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Abstract

A decision maker looks to take an active action (e.g., purchase some goods or make an investment).
The payoff of this active action depends on his own private type as well as a random and unknown state
of nature. To decide between this active action and another passive action, which always leads to a safe
constant utility, the decision maker may purchase information from an information seller. The seller
can access the realized state of nature, and this information is useful for the decision maker (i.e., the
information buyer) to better estimate his payoff from the active action.

We study the seller’s problem of designing a revenue-optimal pricing scheme to sell her information
to the buyer. Suppose the buyer’s private type and the state of nature are drawn from two independent
distributions, we fully characterize the optimal pricing mechanism for the seller in closed form. Specifi-
cally, under a natural linearity assumption of the buyer payoff function, we show that an optimal pricing
mechanism is the threshold mechanism which charges each buyer type some upfront payment and then
reveals whether the realized state is above some threshold or below it. The payment and the threshold
are generally different for different buyer types, and are carefully tailored to accommodate the differ-
ent amount of risks each buyer type can take. The proof of our results relies on novel techniques and
concepts, such as upper/lower virtual values and their mixtures, which may be of independent interest.
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1 Introduction
In numerous situations, a decision maker wishes to take an active move but is uncertain about its outcome and
payoff. Such active moves range from financial decisions of investing a stock or startup to daily life decisions
of purchasing a house or used car, from macro-level enterprise decisions of developing a new product to
micro-level decisions of approving a loan applicant or displaying online ads to a particular Internet user. In
these situations, the decision maker’s payoff for the active move relies on uncertain information regarding,
e.g., potential of the invested company, quality of the house, popularity of the new product, credit of the
loan applicant, etc. Certainly, the decision maker typically also has a passive backup option of not making
the move, in which case he obtains a safe utility without any risk. To decide between the active and passive
action, the decision maker can turn to an information seller who can access more accurate information about
the uncertainties and thus help to better estimate the payoff for his action. Given the usefulness of the seller’s
information to the decision maker, the seller can make a profit from how much her information helped to
improve utilities of the decision maker, i.e., the information buyer.

This paper studies how a monopoly information seller (she) described above can design an optimal
pricing mechanism to sell her information to an information buyer (he) randomly drawn from some popu-
lation. The buyer, a decision maker, needs to take one of two actions. The active action results in a payoff
v(q, t) where t captures the buyer’s private type and the state of nature q summarizes the payoff-relevant
uncertainty unknown to the buyer. The q and t are independent random variables and are both supported on
continuous sets. The passive backup action for the buyer always results in the same utility, normalized to 0,
regardless of q, t. While the buyer and seller both know the distribution of q, the seller is more informed and
can additionally observe the realized the state. With the information of q, the seller would like to design an
optimal pricing scheme to sell her information to the buyer, whose type is drawn from a known distribution.

The described problem setup above is a very fundamental monopoly pricing problem. However, dif-
ferent from the classic pricing problem for goods, here we are looking for an optimal pricing scheme for
information. Despite bearing a similar structure, these two pricing problems turns out to differ significantly.
For example, when selling goods, physical or digital, the seller’s allocation rule can simply be described by
a probability of giving out the goods. However, it is unclear here how the seller should “pass” her informa-
tion to the buyer. Second, and more importantly, in selling goods, any individually rational buyer should
participate in the mechanism as long as their expected utility is at least 0. However, in our setup, without
participating in the mechanism, the buyer may already have positive utility from his active decisions. An in-
dividually rational buyer would participate in the mechanism only when his utility will become even higher.
This key difference turns out to render standard mechanism design techniques inapplicable here (more de-
tails will be discussed later). This is also evidenced by our characterization of the optimal mechanism for
the pricing of information, which is significantly different and more intricate than the optimal pricing of
goods.

Main Result: Optimal Mechanism for Pricing Information. We characterize the optimal mechanism for
the above information pricing problem, within the general class of mechanisms that can be described as a
generic interactive protocol introduced by Babaioff et al. [2].1 Specifically, assuming buyer’s value function
is linear and monotone non-decreasing in t, i.e., v(q, t) = v1(q)[t+ ρ(q)] for some v1(q) ≥ 0, we show that
the optimal mechanism always admits a simple format — any buyer is incentivized to report his true type
t (i.e., the mechanism is incentive compatible); the seller then charges the buyer pt and, afterwards, reveals
whether the realized state q satisfies ρ(q) ≥ θt or not for some carefully chosen threshold θt. We thus
call such a mechanism threshold mechanism. The thresholds and payments are different for different buyer
types, and are carefully designed to accommodate the amount of risks each buyer type can take. We will

1This class of mechanisms is quite general and includes all possible ways that the buyer may sequentially reveal information
and ask for charges.
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fully characterize the threshold and payment in the optimal mechanism. They turn out to have a somewhat
intricate format and relies on novel concepts of upper and lower virtual values as well as their mixtures.
As a byproduct, we also exhibit several interesting properties of the optimal mechanism. For example,
the optimal mechanism will charge any two buyer types the same amount if the information revealed to
them is the same. So the optimal mechanism will not discriminate buyer types. Moreover, we also provide
clean characterizations about the monotonicity properties about the buyer’s payment, utility, and surplus as
a function of buyer type. It turns out that they may increase or decrease, depending on the setup.

We make two remarks. First, we note that threshold mechanisms are actually ubiquitous in reality. In
many application domains, we will need to pay for doing some inspections or tests for some entity, and then
receive an outcome about whether it passed the inspection or not. These are precisely threshold mechanisms.
Viewed this way, our results characterize the optimal threshold and payment for a buyer drawn from a
random population. Second, since both q, t are in continuous space in our setup, therefore typical variable
optimization based approaches (e.g., linear programming as used in many previous works [2, 7, 10]) would
not apply to our setting. Our analysis is based on optimizing functional variables. The fortunate aspect,
though, is that such functional optimization allows us to derive more structural optimal mechanisms, in a
similar spirit to Myerson’s seminal work in optimal auction design [17].

Related Works. The study of markets for information has attracted extensive recent research interests. For
a comprehensive overview of the progress in this field, we refer interested readers to a very recent survey
by Bergemann and Bonatti [3]. This paper adopts the mechanism design approach and looks to design the
optimal mechanism (within some design space) that maximizes the seller’s revenue. Next we discuss the
recent works that are most relevant to us. Note that, the welfare maximization problem in selling information
is relatively straightforward since the seller can simply reveal full information. Therefore, optimality in all
our discussions always mean the optimality of revenue.

A starting point of our paper is the work by Babaioff et al. [2] who study information selling from
a mechanism design perspective. They also consider monopoly pricing setup with one information seller
and a buyer who relies on the seller’s information to improve his decision making. They consider mecha-
nisms within a very general design space captured by generic interactive protocols [2] (see our descriptions
in Section 2). These mechanisms include all possible ways the seller can sequentially reveal information
via signaling schemes and ask for charges alone the way. Within this space, Babaioff et al. establish a
revelation-principle-type result and show that the seller can always use a somewhat direct mechanism to
maximize revenue which uses a single signaling scheme and asks for charges before or after sending the sig-
nal, depending on the setup. Built upon this characterization, they also develop linear program formulations
to compute the optimal mechanism in polynomial time. Our work utilizes the revelation principle of [2] but
goes significantly beyond to further develop closed-form optimal mechanisms for selling information.

Recent works by Chen et al. [10] and Cai and Velegkas [7] also adopted algorithmic approaches to
compute the optimal mechanisms in polynomial time for a budgeted buyer or in the setup with multiple
buyers. Different from all these algorithmic approaches [2, 10, 7], our results are analytical. The optimal
mechanisms we developed can be explicitly described and thus reveals more structural insights about the op-
timal mechanism. This choice of using analytical approaches is also somewhat necessary in our setup since
agents have continuous utility functions and typical variable optimization approaches are not applicable to
our setting. Bergemann et al. [4] also exhibit structural properties about the optimal mechanism within a
special menu-based class of mechanisms. In their setting, each buyer type may have different beliefs about
the state of nature whereas, like [2, 10], we assume all buyers share the same prior beliefs in our model. In
their more challenging model, Bergemann et al. show that an analytical solution can be characterized when
there are two buyer types or only two buyer actions and two states, whereas in general only partial properties
about the optimal mechanism can be derived.

Our work is also relevant to the recent rich body of works on information design, a.k.a., Bayesian per-
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suasion [15]. We refer curious readers to a few recent surveys by Bergemann and Morris [6], by Kamenica
[14] and a survey from the algorithmic perspective by Dughmi [12]. Most relevant to ours is the persua-
sion problem with a privately informed receiver [16]. However, different from the sender in the persuasion
problem who has a specific utility function, the seller in our model does not have any utility function except
the transfer she received from the buyer. The optimal mechanism we obtain is also not comparable to the
optimal signaling scheme characterized by Kolotilin et al. [16]. Notably, the case of binary receiver actions
(or binary buyer actions) is an important special case of information design and has attracted significant
attention in previous works [8, 9, 13, 1, 16]. Candogan [9] shows that threshold signaling scheme could be
optimal when, e.g., the receiver utility is linear in payoff parameters as well the action he takes. Finally,
Daskalakis et al. [11] study the joint design of signaling schemes and auction mechanisms. Though it is a
very different setup from ours, the signaling scheme in their model can be viewed as a way to extract more
revenue from bidders.

2 Model and Problem Formulation
2.1 Problem Setup
Motivated by various applications of quality testing, we consider the following optimal pricing problem of
information between an information Seller (she) and an information Buyer (he). The buyer is a decision
maker who faces one of two actions: a passive action 0 and an active action 1. Buyer obtains an uncertain
payoff v(q, t) for the active action 1 where q ∈ Q is a random state of nature (unknown to the buyer) and
t ∈ T is the buyer’s private type. Buyer’s utility for the passive action 0 is always 0, irrespective of his type
and the state of nature. So the passive action serves as a backup option for the buyer. For example, if Buyer
is a potential purchaser of some goods with uncertain quality (e.g., a house or a used car), the passive action
0 corresponds to not purchase in which case Buyer has no gain neither loss, whereas the active action 1
corresponds to purchase in which Buyer’s utility depends on the quality q of the goods as well as how much
he values the goods, i.e., the private type t.

Both t and q are modeled as random variables that are independently distributed according to the cumu-
lative distribution functions (CDF) F (t) and G(q), respectively. The buyer’s type t ∈ R is a real value and
supported on T = [t1, t2]. The state of nature q is supported on a general measurable set Q and does not
need to be a real value. Such an abstract representation of q is used to accommodate applications where q
may include the features relevant to Buyer’s decisions (e.g., the brand and production year of a used car).
Throughout the paper, we assume both F (t) and G(q) are differentiable with corresponding probability
density functions (PDF) f(t) and g(q), though our analyses and results also extend to the non-differentiable
situations.2

Both F (t) and G(q) are public knowledge. However, the realized q can be observed by the informa-
tion seller. We study Seller’s problem of designing a revenue-optimal pricing scheme to sell her private
information about q to Buyer. Note that the buyer’s private type t is only known to the buyer. Therefore,
Seller will have to incentivize the buyer to report his type t before deciding how to reveal information to
the buyer and how much to charge. Indeed, had the seller known the buyer’s type t, the seller’s optimal
pricing mechanism should be revealing full information and then charges Buyer the value of information
[4]:

∫
q∈Q max{0, v(q, t)}g(q)dq −max{0,

∫
q∈Q v(q, t)g(q)dq}.

We assume Buyer’s utility function v(q, t) is linear and monotone non-decreasing in the buyer’s type t
for any q ∈ Q. Consequently, there exists function v1(q) ≥ 0 and ρ(q) such that

v(q, t) = v1(q)(t+ ρ(q)). (1)

Since q is a random variable, ρ(q) also has a probability distribution. For expositional simplicity, we assume
the distribution of ρ does not have point masses, i.e., the probability measure of the set {q | ρ(q) = d} for

2In this case, the density functions are called distributions or generalized functions.
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any d is 0. Similar analysis applies to the general case where ρ(q) contains point masses, except that the
optimal mechanism may need some randomization in that case.

With slight abuse of notation, let v(t) denote the buyer’s expected utility for action 1 under his prior
beliefs about q, namely, when no information is purchased. That is,

Buyer’s initial utility of action 1: v(t) =

∫
q∈Q

v(q, t)g(q)dq. (2)

Note that our setup above is similar to persuasion of a privately informed receiver by Kolotilin et al. [16].
The key difference is that in our model, Seller has no utility function and only cares about the transfer from
Buyer (i.e., the revenue) whereas in [16] the sender has a particular utility function. Moreover, our buyer
utility function in Equation (1) strictly generalizes the receiver’s utility in [16] which assumes linearity in
both the receiver’s type t and the state of nature q.

