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ABSTRACT

This paper concerns user preference estimation in multi-round con-
versational recommender systems (CRS), which interacts with users
by asking questions about attributes and recommending items mul-
tiple times in one conversation. Multi-round CRS such as EAR [14]
have been proposed in which the user’s online feedback at both
attribute level and item level can be utilized to estimate user pref-
erence and make recommendations. Though preliminary success
has been shown, existing user preference models in CRS usually
use the online feedback information as independent features or
training instances, overlooking the relation between attribute-level
and item-level feedback signals. The relation can be used to more
precisely identify the reasons (e.g., some certain attributes) that
trigger the rejection of an item, leading to more fine-grained utiliza-
tion of the feedback information. To address aforementioned issue,
this paper proposes a novel preference estimation model tailored
for multi-round CRS, called Feedback-guided Preference Adapta-
tion Network (FPAN). In FPAN, two gating modules are designed
to respectively adapt the original user embedding and item-level
feedback, both according to the online attribute-level feedback. The
gating modules utilize the fine-grained attribute-level feedback to
revise the user embedding and coarse-grained item-level feedback,
achieving more accurate user preference estimation by considering
the relation between feedback. Experimental results on two bench-
marks showed that FPAN outperformed the state-of-the-art user
preference models in CRS, and the multi-round CRS can also be
enhanced by using FPAN as its recommender component.
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1 INTRODUCTION

Conversational recommender systems (CRS), which elicit user’s cur-
rent preference through a multi-turn dialogue with the user, have
attracted increasing research efforts in recent years. CRS resolve the
difficulties of reliably estimating the user’s current intent through
collecting user online feedback instead of solely based on the past
user-item interactions [10]. A variety of conversational recommen-
dation task formulations have been proposed [5, 6, 14, 16, 23, 37, 38].
Among these studies, the multi-round CRS [14, 15, 17] have the
ability to collect rich online feedback and achieve promising results.
A multi-round CRS usually consists of two components: the
conversational component (CC) that interacts with the user, and
the recommender component (RC) that estimates the user’s pref-
erence [14, 23]. At each turn, CRS can ask whether the user likes
a given attribute or recommend a list of items. Compared to other
CRS settings (e.g., single-round CRS [23]), the conversation in multi-
round CRS continues when the user rejects the recommended item
list. Therefore, it can collect rich online feedback at both attribute
level and item level. The attribute-level signals reflect the user’s
positive or negative preference to specific attributes, derived from
the user’s binary feedback to the action ask; the item-level signals
reflect the user’s negative preference to those recommended items,
derived from the user’s rejection! to the action recommend.
Utilizing these online feedback information in multi-round CRS,
however, is not trivial. The EAR framework [14] adopts factoriza-
tion machine (FM) [21] as the recommender component where
the attribute-level feedback is encoded as the input features and
the item-level feedback is treated as the training instances for on-
line update. Though promising results have been observed, the FM
model is originally developed under the static recommendation
setting and overlooks the relation between fine-grained attribute-
level feedback and coarse-grained item-level feedback collected in
multi-round CRS. Item-level feedback is hard to utilize since the
reason for rejection can be varied [2], indicating that though RC
usually makes recommendations based on preferred attributes [10],

Please note that only the negative item-level signals are considered because an

acceptance to recommend usually ends the conversation with success.
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the user may still reject the items. For example, given negative
item-level feedback “reject a red iPhone”, the reason for rejection
could be the attribute “red color”, or the attribute “Apple brand ”, or
both. Directly using the feedback as training instances will lower
the affinity score of all attributes associated with the item. However,
if the user has expressed “like red color”(i.e., positive attribute-level
feedback) in the current conversation, the system could infer that
“Apple brand ” may be the unpreferred attribute. Hence, utilizing
the relation between the item-level and attribute-level feedback
can achieve more precise estimation of user preference and help to
improve the performance of multi-round CRS.

In this paper, we propose a novel user preference estimation
model tailored for multi-round CRS, referred to as Feedback-guided
Preference Adaptation Network (FPAN). FPAN first represents the
users, items, and attributes as the nodes in a heterogeneous graph
and then applies Graph Neural Network to learn the node embed-
dings. To capture the relation between the item-level and attribute-
level feedback, FPAN designs a gating module to revise the em-
beddings of the rejected items based on the confirmed positive
attributes, deriving item representations with the user’s current
unpreferred features. Similarly, another gating module is designed
to revise the user embedding based on the confirmed negative at-
tributes, deriving user representation with his current preferred fea-
tures. These adapted user/item representations and the embeddings
of attributes mentioned in conversation are further aggregated to
estimate the user’s preference on attributes and items.

