certain con-
texts denoted as pu , including the user profile, search history, or situational context, which can be
collected by the platform and represented as real-valued vectors (embeddings) pu ∈ Rdc , where
dc is the dimension of embedding for context. Usually, each user u and each item i can also be
represented as real-valued vectors (embeddings), denoted as tu ∈ Rdu and ti ∈ Rdi , respectively,
where di and du are the dimensions of the embeddings for users and items. The recommender
system is usually trained with the collected historical user-system interactions Drec where each
tuple (u, i, c ) ∈ Drec means that the item i was shown to the user u and the interaction is c ∈ {0, 1}
where c = 1 means click and c = 0, otherwise.

From the viewpoint of search, when a user u ∈ U issues a query q ∈ Q where q is a text query
and Q is the set of all queries, the system also provides a list of items i ∈ I with an existing search
model. Similarly, each query can be represented as an embedding vector tq ∈ Rdq , where dq is
the embedding dimension. Since search and recommendation shared the same set of usersU and
items I, the user u and item i in search are also represented as the same embeddings tu and ti
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Fig. 1. Recommendation and search services in one platform. Search scenario: users issue queries and click
returned items. Recommendation scenario: users browse returned items. There exist overlapping items and
users in both services.

which are identical to those in recommendation. The historical user-system interactions in search
can be denoted as Dsrc where each tuple (u,q, i, c ) ∈ Dsrc indicates that a user u is shown with
item i after issuing the query q, and the user activity is c ∈ {0, 1}.
Since the search and recommendation serve the same set of users with the same set of items,

there inevitably exist overlaps between Drec and Dsrc. As shown in Figure 1, there exist over-
lapping target items in search and recommendation scenarios. That is, many items occur in both
search and recommendation records. Besides, there also exist many overlapping users who have
both search history and browsing history. These two phenomena provide us a chance to enhance
recommendation using search data.

3.1.2 Method of IVs. In causal inference, IVs methods [1, 7] estimate the causal effect between
a treatment variable X and an outcome variable Y in the presence of other variables (e.g., con-
founders) that simultaneously affect the treatment and outcome. Theoretically, a variable Z is a
valid instrumental variable if the confounder (may be unobserved) unconfounds it and only affects
the outcome Y via the treatment X . Typical IVs methods such as 2SLS [18] adopt a two-stage least
square regression to identify causal effects of treatment X on outcome Y . First, regress the treat-
ment on the instrument and obtain a reconstructed treatment; then, regress the outcome on the
reconstructed treatment from the first stage. Intuitively, the reconstructed treatment is not affected
by confounders since it is transformed from a confounder-free instrument. Then an unbiased esti-
mate of cause-effect can be achieved from the coefficients of the second-stage regression.

3.2 Causal View of Recommendation

The goal of recommendation models is to capture the user interest and intention in the analysis
of the user-item interactions so as to recommend satisfactory items. Existing recommender sys-
tems are usually trained on the user-system historical activities Drec, assuming that the click c
in each of the training records (u, i, c ) ∈ Drec unbiasedly reflects the preference of u to i . From
the perspective of causal inference, conventional recommendation models consider the user-item
pair (u, i ) as the treatment variable and the user feedback, i.e., the click c , as the outcome vari-
able. Ideally, the cause-effect between them only consists of the preference of u to i . In the real
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world, however, many confounders may affect the user clicks recorded in Drec, including the ex-
posure mechanism, display position, sales promotion, and so on. Thus the associations between
treatments and outcomes are a mixture of causal and non-causal relations.
Following the framework in [23], a causal graph for conventional recommender systems can be

constructed in Figure 2(a), where the treatment variable (u, i ) is denoted as Tu,i and represented
by the corresponding embedding feature of user u and item i , the outcome variable c is denoted
as Yu,i , i.e., Yu,i = 1 if a click event happens, Yu,i = 0 otherwise. The causal association denotes
the user u’s true preference on item i leading to a user-item interaction. The non-causal associa-
tion denotes the confounding factors, e.g., item display position, leading to a user-item interaction.
The “non-causal” here means not related to the user preferences. Conventional recommender sys-
tems simply estimate the probability of potential user-item interactions by fitting models from
treatments Tu,i to outcomes Yu,i , resulting in learning mixed associations. Due to the presence of
(unknown) confounders B, there exist two paths from treatment Tu,i to outcome Yu,i , including
a path of non-causal association that is facilitated by the confounder (the red arrow curve from
Tu,i to Yu,i ), and a path of causal association that describes why an item is preferred by a user (the
blue arrow line from Tu,i to Yu,i ). For instance, the reason why a user u clicked an item i can be
that u was a little bit interested in i and i was displayed just right at the highest position in the
list. The higher position makes (u, i ) pair more likely to occur inDrec because users need to scroll
down to discover items at the lower position. Thus, position affects the occurrence of user-item
pairs, i.e., the treatments. Meanwhile, a higher position leads to a higher probability of click [2], i.e.,
c = 1. Thus position also affects the outcome. Non-causal and causal associations reflect different
relations between user-item pairs (i.e., treatments) and user feedback (i.e., outcomes).
It is difficult to identify the causal associations based on the biased observationsDrec given the

unknown number of unknown confounders. Fortunately, the user search activities inDsrc provide
us a chance to decompose the treatment Tu,i . As shown in Figure 2(b), we leverage the related

queries as IVs, denoted asZu,i , and regress Tu,i onZu,i to get T̂u,i which does not depend on the

confounders B. Thus the relation between T̂u,i and Yu,i can be seen as a causal association. We

also calculate the residuals T̃u,i of the regression. The relation between T̃u,i and Yu,i can be seen

as a non-causal association. Treatments are reconstructed by combining the fitted vectors T̂u,i
and the residuals T̃u,i . Therefore, user search activities are injected into recommendation under a
causal learning framework, where both causal and non-causal associations are disentangled and
leveraged for prediction in different manners.

4 OUR APPROACH: IV4REC+

In this section, we first present the general IV4Rec+ framework, elaborating on how to enhance
recommendation with search queries. We then demonstrate how to use search queries for items
and users with details. We propose two strategies to leverage search queries as IVs to explore the
potential of search activities for recommendation. Lastly, we present the model training procedure.

4.1 General Framework

To capture different impacts of causal and non-causal associations, we adopt user search queries
as IVs to decompose original representations of the user-item pair (u, i ), as shown in Figure 3.
Conventional recommender systems usually model users and items as latent vectors. The treat-

ment variable Tu,i in recommender systems can be defined as a set of embeddings of the target item
i and the user u. The recommendation models can make predictions based on these embeddings.
Let fpred denote the prediction module. The conventional recommender systems directly take Tu,i
as input for fpred to estimate clicks Yu,i , neglecting the striking differences between causal and
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Fig. 2. The black parts of these figures are causal graphs for conventional recommender systems and our
framework. The colored parts are our annotations. (a): conventional recommender systems. (b): recommender
systems intervened by IVs. Tu,i : embeddings of user and item. B: confounders (e.g., position bias). Yu,i : user

feedback. Zu,i : IVs (i.e., queries). T̂u,i : the fitted vectors. T̃u,i : the residuals. The causal association denotes
the user u’s true preference on item i leading to a user-item interaction, i.e., cause-effects flowing from Tu,i
to Yu,i . The non-causal association denotes the confounding factors, e.g., item display position, which lead to
a user-item interaction but are facilitated by confounders B and not user preferences. The treatment recon-

struction means IV4Rec+ decomposes treatments into two parts and uses them to reconstruct treatments.

