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Abstract SimRank is a popular measurement for eval-
uating the node-to-node similarities based on the graph
topology. In recent years, single-source and top-k Sim-
Rank queries have received increasing attention due to
their applications in web mining, social network anal-
ysis, and spam detection. However, a fundamental ob-
stacle in studying SimRank has been the lack of ground
truths. The only exact algorithm, Power Method, is
computationally infeasible on graphs with more than
10% nodes. Consequently, no existing work has evalu-
ated the actual accuracy of various single-source and
top-k SimRank algorithms on large real-world graphs.

In this paper, we present ExactSim, the first algo-
rithm that computes the exact single-source and top-k
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SimRank results on large graphs. This algorithm pro-
duces ground truths with precision up to 7 decimal
places with high probability. With the ground truths
computed by ExactSim, we present the first experi-
mental study of the accuracy/cost trade-offs of existing
approximate SimRank algorithms on large real-world
graphs and synthetic graphs. Finally, we use the ground
truths to exploit various properties of SimRank distri-
butions on large graphs.

Keywords SimRank, Single-Source, Exact computa-
tion, Ground truths, Power-Law, Benchmarks

1 Introduction

Computing link-based similarity is an overarching prob-
lem in graph analysis and mining. Amid the existing
similarity measures [31,40,49,48], SimRank has emerged
as a popular metric for assessing structural similarities
between nodes in a graph. SimRank was introduced
by Jeh and Widom [13] to formalize the intuition that
“two pages are similar if they are referenced by simi-
lar pages.” Given a directed graph G = (V, E) with n
nodes {v1,...,v,} and m edges, the SimRank matrix
S defines the similarity between any two nodes v; and
v; as follows:

1 for i = j;

S(i,j) = e SE) e
22 din(vi) - din(v;)’ orisy

vy EI(’Ui) v EI(’Uj)
(1)
Here, c is a decay factor typically set to 0.6 or 0.8 [13,
26]. Z(v;) denotes the set of in-neighbors of v;, and

din(v;) denotes the in-degree of v;. SimRank aggre-
gates similarities of multi-hop neighbors of v; and v; to
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produce high-quality similarity measure, and has been
adopted in various applications such as recommenda-
tion systems [20], link prediction [27], and graph em-
beddings [35].

A fundamental obstacle for studying SimRank is
the lack of ground truths on large graphs. Currently,
the only methods that compute the SimRank matrix
is Power Method and its variations [13,25], which in-
herently takes £2(n?) space and at least §2(n?) time as
there are 2(n?) node pairs in the graphs. This com-
plexity is infeasible on large graphs (n > 10%). Con-
sequently, the majority of recent works [16,29,34,10,
17,21,32,44,14,24,39] focus on single-source and top-k
queries. Given a source node v;, a single-source query
asks for the SimRank similarity between every node
and v;, and a top-k query asks for the k£ nodes with
the highest SimRank similarities to v;. Unfortunately,
computing ground truths for the single-source and top-
k queries on large graphs still remains an open problem.
To the best of our knowledge, Power Method is still
the only way to obtain exact single-source and top-k
results, which is not feasible on large graphs. Due to
the hardness of exact computation, existing works on
single-source and top-k queries focus on approximate
computations with efficiency and accuracy guarantees.

The lack of ground truths has severely limited our
understanding towards SimRank and SimRank algo-
rithms. First of all, designing approximate algorithms
without the ground truths is like shooting in the dark.
Most existing works take the following approach: they
evaluate the accuracy on small graphs where the ground
truths can be obtained by the Power Method with £2(n?)
space complexity. Then they report the efficiency/ scal-
ability results on large graphs with consistent parame-
ters. This approach is flawed for the reason that con-
sistent parameters may still lead to unfair comparisons.
For example, some of the existing methods generate a
fixed number of random walks from each node, while
others fix the maximum error ¢ and generate 1052” ran-
dom walks from each node. If we increase the graph size
n, the comparison becomes unfair as the latter methods
require more random walks from each node. Secondly,
it is known that the structure of large real-world graphs
can be very different from that of small graphs. Conse-
quently, the accuracy results on small graphs can only
serve as a rough guideline for accessing the actual error
of the algorithms in real-world applications. We believe
that the only right way to evaluate the effectiveness of
a SimRank algorithm is to evaluate its results against
the ground truths on large real-world graphs.

Second, the lack of ground truths has also prevented
us from exploiting the distribution of SimRank on real-
world graphs. For example, it is known [7] that the

PageRank of most real-world graphs follows the power-
law distribution. The natural question is that, does Sim-
Rank also follow the power-law distribution on real-
world graphs? Furthermore, the performances of some
existing methods [38] depend on the density of the Sim-
Rank, which is defined as the percentage of node pairs
with SimRank similarities larger than some threshold
€. Analyzing the distribution or density of SimRank is
clearly infeasible without the ground truths.

Finally, the lack of ground truths restricts us to
conduct scientific benchmarking experiments towards
these existing approximation algorithms. Without in-
sightful experimental observations, we are hard to ex-
plore the connections between algorithms’ characteris-
tics and performances. For example, what kinds of al-
gorithms tend to show better scalabilities? Algorithms
belonging to which categories can perform better trade-
off lines? A comprehensive benchmarking survey is fun-
damentally based on the ground truths.

Exact Single-Source SimRank Computation. In
this paper, we study the problem of computing the
exact single-source SimRank results on large graphs.
A key insight is that exactness does not imply abso-
lutely zero error. This is because SimRank values may
be infinite decimals, and we can only store these values
with finite precision. Moreover, we note that the ground
truths computed by Power Method also incur an error
of at most ¢, where L is the number of iterations in
Power Method. In most applications, L is set to be large
enough such that ¢’ is smaller than the numerical error
and thus can be ignored. In this paper, we aim to de-
velop an algorithm that answers single-source SimRank
queries with an additive error of at most €, = 1077.
Note that the float type in various programming lan-
guages usually support precision of up to 6 or 7 decimal
places. So by setting e, = 1077, we guarantee the al-
gorithm returns the same answers as the ground truths
in the float type. As we shall see, this precision is ex-
tremely challenging for existing methods. To make the
exact computation possible, we are also going to allow
a small probability to fail. We define the probabilistic
exact single-source SimRank algorithm as follows.