2.2 The Revelation Principle
To maximize revenue, Seller can design arbitrary mechanisms with possibly multiple rounds of interactions.
We restrict our design space to include all possible mechanisms that can be expressed as a finite extensive-
form game where each node in the game tree is one of the following three types: (1) transfer node which is
associated with a (possibly negative) transfer to the seller and has a single child node; (2) seller node which
associates each state of nature q with a distribution prescribing the probabilities of moving to its children
nodes; (3) buyer node which has arbitrary buyer actions and an arbitrary set of children. This general space
of mechanisms is also referred to as the generic interactive protocol [2] and includes all possible ways that
Seller may sequentially reveal partial information to Buyer and ask for transfers alone the way.

The space of all such possible mechanisms appears enormous. Fortunately, similar to classic mechanism
design [17], the setting of information pricing also admits the revelation principle as shown in [2, 4, 10].
To describe the space of the so-called direct mechanisms, it suffices to introduce the notion of signaling
scheme, which formalizes the way that Seller reveals information to Buyer. Formally, given a set of possible
signals Σ, a signaling scheme π : Q→ ∆Σ is a mapping from the state of nature q to a distribution over the
signals in Σ. Such a signaling scheme can be mathematically described by {π(σ; q)}q∈Q,σ∈Σ where π(σ; q)
is the probability of sending signal σ conditioned on state q.3 Given signal σ, the buyer infers posterior
probability about any state q via a standard Bayes updates:

Pr(q|σ) =
π(σ; q) · g(q)∫

q′∈Q π(σ; q′) · g(q′)dq′
=

π(σ; q) · g(q)

Eq′∼G[π(σ; q′)]
. (3)

Consequently, conditioned on signal σ, a buyer of type t has expected utility
∫
q∈Q v(q, t)Pr(q|σ)dq for the

active action 1, and will take the active action if and only if when
∫
q∈Q v(q, t)Pr(q|σ)dq ≥ 0.

The following revelation principle is the starting point of our design of the optimal mechanism.

Lemma 1. [Revelation Principle [2, 4, 10]] There always exists a revenue-maximizing mechanism for the
above setting which consists of a menu {πt, pt}t∈T such that: (1) πt is a signaling scheme for buyer type t
which uses at most two signals {σ0, σ1}, resulting in the best buyer action 1 and 0, respectively; (2) pt is
the payment from the buyer of type t.

This mechanism with one-round buyer-seller interaction proceeds in order as follows:

1. Seller announces the mechanism {πt, pt}t∈T ;

2. Buyer type t is realized;

3Such a signaling scheme is sometimes also referred to as an experiments [16, 4].
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3. Buyer reports a type t′ ∈ T to Seller (not necessarily the true t), and is charged payment pt′;

4. The state of nature q is realized to Seller, who then samples a signal according to signaling scheme
πt′ and sends the signal to Buyer.

Moreover, the mechanism without loss of generality is incentive compatible and individually rational.

Like classic mechanism design, incentive compatibility (IC) means reporting true type t is an optimal
strategy for Buyer, and individual rationality (IR) means participating the mechanism is no worse for Buyer
than not participating. Babaioff et al. [2] proved Lemma 1 in the form of general signaling schemes and
later results [4, 10] further simplify it and show that it suffices to restrict to signaling schemes with n signals
where n is the number of buyer actions (n = 2 in our case).

Our next result further simplifies the design space and shows that we can without loss of generality
restrict to mechanisms with non-negative payment for every type t. Though this is natural to expect, we point
out that this result does not trivially hold — in fact, it was shown that an optimal single-round mechanism
may sometimes have to involve negative payments when buyer type q and state t are correlated [2]. The
proof of this technical lemma is deferred to Appendix B.

Lemma 2. [Non-Negative Payments] There exists an optimal IC and IR mechanism in which pt ≥ 0 for all
t ∈ T .

2.3 Formulation of the Optimal Pricing Problem
We refer to the mechanisms characterized by Lemma 1 as direct mechanisms. Given the revelation principle,
we can without loss of generality focus on the design of optimal direct mechanisms. Any direct mechanism
can be characterized by two functions: (1) π(q, t) ∈ [0, 1] which is the probability of sending signal σ1 to
the buyer of type t at the state of nature q; (2) p(t) ≥ 0 which is the non-negative payment (due to Lemma
2) from the buyer. Note that, [1−π(q, t)] will be the seller’s probability of sending signal σ0 to the buyer of
type t conditioned on state q.

Our main goal is to derive a feasible and optimal π∗, p∗ for the seller’s information pricing mechanism.
Note that this is functional optimization problem since both π(q, t), p(t) are function variables that depend
on continuous variable t ∈ [t1, t2](= T ) and abstract variable q in measurable set Q. We thus refer to π
as the signaling function and p as the payment function. Next, we will formulate the problem based on the
constraints described by the revelation principle in Lemma 1. We start by deriving Seller’s revenue objective:

Seller Objective: max
π,p

∫
t∈T

f(t)p(t) dt

The revelation principle shows that the signaling scheme will have two signals σ1, σ0, each resulting
in Buyer best response of action 1 and 0 respectively. This poses a constraint about the signaling function
π(q, t): (1)

∫
q∈Q π(q, t)v(q, t)g(q) dq ≥ 0 for any t ∈ T ; (2)

∫
q∈Q[1 − π(q, t)]v(q, t)g(q) dq ≤ 0 for any

t ∈ T . The first constraint above ensures that when signal σ1 is recommended to the buyer of type t, the
buyer’s expected utility Eq∼G[π(q,t)v(q,t)]

Eq∼G[π(q,t)] for the active action 1 should be at least 0, i.e., the utility of the
passive action 0. Conversely, the second constraint ensures that conditioned on signal σ0, the expected buyer
utility for action 1

Eq∼G[(1−π(q,t))v(q,t)]
Eq∼G[1−π(q,t)] should be at most 0. These two constraints are also widely referred

to as the obedience constraints in the literatures of information design [5, 6]. Slightly manipulating the
second constraint above, we obtain

∫
q∈Q π(q, t)v(q, t)g(q) dq ≥

∫
q∈Q v(q, t)g(q) dq = v(t). Therefore, we

can conveniently summarize the obedience constraint as follows:

Obedience:
∫
q∈Q

π(q, t)v(q, t)g(q) dq ≥ max{0, v(t)},∀t ∈ T (4)
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Given the obedience constraint and signaling scheme for type t, a buyer of true type t should be incentivized
to take action 1 whenever receiving signal σ1 and action 0 otherwise. Therefore, we can also think of the
signaling scheme as obedient action recommendations. Note that Buyer derives utility 0 from the recom-
mended action 0 as well, therefore the expected utility of buyer type t when he reports his type truthfully
and follows π’s obedient recommendation is

u(t) = E
q∼G

[π(q, t)v(q, t)]− p(t) =

∫
q∈Q

π(q, t)v(q, t)g(q) dq − p(t) (5)

where the first term comes from utility from his decision making under Seller’s signaling scheme and
the second term is the payment to the seller. To ensure that Buyer is willing to participate in the mechanism,
we will impose the following individual rationality (IR) constraint:

IR:
∫
q∈Q

π(q, t)v(q, t)g(q) dq − p(t) ≥ max{0, v(t)},∀t ∈ T, (6)

where the right-hand side is the buyer’s expected utility of not participating in the mechanism. We remark
that if the buyer does not participate in the information selling mechanism, he still has the freedom to pick
the better action among 1, 0 based on his prior beliefs about q, leading to a utility equal to max{0, v(t)}
under no information purchase. Therefore, we also define the surplus s(t) – the additional utility gain of
participating the mechanism – as a function of the buyer type t to be

s(t) = u(t)−max{v(t), 0} =

∫
q∈Q

π(q, t)v(q, t)g(q) dq − p(t)−max{v(t), 0}. (7)

The IR constraint is equivalent to non-negative surplus. Interestingly, since the payment function is always
non-negative, the IR Constraint 6 implies the Obedience Constraint (4).

Derivation of Incentive Compatibility (IC) Constraints. Finally, the IC turns out to require some careful
derivations. To guarantee IC, we require that a buyer of type t should obtain higher utility than mis-reporting
any type t′. This turns out to require some analyses since when a type-t buyer misreports type t′, the
signaling scheme described by {π(q, t′)}q∈Q may not be obedient any more. Therefore, the buyer utility for
signal σ1 should be the maximum between 0 and the following expected utility for action 1

U1(t′; t) :=

∫
q∈Q

π(q, t′)v(q, t)g(q) dq =

∫
q∈Q

π(q, t′)v1(q)[t+ ρ(q)]g(q) dq. (8)

Conversely, the buyer utility for signal σ0 will be the maximum between 0 and the following expected utility
for action 1 ∫

q∈Q
[1− π(q, t′)]× v1(q)[t+ ρ(q)]g(q) dq = v(t)− U1(t′; t). (9)

Consequently, the type-t buyer’s utility from signaling scheme {π(q, t′)}q∈Q equals max{U1(t′; t), 0} +
max{v(t)− U1(t′; t), 0}. Therefore, the incentive compatibility constraint becomes the following complex
constraint:

u(t) ≥ max{U1(t′; t), 0}+ max{v(t)− U1(t′; t), 0} − p(t′) (10)

Fortunately, it turns out that some cases of the above constraint can be implied by previous constraints. To
see this, we distinguish between two cases:

1. When t > t′, we have U1(t′; t) defined in Equation (8) to be at least U1(t′; t′), which is at least 0 by
the Obedience Constraint (4) for t′. In this case, the right-hand-side of the above constraint becomes
U1(t′; t) + max{v(t) − U1(t′; t), 0} − p(t′), or equivalently max{v(t), U1(t′; t)} − p(t′). Note that
u(t) ≥ v(t) − p(t′) is already implied by the IR constraint u(t) ≥ v(t) and the condition p(t′) ≥ 0.
Therefore, the only non-redundant constraint in this case is u(t) ≥ U1(t′; t)− p(t′).

6



2. When t < t′, we have v(t) − U1(t′; t) defined in Equation (9) to be at most v(t′) − U1(t′; t′), which
is at most 0 by the Obedience Constraint (4) for t′. In this case, the right-hand-side of the above
constraint becomes max{U1(t′; t), 0} − p(t′). Note that u(t) ≥ −p(t′) is already implied by the IR
constraint u(t) ≥ 0 and the condition p(t′) ≥ 0. Therefore, the only non-redundant constraint in this
case is also u(t) ≥ U1(t′; t)− p(t′).

Consequently, given the IR and Obedience constraints before, the IC constraint can finally be expressed as
follows:

IC:
∫
q∈Q

π(q, t)v(q, t)g(q) dq − p(t) ≥
∫
q∈Q

π(q, t′)v(q, t)g(q) dq − p(t′),∀, t, t′ ∈ T (11)

Differences from Classic Mechanism Design for Goods. First, the mechanism in our setup has different
design space and is characterized by a different set of variables. For example, there appears no natural
correspondence between our the signaling scheme functional variable π and variables in classic mechanism
design. The second important difference between selling information and classic mechanism design is that
the IR constraint (6) in our setting is different from the IR constraint in classic mechanism design, which
simply requires the utility of participation is at least 0. In our setting, however, a buyer of type t will
have utility max{0, v(t)} without additional information. Therefore, our IR constraint has to guarantee
that the buyer’s utility from the mechanism is at least max{0, v(t)}. This important difference turns out to
significantly change the problem structure and raise new challenges to the design of the information selling
mechanism. As will be shown later, it leads to very different optimal mechanisms from what we see in
classic mechanism design.

3 The Optimal Mechanism
In this section, we present the characterization of the optimal pricing mechanism. Mathematically, we
derive an optimal solution in closed form to the functional optimization problem formulated in Section 2.
The optimal mechanism we obtain turns out to belong to the following category of threshold mechanisms.

Definition 1. [Threshold Mechanism] A mechanism (π, p) is called a threshold mechanism if there exists a
function θ(t), such that for any t ∈ [t1, t2],

π(q, t) =

{
1 if ρ(q) ≥ θ(t)
0 otherwise

.

Since π is fully described by θ(t) here, they are both referred to as a threshold signaling function.

Note that the term “threshold” is only a property about the signaling function π and does not pose any
constraint on the payment function p. To state our mechanism, we will need the following notions of lower
and upper virtual values.