Fig. 3. General framework of IV4Rec+: the treatment reconstruction via using queries as IVs. Treatments
denote embeddings of users and items in recommendation. By regressing treatments on IVs, we can get the
fitted part and the residual part representing the causal and non-causal associations, respectively. Then we
combine them with different weights to reconstruct treatments.

non-causal associations, as shown in Figure 2(a). To address this problem, the proposed frame-
work IV4Rec+ first retrieves search queries corresponding to each user and item to serve as IVs,
denoted as Zu,i . According to the attributes of IVs (i.e., IVs are unconfounded by the confounder
and only affect the outcome via treatment), we regress user and item embeddings Tu,i on query
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embeddingsZu,i to achieve the fitted part T̂u,i , which reflects the causal association in the recom-

mender system and doesn’t depend on the confounders. After getting the fitted vectors in T̂u,i , we
also get the residual part of the regression T̃u,i , which contains the non-causal association in the

recommender system and reflects the impacts of confounders. To better use both associations, T̃u,i
and T̂u,i are assigned different weights to control their impacts on the final prediction. Then the

reconstructed treatment T re
u,i is achieved by combining T̃u,i and T̂u,i . Finally, the click is predicted

based on reconstructed user and item representations. The whole procedure follows the causal
graph in Figure 2(b).
By considering there exist both overlapping items and users in search and recommendation, we

propose two strategies to utilize search queries as IVs. We denote the representations of (u, i ) in
existing sequential recommendation models as tu and ti , where tu and ti are embedding vectors
for user u and item i , respectively. Intuitively, we can directly take queries issued by the user u to
serve as his IVs and use queries clicked the item i to serve as its IVs. Besides, the user embedding tu
is often calculated by aggregating the user’s historically interacted items. Thus, it is also plausible
to collect queries clicked user’s interacted items to serve as the user’s IVs.

4.2 IV4Rec+(UI)

We first present IV4Rec+(UI), which takes the queries issued by the user u to serve as u’s IVs, and
uses the queries clicked the item i to serve as i’s IVs.

4.2.1 Construction of Treatments and IVs. The treatment variable Tu,i in recommender systems
represents the user u and item i , which can be expressed as a set of two vectors:

Tu,i = {tu , ti }, (1)

where the item embedding ti is usually obtained by some representation learning methods that
project features (e.g., content) into a dense vector. For sequential recommendation, the user em-
bedding tu is usually learned by aggregating the user historically interacted items [16], as well as
other information such as user profile [56] and search history [35]. The treatment construction of
IV4Rec+(UI) differs from IV4Rec of the conference article in terms of user embedding tu , where
IV4Rec+(UI) considers the aggregated vectors of user histories as treatments.
The IVs for treatment Tu,i , denotingZu,i , are defined as a set of two vectors:

Zu,i = {zu , zi }, (2)

where zi and zu are the IVs for ti and tu , respectively. They are constructed as follows.
As for IV zi for the item i , we first recall the corresponding query q, which clicked item i in
Dsrc, where q : (u ′,q, i, c = 1) ∈ Dsrc is the recalled query. And then, query embedding zi can
be generated by applying pre-trained language models (e.g., BERT [9]) to the most recently issued
query q.
As for IV zu for the user u, similar to the item i , we aggregate the search history into zu to serve

as IVs for user recommendation history embedding tu . Denoting Qu as the set of queries in the
user u’s search history, i.e., Qu = {q : (u,q, i ′, c ′) ∈ Dsrc}. These queries are also embedded by pre-
trained language models. For qj ∈ Qu , its embedding is denoted as zj . Then zu can be calculated
by first feeding these query embeddings in a multi-head self-attention network for learning their
contextual representations and then combining these interacted query representations with an
additive attention network. The procedure is denoted as fsearch. Specifically, the IV zu for the user
u is defined as

zu = fsearch (Qu ) =
|Qu |∑
k=1

βkek , (3)
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where ek is the representation of the kth query in Qu , which is a concatenation of the representa-
tion from a multi-head self-attention network with H heads:

ek =WOConcat(ek,1, ek,2, . . . , ek,H ),

where WO ∈ Rdq×Hdk is the projection matrix, and ek,h is the representation of the kth query
learned by hth attention head:

ek,h =WV
h
��
�
|Qu |∑
j=1

αhk, jzj
��
	,

where αh
k, j
=

exp((W
Q

h
zk )
ᵀWK

h
zj )∑M

m=1 exp((W
Q

h
zk )ᵀW

K
h
zm )

, W
Q

h
, WK

h
, and WV

h
∈ Rdk×dq are the projection parameters

in the hth self-attention head, αh
k, j

is the weight indicating importance of the interaction between

kth and jth queries, and zj is the query embedding of qj and qj ∈ Qu .
As for the attention weights β in Equation (3), the βk for the kth query is computed as

βk =
exp(β̂k )∑ |Qu |
j=1 exp(β̂j )

,

where β̂k = wᵀ tanh(V1qk +V2ek + b), V1 ∈ Rdk×dq′ , V2 ∈ Rdk×dq , and w, b ∈ Rdk are parameters

in the attentionmodule. The vector qk ∈ Rdq′ represents the query “Q” in the attentionmechanism.
For example, qk can be set as ek . In order to learn qualified IVs for user embedding and apply our
framework flexibly, we customize qk in several ways to adjust the aggregation of search history
to different user modeling modules, as will be discussed in Section 4.2.3. For IVs construction,
IV4Rec+(UI) differs from IV4Rec in terms of considering the aggregated vectors of search histories
as IVs.

4.2.2 Treatment Reconstruction. Based on the original treatment Tu,i and IVs Zu,i , we show
that a new treatment T re

u,i can be created by first regressing Tu,i on Zu,i and then combining the
fitted vectors and the residuals. Through IVs regression, we can decompose the original treatments

Tu,i into the fitted part T̂u,i and the residual part T̃u,i , reflecting the user preference and other
confounding factors, respectively. Considering that both the fitted and residual parts contribute to
the outcome prediction, we utilize both parts by combining them with different weights to tailor
their impacts.

Treatment decomposition. The goal of treatment decomposition is to disentangle the causal and
non-causal associations between treatments and outcomes. The IVs method is leveraged to isolate
the causal association flowing from the treatments to outputs.
In IV4Rec+(UI), IVs regression is conducted for users and items separately. Specifically, we esti-

mate the causal part by projecting the treatments onto the IVs:

T̂u,i =
{
t̂u = f uproj (zu ), t̂i = f iproj (zi )

}
, (4)

where t̂u ∈ Rdu and t̂i ∈ Rdi denote the fitted vectors. f uproj and f iproj are the treatment regression

networks, both implemented as two Multi-layer Perceptrons (MLPs) to map IVs to treatments.
The IVs methods usually apply a mean square error loss function to supervise the regression
from the instrument to the treatment. We also introduce this loss function and leave the details
in Section 4.4.
After getting the fitted vectors in T̂u,i , it is easy to get the residual parts of the regression T̃u,i :

T̃u,i = {t̃u = tu − t̂u , t̃i = ti − t̂i }, (5)
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which contains the non-causal association in recommendation.

Treatment combination. To better predict the outcomes, we leverage both the fitted vectors T̂u,i
and the residuals T̃u,i to capture their associations with outcomes. Due to their different roles in
user-item interaction, we combine them with adaptive weights, which determine the importance

of each part to aggregate T̂u,i and T̃u,i .
The fitted vectors T̂u,i and the residuals T̃u,i can be combined, achieving a reconstructed treat-

ment T re
u,i :

T re
u,i =

{
treu = t̂u + αu t̃u , t

re
i = t̂i + αi t̃i

}
, (6)

where αu ,αi ∈ [0, 1] are weights for the residuals of user u and item i . These two weights are,
respectively, estimated as

αu = f uweight (Concat(t̂u , tu )), αi = f iweight (Concat(t̂i , ti )),

where f u
weight

and f i
weight

denote the two estimators for users and items, respectively. They are also

implemented as two MLPs, with sigmoid functions applying to the output layer. The inputs of the
MLPs are concatenations of the treatments and the fitted values corresponding to (u, i ). In this
way, αu and αi are estimated as weights to scale down the impacts of the residuals based on the
interactions between the fitted vectors and the treatments.
Please note that in traditional causal inference, researchers focus on identifying the cause-effects

from observed data. Therefore, the residual part in IVs regression is often discarded to remove the
non-causal association. This aligns well with their goal of just estimating the causal association,
as shown in Figure 2(a). In the recommendation scenario of this article; however, our goal is to
make accurate predictions rather than just identifying cause-effects. Since the residual part can
still contribute to the user preference prediction via the red curve in Figure 2(a), the fitted part and
the residual part are complementary in the prediction task. Recent studies [53–55] also argued that
non-causal associations could enhance prediction accuracy. For instance, considering a specific
confounder (the popularity bias), user conformity, and item popularity can help recommendation
models make reasonable and accurate predictions. This motivates us that the residuals can be
leveraged to improve the recommendation performance.
Also, note that αi and αu scale down the impacts of the residuals. That’s because the causal

association plays a predominant role in the click event, and the non-causal association contains
trivial signals along with significant signals. Also, the confounding factors between each (u, i ) pair
and feedback c are multifarious. Thus, we use deep neural networks to learn adaptive weights to
reconstruct different treatment variables.