To evaluate the effectiveness of FPAN, we conducted experiments
on two benchmark datasets: Yelp and LastFM. The experimental
results showed that FPAN significantly outperforms the state-of-
the-art recommendation model adopted in the current CRS. We
analyzed the results and found that FPAN improved the results
through 1) adapting user preference to the online feedback and
2) leveraging the relation between feedback during the adapta-
tion. Experimental results also showed that the multi-round CRS
framework EAR using FPAN as its RC outperformed the baselines,
including original EAR with FM, indicating that FPAN has the
ability to enhance the user experience of the whole CRS.

2 RELATED WORK

Conversational recommendation has been studied under different
settings. Christakopoulou et al. [6] present a recommender system
that can query user preference on items. Yu et al. [33] and Zhang
et al. [34] extend the item-level feedback in natural language form.
Christakopoulou et al. [5] propose a single-round CRS that allows
users to select preferred topics. Zhang et al. [37] propose to rec-
ommend one item or query one attribute at each turn with bandit
learning. Zhang et al. [38] and Zou et al. [40] ask user’s feedback
towards attributes and predict items by matching attribute query
and item description without consideration of item-level feedback.
Bi et al. [2], Luo et al. [18] clarify user’s intent by breaking down
negative item-level feedback into attribute-level. Chen et al. [3], Li
etal. [16] and Zhou et al. [39] focus on natural language generation,
and estimate user’s preference based on entities mentioned in the
dialogue. Chen et al. [4] design an incremental multitask learning
framework for explainable conversational recommendation. Zhang
and Balog [35] propose a simulation framework that enables large
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Figure 1: Workflow of multi-round CRS.

scale automatic evaluation of CRS. For a comprehensive overview
of CRS, we refer interested readers to [13].

This paper focuses on user preference estimation under the multi-
round conversational recommendation setting. Closely related to
our work, CRM [23] considers multi-turn dialogue where the system
queries attribute-level preference multiple times in one conversa-
tion and makes the recommendation at the final turn. EAR [14]
extends the framework into multi-round conversational recommen-
dation setting where the system is allowed to recommend multiple
times. Li et al. [17] propose contextual Thompson Sampling to
explore cold-start problem in multi-round conversational recom-
mendation. Lei et al. [15] model conversational recommendation as
an interactive path reasoning problem on a graph, but overlooking
the adaptation of the model to the user’s item-level feedback. In
these studies, factorization machine(FM) [21] is adopted to learn
user preference from the attribute-level (and item-level) feedback.
Unlike previous work, we propose a novel model to capture the
relation between user’s feedback information.

In this paper, we apply Graph Neural Networks (GNN)[8, 12, 25]
to embed the users, items, and attributes in multi-round conversa-
tional recommendation. GNN has achieved great success and are
widely used in recommender systems [29]. For example, Wang et al.
[30] leverages high-order connectivity to learn more informative
user and item representation. Fan et al. [7], Wu et al. [31] consider
social influence on user preference in social recommendation sce-
nario. Qiu et al. [20], Wu et al. [32] construct session graph based
on user’s historical behavior to model current user preference in
session-based recommendation. Wang et al. [26, 28] consider exter-
nal item information and use GNN to encode knowledge graph.

3 BACKGROUND: MUTI-ROUND CRS

As shown in Figure 1, a multi-round CRS session starts with a pre-
ferred attribute specified by user(step (D). At each turn, the system
chooses an action from {ask, recommend}(step 2)): ask means the
system asks the user whether he likes a given attribute, and the
user replies with binary feedback (step 3); recommend means the
system recommends an item list to the user, and the user examines
whether his target item is contained in the list (step ). The ses-
sion ends when the user accepts the recommendation or the whole
process takes too long(step ®). CRS mainly consist of the recom-
mender component (RC) responsible for preference estimation and
the conversational component (CC) responsible for user interaction.
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At each turn, RC first estimates the user’s preference on items and
attributes considering the user’s online feedback, to support the
action decision of CC. Then, CC chooses to ask a selected attribute
or make recommendation based on current conversation state(e.g.
conversation history [23], attribute prediction from RC [14, 15]).

Formally, U, I and A denote the set of users, items and at-
tributes, respectively. Each item i € I is associated with a set of
attributes A; C A. The historical interactions between users and
items are stored in the system log, including each user u € U and
his interacted items 7, C T.

Suppose that a user u € U starts a conversation session and
his target item is i* € 7. CRS collect the user’s online feedback in
current session, which consists of three sets: positive attribute set
A} C Aj+ containing the attributes that the user has given positive
feedback to; negative attribute set A, € A \ A;+ containing
the attributes that the user has given negative feedback to; and
the negative item set 7, C I \ {i*} containing the items that
the user has rejected in previous rounds. At each turn, the RC
takes u’s online feedback (i.e., ﬂfj, A, and I[) as input. The
output is the estimation of user’s preference which indicates how
likely u will prefer the given item i and attribute a, denoted as
y(ilu, Ak, A7, 1) and y(alu, A, A, 1) respectively.