Definition 2 (Lower/Upper Virtual Values). For any type t with PDF f(t) and CDF F (t), the function
φ(t) = t− 1−F (t)

f(t) is called the lower virtual value function and φ(t) = t+ F (t)
f(t) is called the upper virtual

value function. A lower/upper virtual value function is regular if it is monotone non-decreasing in t.

The lower virtual value function φ(t) is precisely the virtual value function commonly used in classic
mechanism design [17]. However, the upper virtual value function is a new format, which to our knowledge
does not appear in previous literature. The regularity definition is standard.

When a virtual value function is irregular, we will need to apply the so-called “ironing” trick to make
it monotone non-decreasing in t. Myerson [17] developed a procedure for ironing the lower virtual value
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function φ(t). This procedure can be easily generalized to ironing any function about the buyer type t,
specifically, also our upper virtual value function φ(t) and mixtures of φ(t), φ(t). We defer the formal
description of this ironing procedure to Appendix A.1 and only introduce them as a definition here.

Definition 3 (Mixed Virtual Values and Ironing). For any c ∈ [0, 1], define φc(t) = cφ(t) + (1 − c)φ(t)
as a mixed virtual value function. For any virtual value function φ(t) (upper or lower or mixed), let φ+(t)
denote the ironed version of φ(t) obtained via the standard ironing procedure of Myerson [17].

If a virtual value function φ(t) is already monotone non-decreasing, it will remain the same after the
ironing process, i.e., φ+(t) = φ(t), ∀t. The following monotonicity property of the ironed mixed virtual
value functions will be needed for proving our main results. Its proof is a bit technical and is deferred to
Appendix A.2.

Lemma 3. [Monotonicity of Ironed Mixed Virtual Values] Define φc(t) = cφ(t) + (1 − c)φ(t). Then we

have for any 0 ≤ c < c′ ≤ 1, φ+
c (t) ≥ φ+

c′(t) for any t. Moreover, φ+
1 (t) = φ+(t) < t < φ

+
(t) =

φ+
0 (t),∀t ∈ (t1, t2).

We are now ready to state the characterization of the optimal mechanism after introducing the following
two quantities

VL = max{v(t1), 0}+

∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx, (12)

VH = max{v(t1), 0}+

∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx, (13)

where φ
+

(x)/φ+(x) are the ironed upper/lower virtual value functions. Note that Lemma 3 implies−φ+(x) ≥
−φ+

(x) and consequently VL ≤ VH since g(q)v1(q) is always non-negative and VL integrates over a smaller
region on q.

Our main result is summarized in the following theorem.

Theorem 1. [Characterization of the optimal pricing mechanism for selling information]

1. If v(t2) ≤ VL, the threshold mechanism with threshold signaling function θ∗(t) = −φ+(t) and the
following payment function represents an optimal mechanism:

p∗(t) =

∫
q∈Q

π∗(q, t)g(q)v(q, t) dq −
∫ t

t1

∫
q∈Q

π∗(q, x)g(q)v1(q) dq dx.

where π∗ is determined by θ∗(t) as in Definition 1. Moreover, p∗(t) is monotone non-decreasing for
t ∈ [t1, t2].

2. If v(t2) ≥ VH , the threshold mechanism with threshold signaling function θ∗(t) = −φ+
(t) and the

following payment function represents an optimal mechanism:

p∗(t) =

∫
q∈Q

π∗(q, t)g(q)v(q, t) dq +

∫ t2

t

∫
q∈Q

π∗(q, x)g(q)v1(q) dq dx− v(t2),

where π∗ is determined by θ∗(t) as in Definition 1. Moreover, p∗(t) is monotone non-increasing for
t ∈ [t1, t2].
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3. If VL < v(t2) < VH , define φc(t) = cφ(t) + (1− c)φ(t) to be the mixed virtual value function, where
c ∈ (0, 1) is a constant that satisfies∫ t2

t1

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dqdt = v(t2),

where φ+
c (t) is the ironed version of φc(t). Then the threshold mechanism with threshold signaling

function θ∗(t) = −φ+
c (t) and the following payment function represents an optimal mechanism:

p∗(t) =

∫
q∈Q

π∗(q, t)g(q)v(q, t) dq −
∫ t

t1

∫
q∈Q

π∗(q, x)g(q)v1(q) dq dx.

Moreover, p∗(t) is monotone non-decreasing in t when F (t) ≤ c and monotone non-increasing when
F (t) > c.

Let t satisfy v(t) = 0. Then in all cases above, the buyer surplus function s(t) is monotone non-decreasing
when t ≤ t and monotone non-increasing when t ≥ t.

Note that in the optimal mechanism of Theorem 1, if the signaling schemes for two types t, t′ are the
same, then their payment must also be the same, i.e., p∗(t) = p∗(t′). This is a simple consequence of the IC
constraint — if p∗(t) > p∗(t′), the buyer of type t would misreport t′, and vice versa.

Remark 1. In all three cases of Theorem 1, a threshold mechanism is optimal. However, the format of the
optimal mechanism and payment properties depend on how v(t2) compares to VL, VH . Note that threshold
mechanisms are ubiquitous in reality. In many inspections, examinations and recommendations, we often
see some goods (or services) pass a test (or deserve a recommendation). These can be viewed as a threshold
signaling scheme. What we pay for conducting these tests or receiving recommendations are precisely
the required payment for receiving such information. From this perspective, Theorem 1 characterizes the
optimal signaling threshold and payment for buyers drawn from a random population.

Remark 2. We briefly discuss the choice of the constant c in Case 3 of Theorem 1. As we will show later in
our proof, v(t2) ≤ VH will imply v(t1) ≤ 0 for any feasible mechanism. Therefore, in Case 3, the VL, VH
defined in Equation (12) and (13) only has the integral term. Therefore, the condition of Case 3 boils down
to ∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dq dx < v(t2) <

∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx.

Since φ+(x) < φ
+

(x) for any x, the choice of c ∈ (0, 1) is trying to “interpolating” the two integral region

{q : ρ(q) ≥ −φ+
(x)} and {q : ρ(q) ≥ −φ+(x)}. Since we assume that the distribution has no point mass,

the following expression ∫ t2

t1

∫
q:ρ(q)≥−φ+c (x)

g(q)v1(q) dq dx

is continuous in c.4 Lemma 3 implies that it is also monotone weakly decreasing in c. Therefore, we can
binary search for the c that makes the value of this integral equal exactly v(t2). This also leads to a tractable
algorithm for computing the c parameter.

We conclude this section by describing two examples and illustrate what the optimal mechanism would
be like in concrete instances.

4This is the situation where the assumption that the distribution of ρ has no point masses is needed. Without this assumption,
the threshold mechanism will need randomization for those q with ρ(q) = φ+

c (t). See Appendix G for the refined characterization
of the optimal mechanism for general ρ.
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3.1 An Example of Regular Case 1
Consider v(q, t) = qt − 2 = v1(q)[t + ρ(q)] where v1(q) = q and ρ(q) = −2

q . Suppose q ∈ Q = [0, 1]
is uniformly distributed, i.e., g(q) = 1. Let t ∈ T = [2, 3] also be uniformly distributed with f(t) = 1.
Among others, this utility function captures online advertising where q is the probability an Internet user
will purchase the product of an advertiser (the information buyer) and t is the advertiser’s value for selling a
product. The constant 2 is interpreted as the advertiser’s payment for displaying his ads to an Internet user.

In this instance, φ(t) is non-decreasing, thus, ironing doesn’t change its value. We have φ+(t) = φ(t) =

t − 1−F (t)
f(t) = 2t − 3. Note that v(t) =

∫
q∈Q g(q)v(q, t)dq =

∫ 1
0 (tq − 2)dq = t

2 − 2 for any t ∈ [2, 3].
Since VL defined in Equation (13) is clearly non-negative, we have v(t2) = −0.5 < 0 ≤ VL, so the instance
falls into Case 1 of Theorem 1. This implies that an optimal mechanism can be specified by a threshold
signaling scheme θ∗(t) = −φ+(t) = 3 − 2t. That is, for any buyer type t the mechanism will make
obedient recommendation of the active action 1 when ρ(q) ≥ −φ+(t), or concretely, when q ≥ 2

2t−3 . Now
there are two situations.

• When t ≤ 2.5, the mechanism will recommend action 1 when q ≥ 2
2t−3 ≥ 1, which means the

mechanism will never recommend action 1. Therefore, π∗(t, q) = 0 for all q ∈ Q in this situation and
the payment p∗ = 0. Therefore, for these buyer types, the seller will sell no information to them and
charges them 0 as well.

• When t > 2.5, the mechanism will recommend action 1 when q ≥ 2
2t−3 , which is a threshold in (0, 1)

and decreases in t. In this situation, the payment function p∗(t) can then be computed as follows

p∗(t) =

∫ 1

2
2t−3

[ (qt − 2)] dq −
∫ t

2.5

∫ 1

2
2x−3

q dq dx = −0.25 +
4t− 9

(2t− 3)2

For these buyer types, their utility from the mechanism will be

u(t) =

∫ 1

2
2t−3

[ (qt − 2)] dq − p∗(t) = −1.75 +
t

2
+

1

2t− 3

Since without information, the optimal buyer action will be action 0 due to v(t) ≤ 0, u(t) also equals
the buyer surplus and can be verified to be monotone increasing.

Notably, to achieve optimal revenue, the optimal mechanism does not simply recommend the active
action 1 whenever v(q, t) ≥ 0. For example, when t = 2.3, the mechanism reveals no information (and asks
for no charges) even v(q, t) > 0. Therefore, the revenue-optimal mechanism is generally not optimal for the
welfare. Indeed, it sacrifices the welfare for the buyers with smaller types to extract more revenue from the
buyers with higher types.

3.2 An Example of Irregular Case 2
Consider another instance v(q, t) = 10q(t+q−72) = v1(q)[t+ρ(q)] where v1(q) = 10q and ρ(q) = q−72.
Suppose q ∈ Q = [0, 60] is uniformly distributed, i.e., g(q) = 1

60 . Let t ∈ T = [30, 60] to be piece-wise
uniformly distributed. Specifically, t be uniformly distributed in [30, 54) with f(t) = 1

48 and [54, 60] with
f(t) = 1

12 . This value function may capture house selling where t is the buyer’s private preference on
the house quality q, and v1(q)ρ(q) models the net value this house can bring independently from personal
preferences.

φ(t) =

{
2t− 30 if 30 ≤ t < 54

2t− 48 if 54 ≤ t ≤ 60
φ

+
(t) =


2t− 30 if 30 ≤ t < 48

66 if 48 ≤ t < 57

2t− 48 if 57 ≤ t ≤ 60

10



Algebraic calculation shows that the (irregular) upper virtual value and its ironed version can be listed above.
We can verify that this instance falls into Case 2 of Theorem 1 because v(t2) = 8400 > max(0, v(t1)) +
VH = 7944. Thus, Theorem 1 implies that an optimal mechanism can be specified by a threshold signaling
scheme θ∗(t) = −φ+

(t). That is, for any buyer type t the mechanism will make obedient recommendation
of the active action 1 when ρ(q) ≥ −φ+

(t). One can verify that in this case, the optimal mechanism will
reveal a non-trivial amount of information to every type of buyers (except the only buyer type t2) and also
have positive charge from them. Concretely, the payment function p∗(t) for this instance can be calculated
as follows.

p(t) =


2(t−51)3

9 + 7(t− 51)2 − 27 if 30 ≤ t < 48

30 if 48 ≤ t < 57
2(t−60)3

9 + 4(t− 60)2 if 57 ≤ t ≤ 60

Figure 1: Functions in example 2

Figure 1 plots the (no-increasing) payment p(t) as a function of buyer types t, as well as the buyer’s utility
u(t) and surplus s(t) function, for which we omit the standard calculations and solutions. Note that a large
utility u(t) does not mean a large surplus since the buyer with a large type may originally already has a very
large utility, and participating the mechanism will not give them much additional utility, i.e., the surplus.
This is exactly the situation illustrated in Figure 1.

One interesting observation happens at the interval 48 ≤ t < 57. The mechanism recommends action 1
when (q − 72) ≥ −66, or equivalent q ≥ 6, for all these t. Moreover, the mechanism also charges the same
amount p(t) = 30 for t in this interval. This is predicted by the fact that for any two buyer types, the optimal
mechanism charges the same payment from them if recommendation policies for them are the same. As we
discussed earlier. this fact is induced by IC.