Definition 1 With probability at least 1 —1/n, for ev-
ery source node v; € V', a probabilistic exact single-
source SimRank algorithm answers the single-source
SimRank query of v; with additive error of at most
Emin = 107,

Our Contributions. In this paper, we propose Ex-
actSim, the first algorithm that enables probabilistic
exact single-source SimRank queries on large graphs.
We show that existing single-source methods share a
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common complexity term O ( ), and thus are un-

min
able to achieve exactness on large graphs. However, Ex-
1

Emin

. . 1
actSim runs in O (E%ﬁ

min

+ mlog time, which is
feasible for both large graph size m and small error
guarantee €,,;,. We also apply several non-trivial opti-
mization techniques to reduce the query cost and space
overhead of ExactSim. In our empirical study, we show
that ExactSim is able to compute the ground truth with
a precision of up to 7 decimal places within one hour on
graphs with billions of edges. Hence, we believe Exact-
Sim is an effective tool for producing the ground truths
for single-source SimRank queries on large graphs.

Comparison with the conference version[36]. We
make the following new contributions over the confer-
ence version.

— We conduct a comprehensive survey on all single-
source SimRank algorithms which can support large
graphs. We summarize the complexity of each method
and analyze the reasons why these methods cannot
achieve exactness on large graphs.

— Based on the ground truths provided by ExactSim,
we conduct the first empirical study on the accu-
racy/cost trade-offs of existing approximate single-
source algorithms on large real-world graphs and
synthetic graphs.

— We use ExactSim to exploit various properties of
SimRank on large real-world graphs. In particular,
we show that the single-source SimRank values fol-
low the power-law distribution on real-world graphs.
We also study the density of SimRank values on
large graphs.

2 Preliminaries and Related Work

In this section, we review the state-of-the-art single-
source SimRank algorithms which can support large
graphs. We introduce a taxonomy to classify these al-
gorithms into three categories: Monte Carlo methods,
iterative methods, and local push/sampling methods.
Note that our ExactSim algorithm is largely inspired
by three prior works: Linearization [29], PRSim [39]
and pooling [24], and we will describe them in details.
In Section 5, we will also use the ground truths provided
by ExactSim to evaluate the algorithms mentioned in
this section. Table 1 summaries the notations used in
this paper.

2.1 Monte Carlo Methods

A popular interpretation of SimRank is the meeting
probability of random walks. In particular, we consider a

Table 1 Table of notations.

Notation Description

n,m the numbers of nodes and edges in G

Z(v;),O(vg) | the in/out-neighbor set of node v;

S, S(i,7) the SimRank matrix and the SimRank
similarity of v; and v;

c the decay factor in the definition of Sim-
Rank

£, Emin additive error parameter and error re-
quired for exactness (€min = 1077)

P, D the transition matrix and the diagonal
correction matrix

T, 7Y the Personalized PageRank and ¢-hop
Personalized PageRank vectors of node
V4

l_if the ¢-hop Hitting Probability vector of v;

random walk from node u that, at each step, moves to
a random in-neighbor with probability +/c, and stops
at the current node with probability 1 — y/c. Such a
random walk is called a +/c-walk. Suppose we start a
V/e-walk from node v; and a y/c-walk from node v;, we
call the two \/c-walks meet if they visit the same node
at the same step. It is known [34] that

S(i, j) = Pr[two v/c-walks from v; and v; meet].  (2)

According to Equation (2), we can employ Monte-
Carlo sampling to estimate S(i, j). That is, by simulat-
ing adequate pairs of y/c-walks from nodes v;,v;, the
percentage of the walks that meet in the walking pro-
cess serves as the estimator of S(i, j). Hence, we classify
the approximation algorithms as Monte Carlo methods
if they use the fraction of target random walks to esti-
mate the meeting probability based on Equation (2) or
its variants.

MC [9] makes use of Equation (2) to derive a Monte-
Carlo algorithm for computing single-source SimRank.
In the preprocessing phase, we simulate R /c-walks
from each node in V. Given a source node v;, we com-
pare the \/c-walks from v; and from each node v; € V,
and use the fraction of \/c-walks that meet as an estima-
tor for S(i,7). By standard concentration inequalities,
the maximum error of estimated S(i,7) is bounded by

€ with high probability if we set R = O (log"

52

) , leading

to a preprocessing time of O (”125”).

READS [14] is an optimized version of the MC-based
algorithm. The key idea is to build an index of nR com-
pressed /c-walks such that the algorithm only needs to
generate a few more y/c-walks in the query phase. An
appealing feature of READS is that its index support
efficient insertions and deletions of edges. Consequently,
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Table 2 Comparison of MC-based SimRank algorithms.

. . Preprocessing . Dynamic
Algorithm Query Time Index Size
time update time
MC [9] O (nlogn/e?) | O(nlogn/e?) | O (nlogn/e?) -
READS [14] | O(nlogn/e?) | O(nlogn/e?) | O (nlogn/e?) O (logn/e?)
TSF [32] O (nlogn/e?) | O(nlogn/e?) | O (nlogn/e?) O (logn/e?)
Uniwalk [28] | O <n216gn/52> 0 0 (0] (nQIdgn/82>

READS is able to support approximate single-source
queries on large dynamic graphs. The theoretical query

cost of READS remains O ("1;#)

TSF [32] is a MC-based algorithm for single-source
and top-k SimRank queries on both static and dynamic
graphs. TSF builds an index that consists of R, one-
way graphs, each of which contains the coupling of ran-
dom walks of length T from each node. In the query
phase, TSF samples R, more random walks for each
one-way graph to provide the final estimators. TSF al-
lows two random walks to meet multiple times and as-
sumes that there is no cycle with a length shorter than
T, leading to a lower precision in practice. The query
time of TSF is bounded by O(nR,R,), which is in turn

bounded by O (m) for e additive error.