The estimated item preference y(ilu, A}, Ay, I,7) can be di-
rectly used to generate the item list when CC chooses the action
recommend. The attribute preference y(alu, A;, A, I,7) can help
CC choose action. For example, in EAR [14], estimated attribute
preference is encoded as part of the conversation state vector of
CC. This paper focuses on RC that estimates the user’s attribute
preference and item preference based on his online feedback.

4 OUR APPROACH: FPAN

4.1 Model Overview

Figure 2 illustrates the architecture of the proposed Feedback-
guided Preference Adaptation Network(FPAN) in which the user’s
preference is continuously adapted according to the online feedback
information. FPAN consists of an offline representation learning
module in which the initial embeddings of all the users, items, and
attributes in the CRS are generated, and an online user preference
adaptation module in which two gating components are used to
revise item-level feedback and long-term preference, respectively.
Then user’s rich feedback information is aggregated to generate
an adapted user preference representation. Finally, user preference
on items and attributes are respectively estimated by modeling the
affinity between the adapted user preference representation with
the item embedding and attribute embedding.

4.2 Offline Representation Learning

FPAN learns the initial representations of users, items, and at-
tributes based on the historical user activities collected in the log
data and the relations between items and attributes. Specifically, an
undirected heterogeneous tripartite graph can be constructed, con-
sisting of three sets of nodes: users, items, and attributes, and two
types of edges: user-item interactions and item-attribute relations.
Formally, let G = (V, &) denote the constructed tripartite graph,
where the set of nodes is denoted as V = U U T U A, and the set
of edges & consists of two types of edges: the user-item edge (u, i)
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means the user u interacted with item i (i.e., u accepted the recom-
mended item i at least once in the log), and the item-attribute edge
(i, a) means that the item i contains the attribute a (i.e., a € A;).
Note that there is no edge between users and attributes, but the
affinity between them can be estimated by message passing through
the shared item neighbors.

GraphSAGE [8] is adopted to learn the node representations:
first, each user, item or attribute is assigned with an unique node
index, which is converted into d-dimensional vector representation
by a node embedding matrix H® € R4V and each node’s repre-
sentation is denoted as hg, Vo € V. Then, for each neighborhood
depth k until L, GraphSAGE generates a neighborhood embedding
with the aggregator function for each node and combines it with
the existing embedding of the node:

1

R = 5 W’;-h’;+w’;-m- > oHk
€N (o)
where h]; denotes the k-th layer representation of node v, N(v)
denotes the set of v’s neighbors, o means the activate function
LeakyReLU, W]f € R and W’ZC € R4 are trainable parameters.

To avoid the over-smoothed embedding at the last layer and
capture different semantics at different layers [9], the final repre-
sentation of the nodes, denoted as ey, are obtained by aggregating

the representations generated at different layers:

L
1 j

= — >
L+1j:0

€y (1)
forallv € V. Since V = U U T U A, in the rest of the paper we
will use ey, e; and e, to denote the embeddings of the user u € U,
item i € 7, and attribute a € A, respectively.

4.3 Online User Preference Adaptation

As for online interaction, suppose that a user u starts a conversa-
tion session. The user’s feedback information in current session
includes the set of positive attributes A, set of negative attributes
A, and set of rejected (negative) items 7,; . Their corresponding
embeddings are denoted as ey, {es+|at € AL}, {eq-|a” € A},
and {e;-|i” € I }. To make accurate preference estimation, the
embeddings of the rejected items {e;-|i~ € 7,; } and the user e,
are respectively adapted to the positive attributes A and negative
attributes A, both based on the gating mechanism.

4.3.1 Adapting item embedding to positive attribute feedback. As
discussed in Section 1, the user usually rejects a recommended item
due to only part of the attributes associated with the item. Directly
utilizing the negative items in 7, (e.g., as the training instances)
may influence all the associated attributes, which inevitably hurts
the performance of recommendation because the rejected item
also shares some attributes with the target item. Fortunately, it
has been observed that the relation between item-level feedback
I and attribute-level feedback A, can be utilized to alleviate the
aforementioned problem. In the previous “red iPhone” example, the
attribute “Apple brand” may trigger the rejection if the user had
explicitly expressed his preference on “red color” in previous turns.

Inspired by the observations, we propose to use the gating mech-
anism [19, 27] to model the relation between the item-level feedback
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Figure 2: Workflow of FPAN. GNN and gating are used in offline representation and online user preference adaption, respectively.

and attribute-level feedback, deriving an adapted representation
of the rejected item. Specifically, given the user u and the positive
attribute feedback A7 provided in the conversation history, the
embeddings of these attributes are first aggregated into one vector:

1
e’ = AGGREGATE ({eq+|a* € A%}) = GH Z e, (2)
u

+ +
ateAy,

where e}'z{ represents positive signals at attribute level, and the
operator AGGREGATE refers to an aggregation function. In this
paper, the average aggregation ‘MEAN’ is chosen.