Another interesting observation is that to the optimal mechanism sometimes recommends the active
action 1 even when v(q, t) < 0. For example, when t = 40, the mechanism recommends action 1 whenever
q ≥ 22. However, when q = 22, buyer’s valuation is actually negative v(q, t) = −2200. Notably, in Case 2,
the mechanism will always recommend action 1 whenever v(q, t) ≥ 0 while in Case 1 this is not true. This
is due to the nature of φ

+
(t) ≥ t ≥ φ+(t).

Note that, the surplus s(t) is the extra utility Buyer can get by participating in the mechanism and is
defined in (7). Non-negativity of this function guarantees IR constraint. We shall show that it is monotone
non-increasing in Case 2 (as plotted in Figure 1), monotone non-decreasing in Case 1, and will increase first
then decrease in Case 3. The optimal mechanism will make s(t1) = 0 in Case 1, s(t2) = 0 in Case 2, and
s(t1) = s(t2) = 0 in Case 3.

4 (Partial) Proof of Theorem 1
In this section, we prove Theorem 1. Due to space limit, we will only provide a proof for Case 3. The core
idea for proving Case 1 and 2 are similar; we thus defer them to Appendix E and F, respectively. As we
will see, our derivation here differs significantly from the derivation of optimal mechanisms for goods. The
proof can be divided into two major steps: (1) characterizing the space of feasible mechanisms; (2) deriving
the optimal mechanism within the feasible space. While the first step is also based on analysis of the IC
constraints like that in classic mechanism design, the conclusions we obtain are quite different since our IC
constraints are different. The second step deviates significantly from classic approaches, and is arguably
much more involved due to additional constraints that we have to handle.
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4.1 Characterization of Feasible Mechanisms
We first characterize the set of feasible mechanisms that satisfy the IR Constraints (6) and the IC Constraints
(11). By Lemma 2, we can focus on the space of mechanisms with positive payments. In this case, the
Obedience Constraints (4) can be implied by the IR constraints.

To describe our characterization, it is useful to introduce the following quantity.

Pπ(t) =

∫
q∈Q

π(q, t) · g(q)v1(q) dq (14)

Note that Pπ(t) can be interpreted as the expected weighted probability of being recommended the active
action 1 where the weight is v1(q). The following lemma summarizes our characterization. To give readers
some intuition, we only provide a proof of sufficiency here and defer the proof of necessity to Appendix C.

Lemma 4 (Characterization of Feasible Mechanisms). A mechanism (π, p) with non-negative payments is
feasible if and only if it satisfies the following constraints:

Pπ(t) is monotone non-decreasing in t (15)

u(t) = u(t1) +

∫ t

t1

Pπ(x) dx,∀t ∈ T (16)

u(t2) ≥ v(t2), u(t1) ≥ 0 (17)

p(t) ≥ 0, ∀t ∈ T (18)

Proof of Sufficiency. We prove that Constraints (15)-(18) imply Obedience (4), IR (6) and IC (11) con-
straints. IC constraint (11) is equivalent to

u(t) ≥ u(t′) +

∫
q∈Q

π(q, t′) · g(q)[v(q, t)− v(q, t′)] dq = u(t′) + (t− t′)Pπ(t′).

Therefore Constraints (15) and (16) imply IC constraint (11) because if t′ < t, we have

u(t)− u(t′) =

∫ t

t′
Pπ(x) dx ≥

∫ t

t′
Pπ(t′) dx = (t− t′)Pπ(t′).

Similarly, when t′ > t, we also have u(t)− u(t′) ≥ (t− t′)Pπ(t′).
The IR constraint (6) is equivalent to u(t) ≥ 0 and u(t) ≥ v(t). Since Pπ(x) ≥ 0, Constraint (16),

together with u(t1) ≥ 0, imply u(t) ≥ 0 for any t. We now leverage u(t2) ≥ v(t2) to prove u(t) ≥ v(t) for
any t, as follows:

u(t) = u(t1) +

∫ t

t1

Pπ(x) dx = u(t2)−
∫ t2

t
Pπ(x) dx ≥ v(t2)−

∫ t2

t
Pπ(x) dx.

Using the definition of v(t2) and Pπ(x), we get

u(t) =

∫
q∈Q

g(q)v1(q)[t2 + ρ(q)] dq −
∫ t2

t

∫
q∈Q

π(q, x)g(q)v1(q) dqdx

≥
∫
q∈Q

g(q)v1(q)[t2 + ρ(q)] dq −
∫ t2

t

∫
q∈Q

g(q)v1(q) dqdx

=

∫
q∈Q

g(q)v1(q)[t+ ρ(q)] dq

=v(t)

Finally, the Obedience constraint (4) follows from IR constraint (6) and p(t) ≥ 0.
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Note that Condition (15) is analogous to Myerson’s allocation monotonicity condition as in auction
design, but is different. Specifically, in Myerson’s optimal auction, the value of an item directly depends on
buyer type t with no weight associated with it. In information selling, the value of taking the active action
will depend on the utility coefficient v1(q).

Next we characterize Buyer’s surplus from participating in the information selling mechanism, defined
as follows:

Buyer Surplus: s(t) = u(t)−max{0, v(t)}. (19)

That is, the Buyer surplus is the difference between his utility from the information selling mechanism and
his utility from directly picking the better action among 0, 1 without purchasing any information. Note
that the IR constraint (6) is equivalent to s(t) ≥ 0. Recall that Buyer of type t has expected utility
v(t) =

∫
q∈Q v(q, t)g(q) dq for action 1 without purchasing any information. Since v(q, t) is monotone

non-decreasing in t, we know that v(t) is also monotone non-decreasing. Let t be the Buyer type at which
v(t) crosses 0 (t can be any one if there are multiple such t). The following lemma characterize how Buyer’s
surplus changes as a function of his type.

Lemma 5. Let t be any buyer type such that v(t) =
∫
q∈Q v(q, t)g(q) dq = 0. In any feasible mecha-

nism (π, p) with non-negative payments, the buyer’s surplus s(t) is non-negative for t ∈ [t1, t2], monotone
(weakly) increasing for t ∈ [t1, t], and monotone (weakly) decreasing for t ∈ [t, t2].

Proof. When t ≤ t, we have v(t) ≤ 0. Therefore, without participating in the mechanism to purchase addi-
tional information, Buyer will derive utility 0 by taking the passive action 0. So his surplus for participation
is

s(t) = u(t) = u(t1) +

∫ t

t1

Pπ(x) dx

by the utility identify in Equation (17). Since u(t1) ≥ 0 and Pπ(x) ≥ 0, it is easy to see that s(t) is
non-negative and monotone non-decreasing in t.

When t ≥ t, we have v(t) ≥ 0. So Buyer will derive utility v(t) without participating the information
selling mechanism. We thus have

s(t) =u(t)− v(t)

=

[
u(t1) +

∫ t

t1

∫
q∈Q

π(q, x)v1(q)g(q) dqdx

]
−
[∫

q∈Q
v1(q)[t+ ρ(q)]g(q) dq

]
=

[
u(t1) +

∫ t

t1

∫
q∈Q

π(q, x)v1(q)g(q) dqdx

]
−
[∫ t

t1

∫
q∈Q

v1(q)g(q) dqdx+ v(t1)

]
=u(t1)− v(t1) +

[∫ t

t1

∫
q∈Q

[π(q, x)− 1]v1(q)g(q) dqdx

]
.

Since π(q, x)−1 ≤ 0 and v1(q)g(q) ≥ 0, we thus have s(t) is monotone non-increasing in t. Consequently,
s(t) ≥ s(t2) = u(t2)− v(t2) ≥ 0 by Inequality (17).

4.2 Deriving the Optimal Mechanism for Case 3
With the characterization of feasible mechanisms in Lemma 4, we are now ready to derive the optimal mech-
anism. This is where our proof starts to significantly deviate from typical approaches for classic mechanism
design. To see the reasons, recall that Lemma 5 shows that Buyer surplus s(t) in our problem will increase
first and then decrease. In, e.g., feasible single-item mechanisms, Buyer’s utilities are always increasing in
their types, therefore the optimal auction should always set Buyer’s surplus to be 0 at the lowest type. In
our case, however, both s(t1) and s(t2) could be the lowest surplus and we have to figure out which one
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needs to be the lowest and under what conditions. Second, to guarantee feasibility, the mechanism has to
be designed to satisfy u(t2) ≥ v(t2) (coming from the IR constraints u(t) ≥ v(t),∀t ∈ T ). This constraint
is unique in selling information and is not required when designing mechanisms for selling goods. Guaran-
teeing feasibility of this constraint will result in much more intricate derivations as well as more intricate
optimal mechanisms.

It turns out that whether the minimum buyer surplus will be at t1 or at t2 or simultaneously at both t1, t2
depends on how large v(t1) and v(t2) are. In fact, the optimal mechanism has different forms depending on
whether v(t2) ≤ VL, v(t2) ≥ VH , or VL < v(t2) < VH . We start with a technical lemma showing that the
conditions for the three cases above can also be written in terms of v(t1) as well. The proof of this technical
Lemma 6 is deferred to Appendix D.1.

Lemma 6. Define

V ′L = −
∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx and V ′H = −
∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx.

Then the three conditions v(t2) ≤ VL, v(t2) ≥ VH , and VL < v(t2) < VH are equivalent to v(t1) ≤ V ′L,
v(t1) ≥ V ′H , and V ′L < v(t1) < V ′H , respectively.

From now on, we will focus on the case with VL < v(t2) < VH , and re-state the Case 3 of Theorem 1
in the following proposition.

Proposition 1. If VL < v(t2) < VH , define φc(t) = cφ(t) + (1 − c)φ(t) to be the mixed virtual value
function, where c ∈ (0, 1) is a constant that satisfies∫ t2

t1

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dqdt = v(t2), (20)

where φ+
c (t) is the ironed version of φc(t). Then the threshold mechanism with threshold signaling function

θ∗(t) = −φ+
c (t) and the following payment function represents an optimal mechanism:

p∗(t) =

∫
q∈Q

π∗(q, t)g(q)v(q, t) dq −
∫ t

t1

∫
q∈Q

π∗(q, x)g(q)v1(q) dq dx.

Moreover, p∗(t) is non-decreasing in t when F (t) ≤ c and monotone non-increasing when F (t) > c.

Before proving the optimality of our mechanism, we first argue that the constant c described in Proposi-
tion 1 actually exists.

Lemma 7. If VL < v(t2) < VH , there exists a constant c ∈ (0, 1) that satisfies Equation (20).

The proof of Lemma 7 is deferred to Appendix D.2. But we emphasize that the proof used the assump-
tion that the distribution of ρ(q) does not contain a point mass. However, even if this assumption does not
hold, we can slightly modify our mechanism to get a threshold mechanism with partial recommendations on
threshold boundary, and still achieve the optimal revenue. For clarity, we put the solution and proof for that
general case in Appendix G.

Lemma 7 implies that the mechanism proposed in Proposition 1 exists. Now we show that it is also
feasible.

Lemma 8. The mechanism (π∗, p∗) defined according to φ+
c (t) is feasible.
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Proof. To prove Lemma 8, it suffices to show that mechanism (π∗, p∗) satisfies all the constraints (15), (16),
(17), and (18). By definition,

Pπ∗(t) =

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dq.

Since φ+
c (t) is already ironed, it is non-increasing in t. Thus the integral domain of Pπ∗(t) gets larger as t

increases. So Pπ∗(t) is non-decreasing since g(q)v1(q) ≥ 0, satisfying constraint (15).
To show that the mechanism satisfies constraint (16), note that

u(t) =

∫
q∈Q

g(q)π∗(q, t)v(q, t1) dq − p(t) =

∫ t

t1

Pπ∗(x) dx.

Thus u(t1) = 0 and

u(t) = u(t1) +

∫ t

t1

Pπ∗(x) dx.

As for constraint (17), we already have u(t1) = 0. And

u(t2) =

∫ t2

t1

Pπ∗(x) dx =

∫ t2

t1

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dqdt = v(t2),

where the last equation is the definition of the constant c.
Finally, we show that the payment is non-negative, i.e., mechanism (π∗, p∗) satisfies constraint (18). We

claim that p∗(t) is monotone non-decreasing when F (t) ≤ c, and monotone non-increasing when F (t) ≥ c
(recall that c ∈ (0, 1)).