£2

Uniwalk [28] is a MC-based method for single-source
and top-k SimRank computation on undirected graphs.
It randomly generates R unidirectional random walks
from the given source node s. With the help of a recti-
fied factor, Uniwalk regards the probability of the node
s walking along the unidirectional path to the terminal
node t as the SimRank value S(s,t), that is, two ran-
dom walks starting from s and ¢ meet at the midpoint
of the original unidirectional path. The query time of
Uniwalk is bounded by O(RL), where L denotes the ex-
pected length of the unidirectional path. However, the
rectified factor can influence the error bound. On the
graph with a hub node, R can reach O ";# for e

additive error. Hence, the query time of Uniwalk can
be bounded by O (&)

€

2.2 Tterative Methods

Given a graph G = (V, E), let P denote the (reverse)
transition matriz, that is, P(i,75) = 1/din(v;) for v; €
Z(v;), and P(i,j) = 0 otherwise. S denotes the Sim-
Rank matrix. Yu et al. [47] proves that the definition
formula of SimRank can be expressed as

S=(cP"SP) VI, (3)

where I denotes an n X n identity matrix, and V is an
element-wise maximum operator that for any matrices
A,BeR™™and Vi,j €{0,1,...,n—1}, (AVB)(i,j) =
max{A(i,7), B(i,j)}. Equation (3) provides an iterative
calculation method to derive SimRank results. That is,
we can initialize S = I, and repeat the iteration to up-
date matrix S. We classify all the SimRank algorithms
as iterative methods if they calculate SimRank values
via iterative updating based on Equation (3) or its vari-
ants. We list all the iterative methods which can sup-
port single-source SimRank queries on large graphs in
the following.

Linearization and ParSim. It is shown in two inde-
pendent works, Linearization [29] and ParSim [45], that
the iterative definition equation (3) can be expressed as
the following linear summation:

+oo
S=cPTsP+D=Y ¢ (P) DP, (4)
=0

where D is the diagonal correction matrixz with each
diagonal element D(k, k) taking value from 1 — ¢ to 1.
Consequently, a single-source query for node v; can be
computed by

+oo
S-6 =3¢ (P) DP'-é, (5)
£=0

where €; denotes the one-hot vector with the i-th ele-
ment being 1 and all other elements being 0. Assuming
the diagonal matrix D is correctly given, the single-
source query for node v; can be approximated by

L
Sp-a=> (P DP' ¢, (6)
(=0

where L is the number of iterations. After L itera-
tions, the additive error reduces to c¢”. So setting L =
O (1og é) is sufficient to guarantee a maximum error of
€. At the /-th iterations, the algorithm performs 2¢ 41
matrix-vector multiplications to calculate ¢* (PZ ) " ppt.
€;, and each matrix-vector multiplication takes O(m)
time. Consequently, the total query time is bounded by
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Table 3 Comparison of iterative SimRank algorithms.

. . Preprocessing . Dynamic
Algorithm Query Time Index Size
Time update time
Linearization [29] O (mlog? 1) O(nlog X log 2 logn/e?) O(n) -
ParSim [45] O{min{mlog L,d*'°% - }} 0 0 -

0 (ZZLZI mé) = O(mL?) = O (mlog® 1). Machara et
al. and Yu et al. also show in [29] and [45] that if we
first compute and store the transition probability vec-
tors @, = P¢- ¢, for £=0,...,L, then we can use the
following equation to compute

Sp-é =D -ty

+c¢P" (D iy +-+cP"(D-ip_1 +cP"-D-iig)---).

(7)

This optimization reduces the query time to O (m log %) .

While it requires a memory size of O(nL) = O (nlog 1),
which is usually several times larger than the graph size
m. Therefore, [29] only uses the O (m log? 1) algorithm
in the experiments.

Besides the large space overhead, another problem
with Linearization and ParSim is that the diagonal cor-
rection matrix D is hard to compute. Linearization [29]
formulates D as the solution to a linear system, and

proposes a Monte Carlo solution that takes O ("t’#

to derive an e-approximation of D. On the other hand,
ParSim directly sets D = (1—¢)I, where I is the identity
matrix. This approximation basically ignores the first
meeting constraint and has been adopted in many other
SimRank works [11,12,42,19,41,44,16]. It is shown that
the similarities calculated by this approximation are
different from the actual SimRank [16]. However, the
quality of this approximation is still a myth due to the
lack of ground truths on large graphs.

2.3 Local Push/Sampling Methods

Compared with Monte Carlo and iterative methods, lo-
cal push/sampling methods locally restrict each Sim-
Rank update operation and omit to touch a large frac-
tion of nodes on the graphs in each update. Hence, the
time cost of each update operation is smaller than O(n).
This allows local push/sampling methods to outperform
other methods in terms of scalability.

SLING [34] is an index-based SimRank algorithm that
supports fast single-source and top-k queries on static
graphs. Let hf = (\/EP)Z - €; denote the £-hop hitting

probability vector of v;. Note that l_if describes the prob-
ability of an /c-walk from node v; visiting each node
at its £-th step. [34] suggests that equation (5) can be
re-written as

S(i,j)=> > hi(k)-Bi(k) - D(k,k). (8)

where D(k,k) denote the k-th entry in the diagonal
correction matrix D. It is shown [34] that D(k, k) can
be characterized by the meeting probability of two /c-
walks from the same node wvy:

D(k, k) = Pr[two y/c-walks from vy never meet].  (9)

This interpretation implies a simple Monte-Carlo algo-
rithm for estimating D(k, k): we simulate R pairs of
Vc-walks from vy, and use the fraction of pairs that
do not meet as the estimator for D(k, k). By setting

R=0 (log”), we can approximate each D(k, k) with

52
additive error e. SLING precomputes each D(k,k) in
the preprocessing phase using O ("f#) time. SLING

also precomputes ﬁf(kz) with additive error € for each ¢
and v;, v, € V, using a local push algorithm [5]. Given a
single-source query for node v;, SLING retrieves i_if(k;)
i_if(k) and D(k, k) for each v;,vx, € V from the in-
dex, and uses Equation (8) to estimate S(i, j) for each
v; € V. SLING answers a single-source query with
time O(min{n/e, m}), and the index size is bounded

by O(g)

ProbeSim [24] is an index-free solution based on re-
verse local sampling and local push. ProbeSim starts by
sampling a +/c-walk from the source node v;. For the
¢-th node vy on the y/c-walk, ProbeSim uses a Probe
algorithm to reversely sample each node v; at level ¢
with probability ﬁf(k), the hitting probability that any
other node v; € V' can reach vy at the ¢-th step. It is
shown in [24] that each sample takes O(n) time, and we

need O (%) samples to ensure an maximum error of
€ with high probability. Consequently, the query time
of ProbeSim is bounded by O (M

—— ). ProbeSim nat-
urally works on dynamic graphs due to its index-free

nature.
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Table 4 Comparison of local push/sampling SimRank algorithms.

. . Preprocessing . Dynamic
Algorithm Query Time Index Size
time update time
o (n/s) n log &
SLING [34 o+ = O (n/e) -
4 O (mlog? 1) < : ) "/

ProbeSim [24] O (nlogn/e?) 0 0 O (nlogn/e?)