Then, for each rejected item i~ € 7,;, a gating module is applied
to adapt its initial embedding e;- to the positive attribute feedback

signals, achieving adapted item embedding e’;- :
¢'i-=eir O g, 3)

where ‘©’ denotes the element-wise product and the gating vector
g;- is defined as:

gi-=0 (W3 - Concat (e}(, ei-, e}l 0] ei—) +b3)

where ‘Concat’ concatenates all of the input vectors, o is the non-
linear sigmoid function applied to each dimension, W3 € RAx3d
is the weight matrix, and b3 € R is the bias vector. Intuitively,
the gating module controls the information propagated from the
rejected items embeddings according to positive attribute signals.

Finally, the adapted item embeddings are further aggregated into
a vector e to represent negative signals at item level. Still, the

average aggregation is used:
- 1 ,
e = — E e'-.
I 1, '
2l i—el;

4)

4.3.2  Adapting user embedding to negative attribute feedback. In
multi-round CRS, the user’s feedback in the current conversation
session only reflects the user’s current intent (i.e., short-term prefer-
ence). The user’s general interest(i.e., long-term preference), on the
other hand, is usually derived from the history log data (i.e., the em-
bedding e, learned from the log). Balancing the user’s short-term
and long-term preference is important for CRS [10, 23].
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In multi-round CRS, the user’s negative feedback on the at-
tributes can be utilized to balance the user’s long- and short-term
preference. For example, from the user’s historical activity, the sys-
tem derives “red iPhone” as his general interest. However, if the
user has stated that he dislikes the attribute “Apple brand ” in the
current conversation, the general interest should be adjusted to
“red phone”. Based on the observation, we also propose to adapt the
general interest of u (represented as e;,) to the negative attribute-
level feedback A, (represented as {eq-|a~ € A, }), still based on
the gating mechanism.

Similarly, given a user u and the negative attribute feedback A,
provided in the previous conversation turns, the embeddings of
these attributes are aggregated with the ‘MEAN’ function:

_ 1
e = — €q.
" T, &

a €Ay

(©)

Then, a gating module is applied to adapt the initial user embedding
e, to the negative attribute feedback signals, achieving the adapted
user embedding e’y

(6)

’
ey=e,0g9,

where the gating vector g,, is defined as
g,=0 (W4 - Concat (e}[,eu, €70 eu) + b4),

where Wy € R9%3d apd by € RY refers to the weight matrix and
bias vector, respectively.

4.4 Item and Attribute Prediction

We derive the user’s preference representation by aggregating dif-
ferent kinds of feedback signals:

all

e =e'u—e}+e}q—e}(,

(7)
where e}[ and e’ are defined in Equation 2 and Equation 5 respec-
tively. Please note that the signs before e - and e’ are minus signs,
representing the negative feedback information. Besides the de-
rived representations with the gating mechanism, we also directly
involved the attribute-level feedback e’ and e}(, emphasizing the

A
precise attribute preference explicitly expressed by the user.
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Given an arbitrary item i € 7, the affinity score between the
user u and item i can be estimated as the dot product between item
embedding e; and the aggregated user preference representation
eall:

y(ilu, A AL L) = (ei e, ®)

Similarly, given an arbitrary attribute a € A, the affinity score
between the user u and attribute a can be estimated as the dot
product between the attribute embedding e, and e/

y(alu, AL, AL, L) = (eq, ). ()

4.5 Model Training

The set of trainable parameters of FPAN, denoted as ©, includes
the initial embeddings of users, items, and attributes hg, Yo € V,
the GraphSAGE parameters for representation W, W]2< , the gating
parameters W3, b3, W4, and b4. These parameters are trained with
the conversation history data 2 D = {Sk}g: |» which consists of N
sessions which record the past user-system interactions. The k-th

session Sy = {uy, iz, ﬂ;k, Ay Iu_k} contains the user of the k-th

+
Uk

the set of negative attributes A, , and the set of rejected items 7, .
Following the practices in EAR [14], we adopt pairwise Bayesian
Personalized Ranking objective [22]. To learn user preference on
both items and attributes, the training objective consists of two loss
functions: the loss w.r.t. item prediction Ljserm and the loss w.r.t.
attribute prediction Lg;+.

session ug, the target item ilt, the set of positive attributes A

4.5.1 Lossw.rt. Item Prediction. Givenasession S = {u, i*, A}, A,
I} € D, the targetitem it is considered as a ground-truth positive
sample. Like traditional BPR, the negative samples are generated
from user’s non-interacted items, and the loss function is defined
as:

‘Eiteml = Z—lnﬁ(y(i+|u, ﬂ;: ﬂ;!]-u_) _y(i_|u: ﬂ;: ﬂ;’]—u_))’
(u,i*,i")eDy

where D1 == {(u,i*,i7)|i” € I \ Z,} denotes the set of item pairs
for training and o is sigmoid function. The preferred item i* is the
target item and the unpreferred item i~ is sampled from the set of
non-interacted items of user u, which is denoted as 7 \ 7, where
I, is the set of items historically interacted by user u.