Define tc as the buyer type where F (tc) = c. Since φc(t) = cφ(t) + (1− c)φ(t) = t+ F (t)−c
f(t) , we have

∀t, s.t.F (t) ≤ c, φc(t) ≤ t and ∀t, s.t.F (t) ≥ c, φc(t) ≥ t.
Following arguments similar to proof of Lemma 3, we know that φ+

c (t) ≤ t,∀t ≤ tc and φ+
c (t) ≥

t,∀t ≥ tc. For any t < tc, let t′ be any number in the interval [φ+
c (t), t]. Thus φ+

c (t) ≥ φ+
c (t′). And

p∗(t)− p∗(t′) =

∫
q∈Q

g(q)π∗(q, t)v(q, t) dq −
∫
q∈Q

g(q)π∗(q, t′)v(q, t′) dq −
∫ t

t′
Pπ∗(x) dx

=

∫
q:ρ(q)≥−φ+c (t)

g(q)v(q, t) dq −
∫
q:ρ(q)≥−φ+c (t′)

g(q)v(q, t′) dq −
∫ t

t′
Pπ∗(x) dx.

When ρ(q) ≥ −φ+
c (t), we have v(q, t′) = v1(q)[t′+ρ(q)] ≥ v1(q)[t′−φ+

c (t)] ≥ 0, where the last inequality
is because of the choice of t′. So the second term in the above equation satisfies:∫

q:ρ(q)≥−φ+c (t′)
g(q)v(q, t′) dq =

∫
q:ρ(q)≥−φ+c (t)

g(q)v(q, t′) dq −
∫
q:−φ+c (t)≤ρ(q)<−φ+c (t′)

g(q)v(q, t′) dq

≤
∫
q:ρ(q)≥−φ+c (t)

g(q)v(q, t′) dq.

Thus,

p∗(t)− p∗(t′) ≥
∫
q:ρ(q)≥−φ+c (t)

g(q)v(q, t) dq −
∫
q:ρ(q)≥−φ+c (t)

g(q)v(q, t′) dq −
∫ t

t′
Pπ∗(x) dx

=

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q)(t− t′) dq −
∫ t

t′
Pπ∗(x) dx

=(t− t′)Pπ∗(t)−
∫ t

t′
Pπ∗(x) dx

≥0,
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where the last inequality is due to the monotonicity of Pπ∗(t).
Therefore, the payment function p∗(t) is monotone non-decreasing in the interval [φ+(t), t]. Since the

set of intervals {[φ+(t), t] | t ∈ [t1, tc]} covers [t1, tc], we conclude that p∗(t) is monotone non-decreasing
in [t1, tc].

Using similar analyses, we can show that p∗(t) is monotone non-increasing in the interval [tc, t2]. There-
fore, to prove that p∗(t) ≥ 0 for all t ∈ T , it suffices to show that p∗(t1) ≥ 0 and p∗(t2) ≥ 0. Indeed, we
have

p∗(t1) =

∫
q∈Q

π∗(q, t1)g(q)v(q, t1) dq − u(t1) =

∫
q:ρ(q)≥−φ+c (t1)

g(q)v(q, t1) dq ≥ 0.

The inequality is because when ρ(q) ≥ −φ+
c (t1) ≥ −t1, we have v(q, t1) = v1(q)[t1 + ρ(q)] ≥ 0. And

p∗(t2) =

∫
q∈Q

π∗(q, t2)g(q)v(q, t2) dq − u(t2)

=

∫
ρ(q)≥−φ+c (t2)

g(q)v1(q)[t2 + ρ(q)] dq −
∫
q∈Q

g(q)v1(q)[t2 + ρ(q)] dq

=−
∫
ρ(q)<−φ+c (t2)

g(q)v1(q)[t2 + ρ(q)] dq

≥0,

where the inequality is because ρ(q) < −φ+
c (t2) ≤ −t2.

To prove that the mechanism (π∗, p∗) is the optimal feasible mechanism, we need to apply the ironing
trick. We will first derive the revenue function for any feasible mechanism using both t1 and t2 as reference
points, and manipulate the expression so that it contains multiple terms. Then we show that the mechanism
(π∗, p∗) optimizes all these terms simultaneously.

Now we are ready to show the proof of Proposition 1.

Proof of Proposition 1. Let (π, p) be any feasible mechanism. Since the utility of Buyer is just the difference
between the value obtained from purchasing the item and their payment, we can write the revenue of Seller
as:

REV (π, p) =

∫ t2

t1

f(t)p(t) dt =

∫ t2

t1

f(t)

[∫
q∈Q

g(q)π(q, t)v(q, t) dq − u(t)

]
dt.

Applying Equation (16), we get

REV (π, p) =

∫ t2

t1

f(t)

[∫
q∈Q

g(q)π(q, t)v(q, t) dq −
∫ t

t1

Pπ(x) dx− u(t1)

]
dt

=

∫ t2

t1

f(t)

[∫
q∈Q

g(q)π(q, t)v(q, t) dq

]
dt−

∫ t2

t1

∫ t

t1

f(t)Pπ(x) dxdt− u(t1)

=

∫ t2

t1

f(t)

[∫
q∈Q

g(q)π(q, t)v(q, t) dq

]
dt−

∫ t2

t1

∫ t2

x
f(t)Pπ(x) dtdx− u(t1)

=

∫ t2

t1

f(t)

[∫
q∈Q

g(q)π(q, t)v(q, t) dq

]
dt−

∫ t2

t1

[1− F (x)]Pπ(x) dx− u(t1),
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where the third equation comes from switching the order of integration. Thus

REV (π, p)

=

∫
q∈Q

g(q)

[∫ t2

t1

f(t)π(q, t)v(q, t) dq

]
dt−

∫ t2

t1

[1− F (t)]

∫
q∈Q

g(q)π(q, t)v1(q)dqdt− u(t1)

=

∫
q∈Q

g(q)

[∫ t2

t1

f(t)π(q, t)

(
v(q, t)− v1(q)

1− F (t)

f(t)

)
dt

]
dq − u(t1)

=

∫
q∈Q

g(q)

[∫ t2

t1

f(t)π(q, t)v1(q)
[
φ(t) + ρ(q)

]
dt

]
dq − u(t1). (21)

The above derivation uses u(t1) as the “reference” points. Similarly, using a variant of Equation (16)
u(t) = u(t2) −

∫ t2
t Pπ(x) dx, we can derive an alternative form of the revenue with u(t2) as the reference

point:

REV (π, p) =

∫
q∈Q

g(q)

[∫ t2

t1

f(t)π∗(q, t)v1(q)
[
φ(t) + ρ(q)

]
dt

]
dq − u(t2). (22)

Note that Equation (21) and (22) are just different representations of the (same) revenue of mechanism
(π, p). Thus any convex combination of them also represents the same revenue. Using the constant c given
in the lemma as the combination coefficient, we have

REV (π, p) =c

[∫
q∈Q

g(q)

∫ t2

t1

f(t)π(q, t)v1(q)
[
φ(t) + ρ(q)

]
dtdq − u(t1)

]
+ (1− c)

[∫
q∈Q

g(q)

∫ t2

t1

f(t)π(q, t)v1(q)
[
φ(t) + ρ(q)

]
dtdq − u(t2)

]
=

∫ t2

t1

∫
q∈Q

[φc(t)− ρ(q)]π(q, t)f(t)g(q)v1(q) dqdt− cu(t1)− (1− c)u(t2).

Let Hc(·), Lc(·), hc(·), lc(·) be the corresponding functions when ironing the function φc(t) (detailed
defined in Appendix A).

By definition, we have hc(F (t)) = φc(t) and lc(F (t)) = φ+
c (t). So the first term in the right-hand side

of the above equation can be written as∫ t2

t1

∫
q∈Q

[φc(t) + ρ(q)]π(q, t)f(t)g(q)v1(q) dqdt

=

∫ t2

t1

∫
q∈Q

[
φ+
c (t) + ρ(q)

]
π(q, t)f(t)g(q)v1(q) dqdt

+

∫ t2

t1

∫
q∈Q

[hc(F (t))− lc(F (t))]π(q, t)f(t)g(q)v1(q) dqdt.

Using integration by parts, we can simplify the second term as follows:∫ t2

t1

∫
q∈Q

[hc(F (t))− lc(F (t))]π(q, t)f(t)g(q)v1(q) dqdt

=

∫ t2

t1

[hc(F (t))− lc(F (t))]Pπ(t) dF (t)

= [Hc(F (t))− Lc(F (t))]Pπ(t)|t2t1 −
∫ t2

t1

[Hc(F (t))− Lc(F (t))] dPπ(t)
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Because Lc is the “convex hull” of Hc, so Lc(0) = Hc(0) and Lc(1) = Hc(1). Thus the first term above is
simply 0. Therefore, we have

REV (π, p) =

∫ t2

t1

∫
q∈Q

[
φ+
c (t) + ρ(q)

]
π(q, t)f(t)g(q)v1(q) dqdt

−
∫ t2

t1

[Hc(F (t))− Lc(F (t))] dPπ(t)− cu(t1)− (1− c)u(t2). (23)

Now consider mechanism (π∗, p∗), which is feasible according to Lemma 8. This mechanism clearly
maximizes the first term in Equation (23) as π∗(q, t) = 1 if and only if φ+

c (t) + ρ(q) ≥ 0. We also
have u(t1) = 0 and u(t2) = v(t2) for this mechanism as shown in the proof of Lemma 8. Constraint
(17) requires u(t1) ≥ 0 and u(t2) ≥ v(t2), which implies that this mechanism also optimizes the last two
terms. As for the second term, note that Hc(F (t)) − Lc(F (t)) ≥ 0 by definition, and dPπ(t) ≥ 0 for any
feasible mechanism. Thus the second term is always non-negative. However, we claim that with mechanism
(π∗, p∗), this term achieves 0. Clearly, the only interesting case is when Hc(F (t))−Lc(F (t)) > 0. We will
show that dPπ∗(t) = 0 for this case. In this case, t must lie in an ironed interval I . Thus Lc(z) is linear in
the interval I , where z = F (t). This implies that φ+

c (t) = lc(z) = L′c(z) is constant. So

Pπ∗(t) =

∫
q∈Q

π∗(q, t)g(q)v1(q) dq =

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dq

is also constant in the interval I , which leads to dPπ∗(t) being 0.
Therefore, the mechanism (π∗, p∗) optimizes all the 4 terms in Equation (23) simultaneously, thus is an

optimal feasible mechanism.
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APPENDIX
A Ironing
A.1 Formal Description of the Ironing Procedure
Definition 4 (Ironing [17]). Let t be the buyer’s type with CDF F (t) and PDF f(t), and φ(t) be any
function of the type t, called a virtual value function. The ironed function φ+(t) can be obtained through
the following process:

1. Let z = F (t) be another random variable and define h(z) = φ(F−1(t)), where F−1(t) is the inverse
function of F (t).

2. Define H : [0, 1] 7→ R to be the integral of h(z):

H(z) =

∫ z

0
h(r) dr.

3. Define L : [0, 1] 7→ R be the “convex hull” of function H:

L(z) = min
z1,z2,γ

{γH(z1) + (1− γ)H(z2)},

where z1, z1, γ ∈ [0, 1] and γz1 + (1− γ)z2 = z.

4. Let l(z) be the derivative of L:

l(z) = L′(z).

5. Obtain φ+(t) by variable substitution:

φ+(t) = l(z) = l(F (t)).

The above ironing trick is widely used in the literature. The process is illustrated in Figure 2. In
Myerson’s original work [17], he only considered ironing for the lower virtual value function φ(t) = t −
1−F (t)
f(t) . However, this procedure generalizes to any virtual value function.

𝜙(𝑡)
In our setting, 𝜙(𝑡) can be any of 
the three virtual values.

ℎ(𝑧)
A function that takes the inverse 
CDF of t as variable. 𝑧 ∈ [0,1]

𝐻(𝑧)
Integral of ℎ(𝑧).

𝜙+(𝑡)
𝜙+ 𝑡 is the ironed version of

𝜙(𝑡).

𝑙(𝑧)
Derivative of 𝐿(𝑧).

𝐿(𝑧)
Convex hull of 𝐻(𝑧).

𝐿(𝑧) ≤ 𝐻(𝑧)

ℎ(𝑧) = 𝜙(𝐹−1 𝑡 ) 𝐻(𝑧) = න
0

Z

ℎ 𝑟 ⅆ𝑟

Get convex hull

𝑙 z = 𝐿′ z𝜙+ t = 𝑙(𝐹 𝑡 )

(a) Ironing Procedure

(b) Taking convex hull

Figure 2: The ironing process
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A.2 Proof of Lemma 3: Monotonicity of Mixed Virtual Values

Lemma (Restatement of Lemma 3). Define mixed virtual value φc(t) = cφ(t) + (1− c)φ(t). Then we have

for any 0 ≤ c < c′ ≤ 1, φ+
c (t) ≥ φ+

c′(t) for any t. Moreover, φ+
1 (t) = φ+(t) < t < φ

+
(t) = φ+

0 (t),∀t ∈
(t1, t2).