PRSim [39] O (nlogn - ||#:||?/€2). O (m/e) O (min{Z,m}) -
TopSim [17] O (m2™ /n2m) 0 0 O (m2™ /n2m)

PRSim [39] introduces a partial indexing and a probe
algorithm. Let ¢ = (1 — \/o)h! = (1 — /o) (VeP)" - &
denote the ¢-hop Personalize PageRank vector of wv;.
In particular, (k) is the probability that a \/c-walk
from node v; stops at node vy, in exactly ¢ steps. PRSim
suggests that equation (5) can be re-written as

ﬁ SO R (k) 7R - Dk, ). (10)
£=0 k=1
PRSim precomputes ﬁf (k) with additive error € for each
¢ and vj,v, € V, using a local push algorithm [5].
To avoid overwhelming index size, PRSim only pre-
computes ﬁf (k) for a small subset of vj. Furthermore,
PRSim computes D by estimating the product 7 (k) -
D(k, k) together with an O (%) time Monte-Carlo
algorithm. Finally, PRSim proposes a new Probe algo-
rithm that samples each node v; according to 7¢(k).

J
The average query time of PRSim is bounded by

O ("1;# ory ﬁ"(k)Q) , where 7(k) denotes the PageR-
ank of vy. It is well-known that on scale-free networks,
the PageRank vector 7 follows the power-law distri-
bution, and thus ||7||? = >_;_, #(k)? is a value much
smaller than 1. However, for worst-case graphs or even
some “bad” source nodes on scale-free networks, the

S(Zm]) =

running time of PRSim remains O ("t’#)

TopSim [17] is an index-free algorithm based on lo-
cal exploitation. Given source node v;, TopSim firstly
finds all nodes vy, reachable from v; within £ =1,..., L
steps. For each such v on the ¢-th level, TopSim deter-
ministically computes ﬁf(k:), the probability that each
v; reaches vy, in exactly ¢ steps. [17] also proposes vari-
ous optimizations to reduce the query cost. Due to the
dense structures of real-world networks, TopSim is only
able to exploit a few levels on large graphs, which leads
to a low precision.

2.4 Other Related Work

Besides the state-of-the-art methods that we discuss
above, there are several other techniques for SimRank

computation, which we review in the following. Power
method [13] is the classic algorithm that computes all-
pair SimRank similarities for a given graph. Power method
recursively computes the SimRank Matrix S based on
Equation (3). Several follow-up works [26,47,43] im-
prove the efficiency or effectiveness of the power method
in terms of either efficiency or accuracy. However, these
methods still incur O(n?) space overheads, as there are
O(n?) pairs of nodes in the graph. Finally, there are ex-
isting works on SimRank similarity join [33,30,51] and
the variants of SimRank [6,9,22,46,50], but the pro-
posed solutions are inapplicable for top-k and single-
source SimRank queries.

Pooling. Finally, pooling [24] is an experimental method
for evaluating the accuracy of top-k SimRank algo-
rithms without the ground truths. Suppose the goal is
to compare the accuracy of top-k queries for z algo-
rithms Aq,..., A,. Given a query node v;, we retrieve
the top-k nodes returned by each algorithm, remove the
duplicates, and merge them into a pool. Note that there
are at most ¢k nodes in the pool. Then we estimate
S(i,j) for each node v; in the pool using the Monte
Carlo algorithm. We set the number of random walks

to be O (%) so that we can obtain the ground truth

min

of S(i, ) with high probability. After that, we take the
k nodes with the highest SimRank similarity to v; from
the pool as the ground truth of the top-k query, and use
this “ground truth” to evaluate the precision of each of
the ¢ algorithms. Note that the set of these k nodes is
not the actual ground truth. However, it represent the
best possible k nodes that can be found by the ¢ al-
gorithms that participate in the pool and thus can be
used to compare the quality of these algorithms.
Although pooling is proved to be effective in our
scenario where ground truths are hard to obtain, it has
some drawbacks. First of all, the precision results ob-
tained by pooling are relative and thus cannot be used
outside the pool. This is because the top-k nodes from
the pool is not the actual ground truth. Consequently,
an algorithm that achieves 100% precision in the pool
may have a precision of 0% when compared to the ac-
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tual top-k result. Secondly, the complexity of pooling
z algorithms is O (’“Z;ﬂ

min

), so pooling is only feasible
for evaluating top-k queries with small k. In particular,
we cannot use pooling to evaluate the single-sources
queries on large graphs.

2.5 Limitations of Existing Methods

We now analyze the reasons why existing methods are
unable to achieve exactness (a.k.a an error of at most
Emin = 10’7). First of all, ParSim and TSF ignore the
first meeting constraint and thus incur large errors. For
other methods that enforce the first meeting constraint,

they all incur a complexity term of O ( z lsg") , either in
the preprocessing phase or in the query phase. In par-
ticular, SLING and Linearization simulate O ("log")

2

random walks to estimate the diagonal correction ma-
trix D. For ProbeSim, MC, READS and PRSim, this
complexity is caused by simulating random walks in the

query phase or the preprocessing phase. The O (w)

complexity is infeasible for exact SimRank computation
on large graphs, since it combines two expensive terms
——. As an example, we consider the IT dataset
used in 78117111“ experiment, with 4 % 107 nodes and over 1
billion edges. In order to achieve a maximum error of
Emin = 1077, we need to simulate "ls# ~ 1023 random
walks. This may take years, even with parallelization on
a cluster of thousands of machines.

Besides, there are many works focusing on all-pairs
SimRank queries [37,19,41,12,26]. As we shall show
in Section 5.3, the number of node pairs whose Sim-
Rank values are more than 10~# can nearly achieve n?.
For large graphs with million nodes, like Twitter(TW)
dataset with 4 x 107 nodes, this can cost 10* TB for
storage, not to mention the exact SimRank computa-
tion for each node pair. Hence, it’s may infeasible for
exact all-pairs SimRank computation within reasonable
time.

n and

3 Basic ExactSim Algorithm

In this section, we present ExactSim, a probabilistic
algorithm that computes the exact single-source Sim-
Rank results within reasonable running time. We first
present a basic version of ExactSim. In Section 4, we
will introduce some more advanced techniques to opti-
mize the query and space cost.

Our ExactSim algorithm is largely inspired by three
prio works: pooling [24], Linearization [29] and PRSim
[39]. We now discuss how ExactSim extends from these

existing methods in details. These discussions will also
reveal the high level ideas of the ExactSim algorithm.