Besides directly sampling the non-interacted items as the unpre-
ferred items, we can also derive more informative unpreferred items
for training considering the user feedback to attributes[14]. That
is, the non-interacted items satisfying the user’s current attribute
requirements need to be discriminated from ground-truth item i*:

Litems = ) = o(y(i*lu, AL, Ay, 1) = y(i™ lu, AL, Ay, 1),
(w,it,i") €D,

where Dy = {(w,i*,i7)|i” € Iogng \ (Ju U Z;)} contains non-
interacted items in candidate item set 7., 4 excluding the items
with explicit negative feedback, and 7,4 is candidate item set con-
taining items that satisfy user’s attribute requirements in current
conversation session. It has been observed that the model trained
with this kind of negative samples achieves better performance of
item prediction[14].

ZPlease refer to Section 5.1.1 for details of conversation history generation.
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The final loss function of item prediction is:
Litem = Litem1 + Litems

4.5.2  Loss w.r.t. Attribute Prediction. For attribute prediction, the
model needs to rank the attributes of the target item a € Aj;+
higher than others. Therefore, given a conversation session S =
{u,i*, A}, A, 1,7}, the loss function w.r.t. attribute prediction is
defined as:

Lare = Y, ~Ino(y(a*|u AL Ay, ) = y(a |u, AL, Ay, 1),

(w,a*t,a")eDs

where D3 = {(u,at,a7)|at € Ay \ Af,a” € A\ (A UA,)}
denotes the set of attribute pairs for training. All the attributes
related to the target item it excluding known positive attributes
are considered as preferred attributes. As for unpreferred attributes,
they are sampled from the attributes unrelated to target item i*
excluding known negative attributes.

4.5.3  Multi-task training. To optimize the loss function of both
item prediction and attribute prediction, we follow the practice
in [14] and optimize the parameters © by performing multi-task
training and the training objective is:

L= Litem+ Latt + IO,

where ||©]|? is the regularizer term to avoid overfitting, and A > 0
is the regularization parameter. Specifically, the model is iteratively
optimized with Ljzem and Lgs. To accelerate the training process,
dynamic negative sampling(DNS) [36] is applied to pick the nega-
tive samples that ranked highest adaptively. DNS has been known
as one of the most effective samplers for BPR loss.

4.6 Discussion

FPAN is a simple yet powerful method for user preference esti-
mation tailored for multi-round CRS. It offers several advantages
compared with the existing methods such as FM.

First, FPAN utilizes gating mechanism to model the relation be-
tween item-level and attribute-level feedback and balance the user’s
general interest with his current intent. Therefore, the static em-
beddings of the rejected items and users are dynamically adapted
to the user’s current attribute-level feedback: (1) Existing methods
directly treat the rejected items as the training instances, failing to
consider that the rejection is triggered by only part of the associ-
ated attributes. The gating module of FPAN, however, utilizes the
positive attribute-level feedback to discriminate the unpreferred
attributes from the preferred ones and therefore derives more pre-
cise representations of negative items; (2) Similarly, the negative
attribute-level feedback is used to discriminate the attributes that
associated with historically interacted items but not preferred in the
current conversation, still based on the gating mechanism. In this
way, FPAN generates adapted user embedding that well balances
the long-term and short-term preference.

Second, FPAN conducts effective learning under an end-to-end
framework where the parameters of offline representation and
online preference adaptation can be learned simultaneously. We
extend the training framework in [14] and derive the training in-
stances considering the user’s negative feedback on attributes (i.e.,
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Table 1: Statistics of Yelp and LastFM.

Dataset ‘ #User #Item #Attributes #Interactions
Yelp 27,675 70,311 590 1,368,606
LastFM | 1,801 7,432 33 76,693

Aj,) and rejected items (i.e., Z,;"), which enriches the training data
and makes the training process closer to the online scenario.

Third, though FPAN focuses on item prediction and attribute
prediction as the recommender component of CRS, the experiments
also demonstrated that accurately estimating user preference can
benefit the conversational component, and therefore improve the
performance of the whole multi-round CRS.

5 EXPERIMENTS

We conducted extensive experiments to answer the following two
research questions:

RQ1: How does the proposed FPAN perform in terms of esti-
mating user preference on items and attributes as compared with
state-of-the-art recommendation models adopted in current CRS?