4.2.3 Model-agnostic Application. Many recommender systems [35, 38, 56] share a similar struc-
ture, as shown in Figure 4(b).We call them the underlyingmodels. An underlyingmodel represents
items as embedding vectors, utilizes user historical behaviors to learn user representations, and
predicts click probability of (u, i ) based on their learned representations. Our proposed IV4Rec+
is a model-agnostic framework that can be implemented over existing recommender systems that
follow this structure.
As shown in Figure 4(a), the proposed IV4Rec+(UI) can be applied to the underlying models by

adding additional modules without changing the original models. Specifically, after the embedding
layer, we get vectors of items and queries for the (u, i ) pair. As for the candidate item i , its treatment
and IV are ti and zi . As for the user u, we need further express her/his treatment tu and IV zu
through historical items and queries. Let Iu denote the set of items that interacted with the user u
in Drec:

Iu =
{
i ′ : ∃(u, i ′, c = 1) ∈ Drec} .
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Fig. 4. (a): The application of IV4Rec+(UI) over underlying models. (b): The structure of underlying models.
Treatment Reconstruction: this module is illustrated in Figure 3.

The underlying models often capture the users’ interests from the interaction sequences. The user
embedding in recommendation scenario is achieved through the user behavior module fuser:

tu = fuser (t1, t2, . . . , t |Iu |, pu ),

where t1, t2, . . . , t |Iu | are item vectors in the set of interacted items Iu , pu is the representation of
other context for useru and fuser is usually implemented as attention mechanisms [35, 56] or other
complex structures, e.g., the graph neural network and attention network [38].
As shown in Equation (3), IV4Rec+(UI) calculates the user embedding in search scenario zu

through fsearch. We leverage the multi-head self-attention mechanism to enhance query represen-
tations and learn informative user embedding by selecting important queries with the help of
additive attention. Please note that the “Q” in additive attention is customized in several ways to
adapt to different underlying models. The aim of fsearch is to capture user interest from query logs
which is compatible with the user embedding learned by fuser so as to construct qualified IVs. Due
to the fact that underlying models use various approaches to conducting the aggregation of inter-
action sequences, fsearch is adapted to use different vectors as “Q” in additive attention according to
different underlying models. Specifically, the model DIN [56] uses the candidate item to mine the
user interests from historical behaviors, the model SRGNN [38] uses the last-clicked item to con-
trol the weight of each item in the historical sequence for aggregation, and the model NRHUB [35]
uses the historical items themselves to learn the importance of each item. Our framework IV4Rec+
follows them accordingly to aggregate the search query sequence, that is, when IV4Rec+ is applied
over DIN, SRGNN, or NRHUB, “Q” of additive attention in fsearch is set as the candidate item, the
last-clicked item or the query sequence respectively.
After that, we can reconstruct the treatmentsTu,i as shown in Section 4.2.2 and the reconstructed

treatments T re
u,i are used to make predictions:

ŷu,i = fpred
(
t reu , t

re
i

)
, (7)
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where fpred is a prediction module, usually implemented as an MLP [56] or dot product [35, 39].

4.3 IV4Rec+(I)

In this section, we present IV4Rec+(I) which only utilizes queries corresponding to items as IVs.
IV4Rec+(I) follows the architecture of IV4Rec+(UI) with major differences in using queries as IVs
for users.

4.3.1 Construction of Treatments and IVs. The intuitive idea is that the user embedding tu is
achieved by aggregating embeddings of the user’s historically interacted items. Therefore, recon-
structing embeddings of all interacted items leads to reconstructed user embedding.
The treatment variable Tu,i in recommender systems can be defined as a set of embeddings,

including the embedding of the target item i and the embeddings of the items interacted with u:

Tu,i = {tj : j ∈ Iu ∪ {i}}, (8)

where tj ∈ Rdi is the representation of item j and Iu is the set of u’s interacted items.
The corresponding IVs Zu,i of treatment Tu,i are defined as a set of embeddings of search

queries:

Zu,i = {zj : j ∈ Iu ∪ {i}}, (9)

where each embedding zj is the vector of a search query related to the item j. Specifically, zj can
be constructed as follows. We retrieve a query q clicked item j from Dsrc1:

q : (u ′,q, j, c = 1) ∈ Dsrc,

Then we embed query q as vector zj using pre-trained language models. Hence, the Zu,i is
composed of query vectors highly relevant to items in Tu,i . The difference of IVs construction
between IV4Rec+(I) and IV4Rec lies in the number of queries per item. This article only recalls
one related query for each item.

4.3.2 Treatment Reconstruction.

Treatment decomposition. In this strategy, we regress each item on its corresponding query:

T̂u,i =
{
t̂j = fproj (zj ) : j ∈ Iu ∪ {i}

}
, (10)

where fproj is the treatment regression network and implemented as anMLP similar to Equation (4).
We also minimize the mean square error loss to supervise the learning of IVs regression fproj (zj )
and we detail the loss in Section 4.4.
Similar to Equation (5), we can calculate the residual part by

T̃u,i = {t̃j = tj − t̂j : j ∈ Iu ∪ {i}}, (11)

The intuition is that the original treatments are projected onto the subspace spanned by the
columns of the IVs. In the light of attributes of IVs (i.e., IVs are unconfounded by the confounder
and only affect the outcome Y via treatment X ), the fitted part which doesn’t depend on the con-
founders reflects the causal association, and the residual part which depends on the confounders
contains the non-causal association.

1To ensure each item has a corresponding query, we recall the most relevant query q for item j if there is no query clicked

item j in Dsrc. More details can be found in the experiment.
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Fig. 5. The application of IV4Rec+(I) over underlying models. Treatment Reconstruction: this module is illus-
trated in Figure 3.

Treatment combination. Similar to Equation (6), we combine the fitted vectors T̂u,i and the resid-
uals T̃u,i for each item in Tu,i :

T re
u,i =

{
trej = t̂j + α j t̃j : j ∈ Iu ∪ {i}

}
, (12)

where t̂j ∈ T̂u,i and t̃j ∈ T̃u,i are vectors in these two sets, both correspond to the same item j, and
the α j ∈ [0, 1] is estimated by an MLP:

α j = fweight (Concat(t̂j , tj )),

where fweight is an estimator implemented as an MLP and treats items in Iu and the item i
identically.

4.3.3 Model-agnostic Application. In IV4Rec+(I), the user embedding is reconstructed by recon-
structing all historically interacted items. Thus the IVs and treatments of the (u, i ) pair are embed-
ding vectors of queries and items, which can be obtained by the embedding layer. Then only the
reconstruction module is injected after the embedding layer in underlying models to reconstruct
all the item embeddings, illustrated in Figure 5.
Formally, representations of (u, i ) in existing recommender systems are denoted as tu and ti ,

where tu can be calculated by fuser. After reconstructing items in treatments, we can obtain the
reconstructed embedding for the candidate item and the user’s interacted items. Based on these
embeddings, we can get the reconstructed user embedding t reu :

treu = fuser
(
tre1 , t

re
2 , . . . , t

re
|Iu |, pu

)
, (13)

where tre1 , t
re
2 , . . . , t

re
|Iu | are reconstructed item vectors in the set of interacted items Iu , pu is the

representation of other context for user u and fuser is the original user modeling module in un-
derlying models. Finally, the interaction probability is predicted based on learned user and item
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representations:

ŷu,i = fpred
(
t reu , t

re
i

)
, (14)

where fpred is the prediction module.