Proof. We first prove the monotonicity of φ+
c (t) in c. We will instead consider the function φ in a new

variable space z = F (t) ∈ [0, 1], as opposed to the original space t. Therefore, let lc(z) = φ+
c (F−1(z)) and

hc(z) = φc(F
−1(z)). Recall that the ironing procedure satisfies Lc(z) =

∫ z
0 lc(r) dr is the convex hull of

Hc(z) =
∫ z

0 hc(r) dr.
Note that during the ironing of function Hc(z), it divided the compact variable space [0, 1] into a finite

number of small intervals with breaking points 0 = z0, z1, · · · , zk = 1 on which for any interval [zi, zi+1]:
(1) either Hc(z) = Lc(z) for any z ∈ [zi, zi+1]; (2) lc(z) is a constant and Hc(z) ≥ Lc(z) for any
z ∈ [zi, zi+1]. In later case, we will call [zi, zi+1] an ironing interval and say Hc(z) is at ironing state in this
interval. We call zi the ironing starting point and zi+1 the ironing ending point. Similarly, in former case,
we call [zi, zi+1] an un-ironing interval and say Hc(z) is at un-ironing state in this interval. Note that in this
case, zi will be an ironing ending point and zi+1 will be an ironing starting point. In fact, in the sequence
0 = z0, z1, · · · , zk = 1, ironing starting and ending points show up alternately. The following are a few
useful properties that will be needed.

1. If z 6= 0, 1 is an ironing starting or ending point, then hc(z) = lc(z) and Hc(z) = Lc(z).

2. if [zi, zi+1] is an ironing interval forHc(z), then we have lc(z) = Hc(zi+1)−Hc(zi)
zi+1−zi for any z ∈ [zi, zi+1]

3. For any z ∈ [0, 1] we have hc(z) = t+ F (t)
f(t) −

c
f(t) ≥ t+ F (t)

f(t) −
c′

f(t) = hc′(z) where t = F−1(z).

4. Due to property (3) above, for any z we have Hc(z) − Hc(z) ≥ Hc′(z) − Hc′(z) for any z > z.
Moreover, Hc(0) = Hc′(0) = 0.

Similarly, we can also have a sequence of ironing starting and ending points for the function Hc′(z). Let
us merge all the ironing starting and ending points of Hc(z) and Hc′(z) together, and list them in order as
0 = z0, z1, · · · , zk = 1. Notably, within any interval [zi, zi+1], both function Hc(z) and Hc′(z) can only
have a single state, either ironing state or un-ironing state.

We first prove lc(0) ≥ lc′(0). This follows a case analysis about whether 0 is an ironing ending or
starting point for Hc.

• If 0 is an ironing ending point for both Hc, Hc′ , meaning both functions are not on ironing state at 0
and its neighborhood, we know lc(0) = hc(0) ≥ hc′(0) = lc′(0), as desired.

• If 0 is an ironing ending point only for Hc but an ironing starting point for Hc′ , this means Hc is on
un-ironing state at 0 and its neighborhood whereas Hc′ is on ironing state. Then we have we know
lc(0) = hc(0) ≥ hc′(0) ≥ lc′(0), as desired.

• If 0 is an ironing starting point for Hc (it does not matter it is an ironing ending or starting point for
Hc′), this means Hc is on ironing state at 0 and its neighborhood. Let z ≥ z1 be the immediate next
ironing ending point for Hc. Suppose, for the sake of contradiction, that lc(0) < lc′(0). We thus have

Hc(z)−Hc(0) = lc(0) · (z − 0) by Property (2) above

< lc′(0) · (z − 0) by assumption

≤ Lc′(z)− Lc′(0) by convexity of Lc′

≤ Hc′(z)−Hc′(0) Lc′(0) = Hc′(0), Lc′(z) ≤ Hc′(z)

This contradicts Property (4) above. Therefore, we must lc(0) ≥ lc′(0), as desired.
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Next, we will prove that for any i = 0, · · · , k − 1 and any interval [zi, zi+1] — more conveniently
denoted as [a, b] with interval lower bound a and upper bound b — we will have lc(z) ≥ lc′(z) for any
z ∈ [a, b].

Our proof uses an induction argument over the intervals indexed by i. Specifically, suppose we already
have lc(a) ≥ lc′(a), we will show lc(z) ≥ lc′(z) for any z ∈ [a, b]. This, together with the base case for
a = 0 as proved above, will prove the monotonicity of lc(z) on c.

The proof uses a case analysis about whether then ending point b of the interval [a, b] is an ironing
starting point or ending point for Hc or for Hc′ . Note that there will be four cases here. This is because we
do not know whether b is an ironing point onHc or onHc′ and thus have to consider both possibilities. Here,
we will use the crucial property that both Hc and Hc′ will have the same state, i.e., ironing or un-ironing
state, within [a, b] due to our choice of a, b.

• If b is an ironing ending point for function Hc′ , we have for any z ∈ [a, b]

lc(z) ≥ lc(a) by convexity of Lc
≥ lc′(a) by induction hypothesis

= lc′(z) Hc′ is at ironing state in [a, b]

• If b is an ironing starting point for function Hc′ , this means Hc′ is at un-ironing state within [a, b]. If
Hc is also at un-ironing state within [a, b], then we have lc(z) = hc(z) ≥ hc′(z) = lc′(z) as desired.
Thus, we now consider the case that Hc is at ironing state within [a, b]. Let z ≥ b be the immediate
next ironing ending point for Hc. Suppose, for the sake of contradiction, that lc(z) < lc′(z) for some
z ∈ [a, b]. Since Hc is at ironing state within [a, z], we know that lc(r) = lc(z) < lc′(z) ≤ lc′(r) for
any r ∈ [b, z] since lc′(z) is monotone non-decreasing in z. Therefore, we have

Hc(z)−Hc(b) ≤ Lc(z)− Lc(b) Lc(z) = Hc(z), Lc(b) ≤ Hc(b)

≤ lc(b) · (z − b) Hc is at ironing state in [a, z]

< lc′(b) · (z − b) by assumption

≤ Lc′(z)− Lc′(b) by convexity of Lc′

≤ Hc′(z)−Hc′(b) b is an ironing starting point for Hc′

This contradicts Property (4) above. Therefore, we must lc(z) ≥ lc′(z) for all z ∈ [a, b], as desired.
Note that one corner case for this situation is when z happens to equal b, i.e., b is both the ironing
starting point of Hc′ and ironing ending point of Hc. Our argument above does not apply to this
corner situation since the strict “<” above becomes “=”. However, this corner case can be proved via
a simpler argument: ∀z ∈ [a, b], lc(z) = lc(b) = hc(b) ≥ hc′(b) ≥ hc′(z) = lc′(z) where the second
equality is due to the fact that b is an ironing ending point of Hc and the last equality is due to the fact
that Hc′ is at un-ironing state within [a, b].

• If b is an ironing starting point for function Hc, this means Hc is at un-ironing state within [a, b]. If
Hc′ is also at un-ironing state within [a, b], then we have lc(z) = hc(z) ≥ hc′(z) = lc′(z) as desired.
If Hc′ is at ironing state within [a, b], then we have lc(z) ≥ lc(a) ≥ lc′(a) = lc′(z) as desired.

• Finally, if b is an ironing ending point for functionHc, this meansHc is at ironing state within [a, b]. If
Hc′ is also at ironing state within [a, b], then we have lc(z) = lc(a) ≥ lc′(a) = lc′(z) as desired. IfHc′

is at the un-ironing state within [a, b], then we have lc(z) = lc(b) = hc(b) ≥ hc′(b) ≥ lc′(z) where:
(1) the first equality is because Hc is at ironing state within [a, b]; (2) second equality is because b is
an ironing ending point for Hc and the last inequality is because Hc′ is at un-ironing state within [a, b]
and thus hc′(z) = lc′(z) is monotone non-decreasing in z.
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Finally, we prove φ+
1 (t) = φ+(t) < t < φ

+
(t) = φ+

0 (t), ∀t ∈ (t1, t2). We only show φ+(t) ≤ t,∀t, as
the other part follows from similar arguments.

Let H and L be the corresponding functions defined in Definition 4 when ironing the lower virtual
value function φ(t). Define an ironed interval I = (a, b) ⊂ [0, 1] to be an interval with H(a) = L(a) and
H(b) = L(b) but H(z) > L(z) for all z ∈ I . Thus the interval [0, 1] can be partitioned into a set of disjoint
ironed and non-ironed intervals.

For any t, if the corresponding z = F (t) falls into a non-ironed interval, then we have H(z∗) = L(z∗)
for all z∗ in the same interval. So φ+(t) = L′(z) = H ′(z) = φ(t). Since φ(t) ≤ t, we have φ+(t) ≤ t.

Therefore the only interesting case is when the corresponding z = F (t) falls into an ironed interval
I = (a, b). In this case, function L is linear in I , and φ+(z) = L′(z) = L′(a) = φ+(a). But H ′(a) > L′(a)
since I is an ironed interval andH(a+ε) > L(a+ε) for any arbitrarily small ε. Therefore, φ+(t) = L′(z) =
L′(a) < H ′(a) = φ(F−1(a)) ≤ F−1(a) < F−1(z) = t. Thus, we can conclude φ+(t) ≤ t,∀t.

B Proof of Technical Lemma 2
Lemma (Non-Negative Payments). [Restatement of Lemma 2] There exists an optimal IC and IR mechanism
in which pt ≥ 0 for all t ∈ T .

Proof. Let (π, p) be any IC and IR optimal mechanism. We construct a different mechanism (π∗, p∗) which
satisfies the same constraints and remains optimal but p∗t ≥ 0 for any t. For convenience, we divide buyer
types into two sets: T+ = {t ∈ T : pt ≥ 0} is the set of types who have non-negative payments in
mechanism (π, p) and T− = T \ T+ is the set of types who have negative payments.

The (π∗, p∗) is constructed from (π, p) as follows:

1. The mechanism for any t ∈ T+ remains the same: for any t ∈ T+, let p∗t = pt and π∗t = πt for all
q ∈ Q;

2. The mechanism for any t ∈ T− becomes no information and no payment: for any t ∈ T−, let p∗t = 0,
and π∗t be the mechanism that reveals no information (e.g., sending a single signal).

We observe that the constructed mechanism (π∗, p∗) has three useful properties: (1) it yields revenue at least
that of (π, p) by construction; (2) all buyer types’ payments are non-negative now; (3) individual rationality
constraint is satisfied for every buyer type. The third property follows from the construction: the utility
of any buyer type t ∈ T+ did not change and the utility of a type t ∈ T− now pays 0 and receives no
information, so IR constraint is always satisfied.

However, the major issue with the constructed mechanism (π∗, p∗) is that it may not be incentive com-
patible, i.e., bidder type t may want to misreport t′. We first observe that the IC constraint for any t ∈ T+

remains satisfied. First of all, any type t ∈ T+ would not have incentive to deviate to another type t′ ∈ T+

due to the original IC constraint of (π, p) and the fact that the mechanism for types in T+ remains the same.
We claim that any type t ∈ T+ would not have incentive to deviate to a type t′ in T− as well. This is because
the information for t′ ∈ T− is less (since Seller reveals no information now) and the payment is more (since
p∗t′ = 0 > pt′). Therefore, if in mechanism (π, p) buyer type t does not have incentives to deviate to t′, it
remains to be true for (π∗, p∗).

However, buyer type t ∈ T− may indeed have incentive to deviate to some type t′ ∈ T+ now, since they
may want to receive beneficial information under some amount of payment. Here comes our last step of the
construction — adjusting the above (π∗, p∗) to make any type t ∈ T− to also satisfy IC without decreasing
the revenue neither violating the IR and obedient constraint. To do so, for any t ∈ T−, let t′ ∈ T+ be
the most profitable deviation of type t, i.e., the deviation that maximizes type t’s utility. We adjust (π∗, p∗)
simply by adopting the scheme of type t′ to the type t — i.e., resetting π∗t = πt′ and p∗t = pt′ . After such
adjustment, the IC constraint for any type t ∈ T− is satisfied by construction because each of these types
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has indeed their most profitable mechanism. Meanwhile, this will also maintain the IC constraint for any
type t ∈ T+ since the adjustment did not add more menus. Note that IR constraint remains satisfied since
the utility of any type t ∈ T+ is non-decreasing in his adjustment. The revenue did not decrease as the
payment p∗(t) did not decrease in our adjustment for any t ∈ T+. The only non-obvious part to verify
is the obedience constraint. Indeed, the obedience constraint may be violated for type t ∈ T− during this
adjustment since the recommended optimal action for the t′ ∈ T+ might not be optimal for t. To achieve
obedience, we simply “rename” the recommended action for t to indeed be his optimal action. This restores
the obedience constraint for t. Note that, this will either not change the revealed information or lead to less
revealed information (when type t’s optimal actions are the same under π(·, t′)), and thus will not hurt the
IC constraints.