1. Despite its limitations, pooling [24] provides a key

insight for achieving exactness: while an O ( nlogn

algorithm is not feasible for exact SimRank com-
putation on large graphs, we can actually afford an

0 (108#) algorithm. The 2 term is still expensive

for € = €min = 1077, however, the new complex-
ity reduces the dependence on the graph size n to
logarithmic, and thus achieves very high scalability.
2. Linearization [29] and ParSim [45] show that if the
diagonal correction matrix D is correctly given, then
we can compute the exact single-source SimRank re-
Eim) time and O (n log% Eim)
extra space. For typical setting of ¢ (0.6 to 0.8),
the number of iterations 10g1 - = log107 < 73
is a constant, so this Complex1ty is essentially the
same as that of performing BFS multiple times on
the graphs. The scalability of the algorithm is con-
firmed in the experiments of [45], where D is set
to be (1 — ¢)I. Moreover, the exact algorithms [31]
for Personalized PageRank and PageRank also in-

sults in O (m log1

curs a running time of O (m log —) and has been
widely used for computing ground truths on large
graphs.

3. While the O (" log") complexity seems unavoidable

as we need to estimate each entry in the diagonal
correction matrix D with additive error e, PRSim [39]

shows that it only takes O (1052”)

the product 7! (k) - D(k, k) with additive error ¢ for
eachk=1,...,nand £ =0,...,00, where 7/ is the
{-hop Personalized PageRank vector of v;. This re-
sult provides two crucial observations: 1) It is pos-
sible to answer an single-source query without an
g-approximation of each D(k,k); 2) The accuracy
of each D(k, k) should depend on 7;(k), the Person-
alized PageRank of v, with respect to the source
node v;.

time to estimate

We combine the ideas of PRSim and Linearization/
ParSim to derive the basic ExactSim algorithm. Given
an error parameter ¢, ExactSim fixes the total number

of \/c-walk samples to be R=0 <1°g"> and distributes

a fraction of R-7;(k) samples (note that Zm( )=1) to

estimate D(k, k). Then it performs Llnearlzatlon/ Par-

Sim with the estimated D to obtain the single-source

result. The algorithm runs in O (k’sgz"

+ mlog %) time
and uses O (n log %) extra space. Since both complexity
terms O (10#) and O (m log %) are feasible for €5, =
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Algorithm 1: Basic ExactSim Algorithm

Input: Graph G with transition matrix P, source
node v;, maximum error €
Output: Estimated single-source SimRank vector

S-e;
1 L= [logl E—‘;
2 #, 7 = (1 — \/0)é;
3 for ¢ from 1 to L do
a | ®t=\eP 7T
5 T, = T + 7'_1"2;
6 R~: 6logn
(1—v/e)te?”
7 for k from 1 to n do
8 Invoke Algorithm 2 with R(k) = [R - @;(k)] to
obtain an estimator D(k, k) for D(k, k);

0 — 1 ) . =L.
95_17\/ED T
10 for ¢ from 1 to L do
1 A =L—¢
11 Y ™ 3

12 Clear 5 1;

13 return 5°;

Algorithm 2: Basic method for estimating
D(k, k)

Input: Graph G, node vi, number of samples R(k)
Output: D(k, k) as an estimation for D(k, k)

1 D(k, k) =0;

2 for z from 1 to R(k) do

3 Sample two independent y/c-walks from vy;

if The two +/c-walks do not meet then

| D(k,k) = D(k, k) + 1/R(k);

6 return D(k,k);

[S

1077 and large graph size m, we have a working algo-
rithm for exact single-source SimRank queries on large
graphs.

Algorithm 1 illustrates the pseudocode of the basic
ExactSim algorithm. Note that to cope with Personal-
ized PageRank, we use the fact that ¢ = (1 —/c) -

(VeP)*

- € and re-write Equation (5) as

S.é =

P)'D.# 11

— f Z Ve (11)
Given a source node v; and a maximum error €, we first
set the number of iterations L to be L = [log; g—‘ (line

1). We then iteratively compute the -hop Personalized

PageRank vector 7 = (\fP) - for 0 =0,...,L, as
well as the Personahzed PageRank vector 7; = Z =0T 7t
(lines 2-5). To obtain an estimator D for the dlagonal
correction matrix D, we set the total number of samples

to be R = (161\(;5;82 (line 6). For each D(k, k), we set
R(k) = [R7;(k)] and invoke Algorithm 2 to estimate

D(k,k) (lines 7-8). Algorithm 2 essentially simulates

R(k) pairs of y/c-walks from node vy and uses the frac-
tion of pairs that do not meet as an estimator D(k, k)
for D(k, k). Finally, we use Equation (11) to iteratively

compute 5§° = 171\/ED -k
1 .
=P .5+ D .7kt
1—+/c
: (12)
_ PT.D.zL LD —»4L4)
11— <\/E PhET

(lines 9-12),..., and
(\fPT( - (JePT-D - 74D 7L~

L
= > (vePT) DL (13)

We return 57 as the single-source query result (line 13).

Analysis. To derive the running time and space over-
head of the basic ExactSim algorithm, note that com-
puting and storing each ¢-hop Personalized PageRank
vector ¢ takes O(m) time and O(n) space. This re-
sults a running time of O(mL) and a space overhead
of O(nL). To estimate the diagonal correction matrix
D, the algorithm simulates R pairs of /c-walks, each
of which takes \% = O(1) time. Therefore, the running
time for estimating D can be bounded by O(R). Fi-
nally, computing each 5 also takes O(m) time, result-
ing an additional running time of O(mL). Summing up
all costs, and we have the total running time is bounded
by O(mL + R) = O (log” + mlog 7>, and the space

overhead is bounded by O(nL) = O (nlog ).

We now analyze the error of the basic ExactSim
algorithm. Recall that ExactSim returns () as the
estimator for S(i,7), the SimRank similarity between
the source node v; and any other node v;. We have the

following Theorem.