4.4 Model Training

For IV4Rec+(UI), parameters in the proposed IV4Rec+ include parameters in fsearch, f
u
proj, f

i
proj,

f u
weight

, f i
weight

, and the parameters from the underlying recommendation model. For IV4Rec+(I),

parameters in the proposed IV4Rec+ include parameters in fproj, fweight, and the parameters from
the underlying recommendation model. All the trainable parameters are denoted as Θ and trained
based on Drec. The training procedure can be seen as a multi-task learning schema that applies
additional supervision of IVs regression over the search representation and projection modules.
Formally, the overall training loss is

L = LO + LIV + λ ‖Θ‖2 , (15)

where ‖Θ‖2 is the regularization for avoiding over-fitting and λ is its coefficient. LO and LIV are
the losses w.r.t. preference prediction task and causal learning (IV regression) task, respectively.
As for LO , the widely used binary cross entropy loss is adopted:

LO = −
1

|Drec |
∑

(u,i,c )∈Drec

c · log ŷu,i + (1 − c ) · log(1 − ŷu,i ), (16)

where ŷu,i is the predicted score for (u, i ). This loss LO is used to optimize all the trainable param-
eters to recover the historical interactions.
As forLIV, Sections 4.3.2 and 4.2.2 mentioned that we also apply additional supervision over T̂u,i

to ensure the fitted and the residual part represent the causal and non-causal parts, respectively.

That is, we minimize the mean square error loss between the estimated T̂u,i and the treatment Tu,i
to guide the learning of IVs regression:

LIV =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

|Drec |
∑

(u,i,c )∈Drec
γ1

���t̂u − tu���2 + γ2 ���t̂i − ti���2 IV4Rec+(UI),

1

|Drec |
∑

(u,i,c )∈Drec

∑
j ∈Iu∪{i }

γ0 | |t̂j − tj | |2 IV4Rec+(I),
(17)

where tu , ti ∈ Tu,i , and t̂u , t̂i ∈ T̂u,i are vectors in these two sets, and γ1,γ2 are hyper-parameters
to balance the objectives for IV4Rec+(UI). The γ0 is a hyper-parameter for IV4Rec+(I). They can
be seen as the tradeoff parameters between the causal learning task and the prediction task.
Note that the idea of IVs regression methods is to regress treatments on IVs. The Tu,i is the

“target variable” in this loss. Thus, the Tu,i is fixed during the IVs regression, which means we stop
the gradients from the loss LIV to the modules that generate treatments in underlying models. In

our implementation, for IV4Rec+(UI), LIV is used for updating t̂u , t̂i ∈ T̂u,i according to the IVs
regressionmethods. Therefore, it is minimized to optimize parameters in the search representation
and treatment regression networks, i.e., parameters in fsearch, f

u
proj, f

i
proj. For IV4Rec+(I), LIV is

minimized to optimize parameters in the treatment regression network, i.e., parameters in fproj.
Compared to the original IV4Rec, the multi-task training schema can better balance the

relationship between causal learning and recommendation tasks. Original IV4Rec solves the IV
regression without considering the final recommendation task. Since our goal is to improve the
recommendation performance, it is beneficial to learn the parameters of treatment regression net-
works under the supervision of the recommendation task. Moreover, with the introduction of deep
neural networks, we cannot use analytical solutions in the original version to learn the parameters
of neural networks. Thus it is necessary and effective to design a multi-task training schema.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 111. Publication date: April 2023.



111:16 Z. Si et al.

We analyze the model size of IV4Rec+ to demonstrate the newly introduced model complexity.
For IV4Rec+(I), the additional complexity is mainly caused by the treatment reconstruction in
Section 4.3.2, where two new modules, i.e., two MLPs, including the fproj and the fweight, are
introduced which contain about 100 k parameters. IV4Rec+(I) uses these modules to conduct
|Iu |+1 times treatment reconstruction, as stated in Equations (10)–(13). The additional complexity
is determined by the computation of the MLPs and vector addition, which is much less than
that of mechanisms used in sequential recommendation models, e.g., attention mechanisms. For
IV4Rec+(UI), the additional complexity is caused by the IVs construction in Section 4.2.1 and
treatment reconstruction in Section 4.2.2. IVs construction consists of a multi-head self-attention
network and an additive attention network containing 500 k parameters. Treatment reconstruc-
tion consists of two MLPs, the fproj and the fweight, containing about 100 k parameters. We can
observe that IVs construction has a comparable complexity to the backbone models because
they use the similar attention mechanisms, while treatment reconstruction yields much less
complexities of calculating the MLPs and vector addition for the users and the items. In addition,
IV4Rec+(UI) and IV4Rec+(I) both introduce queries as IVs, which need to allocate more space to
store the embedding layer of queries with size dq · |Q|.

5 DISCUSSION

This section discusses the feasibility of using search queries as IVs and its difference from tradi-
tional IVs methods.

5.1 Feasibility of Using Search Queries as IVs

According to the theory of IVs estimations, the IVs have to satisfy two assumptions: exogeneity
and relevance.
Service of recommendation. Also, users issue the queries actively which guarantees that queries

only contain user intentions and interests. Therefore, the context of these search queries cannot
be influenced by the ranking positions/exposure of the items in recommendation. That is, using
search queries as IVs meets the assumption of exogeneity.
As for relevance, it means that the IVs (search queries) are the causes of the treatment, but do

not directly affect the outcomes in recommender systems, i.e., the user click behavior. The search
and recommendation share a common goal: providing users with items to satisfy their information
needs. In search, the user information needs are explicitly summarized as queries. In recommenda-
tion, the information needs are implicitly summarized with the representations of users. When the
search engines and recommender systems are deployed in one app and serve the same group of
users with the same set of items, a large extent of search queries reflect part of the user information
needs in recommendation. The phenomenon indicates that search queries can be seen as a cause
of the treatment in recommendation. Considering that the IVs (search queries associated with an
item and search queries issued by some users) are specific requests made by users in search, it is
obvious that they do not directly affect the outcomes in recommendation. Furthermore, we provide
statistical analysis to verify that search queries meet the relevance assumption in Section 6.4.1.

With the above analysis, we conclude that the embeddings of the search queries well satisfy the
assumptions of exogeneity and relevance.

5.2 Difference with Traditional IVs Methods

In the field of causal inference, traditional IVs methods are powerful frameworks widely applied
in econometrics, statistics, and epidemiology. They aim at identifying the cause-effect between
treatments and outcomes, especially in the presence of unobserved confounders. Though inspired
by the IVs methods, the proposed IV4Rec+ in this article is devoted to utilizing the causal
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relationships between recommendation and search tasks to facilitate the recommendation model
performance. Thus, the goal of IV4Rec+ is not the same as that of the traditional IVs methods. To
achieve the goal, IV4Rec+ has made the following fundamental modifications for adapting the
traditional method of IVs to recommendation:

(1) Reconstruction of treatment with both causal and non-causal parts: In traditional IVs
methods, the residual of the IVs regression is discarded. In our approach, however, the resid-
ual is used as the embedding representation of the indirect non-causal association part. This
is because our goal is not just to learn the causal associations. In the light of that the non-
causal and causal associations both contribute to the final user feedback from different paths,
they are complementary in the prediction task. Our experimental results also verify that find-
ing a suitable reconstruction of these two parts from the original treatment is more helpful
in enhancing the recommendation accuracy. On the other hand, removing the non-causal

part leads to the reconstructed treatment T re
u,i containing only T̂u,i learned from search data,

missing the signals from recommendation. That is, removing the non-causal part prevents
the treatment module in recommendation from being updated with gradient descent. Thus,
the whole model is estimating interactions according to search activities. It is no surprise
that the recommendation performance will decrease drastically. The experimental results
reported in Section 6.4.4 also verify the analysis.

(2) IVs regression: The classical IV regression usually consists of a two-stage procedure with
two linear regressions. Inspired by recent studies [12, 28, 42, 47] which extend the two-stage
linear least square with deep neural networks, we also apply the MLP to conduct the IVs
regression. To achieve a favorable end-to-end training procedure, we develop a multi-task
learning schema and introduce hyper-parameters to balance the causal learning task and
prediction task. Due to the introduction of the neural networks and the multi-task learning
schema to IV regression, we cannot theoretically prove the unbiasedness of the proposed
frameworks. Traditional IV methods enjoy desirable theoretical properties, e.g., unbiased-
ness, since these methods simplify cause-effects by modeling all relationships as linear func-
tions. Though several recent studies [12, 28, 42, 47] prove the unbiasedness of the IVs re-
gression under specific deep learning schemas, the consistency of IVs regression with deep
networks is still an open problem.