C Characterization of Feasible Mechanisms — Proof of Lemma 4
In this appendix section, we show that the conditions in Lemma 4 are also necessary for any feasible mech-
anism. We start by analyzing the IC Constraints. First, Constraint (11) can be re-arranged as follows:∫

q∈Q
[π(q, t)− π(q, t′)] · g(q)v(q, t) dq ≥ p(t)− p(t′).

Therefore, the IC constraint implies the following two inequalities about any two types t, t′:∫
q∈Q

[π(q, t)− π(q, t′)] · g(q)v(q, t) dq ≥ p(t)− p(t′), (24)∫
q∈Q

[π(q, t′)− π(q, t)] · g(q)v(q, t′) dq ≥ p(t′)− p(t). (25)

Combining Inequality (24) and (25), we obtain the following constraint for any pair of types t, t′:∫
q∈Q

[π(q, t′)− π(q, t)] · g(q)v(q, t) dq ≤ p(t′)− p(t) ≤
∫
q∈Q

[π(q, t′)− π(q, t)] · g(q)v(q, t′) dq.

Therefore, the right-hand side of the above inequality must be at least its left-hand side. This implies the
following necessary condition for any IC information selling mechanism (π, p). That is, for any t, t′ ∈ T ,
we have

0 ≤
∫
q∈Q

[π(q, t′)− π(q, t)] · g(q)[v(q, t′)− v(q, t)] dq

= [t′ − t]
∫
q∈Q

[π(q, t′)− π(q, t)] · g(q)v1(q) dq (26)

Recall the definition of Pπ(t) (14)

Pπ(t) =

∫
q∈Q

π(q, t) · g(q)v1(q) dq.

Note that Pπ(t) can be interpreted as the expected weighted probability of being recommended the active
action 1 where the weights are v1(q). A simple case analysis for t′ > t and t′ < t implies that Inequality (26)
is equivalent to that Pπ(t) is monotone non-decreasing in t. We thus term this the signaling monotonicity.
This is analogous to Myerson’s allocation monotonicity condition as in auction design, but is different.
Specifically, in Myerson’s optimal auction, the value of an item directly depends on buyer type t with no
weight associated with it. In information selling, the value of taking the active action will depend on the
utility coefficient v1(q).
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We now derive a relation between signaling scheme π and payment rule p for any IC mechanism. We
start by analyzing Buyer’s utility. Note that any buyer of type t will derive non-zero utilities only from
the active action recommendation (i.e., action 1) since the passive action always leads to buyer utility 0.
Therefore, as we defined in (5), Buyer of type t has the following utility:

Utility of Buyer Type t : u(t) =

∫
q∈Q

[g(q)π(q, t)v(q, t)] dq − p(t)

Re-arranging Inequality (24), we have

u(t) =

∫
q∈Q

[g(q)π(q, t)v(q, t)] dq − p(t)

≥
∫
q∈Q

[
g(q)π(q, t′)v(q, t)

]
dq − p(t′) by Ineq. (24)

=

∫
q∈Q

[
g(q)π(q, t′)v(q, t)

]
dq + u(t′)−

∫
q∈Q

[
g(q)π(q, t′)v(q, t′)

]
dq

=

∫
q∈Q

[
g(q)π(q, t′)[v(q, t)− v(q, t′)]

]
dq + u(t′) Algebraic Manipulation

=(t− t′)Pπ(t′) + u(t′) Def. of Pπ(t) and v(q, t)

As a result, Inequality (24) implies u(t) − u(t′) ≥ (t − t′)Pπ(t′). Together with a similar derivation
from Inequality (25), we have the following inequality

(t− t′)Pπ(t′) ≤ u(t)− u(t′) ≤ (t− t′)Pπ(t).

Note that the above inequality holds for any t, t′. Therefore, by letting t′ → t and invoking that fact that P (t)
is monotone and continuous, we can integrate the above equation from t1 to t and obtain the inequalities:∫ t

t1

Pπ(x) dx ≤ u(t)− u(t1) ≤
∫ t

t1

Pπ(x) dx

This implies the following utility identify

u(t) = u(t1) +

∫ t

t1

Pπ(x) dx.

Note that both the signaling monotonicity and the utility identify above are the necessary outcomes of the
incentive compatibility constraints, more precisely, the outcome of Constraints (24) and (25).

D Omitted Proofs in Section 4.2
D.1 Proof of Technical Lemma 6
Lemma (Restatement of Lemma 6). Define

V ′L = −
∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx and V ′H = −
∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx.

Then the three conditions v(t2) ≤ VL, v(t2) ≥ VH , and VL < v(t2) < VH are equivalent to v(t1) ≤ V ′L,
v(t1) ≥ V ′H , and V ′L < v(t1) < V ′H , respectively.
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Proof. We will only show that v(t2) ≤ VL is equivalent to v(t1) ≤ V ′L, as the other two cases follows from
similar arguments.

By definition, we have

v(t2) =

∫
q∈Q

g(q)v1(q)[t2 + ρ(q)] dx = v(t1) + (t2 − t1)

∫
q∈Q

g(q)v1(q) dq.

Thus v(t2) ≤ VL can be written as:

v(t1) + (t2 − t1)

∫
q∈Q

g(q)v1(q) dq ≤ max{v(t1), 0}+

∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx.

Some re-arrangements yields:

v(t1)−max{v(t1), 0} ≤
∫ t2

t1

∫
q:ρ(q)≥−φ+(x)

g(q)v1(q) dqdx− (t2 − t1)

∫
q∈Q

g(q)v1(q) dq,

which is equivalent to:

min{v(t1), 0} ≤ −
∫ t2

t1

∫
q:ρ(q)≤−φ+(x)

g(q)v1(q) dqdx = V ′L.

Note that the right-hand side is always non-positive. So the left-hand side has to be v(t1). Thus the condition
v(t2) ≤ VL is equivalent to v(t1) ≤ V ′L, and also implies that v(t1) ≤ 0.

D.2 Proof of Technical Lemma 7
Lemma (Restatement of Lemma 7). If VL < v(t2) < VH , there exists a constant c ∈ (0, 1) that satisfies
Equation (20).

Proof. Lemma 6 implies that the condition v(t2) < VH is equivalent to the following:

v(t1) < −
∫ t2

t1

∫
q:ρ(q)≤−φ+(t)

g(q)v1(q) dqdt. (27)

The right-hand side of the above inequality is clearly non-positive. Thus v(t1) ≤ 0 and max{v(t1), 0} = 0.
The condition VL < v(t2) < VH can be written as:∫ t2

t1

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dqdt < v(t2) <

∫ t2

t1

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dqdt.

When c = 0, we have −φ+(t) = −φ+
c (t) and∫ t2

t1

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dqdt =

∫ t2

t1

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dqdt < v(t2).

When c = 1, we have −φ+
(t) = −φ+

c (t) and∫ t2

t1

∫
ρ(q)≥−φ+c (t)

g(q)v1(q) dqdt =

∫ t2

t1

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dqdt > v(t2).

Since the distribution of ρ does not contain a point mass,
∫ t2
t1

∫
ρ(q)≥−φc(t) g(q)v1(q) dqdt is continuous

in c. Thus we must have c ∈ (0, 1) that satisfies Equation (20).
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E Optimal Mechanism for Case 1 (v(t2) ≤ VL)
In this section, we derive the optimal mechanism for the first case of Theorem 1. Similar to Section 4.2,
we will first prove that our mechanism is feasible. Then we show it achieves the optimal revenue among all
feasible mechanisms.

Lemma 9. The threshold mechanism (π∗, p∗) defined according to φ+(t) is feasible.

Proof. Using the characterization of Lemma (4), it suffices to show that the given mechanism satisfies
Constraints (15)-(18). Since the ironed lower virtual value function φ+(t) is monotone non-decreasing, we
know that the threshold θ∗t = −φ+(t) is monotone non-increasing in t. This implies that

Pπ∗(t) =

∫
q∈Q

π∗(q, t)g(q)v1(q) dq =

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dq

is monotone non-decreasing in t since a larger t leads to a smaller integral lower bound, satisfying Constraint
(15).

The utility function is, by definition,

u(t) =

∫
q∈Q

[g(q)π∗(q, t)v(q, t)] dq − p∗(t) =

∫ t

t1

Pπ∗(x) dx.

which implies u(t1) = 0, and

u(t) = u(t1) +

∫ t

t1

Pπ∗(x) dx,

satisfying Constraint (16).
For Constraint (17), we already have u(t1) = 0. Now we prove u(t2) ≥ v(t2). Lemma 6 shows that

the condition v(t2) ≤ VL is equivalent to v(t1) ≤ V ′L. Also, it is easy to see that V ′L ≤ 0, which implies
v(t1) ≤ 0. So max{v(t1), 0} = 0, and

u(t2) =

∫ t2

t1

Pπ∗(x) dx =

∫ t2

t1

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dqdx

=

∫ t2

t1

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dqdx+ max {0, v(t1)}

≥ v(t2)

Finally, we argue that the payment is non-negative, i.e., Constraint (18) is satisfied. By lemma 3, we
have for all t ∈ T , φ+(t) ≤ t.

Let t′ be any number in the interval [φ+(t), t]. Thus

p∗(t)− p∗(t′) =

∫
q∈Q

[g(q)π∗(q, t)v(q, t)] dq −
∫
q∈Q

[π∗(q, t′)g(q)v(q, t′)] dq −
∫ t

t′
Pπ∗(x) dx

=

∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t) dq −
∫
q:ρ(q)≥−φ+(t′)

g(q)v(q, t′) dq −
∫ t

t′
Pπ∗(x) dx.

When ρ(q) ≥ −φ+(t), we have v(q, t′) = v1(q)[t′+ρ(q)] ≥ v1(q)[t′−φ+(t)] ≥ 0, where the last inequality
is because of the choice of t′. So the second term in the above equation satisfies:∫

q:ρ(q)≥−φ+(t′)
g(q)v(q, t′) dq =

∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t′) dq −
∫
q:−φ+(t)≤ρ(q)<−φ+(t′)

g(q)v(q, t′) dq

≤
∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t′) dq.
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Thus,

p∗(t)− p∗(t′) ≥
∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t) dq −
∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t′) dq −
∫ t

t′
Pπ∗(x) dx

=

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q)(t− t′) dq −
∫ t

t′
Pπ∗(x) dx

=(t− t′)Pπ∗(t)−
∫ t

t′
Pπ∗(x) dx

≥0,

where the last inequality is due to the monotonicity of Pπ∗(t).
Therefore, the payment function p∗(t) is monotone non-decreasing in the interval [φ(t), t]. Since the set

of intervals {[φ(t), t] | t ∈ T} covers the interval T , we conclude that p(t) is monotone non-decreasing in
T . Therefore, to prove that p(t) ≥ 0 for all t ∈ T , it suffices to show that p(t1) ≥ 0. Indeed, we have

p∗(t1) =

∫
q∈Q

π∗(q, t1)g(q)v(q, t1) dq − u(t1) =

∫
q:ρ(q)≥−φ+(t1)

g(q)v(q, t1) dq ≥ 0.

The inequality holds because when ρ(q) ≥ −φ+(t1) ≥ −t1, we get v(q, t1) = v1(q)(t1 + ρ(q)) ≥ 0.

Now we prove that the mechanism defined according to φ+(t) is optimal, i.e., achieves the maximum
possible revenue among all feasible mechanisms.

Lemma 10. If v(t2) ≤ VL, the threshold mechanism with threshold signaling function θ∗(t) = −φ+(t) and
the following payment function represents an optimal mechanism:

p∗(t) =

∫
q∈Q

π∗(q, t)g(q)v(q, t) dq −
∫ t

t1

∫
q∈Q

π∗(q, x)g(q)v1(q) dq dx.

where π∗ is determined by θ∗(t) as in Definition 1.

Proof. According to the proof of Lemma 1, the revenue of any feasible mechanism can be written as:

REV (π, p) =

∫
q∈Q

g(q)

[∫ t2

t1

f(t)π(q, t)v1(q)
[
φ(t) + ρ(q)

]
dt

]
dq − u(t1).