RQ2: How does the multi-round CRS with FPAN perform as
compared with state-of-the-art CRS?

We answered these two questions in Section 5.1 and Section 5.2,
respectively. All of the experiments were conducted based on the
Yelp and LastFM datasets 3. Following the practices in [14], the users
interacted with less than 10 items are removed from the datasets.
Each of the datasets is split into training data (70%), validation data
(20%) and test data (10%). Table 1 reports the statistics of the two
datasets. The data, source code, and experimental results can be

found at https://github.com/xxkkrr/FPAN.

5.1 Evaluating FPAN model (RQ1)

5.1.1 Experimental settings. Conversation history data genera-
tion: In this experiment, we trained and evaluated the recommen-
dation models in multi-round CRS based on the data generated by
the conversation simulation methods [14, 23, 38], to mitigate the
lack of real conversation history data. Specifically, a user simula-
tor and a rule-based agent were built and further used to simulate
the user-system interaction process. The user simulator generated
responses to CRS based on the target item i* and its related at-
tributes A;+. It randomly chose an attribute a € A;+ to start the
conversation. In the following turns, it provided binary feedback to
ask action by checking whether the target item contains the asked
attribute and accepted recommendation only when the target item
is included in the recommended item list. The rule-based agent
was built to generate actions of CRS. At each turn, the agent chose
, |I§2d|) or chose the
attribute with maximum entropy to ask, where ‘len’ is the length
of recommended item list. The intuition behind is that the proba-
bility of recommend action should increase when the length of the
candidate item list shrinks.
Given a user-item pair (u, i), a conversation session was simu-
lated based on the interactions between user simulator and rule-
based agent. The attributes with positive and negative feedback are

recommend action with probability min (l

3https://www.yelp.com/dataset/ and https://grouplens.org/datasets/hetrec-2011/
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recorded as A} and A, respectively. To simulate negative item
feedback, we randomly sampled 7,; from candidate item list, i.e.
I, € I.ana \ {i}. We conducted offline training and evaluation
based on the conversation history data collected above.

Training details: In FPAN, the embedding size d is set to 64.
Adam optimizer [11] was adopted to perform the multi-task training.
The learning rate was set to 0.001 and 0.0003 for item prediction task
and attribute prediction task, respectively. The regulation parameter
is A = le — 5 and we augment our model with 0.1 dropout. The
number of layers in GraphSAGE is L = 2.

Baselines: FPAN was compared with the following state-of-
the-arts baselines: (1)EAR-FM [14]: It’s Factorization machine (FM)
model [21] used in EAR, a state-of-the-art multi-round CRS frame-
work, to predict item and attribute. To incorporate negative item
feedback, EAR-FM treats rejected items as negative samples and
retrains their model. (2)ConUCB [37]:It’s a generalization of Lin-
UCB [1], which incorporates conversational mechanism into con-
textual bandit. In this experiment, the reward of the user’s positive
feedback (i.e., A) was set to 1 and that of negative feedback (i.e.,
A, 1) was set to 0.

We also evaluated two FPAN variations to show the effective-
ness of different FPAN components: (1)FPAN w/o graph: To test
the effects of the user-item-attribute graph, we evaluated the per-
formance of FPAN in which the embeddings of users, items, and
attributes are learnt without graph structure(by directly looking
up embedding in H?, i.e. e, = h%,0 € V). (2)FPAN w/o gating: To
test the effects of the gating mechanism, we evaluated the FPAN
model in which the gating modules were removed, and the feedback
signals and long-term preference were directly summed together.

5.1.2  Performance Comparison. Table 2 reports the performance
of the attribute prediction and item prediction w.r.t. AUC score
for all of the methods on Yelp and LastFM. These methods were
tested under two settings: (1) given only attribute feedback A and
A, denoted as “A;; + A;” in the table; and (2) given attribute
feedback together with negative items A}, A;; and 7,;, denoted
as “A} + Ay, + I, ” in the table.

From the reported results, we can see that FPAN achieved better
performance of preference estimation on both attributes and items,
and outperformed all baseline methods on both datasets under two
settings. We conducted t-tests on the improvements over the best
baseline EAR-FM and all of the improvements are significant (p-
value < 0.05). The results indicated FPAN’s effectiveness of adapting
user preference to the online feedback, capturing the user’s dynamic
preference in a fine-grained way. Note that ConUCB is a bandit
based algorithm that focuses on sequentially recommending items;
therefore, it got relatively lower AUC scores for attribute prediction.