These modifications make IV4Rec+ not only enjoy a number of merits from IVs, including the el-
egant approach to involving external search information for constructing IVs for recommendation
and the regression for decomposing the treatment but also suitable for the recommendation task.
In the recommendation task, biases are ubiquitous, e.g., selection bias and position bias, while

these biases are usually mixed and difficult to identify. In this article, in order to get rid of the
difficulty of explicitly modeling multiple biases, IV4Rec+ focuses on improving the recommenda-
tion performance by using search data as IVs. IV4Rec+ explores the causal relationship between
the search and recommendation tasks and enhances the recommendation model by reconstruct-
ing a unified treatment. Since IVs can be used to adjust for confounding effects, IV4Rec+ can be
considered as a causal learning framework for recommendation using search data.

6 EXPERIMENTS

In this section, we conducted experiments to verify the effectiveness of the proposed IV4Rec+.

6.1 Experimental Settings

6.1.1 Datasets. IV4Rec+ requires user behaviors on both search engines and recommender sys-
tems. In the experiments, we used three datasets: two were collected from logs of the Kuaishou
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Table 1. Statistics of Datasets

Dataset User Item Query Interaction

Kuaishou-small 12,000 3,053,966 162,624 4,001,613
Kuaishou-large 98,875 5,838,005 1,200,065 10,479,926
MIND 736,349 130,380 130,380 95,447,571

short-video app, and one was constructed on the basis of the publicly available MIND dataset [36].
Compared to the original article, we collected a new dataset, which contains substantially more
user search and recommendation behaviors, to better evaluate our proposed methods.
Kuaishou-small Dataset: The Kuaishou-small dataset was created based on the activities of

12,000 randomly selected users when they elected to use both the search and recommendation
services on an app named Kuaishou,2 one of the largest short-video platforms in China, over a
period of 7 days in May 2021. The historical behaviors in search and recommendation services
of each user were collected. For each item and query in the dataset, the item embedding (64 di-
mensions), and query embedding (64 dimensions) were generated using existing pre-trained and
ranking models from the platform.
We split the dataset into three subsets in chronological order, i.e., the first 5 days for training,

the 6th day for validation, and the last day for testing. The mini-batch size is set to be 50.
Kuaishou-large Dataset: For conducting more convincing experiments, we also created an-

other Kuaishou-large dataset which was collected from the same app in a period of 13 days in
January 2022. The dataset contains 98,875 users who used both search and recommendation ser-
vices during the period. This dataset is much larger than Kuaishou-small, for better evaluating the
robustness and effectiveness of the models. The embeddings of items and queries are generated in
similar ways as that of Kuaishou-small.
We split the dataset into three subsets in chronological order, i.e., the first 10 days for training,

the 11th day for validation, and the last two days for testing. The mini-batch size is set to be 512.
MIND Dataset: To the best of our knowledge, there is no publicly available dataset that con-

tains user activities in both search and recommendation. As a result, we enhanced the MIND3 [36]
dataset, a benchmark for news recommendation, by generating queries from the metadata. Specif-
ically, motivated by the observation in [25], we generate one search query for each news article
by concatenating the texts of its category, subcategory, and entities in the metadata. For a few
articles whose entities are missing, NLTK4 was used to extract entities from the titles. In this way,
query-item pairs are constructed. For user search history, we construct user search queries by
linking queries of each item interacted by users. To generate the query and item embeddings, we
followed [36] and used BERT [9] to generate the item embeddings (768 dimensions) where the
input is the concatenation of the title and abstract. Query embeddings (768 dimensions) are also
generated by BERT with query strings as input. In order to accelerate the training, we applied a
linear transformation after the embedding layer to reduce the data dimension from 768 to 64.5

We directly use the training and validation set provided by the MIND dataset.3 Since MIND does
not contain a test set with labels, the original training (and validation) set is used as the training
(and test) set in the experiments. The mini-batch size is set to be 512.

Table 1 shows the basic statistics of these three datasets.

2https://www.kuaishou.com/en.
3https://msnews.github.io/.
4https://www.nltk.org/.
5Note that the setting is different from that of the original WWW 2022 article.
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6.2 Baselines and Evaluation Metrics

The following sequential recommendation models are chosen as baselines in the experiments.
NRHUB [35]: NRHUB utilizes an attentive multi-view learning framework for news recom-

mendation to aggregate heterogeneous behaviors of users, such as search queries, clicked items,
and browsed items. In the experiments of the MIND dataset, it was adapted by removing the
module using clicked items since only search queries were created. In the experiments of all
datasets, the query encoder was removed since item embeddings were generated by pre-trained
models.
DIN [56]: DIN applies an attention mechanism to mine user interests from historical behaviors

w.r.t. a certain candidate item. The proposed local attention mechanism can capture diverse user
interests.
SRGNN [39]: SRGNN models session sequences of user behavior as graph-structured data, and

learns session embedding from session graphs by gated-GNN and applies an attention network to
learn the global and current preferences.
For the input data of these models, NRHUB utilizes both recommendation history and search

history. DIN, as well as SRGNN, only utilizes the recommendation history. Except for DIN on the
Kuaishou-small dataset, we adapted it by adding search history into the input data, following the
setting in the conference article.
We also compare IV4Rec+ to JSR [48] which jointly optimizes search and recommendation. JSR

is a general joint learning framework that trains a separate search model and recommendation
model by optimizing a joint loss. The search component of JSR was designed as a fully-connected
feed-forward network, following the original article. The recommendation component was set
as NRHUB, DIN, or SRGNN, leading to three versions of JSR: JSR-NRHUB, JSR-DIN, and
JSR-SRGNN.

Besides, we compare IV4Rec+ to IV4Rec, which is proposed in the original WWW 2022
article [27]. Different from IV4Rec+, IV4Rec utilizes least square regression for IVs regression
and constructs IVs for each item. We applied IV4Rec to the above-mentioned baselines, achieving
three versions of IV4Rec, referred to as IV4Rec-NRHUB, IV4Rec-DIN, and IV4Rec-SRGNN,

respectively.
Like IV4Rec, IV4Rec+ is also a model-agnostic and non-intrusive framework, which can

take existing sequential recommendation models as the underlying models. In the experiments,
IV4Rec+ is applied to the baselines mentioned above. Also note that IV4Rec+ has two varia-
tions according to the embeddings being decomposed, denoted as IV4Rec+(I) and IV4Rec+(UI),
respectively. Therefore, IV4Rec+ has six variations, referred to as IV4Rec+(UI)-NRHUB and
IV4Rec+(I)-NRHUB, IV4Rec+(UI)-DIN and IV4Rec+(I)-DIN, IV4Rec+(UI)-SRGNN and
IV4Rec+(I)-SRGNN, respectively.
For performance evaluation metrics, we choose AUC, MRR, NDCG@5, and NDCG@10, which

are widely adopted in many related works [35, 36]. Following the same way as the MIND6 did,
we calculated metrics on each impression list and reported the average results of all impressions,
where an impression list contains click events and non-click events. We use the recommended lists
for the Kuaishou-small and the Kuaishou-large datasets, which contain dozens of items for each
refresh in the short-video app, to serve as impression lists. For the MIND dataset, impression lists
are provided.

6.2.1 Implementation Details. The hyper-parameters of the neural networks mentioned
in the experiments were optimized using grid search. The learning rate was selected from

6https://msnews.github.io/.
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{1e-5, 5e-5, 1e-4, 5e-4, 1e-3} and the dropout keep probability was selected from {0.8, 0.9, 1.0}.
For the MLPs used in the proposed IV4Rec+, dropout was enabled, the activation function was
ReLU and the depth of hidden layers was selected from [1, 5] with step 1. The γ1,γ2, and γ0 were
searched from [0.1, 0.9] with step 0.2 and [0.01, 0.07] with step 0.03. The maximum length for
the user interaction sequence was 50 for all datasets. As for the underlying models, we set the
parameters as the optimal values reported in the original article. For making fair comparisons,
each underlying model was set in an identical configuration in different deployed frameworks.
For instance, JSR-NRHUB, IV4Rec-NRHUB, and IV4Rec+NRHUB use NRHUB as their underlying
models, and these NRHUB models share identical settings. Adam [17] was used to conduct the
optimization.
As described in Sections 4.2.1 and 4.3.1, we recall the queries that clicked an item to construct its

IVs. In real-world data, the query-click data is very sparse and many items have not been clicked
in search logs, as shown in Table 1. To address the data sparsity problem, we used cosine similarity
to recall relevant queries for items. Cosine similarity of item and query embeddings was used to
measure the strength of association where the embeddings were generated by a ranking model
of the platform. Query-item pairs with high cosine similarity were used as complementary to the
sparse query-click data.