Theorem 1 With probability at least 1 — 1/n, for any
source node v; € V, the basic EzractSim provide an
single-source SimRank vector 5¥ such that, for any node
v; €V, we have ’§'L(]) — S(i,j)’ <e

Theorem 1 essentially states that with high probability,
the basic ExactSim algorithm can compute any single-
source SimRank query with additive €. The proof of
Theorem 1 is fairly technical. However, the basic idea
is to show that the variance of the estimator 5 (j) can
be bounded by O(%) = O(e ) In particular, we first
note that by Equation (13), 1(] can be expressed as

3 (e b
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— /) (VeP)" -
L 1 L ﬁ_,g'l’
s <‘7)_(1—ﬁ)22( ])

(=

Since .&; = 7%, we have
J J’

(14)

o

Summing up over the diagonal elements of D follows
that

gL':¥L nﬁ€ L2k -
() = g a 2 L) )

We observe that there are two discrepancies between
5L(j) and the actual SimRank value S(i,5) (10): 1)
We change the number of iterations from oo to L, and
2) we use the estimator D to replace actual diagonal
correction matrix D. For the first approximation, we
can bound the error by ¢f < ¢/2 if ExactSim sets

D(k,k). (15)

L = [log; g—‘ Consequently, we only need to bound

the error from replacing D with D. In particular, we
will make use of the following Bernstein Inequality.

Lemma 1 (Bernstein Inequality [8]) Let X1, -+ Xg
be independent random variables with |X;| < b for i =
LR, Let X = % . 2?:1 X, we have

Pr[|X —E[X]| > A\] < 2-exp (—2R . Va;\[X] + 21»\/3) ’

(16)
where Var[X] is the variance of X.

To make use of Lemma 1, we need to express 57 (j)
as the average of independent random variables. In par-
ticular, let D,(k,k), = 1,..., R(k) denote the r-th
estimator of D(k, k) by Algorithm 2. We observe that
each D,(k,k) is a Bernoulli random variable, that is,
D, (k,k) = 1 with probability D(k, k) and D, (k, k) =
with probability 1 — D(k, k). We have

gL':L nﬁ€ .zt Zrl—

Let p(k) = R(k)/R be the fraction of pairs of \/c-walks
assigned to vy, it follows that

Rp(k — .
n SO 7K - 7K)

(17)

L = e .
We will treat each w D, (k,k) as an inde-
pendent random variable. The number of such random

Dk, k).

variables is Y.7_, Rp(k) = R, so we have expressed
5(j) as the average of R independent random vari-
ables. To utilize Lemma 1, we first bound the variance

of 5L(j).

Lemma 2 The variance of 5 (j) is bounded by

1 " 7 (k)27 (k)2
3 (k)" (k)

Var < -D(k, k).
[ ( )] (1_\ﬁ)4Rk:1 ( ) ( )
(18)
In particular, by setting p(k) = R(k)/R = [R7;(k)]/R
in the basic ExactSim algorithm, we have
1
Var[5*(j)] < (19)

(1= Vo 'R
Note that we only need Inequality (19) to derive the er-
ror bound for the basic ExactSim algorithm. The more
complex Inequality (18) will be used to design various
optimization techniques.

Proof[Proof of Lemma 2] Note that D,.(k, k) is a Bernoulli
random variable with expectation D(k, k), and thus
has variance Var[D,(k,k)] = D(k,k)(1 — D(k, k)) <
D(k, k). Since D,.(k, k)’s are independent random vari-
ables, we have

()]
n Re(k) ) -7\ .
4R2§ :E: e il ; J( )>~Var[Dr

k=1r=1

Var[5"

()]

S oL (k)T
NG Z< G

k=1

k 2
( ) -D(k, k)(1—D(k, k)).

By the Cauchy-Schwarz inequality, we have

L
(Z (k) - 7k
=0

Var[é’L(j)]S(l D(k, k). (20)

1 Z”:ﬁi(k)QfJ(k)

VOIR 2= p(k)

and the first part of the Lemma follows.
Plugging p(k) = R(k)/R = [R7;(k)|/R > (k)

into Lemma 2, we have

1 zn: ﬁz(k) Trj(k')Q D(]{Z,k‘)

Var[5%(j)] < (1-o)'R = mi(k)
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For the last inequality, we use the fact that D(k, k) <
1 and 7;(k) < 1. Finally, since > ,_, T;(k) = 1, we
have Var[5L(j)] < m, and the second part of the
Lemma follows.

Proof (Proof of Theorem 1) We are now ready to prove
Theorem 1. To utilize Bernstein Inequality given in
Lemma 1, we also need to bound b, the maximum value

e ) R
of the random variables ZeLzo % - D, (k, k). We
have

L =34 =) L - -
> e=o 7T_z‘(k) -7 (k) ~ﬁr(/€, k) < Zzio 7y (k) < Tz(k) -1

7i(k) 7i(k) 7i(k)

Applylng Bernstein Inequality with b=1 and Var[5X(5)]<
(17\/5)41%, where R = 161\(;‘5)2 5, we have Pr[|5L(j) —

E[sE(5)] > /2] < 1/n3. Combining with the £/2 error
introduced by the truncation L, we have Pr[|5L(j) —
S(i,7)| > €] < 1/n3. By union bound over all possible
target nodes j = 1,...,n and all possible source nodes
1 = 1,...,n, we ensure that for all n possible source
node and n target nodes,

Pr[Vi, j, |5%(j) — S(i,4)| > €] < 1/n,

and the Theorem follows.

4 Optimizations

Although the basic ExactSim algorithm is a working al-
gorithm for exact single-source SimRank computation
on large graphs, it suffers from some drawbacks. First of
all, the O(nlog 1) space overhead can be several times
larger than the actual graph size m. Secondly, we still

need to simulate R = O (m) of pairs of /c-walks,

62
which is a significant cost for €, = 1077. Although
parallelization can help, we are still interested in devel-
oping algorithmic techniques that reduces the number
of random walks. In this section, we provide three op-
timization techniques that address these drawbacks.

Sparse Linearization. We design a sparse version of
Linearization that significantly reduces the O (n log %)
space overhead while retaining the O(g) error guaran-
tee. Recall that this space overhead is causing by stor-
ing the f-hop Personalized PageRank vectors 7 for
{ =0,...,L We propose to make the following sim-
ple modification: Instead of storing the dense vector 7,
we sparsify the vector by removing all entries of with
7 (k) < (1 — y/c)%e. To understand the effectiveness of
this approach, recall that a nice property of the ¢-hop
Personalized PageRank vectors is that all possible en-
tries sum up to Yoo >, @ (k) = >, ®(k) = 1.
By the Pigeonhole principle, the number of 7¢(k)’s that

are larger than (1 — /c)%¢ is bounded by f)z

Thus the space overhead is reduced to O (E ) ThlS over-
head is acceptable for exact computations where we set
€ = €min = 1077, as it does not scale with the graph
size.