The results also showed that FPAN outperformed “FPAN w/o
graph” and “FPAN w/o gating” in which the graph structure and
gating modules are respectively removed. The results indicated that
the importance of these two components in FPAN. Please noted
that “FPAN w/o graph” and “FPAN w/o gating” outperformed EAR-
FM and ConUCB, indicating the effectiveness of graph structure
(for user/attribute/item embeddings) and gating mechanism (for
adapting to online feedback) in user preference estimation.

5.1.3 Empirical Analysis. By comparing AUC scores in columns
under A} + A, (only attribute feedback) and in columns under


https://github.com/xxkkrr/FPAN
https://www.yelp.com/dataset/
https://grouplens.org/datasets/hetrec-2011/
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Table 2: Performance comparison in terms of AUC. ‘«’ indicates the improvement over EAR-FM is significant.

Dataset Yelp LastFM
Setting AL+ A Ar+ AL+ T AL+ A A+ AL+ T
Preference on attributes [ items attributes [ items | attributes [ items | attributes [ items
ConUCB 0.2701 0.6603 0.2326 0.6601 0.4808 0.3657 0.5762 0.4912
EAR-FM 0.8911 0.7382 0.8972 0.7389 0.7184 0.3729 0.7185 0.3760
FPAN w/o graph 0.9252* 0.7411* 0.9289* 0.7434* 0.7538* 0.5131* 0.7575* 0.5166*
FPAN w/o gating 0.9567* 0.7737* 0.9681* 0.7712* 0.7781* 0.5412* 0.7512* 0.5634*
| FPAN (our approach) [ 0.9694* | 0.7794" [ 0.9754" [ 0.7802" [ 0.7848" [ 0.6159" [ 0.7852" | 0.6258"
=2 woe! mmm woe; ==m woe! mEE woe; tem Score(Top 5)

Attribute AUC

0.94

AF+ AL

A5+ AL A+ A7 +I7

(a) AUC of attribute prediction on Yelp (b) AUC of item prediction on Yelp

Figure 3: Ablation study on Yelp.

AY + A, + I; (attribute and negative item feedback), we found
that introducing the negative item feedback 7,;” can improve the
prediction accuracy not only for item prediction but also for at-
tribute prediction. For example, on Yelp, the AUC of FPAN’s item
prediction was increased from 0.7794 to 0.7802 after introducing 7,
to the model. At the same time, the AUC of FPAN’s attribute pre-
diction also improved from 0.9694 to 0.9754. The phenomenon can
be observed for most methods on both datasets, clearly indicating
the importance of utilizing 7,; in multi-round CRS.

We further conducted an ablation study to show the contribu-
tions of different types of online feedback based on Yelp dataset,
by removing the corresponding terms in Equation (7) (e.g., “w/o
e/,” means e! is calculated by setting e/, = 0 in Equation (7).
Figure 3(a) and 3(b) respectively show the AUC scores on attribute
prediction and item prediction. We can see that removing any type
of feedback information results in performance drop. The results
also indicated that all types of online feedback are important for
multi-round CRS. Among them, the positive attribute-level feed-
back is particularly important for item prediction since it directly
reflects the characteristics of the target item.

We also conducted experiments to analyze how the gating mod-
ules in FPAN improved the preference estimation, using two sim-
ulated user-system interaction on the LastFM dataset, as shown
in Figure 4. In the first example, given a user’s online positive
feedback on “attribute_id_28” and rejection on “item_id_43” (con-
tains “attribute_id_1" and “attribute_id_28”), the corresponding
item embedding e;,, was adapted into elf43 by the gating module
(Eq. 3). Comparing the top-ranked similar items by e;,, and elf%
respectively, we can see that the items containing positive attribute
“attribute_id_28” (shaded blocks) were ranked lower. The example
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Figure 4: Two simulated conversations on LastFM showing
how the gating modules work. (upper: Eq. (3), lower: Eq. (6))

showed that the gating module could identify the possible reason
(attribute_id_1) that triggered the user rejection. In the second ex-
ample, given a user’s online negative feedback on “attribute_id_3",
the corresponding user embedding e;, was adapted into e;, by
the gating module (Eq. 6). Comparing the top-ranked similar items
by ey, and e;, respectively, we can see that the items containing
the negative attribute “attribute_id_3” (shaded blocks) were ranked
lower. The example showed how the gating module balanced the
user’s long-term and short-term preference.

5.2 Evaluating multi-round CRS with FPAN (RQ2)

We tested the performance of the EAR framework in which FPAN
was adopted as its RC, denoted as “EAR (FPAN)”.

5.2.1 Experimental settings. Multi-round CRS setup: To conduct
the experiments, the RC of EAR [14] was replaced by FPAN and
CC was kept unchanged: the user-system interaction process was
modeled as a multi-round decision making problem and solved with
reinforcement learning. The conversation state s was defined as:

S = Sent © Spre O Spis O Sien

where @ denotes concatenation, se,; encodes entropy information
of each attributes, spre encodes attribute preference from RC, sp;
encodes conversation history, and sj,,, is the one-hot encoding of
candidate item list length. The actions space includes (1) ask one
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Table 3: Performance comparison of different multi-round
CRS on Yelp and LastFM. ‘«’ indicates the improvement over
“EAR (FM)” is significant (t-tests and p-value < 0.05).