6.3 Overall Performance Comparison

Table 2 presents the recommendation performance of all methods on the three datasets. From
Table 2, we observed that:

— In all experiments, the two variants of IV4Rec+ (IV4Rec+(UI) and IV4Rec+(I)) boost the un-
derlying models by a large margin. In most cases, these two variants significantly outper-
formed the strong baseline of IV4Rec (paired t-test at p−value < 0.01). The performance
gain reveals the effectiveness of the proposed two strategies in improving any sequential
recommendation models by using them as the underlying models. Also, the results verified
the effectiveness of leveraging queries from the viewpoint of users and the multi-task train-
ing schema.

— Comparing the two variants IV4Rec+(UI) and IV4Rec+(I)), we find that they have compara-
ble performances in most cases, and IV4Rec+(I) performed slightly better than IV4Rec+(UI).
We postulate that the queries contain relatively immediate information needs of users. The
user intentions and interests in queries evolve quickly. However, queries are highly relevant
to the content of clicked items. The associations between queries and items are more sta-
ble. The phenomenon explains why IV4Rec+(I) achieves slightly better performances than
IV4Rec+(UI).

— Compared to JSR, IV4Rec+ achieves much better performances on all of the three underly-
ing models. We analyzed the reasons and found that JSR simply combines the search and
recommendation models with a joint learning loss, neglecting the causal relations between
them. IV4Rec+ utilizes different approaches to inject search queries into recommendation
model and achieved the highest performance among all joint search and recommendation
frameworks. The results verified the effects of using search queries as IVs for reconstructing
the embeddings (as treatments) in recommendation.

— In terms of the implementations over NRHUB, our methods also lead to significant improve-
ments. In light of the fact that NRHUB leverages search logs as additional features for user
modeling, the improvements verify the conclusion that exploiting the causal relations be-
tween search and recommendation can further enhance underlying models, even though
the search activities have been used as user features.
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Table 2. Performance Comparisons between IV4Rec+ and the Baselines

Models
Kuaishou-large Kuaishou-small MIND

AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10

DIN 0.6163 0.4989 0.3345 0.3495 0.6512 0.1833 0.4416 0.4743 0.6862 0.3308 0.3652 0.4285
JSR-DIN 0.6175 0.4934 0.3326 0.3505 0.6524 0.1838 0.4417 0.4755 0.6892 0.3325 0.3664 0.4305
IV4Rec-DIN 0.6223 0.5005 0.3426 0.3579 0.6561 0.1844 0.4432 0.4779 0.6913 0.3378 0.3731 0.4354

IV4Rec+(UI)-DIN 0.6275* 0.5051* 0.3450 0.3610* 0.6603* 0.1862 0.4506* 0.4838* 0.6953* 0.3392* 0.3761* 0.4374*
IV4Rec+(I)-DIN 0.6269 0.5092* 0.3456 0.3619* 0.6599* 0.1863 0.4493* 0.4839* 0.6944* 0.3387* 0.3761* 0.4381*

NRHUB 0.5996 0.4754 0.3137 0.3309 0.6455 0.1816 0.4347 0.4692 0.6707 0.3202 0.3509 0.4105
JSR-NRHUB 0.6021 0.4783 0.3157 0.3321 0.6488 0.1812 0.4326 0.4687 0.6711 0.3190 0.3508 0.4152
IV4Rec-NRHUB 0.6047 0.4896 0.3235 0.3416 0.6574 0.1837 0.4411 0.4774 0.6842 0.3306 0.3655 0.4282

IV4Rec+(UI)-NRHUB 0.6137* 0.4854 0.3267* 0.3454* 0.6587 0.1866* 0.4474* 0.4825* 0.6888* 0.3321* 0.3665 0.4296*
IV4Rec+(I)-NRHUB 0.6095* 0.4879 0.3257 0.3443* 0.6593 0.1862* 0.4488* 0.4827* 0.6911* 0.3347* 0.3699* 0.4326*

SRGNN 0.6047 0.4857 0.3231 0.3340 0.6312 0.1770 0.4162 0.4523 0.6403 0.3038 0.3296 0.3947
JSR-SRGNN 0.6054 0.4915 0.3253 0.3419 0.6318 0.1769 0.4181 0.4521 0.6398 0.3022 0.3289 0.3937
IV4Rec-SRGNN 0.6092 0.4831 0.3204 0.3382 0.6462 0.1804 0.4311 0.4663 0.6677 0.3136 0.3420 0.4082

IV4Rec+(UI)-SRGNN 0.6173* 0.4974* 0.3351* 0.3512* 0.6492* 0.1825 0.4386* 0.4712* 0.6699 0.3184* 0.3508* 0.4147*
IV4Rec+(I)-SRGNN 0.6270* 0.5009* 0.3393* 0.3571* 0.6585* 0.1858* 0.4483* 0.4801* 0.6815* 0.3316* 0.3656* 0.4281*

The bold font represents the best performance. The last two lines for each block are the two variants of IV4Rec+ with

corresponding underlying model. For each underlying model, paired t-tests are conducted and “*” indicates the

improvements against the best baselines are statistically significant (p-value < 0.01).

6.4 Empirical Analysis

In this section, we conducted more detailed experiments on the industrial Kuaishou-large dataset,
for a better understanding of how and why IV4Rec+ improves the recommendation accuracy.

6.4.1 Feasibility of Using SearchQueries as IVs. We conducted experiments to verify that search
queries satisfy the relevance assumption of IVs, as mentioned in Section 5.1. As the search queries
are utilized as IVs for clicked items and search query history as IVs for user historically interacted
items, we examine the relevance from these two perspectives.
We use distance correlation (dCor) to measure the relevance between treatment variables and

IVs. dCor is ameasure of linear and non-linear association strength betweenmulti-dimensional vec-
tors, which ranges from 0 to 1, where dCor(X ,Y ) = 0 ifX andY are independent and dCor(X ,Y ) =
1 ifX andY are in equal linear sub-spaces.More details of dCor can be found in [29]. For queries and
items, we calculate dCor of item embedding and its corresponding query embedding. For search
query history and interacted item history, we first transform the query/item history sequences into
vectors via average pooling, which applies element-wise average on query/item vectors. Then dCor
of these vectors is calculated. For conducting better comparisons, we also calculate the dCor when
queries are randomly sampled to compose the query and item pair (or search query history and
interacted item history pair). From the results reported in Table 3,7 we find that the collected pairs
used in our methods are highly relevant, whose dCor is around 0.6. On the contrary, the sampled
pairs are irrelevant with dCor around 0.1. The results confirm that using queries as IVs meet the
relevance assumption.

6.4.2 Effects of Using SearchQueries as IVs. We also conducted experiments to investigate how
IV4Rec+ benefit from the IVs regression.

Impact of the IVs regression. First, we conducted experiments to show whether using search data
as IVs is beneficial to the recommendation task. In light of the fact that most existing work focuses
on leveraging search logs as external features for recommendation, we remove the IV regression
loss LIV, which is key to our causal learning methods, to investigate the impact of the IVs regres-
sion. For two variants of IV4Rec+, the versions without LIV are denoted as IV4Rec+(UI) w/o LIV

7Because dCor is computationally expensive, e.g., 100,000 samples require more than 5,120 GB of RAM in our case, we did

the experiments by randomly sampling 10,000 pairs and reported average results after repeating 10 times.
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Table 3. dCor w.r.t. Query and Item Pairs
(Denoted as Item), and dCor w.r.t. user Search

Queries and user Interacted Items Pairs
(Denoted as User)

dCor User Item

collected pairs 0.5644 0.6102
randomly sampled pairs 0.1339 0.0873

Collected pairs are highly relevant in terms of dCor

larger than 0.5, and randomly sampled pairs are

irrelevant. The results verified that queries as IVs

satisfy the relevance assumption. We refer the details

of dCor to [29].