Sampling according to 7;(k)?. Recall that in the
basic ExactSim algorithm, we simulate R pairs of y/c-
walks in total, and distribute 7;(k) fraction of the R
samples to estimate D(k, k). A natural question is that,
is there a better scheme to distribute these R sam-
ples? It turns out if we distribute the samples accord-
ing to 7;(k)?, we can further reduce the variance of
the estimator and hence achieve a better running time.

More precisely, we will set R(k) = R Hf? -‘, where

|7:]1? = >j_; ®i(k)? is the squared norm of the Per-
sonalized PageRank vector ;.

Local deterministic exploitation for D. The in-
equality (18) in Lemma 2 also suggests that we can
reduce the variance of the estimator 5(j) by refining
the Bernoulli estimator D(k, k). Recall that we sam-
ple R(k) = [R7(k)] or R(k) = R H:(_M pairs of
Ve-walks to estimate D(k, k). If 7;(k) is large, we will
simulate a large number of /c-walks from vy to esti-
mate D(k, k). In that case, the first few steps of these
random walks will most likely visit the same local struc-
tures around vy, so it makes sense to exploit these local
structures deterministically, and use the random walks
to approximate the global structures. More precisely, let
Z(k) denote the probability that two y/c-walks from vy,
first meet at the /-th step. Since these events are mu-
tually exclusive for different ¢’s, we have

D(k,k) =1 — Pr[two \/c-walks from vjmeet]

=1- i Zo(k)
(=1

The idea is to deterministically compute Zﬁ(:kl) Zy(k)
for some tolerable step £(k), and using random walks
to estimate the other part >-;% ), Ze(k). It is easy to
see that by deterministically computing Z(k) for the
first £(k) levels, we reduce the variance Var(D(k, k)) by
at least /(%)

A simple algorithm to compute Z;(k) is to list all
possible paths of length ¢ from v, and aggregate all
meeting probabilities of any two paths. However, the
number of paths increases rapidly with the length ¢,
which makes this algorithm inefficient on large graphs.
Instead, we will derive the close form for Z;(k) in terms
of the transition probailities. In particular, let Z,(k, q)
denote the probability that two y/c-walks first meet at
node v, at their (-th steps. We have Zy(k)=>_,_, Z(k, q),
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Algorithm 3: Improved method for estimat-
ing D(k, k)

Input: Graph G, node v, sample number R(k)
Output: An estimator D(k, k) for D(k, k)

1 if dzn(vk) =0 then

2 L return D(k, k) = 1;

3 else if d;y (vk) = 1 then
4 L return D(k, k) =1 — ¢;
5 P!(x,k)=0for£>0,2€V;
6 PO(k,k)=1;
7 Ek = 0;
8 for ¢ from 0 to co do
9 for each vq with non-zero (PT)Z (k,q) do
10 L Calculate Zy(k, q) using equation (22);
11 for ¢’ from 0 to £ do
12 for each vy with non-zero (PT)Zfe(k,q’) do
13 for each v, with non-zero (PT)Z(q’, z) do
14 for each vq € Z(vs) do
’ PT v " x
15 (PT)** (g gy = L2 L0,
16 Er+=1;
17 if Ep > L\/(;) then
18 £(k) = £ and goto
OUTLOOP;
19 | {=L0+4+1;

20 OUTLOOP;
21 D(k, k) =1- Y08 S0 | Zo(k, );
22 for z from 1 to R(k) do

23 Sample two independent non-stop random walks
from wy;

24 if Two random walks reaches nodes vy and v, at
the £(k) steps without meeting then

25 Sample a y/c-walks from v, and vy;

26 if the two +/c-walks meet then

27 | D(k,k) = D(k, k) — c*™ /R(k);

28 return D(k, k);

and hence

D(k,k) =1=Y "> Zi(k,q). (21)

Recall that P* (the f-th power of the (reverse) transi-
tion matrix P) is the f-step (reverse) transition matrix.
We have the following Lemma that relates Z,(k, ¢) with
the transition probabilities.

Lemma 3 Z,(k,q) satisfies the following recursive form:

Zy(k,q) =c* (PT)" (k, )
-1 n ,
-3 (PN () Zee (k).
'=1q'=1

(22)

Proof Note that (v/c)' (PT)" (k,q) is the probability
that a \/c-walk from vy, visits vq at its ¢-th step. Conse-
quently, ¢’ (PT)Z (k,q)? is the probability that two /c-
walks from node vy, visit node v, at their ¢-th step simul-
taneously. To ensure this is the first time that the two
v/c-walks meet, we subtract the probability mass that
the two y/c-walks have met before. In particular, recall
that Zy (k,q’) is the probability that two y/c-walks from
node vy, first meet at vy in exactly ¢ steps. Due to the
memoryless property of the v/c-walk, the two y/c-walks
will behave as two new /c-walks from v, after their ¢/~
th step. The probability that these two new \/ﬁ—walks
visitis v, in exact ¢ — ¢’ steps is =t (PT)Z_1g (¢, q)%
Summing up ¢’ from 1 to n and ¢ from 1 to £ — 1, and
the Lemma follows.

Given a node v and a pre-determined target level
£(k), Lemma 3 also suggests a simple algorithm to com-
pute Z;(k,q) for all £ < (k). We start by performing
BFS from node vy, for up to ¢(k) levels to calculate the
transition probabilities (PT)é (k,q) for £ =0,...,0(k)
and vy € V. For each node ¢ visited at the ¢'-th level,
we start a BFS from ¢’ for 4(k) — ¢ levels to calcu-
late (PT)Z(k)fe, (¢,q) for ¢ =1,...,4(k) and v, € V.
Then we use equation (22) to calculate Z;(k,q) for
£=0,...,0(k) and g € V. Note that this approach ex-
ploits strictly less edges than listing all possible paths
of length ¢(k), as some of the paths are combined in the
computation of the transition probabilities.

However, a major problem with the above method
is that the target level £(k) has to be predetermined,
which makes the running time unpredictable. An im-
proper value of £(k) could lead to the explosion of the
running time. Instead, we will use an adaptive algo-
rithm to compute Z,(k).