Let H(·), h(·), L(·), and l(·) the corresponding function when ironing the virtual value φ(t). We can write
the first term of the revenue function as follows:∫

q∈Q

∫ t2

t1

[
φ(t) + ρ(q)

]
f(t)π(q, t)g(q)v1(q) dtdq

=

∫
q∈Q

∫ t2

t1

[
φ+(t) + ρ(q)

]
f(t)π(q, t)g(q)v1(q) dtdq

+

∫
q∈Q

∫ t2

t1

[h(F (t))− l(F (t))]f(t)π(q, t)g(q)v1(q) dtdq.
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This is because by definition, φ+(t) = l(F (t)) and φ(t) = h(F (t)). Using integration by parts, we can
simplify the second term∫

q∈Q

∫ t2

t1

[h(F (t))− l(F (t))]f(t)π(q, t)g(q)v1(q) dtdq

=

∫ t2

t1

[h(F (t))− l(F (t))]Pπ(t) dF (t)

=[H(F (t))− L(F (t))]Pπ(t)|t2t1 −
∫ t2

t1

[H(F (t))− L(F (t))] dPπ(t)

Because L is the “convex hull” of H on [0, 1], L(0) = H(0) and L(1) = H(1). Thus the term [H(F (t))−
L(F (t))]Pπ(t)|t2t1 is simply 0, and we have

REV (π, p) =

∫
q∈Q

∫ t2

t1

[
φ+(t) + ρ(q)

]
f(t)π(q, t)g(q)v1(q) dtdq

−
∫ t2

t1

[H(F (t))− L(F (t))] dPπ(t)− u(t1)

Now consider mechanism (π∗, p∗). π∗ maximizes the first term since π∗(q, t) = 1, ∀q, t with ρ(q) +
φ+(t) ≥ 0. Also, by definition, we have

u(t) =

∫
q∈Q

π∗(q, t)g(q)v(q, t) dq − p(t) =

∫ t

t1

Pπ∗(x) dx.

Thus we have u(t1) = 0.
As for the second term, note that H(F (t)) − L(F (t)) ≥ 0 by definition, and dPπ(t) ≥ 0 for any

feasible mechanism. Thus the second term is always non-negative. However, we claim that with mechanism
(π∗, p∗), this term is actually 0. The only interesting case is when H(F (t))− L(F (t)) > 0. We will show
that dPπ∗(t) = 0. In this case, t must lie in an ironed interval I . Thus L(z) is linear in the interval I , where
z = F (t). This implies that φ+(t) = l(z) = L′(z) is constant. So

Pπ∗(t) =

∫
q∈Q

π∗(q, t)g(q)v1(q) dq =

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dq

is also constant in the interval I , which leads to dPπ∗(t) being 0.
Therefore, mechanism (π∗, p∗) optimizes all 3 terms in Equation (21) simultaneously, hence optimal.

Note that the above derivation of REV (π, p) used the equality u(t) =
∫ t
t1
Pπ(x) dx + u(t1) to expand

u(t) with t1 as the reference point. This is also the original Myerson’s approach. This approach works in
Myerson’s optimal auction design because there Buyer’s surplus equals Buyer’s utility from participating the
mechanism since the only outside option is to not purchase resulting in utility 0. Therefore, in Myerson’s
optimal auction design, u(t1) ≥ 0 guarantees IR constraint, i.e., u(t) ≥ 0, for any feasible mechanism.
This however, ceases to be true in our setup because s(t1) ≥ 0 does not guarantee s(t2) ≥ 0. In fact,
Lemma 5 shows that s(t) is a concave function with s(t) as the maximum surplus where t is a zero of v(t)
function. Nevertheless, we know that the optimal mechanism must satisfy either s(t1) = 0 or s(t2) = 0
since otherwise, we can shift the entire s(t) curve down by a constant — achieved by asking each buyer
type to pay the same additional amount — until one of them reaches 0.
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F Optimal Mechanism for Case 2 (v(t2) ≥ VH)
In this section, we will discuss the second case of our main result, i.e., when v(t2) ≥ VH . In this case, if we
still use t1 as the reference point and follow the same analysis of Case 1, we will end up having a mechanism
with u(t2) < v(t2), hence infeasible. To solve this problem, we write the revenue expression REV (π, p)
using t2 as the reference point. Although the resulting mechanism looks different, the approach for deriving
it is quite similar to that in the proof of Case 1.

We still start with showing the feasibility of the given mechanism (π∗, p∗).

Lemma 11. The threshold mechanism (π∗, p∗) defined according to φ
+

(t) is feasible.

Proof. According to Lemma (4), it suffices to show that that the given mechanism satisfies Constraints (15)-
(18). Since the ironed upper virtual value function φ

+
(t) is monotone non-decreasing, we know that the

threshold θ∗(t) = −φ+
(t) is monotone non-increasing in t. This implies that

Pπ∗(t) =

∫
q∈Q

π∗(q, t)g(q)v1(q) dq =

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q) dq

is monotone non-decreasing in t since a larger t leads to a larger−φ+
(t) and thus larger integral domain for

q. So Constraint (15) is satisfied.
We now prove that (π∗, p∗) satisfies Constraint (16). Plugging the payment function π∗(t) into the

definition of u(t), we get

u(t) =

∫
q∈Q

g(q)π∗(q, t)v(q, t) dq − p∗(t) = v(t2)−
∫ t2

t
Pπ∗(x) dx.

It is easy to see that u(t2) = v(t2), which can be plugged back to the above equality to obtain Constraint
(16).

For Constraint (17), we already have u(t2) = v(t2). And

u(t1) = v(t2)−
∫ t2

t1

Pπ∗(x) dx ≥ max{v(t1), 0}+

∫ t2

t1

Pπ∗(x) dx−
∫ t2

t1

Pπ∗(x) dx ≥ 0,

where the inequality is due to the condition v(t2) ≥ VH .
Finally, we show that the payment p∗(t) is non-negative i.e., p∗(t) satisfies Constraint (18). By lemma

3, we have for all t ∈ T , t ≤ φ+
(t).

For any t > t1 and t′ ∈ [t, φ
+

(t)], we have

p∗(t′)− p∗(t) =

∫
q∈Q

π∗(q, t′)g(q)v(q, t′) dq −
∫
q∈Q

g(q)π∗(q, t)v(q, t) dq −
∫ t′

t
Pπ∗(x)dx

=

∫
q:ρ(q)≥−φ+(t′)

g(q)v(q, t′) dq −
∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t) dq −
∫ t′

t
Pπ∗(x) dx. (28)

Observe that φ
+

(t) ≤ φ+
(t′) since t ≤ t′. So the first term in the right-hand side can be written as:∫

q:ρ(q)≥−φ+(t′)
g(q)v(q, t′) dq =

∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t′) dq +

∫
q:−φ+(t′)≤ρ(q)<−φ+(t)

g(q)v(q, t′) dq.
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When ρ(q) < −φ+
(t), we have v(q, t′) = v1(q)[t′+ ρ(q)] ≤ v1(q)[t′− φ+

(t)] ≤ 0, where the inequality is
due to the choice of t′. Therefore, the second term in the right-hand side of the above equation is negative.
As a result, ∫

q:ρ(q)≥−φ+(t′)
g(q)v(q, t′) dq ≤

∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t′) dq.

Combining with Equation (28), we get

p∗(t′)− p∗(t) ≤
∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t′) dq −
∫
q:ρ(q)≥−φ+(t)

g(q)v(q, t) dq −
∫ t′

t
Pπ∗(x) dx

=

∫
q:ρ(q)≥−φ+(t)

g(q)v1(q)(t′ − t) dq −
∫ t′

t
Pπ∗(x) dx

=(t′ − t)Pπ∗(t)−
∫ t′

t
Pπ∗(x) dx

≤0.

This shows that p∗(t) is monotone non-increasing in the interval [t, φ
+

(t)] for any t > t1. Since set of
intervals {[t, φ+

(t)] | t ∈ T} covers interval T , we can conclude that p∗(t) is monotone non-increasing in
the entire interval T .5 Thus, to show that the payment is always non-negative, we only need to prove that
p∗(t2) ≥ 0. Indeed,

p∗(t2) =

∫
q∈Q

g(q)π∗(q, t2)v(q, t2) dq − v(t2) +

∫ t2

t2

Pπ∗(x) dx

=

∫
q∈Q

g(q)π∗(q, t2)v(q, t2) dq −
∫
q∈Q

g(q)v(q, t2) dq

= −
∫
q:ρ(q)<−φ+(t2)

g(q)v(q, t2) dq.

When ρ(q) < −φ+
(t2) < −t2, we have v(q, t2) = v1(q)[t2 + ρ(q)] < 0. Thus p∗(t2) ≥ 0.

5Similar techniques are also used to proved existence of solutions for differential equations.
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G Threshold Mechanisms with Partial Recommendations
We assumed that the probability distribution of ρ does not have point masses in the main body of the paper.
This is to ensure the existence of the constant c in Case 3 of Theorem 1. But if the distribution of ρ has
point masses, such a c may not exist. In this case, we will need to slightly modify our mechanism and
incorporate partial recommendations. If such a c does not exist, it must be that both the distributions of ρ
and φ+

c contains point masses, more specifically, the measure of {(ρ, t) | ρ(q) = φ+
c (t) = ζ} is non-zero

for some ζ.
For any c ∈ [0, 1], let φc(t) = cφ(t) + (1− c)φ(t) be the mixed virtual value function and

Y (c) =

∫ t2

t1

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dqdt

be a function of c.
We first prove the monotonicity of Y (c). As shown in Lemma 3, ∀0 ≤ c < c′ ≤ 1, we have φ+

c (t) ≥
φ+
c′(t) ∀t. Thus, when c is increasing, φ+

c (t) is (weakly) decreasing and the threshold −φ+
c (t) is (weakly)

increasing. So the function Y (c) will integrate a non-negative function g(q)v1(q) over a smaller region of q
and is (weakly) decreasing.

Next, we argue that Y (c) is left-continuous. By monotoniciy, we know that Y (c) is continuous almost
everywhere. For any c ∈ (0, 1) and any arbitraryly small positive ε, we have

lim
β→c−

Y (β)− Y (c)

= lim
ε→0+

Y (c− ε)− Y (c)

= lim
ε→0+

∫ t2

t1

∫
q:ρ(q)≥−φ+c−ε(t)

g(q)v1(q) dqdt−
∫ t2

t1

∫
q:ρ(q)≥−φ+c (t)

g(q)v1(q) dqdt

= lim
ε→0+

∫ t2

t1

∫
q:−φ+c−ε(t)≤ρ(q)<−φ+c (t)

g(q)v1(q) dqdt

= 0

where the last equation is because whenever there is a point mass such that the measure of {(ρ, t) | ρ(q) =
φ+
β (t) = ζ} is non-zero for some β < c, we can always increase the lower bound of the integral to exclude

this point mass by choosing an ε smaller than c − β. Consequently, we have limβ→c− Y (β) = Y (c), so
function Y (c) is left continuous on (0, 1).

Now, we are ready to define our signaling function for the case with point mass ρ(q). Since Y (c) is
monotone (weakly) decreasing and is left continuous, the following min is well-defined

c = min{β | Y (β) ≥ v(t2)}, (29)

and moreover we can use binary search to find the c.
Given the above c, we define the following signaling scheme. Define the following constant D,

D =
v(t2)− (Y (c)−

∫ t2
t1

∫
q:ρ(q)=−φ+c (t) g(q)v1(q) dqdt)∫ t2

t1

∫
q:ρ(q)=−φ+c (t) g(q)v1(q) dqdt

=
v(t2)−

∫ t2
t1

∫
q:ρ(q)>−φ+c (t) g(q)v1(q) dqdt∫ t2

t1

∫
q:ρ(q)=−φ+c (t) g(q)v1(q) dqdt

.
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and a corresponding signaling scheme

π∗(q, t) =


1 for all q, t such that ρ(q) > −φ+

c (t)

D for all q, t such that ρ(q) = −φ+
c (t)

0 otherwise

.

This signaling scheme gives rise to a threshold mechanism by using the payment function defined in
Theorem 1. Notably, when ρ(q) = −φ+

c (t) doesn’t have point mass at this c point, D will be 0 due to
continuity and this degenerates to the threshold signaling scheme for Case 3 in Theorem 1. The feasibility
and the optimality of the above mechanisms follow from the same argument in the proof of Lemma 8 and
Proposition 1, essentially because the boundary case of ρ(q) = −φ+

c (t) will not affect revenue. We omit
details here.
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