Fig. 6. Impact of IV regression loss for IV4Rec+(UI) and IV4Rec+(I) applied to three underlying models w.r.t
AUC andMRR. “None” denotes the underlying models without using IV4Rec+ framework. The IV regression
does help to improve the recommendation accuracy.

and IV4Rec+(I) w/o LIV respectively. These two versions simply inject search queries into under-
lying models as additional features. Figure 6 illustrates the performances of IV4Rec+ and the varia-
tions without LIV, applied to DIN, NRHUB, and SRGNN. In most cases, we can find that AUC and
MRR drop a lot after removing the IV regression loss LIV, for both the underlying models of DIN,
NRHUB, and SRGNN. For instance, for DIN, AUC drops 0.06+ points for IV4Rec+(UI) or IV4Rec+(I).
The phenomenon verifies the necessity and effectiveness of the IVs regression in IV4Rec+.

IV4Rec+ has the ability to disentangle causal and non-causal parts of treatment vectors, i.e., de-

composing the treatment Tu,i into T̂u,i and T̃u,i . In causal graph Figure 2(b), the fitted part is inde-
pendent of confounders, and the residual part is relevant to confounders. We conduct experiments
to verify whether IV4Rec+ achieves disentanglement after treatment decomposition. Towards this
end, we visualize the decomposed two parts of item and user embeddings learned by IV4Rec+ us-
ing t-SNE [30]. Figure 7 shows learned item embeddings from IV4Rec+(I) and learned user/item
embeddings from IV4Rec+(UI), respectively. The fitted part is represented by dots and the residual
part is represented by crosses. We see that with the designed IVs regression, there is a clear separa-
tion between the two sets of embeddings. We also notice that there is a small overlap between two
sets of embeddings, indicating the difficult cases (users/items) to disentangle. The reason may be
that the relevance between these queries-items/users pairs is not significant enough to leverage
queries as valid IVs. Overall, we conclude that IV4Rec+ successfully captures the different parts of
treatment vectors, which can be utilized in different ways to enhance recommendation models.
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Fig. 7. Visualization of the learned causal and non-causal embeddings of IV4Rec+. Causal parts are repre-
sented by dots and non-causal parts are represented by crosses. Causal and non-causal parts are disentangled
clearly by IV4Rec+.

Robustness of IV4Rec+. To show the robustness of the proposed IV4Rec+, we conducted analysis
on its performance w.r.t. the number of search logs.
On the test set of Kuaishou-large dataset, we group users into three parts by their search ac-

tivities. Firstly, we calculate the ratio of the number of days in user history that contain search
activities to the number of days in the whole user history. Formally, the ratio is calculated as∑

j∈Dhis Ij
‖Dhis ‖ where Dhis is the set of days in user history and Ij is an indicator, i.e., Ij = 1 if day j

contains search activities, Ij = 0 otherwise. Then users with ratio in [0, 13 ) (3,272 low active users),

[ 13 ,
2
3 ) (2,135 medium active users), and [ 23 , 1] (1,271 high active users) are separated into three

groups and denoted as low, medium, and high, respectively.
We conducted experiments on the two aforementioned variants of IV4Rec+ and a new variant

which removes the IVs part for the candidate item in IV4Rec+(UI), i.e., only leverages search his-
tory as IVs for users, denoted as IV4Rec+(U). The IV4Rec+(U) can be seen as IV4Rec+(UI) without
using IVs part for the candidate item. The IV4Rec+(U) removes the candidate item part in Equa-
tions (2), (4), (5), and (6), e.g., zi in Equation (2). We created the IV4Rec+(U) to explore the effect of
the number of search logs on IV4Rec+(UI). We did not do the same things on IV4Rec+(I) because it
collects queries related to items to construct IVs so that the number of search logs have no direct
effect on it. We implement these three frameworks over DIN and SRGNN. NRHUB is omitted here
because its user modeling module also uses search logs, leading to distortion in analysis on the ro-
bustness of IV4Rec+. The models are evaluated on three subsets of the test set as well as the overall
test set. We show the performance in terms of AUC and adopt the RelaImpr [56] to measure the
relative improvements over models, which is defined as

RelaImpr =

(
AUC(measured model) − 0.5

AUC(base model) − 0.5 − 1
)
× 100%.

From Table 4, we can find that in most cases IV4Rec+(I) and IV4Rec+(UI) make consistent im-
provements over corresponding underlying models, on all of the user groups. The results indicate
that IV4Rec+ is robust in terms of improving the experience of all types of users. We analyzed
the reasons. For IV4Rec+(I), note that the collected queries (IVs) corresponding to items are not
affected by the user’s search activity level. For IV4Rec+(UI), though the queries (IVs) are sparse for
low active users, the queries for the items are still helpful to the overall performances. Therefore,
IV4Rec+(UI) is more robust than IV4Rec+(U). Moreover, the performance comparisons reveal
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Table 4. Performance Comparison of DIN and SRGNN with Different IV4Rec+ Variants in Terms of AUC

Model Framework
Kuaishou-large

low medium high overall

DIN

- 0.6140 - 0.6211 - 0.6142 - 0.6163 -
IV4Rec+(U) 0.6199 +5.17% 0.6287 +6.27% 0.6230 +7.70% 0.6233 +6.01%
IV4Rec+(I) 0.6251 +9.73% 0.6312 +8.34% 0.6245 +9.01% 0.6269 +9.11%
IV4Rec+(UI) 0.6266 +11.05% 0.6312 +8.34% 0.6222 +8.49% 0.6275 +9.63%

SRGNN

- 0.6051 - 0.6077 - 0.5959 - 0.6042 -
IV4Rec+(U) 0.6140 +8.46% 0.6141 +5.94% 0.6140 +18.87% 0.6146 +9.98%
IV4Rec+(I) 0.6280 +21.78% 0.6316 +22.19% 0.6164 +21.37% 0.6270 +21.88%
IV4Rec+(UI) 0.6179 +12.17% 0.6213 +12.62% 0.6089 +13.55% 0.6173 +12.57%

Relative improvements over DIN or SRGNN are in percentages. Low, medium, and high denote users with different

search activity in the test set separately. Overall denotes all users in the test set. RelaImpr is adopted to measure AUC

improvements over underlying models, i.e., DIN and SRGNN.

Table 5. The Performance of IV4Rec+ over SASREC and GRU4REC

Model
Kuaishou-large

AUC MRR nDCG@5 nDCG@10
SASREC 0.6134 0.4954 0.3297 0.3475
IV4Rec+(UI)-SASREC 0.6175 0.5005 0.3375 0.3528
IV4Rec+(I)-SASREC 0.6236 0.5051 0.3424 0.3588
GRU4REC 0.6092 0.4733 0.3163 0.3361
IV4Rec+(UI)-GRU4REC 0.6121 0.4867 0.3284 0.3445
IV4Rec+(I)-GRU4REC 0.6204 0.5020 0.3378 0.3539

that the IV4Rec+(U) is vulnerable to user search activity levels. We observed that IV4Rec+(U)
better boosts DIN and SRGNN with more search queries. Contrary to IV4Rec+(U), IV4Rec+(UI)
has obtained consistent improvements with different search activity level users, indicating that
the candidate item part helps the framework to get stable performance. Compared to IV4Rec+(I),
IV4Rec+(UI) is less robust due to the impacts of the user search activity levels. This also explains
why IV4Rec+(I) is slightly better than IV4Rec+(UI) in Table 2.

6.4.3 Generality of IV4Rec+. We conducted experiments to explore whether the IV4Rec+ can
be applied to typical sequential recommendation methods.
From the results in Table 2, we observed that the IV4Rec+(UI) and IV4Rec+(I) can enhance se-

quential models with different mechanisms, i.e., DINwith the target attentionmechanism, NRHUB
with the additive attention mechanism and SRGNN with the gated GNN and soft attention mech-
anisms. To further explore whether the frameworks can boost any typical sequential models, we
apply the IV4Rec+ over two representative models, SASREC [16] using the self-attention mecha-
nism and GRU4REC [13] using the gated recurrent unit. The Table 5 represents the results of the
experiments.
From the Table 5, we found that the IV4Rec+(I) can boost the given types of sequential models

consistently. IV4Rec+(UI) gets minor improvements than IV4Rec+(I) over SASREC and GRU4REC.
Through observations from Tables 2 and 5, we conclude that the IV4Rec+(I) can obtain consistent
improvements over most representative sequential models. And the IV4Rec+(UI) can perform well
over most sequential models, but with minor improvements on several models than IV4Rec+(I).
We attribute the minor improvements to IV4Rec+(UI)’s IVs construction for the user embedding.
IV4Rec+(UI) calculates the user search embedding through additional attention networks. Thus
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Fig. 8. Ablation study of IV4Rec+(UI) over three underlying models w.r.t AUC and MRR. “w/o” indicates
that the corresponding component is removed while the rest components are kept. Horizontal lines denote
performance of three underlying models, respectively.

the additional attention networks may be not expressive enough to aggregate user search interest
w.r.t some kinds of sequential models.