Dataset Yelp LastFM
Metrics SR@15 | AT |SR@15| AT
Abs Greedy 0.271 | 12.26 | 0.209 13.63
Max Entropy 0.919 5.77 0.290 13.61
CRM 0.923 5.33 0.325 13.43
EAR (FM) 0971 | 471 | 0429 | 12.45

Our method: EAR (FPAN) | 0.988" [ 4.18" | 0.667" [ 10.14" |

attribute from the set A, and (2) recommend an item list. A two-
layer perceptron was used as the policy network to map the state
into a probability distribution over action space.

Training details: The policy network was first trained based
on the rule-based agent’s action strategy as initialization[14, 23].
Then, it was further optimized with Policy Gradient [24] through
interactions with the user simulator. The learning rate of SGD is
set to 0.001 during online training, the length of the recommended
item list len is set to 10, and the maximum conversation turn is
set as 15. For a fair comparison, the hidden layer size in the policy
network and the reward setting were identical to original EAR [14].

Baselines: EAR (FPAN) was compared with the following base-
lines: (1) Abs Greedy [6]: It only recommends items in each turn and
updates the model by incorporating item-level feedback. (2) Max
Entropy: It is a rule-based system based on the max entropy criteria
introduced in Section 5.1.1. (3) CRM [23]: It is a CRS originally
designed under single-round setting, which estimates preference
and chooses action based on conversation state encoded by a belief
tracker. (4) EAR (FM) [14]: It is the state-of-the-art multi-round
CRS that consists of three stages to converse with users, namely
Estimation, Action and Reflection. FM is adopted as its RC.

All the systems were evaluated with the user simulator in both
binary question setting and enumerated question setting. In binary
question setting, CRS ask the user to give feedback to a certain
attribute; in enumerated question setting, CRS provide a list of
attributes and the user can reply with multiple preferred attributes.
Following the practices in [14], Yelp with a manually built two-
level taxonomy on the attributes was used for enumerated question
setting. LastFM was used for the binary question setting. Please
note that evaluation with the simulated environment is a prac-
tical and realistic approach at current stage. Though it fails to
generate real human user’s response and may cause problems like
false rejection [15], similar settings are adopted in many previ-
ous works [14, 15, 23]. The design of human-centric evaluation is
beyond the scope of this paper.

As for the evaluation metrics, we used the success rate before 15
conversation turns (SR@15) and average conversation length when
the interaction process ends (average turns, AT). Note smaller AT
indicates better performance.

5.2.2  Performance Comparison. Table 3 reports the performance
of different CRS. From the results, we can see that our approach
significantly outperformed all the baselines on both datasets in
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Figure 5: Ratio of CC to select action “recommend” and suc-
cess rate of reccommendation at different conversation turns.

terms of SR@15 and AT. The results demonstrated that FPAN could
improve the performance of CRS by using it as the RC. We noted
that all methods achieved better performance on Yelp than LastFM,
because in enumerated question setting multiple attributes are
specified in one turn, which sharply shrink the candidate items [14].

We further conducted experiments to find how FPAN improved
the performance of CRS. Specifically, for EAR(FPAN) and EAR(FM),
we calculated the ratio of selecting action “recommend” and the
success rate of item recommendation at each turn. Figure 5(a) illus-
trates the results of EAR (FPAN) and EAR (FM) on LastFM. We can
observe that (1) at almost every turn, EAR (FPAN) has higher suc-
cess rate of item recommendation, indicating that FPAN can rank
the target item higher than FM; (2) at almost every turn, EAR(FPAN)
has higher ratio of selecting “recommend”. In other words, EAR
(FPAN) usually made recommendations earlier than EAR (FM), in-
dicating that FPAN improved the confidence of CC when making
recommendations, and therefore shortened the conversation length.
Similar results were also observed in the experimental results on
the Yelp dataset (Figure 5(b)).

6 CONCLUSION

In this paper, we present a novel model for adapting user preference
to his online feedback in multi-round conversational recommenda-
tion. The proposed model, called FPAN, makes use of GNN to learn
the offline representations and two gating modules to aggregate the
online feedback information considering relation between feedback
signals. An end-to-end approach was designed to train the model
parameters. Experiments on two benchmarks demonstrated that
FPAN outperformed the state-of-the-art baselines in terms of user
preference estimation. Experimental results also showed that FPAN
could improve the conversation component of CRS and enhance
the user experience of the CRS.
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