6.4.4 Ablation Study. IV4Rec+ consists of several key operations, including using both causal
and non-causal parts of the treatments, constructing IVs for users and items, the adaptive fusion of
the causal and non-causal parts, and so on. To figure out the effects of each operation, we conducted
several ablation experiments for IV4Rec+(UI) and IV4Rec+(I) over three underlying models. The
results are shown in Figures 8 and 9, respectively. The results of the underlying models are also
provided in the figures for better comparison. From the results, we observe that removing any
component results in a performance decline (compared to IV4Rec+(UI) and IV4Rec+(I)), implying
that each of the operations has contributed to improving the AUC and MRR. Also, the importance
of each component varies from different underlying models, which is attributed to different model
architectures. Next, we give a detailed discussion about each component:
Importance of utilizing both causal and non-causal parts. To capture different relations

between user-item pairs and feedback, IV4Rec+ utilizes both causal and non-causal parts. We alter-
nately remove these two parts to verify their effectiveness. In the experiments, we do not directly

remove the fitted part T̂u,i or the residuals T̃u,i from the models. The reason is that T re
u,i would only

consist of T̂u,i , and treatment modules of the underlying models can not be updated with gradi-

ents if T̃u,i were removed. Also, if treatments are only learned by non-causal signals without T̂u,i ,
the optimization algorithms are hard to converge. To address these issues, we used the “detach”

trick8 in the experiments. In order to remove the effects of T̃u,i , T re
u,i is calculated as T̂u,i + T̃u,i -

T̃u,i .datach() where “detach()” denotes the function that cuts off the gradients in PyTorch. Similar

operations are done to remove the effects of T̂u,i .

8We refer to [15] for more details on this trick.
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Fig. 9. Ablation study of IV4Rec+(I) over three underlying models w.r.t AUC and MRR.

The results are reported in the leftmost two bars (denoted as “w/o causal” and “w/o non-causal”)
in the sub-figures in Figures 8 and 9. After removing the causal or non-causal part, the perfor-
mances drop drastically. In most cases, they are significantly worse than the underlying models.
The phenomenon implies that the causal and non-causal parts do play important roles in the pref-
erence prediction. Especially, removing the causal part brings a more drastic decrease. The causal
part represents the user preference for the target item, which is the main reason for click behav-
iors. That is the reason why the causal part contributes so much to prediction accuracy. Also, we
observe that removing the causal part or the non-causal part causes difficult convergence of the
model. That is because discarding any of them would lead to new treatment vectors in different
vector spaces from the original model. That also explains why we use the linear combination to
re-construct the treatments.
Necessity of constructing IVs for both users and items. In IV4Rec+(UI) or IV4Rec+(I), we

collect search query history or corresponding queries as IVs for users’ interacted items. We also
collect the clicked queries as IVs for candidate items. To confirm the respective effects of the
IVs for users and items, we alternatively strip off the two parts. Note that without IVs for users,
IV4Rec+(UI) and IV4Rec+(I) degenerate to the same structure because the differences between
them are the IVs construction for users. From results reported in two middle bars (denoted as “w/o
user” and “w/o item”) of the sub-figures in Figures 8 and 9, we find that removing either IVs for
users or IVs for items leads to performance decline. The results indicate that using queries as IVs
from the viewpoint of either users or items is indispensable. Besides, the performance of models
without IVs for users decreases more than those without IVs for items. For instance, IV4Rec+(I)
over DIN loses 3.14% in MRR and 1.45% in AUC without IVs for users and loses 1.90% in MRR and
0.04% in AUC without IVs for items. We postulate that the user logs usually contain noisy interac-
tions affected by confounders. Thus our frameworks gain more benefits on the user part. The two
types of IVs contribute to the final preference prediction from different perspectives.
Adaptive combination of causal and non-causal parts. After decomposing treatments,

IV4Rec+ aggregates the two parts with an MLP by learning adaptive weights according to the
fitted part and the original treatment. To verify the effectiveness of the mechanism, we disable the
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Fig. 10. Impact of hyper-parameter γ1,γ2 for IV4Rec+(UI) or γ0 for IV4Rec+(I) in terms of AUC. To see an
overall trend, we set γ1 = γ2 in these experiments.

adaptive weights to confirm the effectiveness of this module. Specifically, simple concatenation
is used to combine the two parts together, which means these two parts contribute to the final
recommendation with fixed weights. Results are shown in the bars denoted as “w/o adaptive” in
the sub-figures of Figures 8 and 9. The results indicate that the proposed IV4Rec+ outperforms the
variation where the adaptive combination is removed. These results verify the advantages of using
adaptive weights to reconstruct the causal and non-causal parts of the treatments.

6.4.5 Effects of Hyper-parameters. IV4Rec+ depends on a multi-task learning schema contain-
ing the causal learning task and recommendation model learning task. Several hyper-parameters
are used to balance these objectives in the loss function, including γ0 in IV4Rec+(I) and γ1,γ2 in
IV4Rec+(UI). To investigate the effectiveness of these hyper-parameters, we conduct parameter
sensitivity analysis.
As formulated in Section 4.4,γ0 in IV4Rec+(I) andγ1,γ2 in IV4Rec+(UI) are introduced to balance

the impact of different objectives and re-scale the IV loss in joint learning. To investigate the im-
pacts of these hyper-parameters, we conduct experiments by applying IV4Rec+(UI) and IV4Rec+(I)
over three underlying models with varying γ0 or γ1,γ2. In particular, we vary these parameters in
the ranges of [0.01, 0.07] with step 0.03, and [0.1, 0.9] with step 0.2. As for comparisons, we also
test the model performances when fixing γ0 and γ1,γ2 to 1.0. For IV4Rec+(UI), we set γ1 = γ2 in
the experiments.
According to the results shown in Figure 10, we found that the performances of IV4Rec+(UI) and

IV4Rec+(I) do not vary dramatically with different γ values, indicating that the models are robust
and not very sensitive to the setting of the hyper-parameters. In most cases, the performance
curves drop when γ ’s are close to 0 and 1.0, indicating the necessity of balancing these losses.
We further study the impacts of γ1 and γ2 in IV4Rec+(UI). Specifically, we set γ1 and γ2 in
{0.1, 0.3, 0.5} and visualize the results in the heat map Figure 11. The colors and numbers in the
blocks indicate the AUC scores. From the results, we found that varying γ2 when fixing γ1 has a
weaker impact on performance than that of varying γ1 when fixing γ2. We analyzed the reasons
and found that the IVs for users contribute more than the IVs for items, as shown in Section 6.4.4.

7 CONCLUSIONS AND FUTURE WORK

In this article, we proposed a model agnostic IV-based causal learning framework to improve rec-
ommendation using search data, called IV4Rec+. The proposed framework first decomposes the
recommendation embeddings into the causal association part and the non-causal association part

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 111. Publication date: April 2023.
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Fig. 11. Visualization of performance of different γ1 and γ2 for IV4Rec+(UI) w.r.t AUC.

with IV regression, and then combines two parts as a reconstructed representation for the next
step interaction prediction. An end-to-end multi-task learning schema is developed to learn the
model parameters. In particular, two strategies are proposed to inject the related search queries into
the training of recommendation models in a causal learning manner: IV4Rec+(UI) and IV4Rec+(I).
These strategies utilize different means of collecting queries to serve as IVs for user history. Both
strategies are model agnostic. They can be easily applied over many existing recommendation
models, which makes IV4Rec+ more flexible. Experiments on two industrial datasets and a public
benchmark demonstrate the effectiveness of IV4Rec+ in recommendation.
As for future work, this work points to new research possibilities. Specifically, leveraging IVs

to boost recommendation models is not limited to search data. Commercial streaming media plat-
forms usually deploy advertisement content and media content in the same app. Moreover, online
platforms usually provide comments section. Thus users’ comment logs and advertisement logs
have the potential to serve as IVs. We will explore how to incorporate various user behaviors into
our framework.
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