Algorithm 3 illustrates the new method for estimat-
ing D(k,k). Given a node v, and a sample number
R(k), the goal is to give an estimator for D(k, k). For
the two trivial case d;, (k) = 0 and d;, (k) = 1, we re-
turn D(k, k) =1 and 1 — ¢ accordingly (lines 1-4). For
other cases, we iteratively/ compute all possible tran-
sition probabilities (PT)E 1 (¢',q) for all vy that is
reachable from k with ¢ — ¢’ steps (lines 5-10). Note
that these vy ’s are the nodes with (PT)Z_[/ (k,q") > 0.
To ensure the deterministic exploitation stops in time,
we use a counter F) to record the total number of

edges traversed so far (line 11). If Ej exceeds 21\3/(516),

the expected number of steps for simulating R(k) pairs
of y/c-walks, we terminate the deterministic exploita-
tion and set ¢(k) as the current target level for wy
(lines 12-13). After we fix (k) and compute Zﬁ(:kl) Zo(k)
(lines 14-17), we will use random walk sampling to es-
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timate Z;ié(k)+1 Zo(k) (lines 18-23). In particular, we
start two special random walks from v;. The random
walks do not stop in its first ¢(k) steps; after the £(k)-
th step, each random walk stops with probability /c
at each step. It is easy to see that the probability of
the two special random walks meet after ¢(k) steps
S ey Zl?ié(k)Jrl Zy(k). Consequently, we can use the
fraction of the random walks that meet multiplied by
™) as an unbiased estimator for ZZ@(k)H Zo(k).

Parallelization. The ExactSim algorithm is highly par-

allelizable as it only uses two primitive operations: matrix-

(sparse) vector multiplication and random walk simu-
lation. Both operations are embarrassingly paralleliz-
able on GPUs or multi-core CPUs. The only exception
is the local deterministic exploitation for D(k,k). To
parallelize this operation, we can apply Algorithm 3 to
multiple v; simultaneously. Furthermore, we can bal-
ance the load of each thread by applying Algorithm 3
to nodes vy’s with similar number of samples R(k) in
each epoch.

4.1 Analysis

Recall that Algorithm 3 provides an improved method
for estimating D(k, k). By invoking Algorithm 3 into
the whole ExactSim structure (line 8 in Algorithm 1),
we can derive the optimized version of ExactSim. The
following theorem presents the complexity analysis of
the optimized ExactSim in terms of time cost and space
overhead.

Theorem 2 Let ©; denote the Personalized PageRank
vector with regards to node v;. Then with probability at
least 17%, for any source node v; € V, the optimized
EzactSim can return a single-source SimRank vector

st with O (M + mlog = ) time cost and O (%)
space overhead, such that for any node v; € V, we have
[89(5) = SG )| < e

Concerning the three optimization techniques men-
tioned above, sparse Linearization may influence the
space overhead; Sampling according to 7;(k)? reduces
the number of random walks, which can impact the time
cost of estimating D. Local deterministic exploitation
can reduce the variance Var(D(k, k)), while the level of
time and space complexity remains the same due to the
setting of (k). Consequently, to prove Theorem 2, we
can only analysis sparse Linearization for space bound,
and sampling according to 7;(k)? for time cost, respec-
tively.

Firstly, as for the space overhead, the following lemma
proves that the sparse Linearization will only introduce

an extra additive error of €. If we scale down € by a
factor of 2, the total error guarantee and the asymp-
totic running time of ExactSim will remain the same,
and the space overhead is reduced to O (%)

Lemma 4 The sparse Linearization introduces an ex-
tra additive error of € and reduces the space overhead

to O(%)

Proof We note that the sparse Linearization introduces
an extra error of (1—+/c)%¢ to each 7 (k), k=1,...,n

£=0,...,00. According to equation (15), the estimator
57(j) can be expressed as

—»L ——é
)= QZZ

£=0 k=1

—e)%e) -7 (k)-D(k, k).
(23)

Thus, the error introduced by sparse Linearization can
be bounded by

( NGE Zl_

£=0 k=1

e i (k) - D(k, k). (24)

Using the facts that Y2 > 7| 7 (k:) =1 and D(k, k)<
1, the above error can be bounded by v \[) (1 -

\/¢)%e = ¢, and the lemma follows.

Then we analysis the time cost of Algorithm 3. The
following Lemma shows that by sampling according to
7;(k)?, we can reduce the number of sample R by a
factor of ||7;]|2.

Lemma 5 By sampling according to 7;(k)?, the num-

12
ber of random samples required is reduced to O(”M'E#) )

Proof Recall that p(k) is the fraction of sample assigned
to D(k, k). We have p(k) = [Rm K)? W/R > B0

7t 2
the inequality (18) in Lemma Q,HWG‘,! can bound the vari-
ance of estimator 57(j) as

1 z”: 7 (k)27 (k)2
(1-Ve)'R =~

Var([5"(j)] <

1 ~ 12 —~ 2 1 ~12)= (12
< i k' = i - .
TRl AW = g Rl AR

Here, we use the facts that ||7;]* = Y>.7_, #;(k)? and
D(k,k) < 1. Since we need to bound the variance for
all possible nodes v; (and hence all possible ||7;[|?), we
make the relaxation that ||7;]|? < ||7;]|7 = 1, where

175117 = (k=1 17 (k))?. And thus
oLy - 1 - 12
< .
Var[s (j)] — (1_\/6)4RH7T’L||

This suggest that by sampling according to 7;(k)?, we
reduce the variance of the estimators by a factor ||7;||2.
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Fig. 2 Precision@500 v.s. Query time on small graphs

Recall that the ExactSim algorithm computes the Per- ||7?Z||\/§ Plugging b:||7?i\|\/ﬁ and Var[5" (j)]g(l”ﬁi“z

. > S —Ve)*R
sonalized PageRank vector 7; before estimating D, we  into Bernstein Inequality, and the lemma follows.

can obtain the value of ||7;]|? and scale R down by a ) _
factor of ||7;||?. This simple modification will reduce the To demonstrate the effectiveness of sampling ac-
o 17112 log n cording to 7;(k)?, notice that in the worst case, ||7;]|?
running time to O | FHLZE2 ), . SN . e . .
€ is as large as ||7;||7 = 1, so this optimization technique

One small technical O(i)ssllze isq;phat the maximum of
the random variables W ~f)r(k, k) may gets

too large as the fraction p(k) gets too small. However,

is essentially useless. However, it is known [7] that on
scale-free networks, the Personalized PageRank vector
¢ 7; follows a power-law distribution: let 7;(k;) denote
by the facts that p(k) = [%—‘ /R and Dr(k,k) <1, the j-th largest entry of 7;, we can assume 7;(k;) ~

we have Tfl_j; for some power-law exponent 8 € (0,1). In this
0 - - N 5 " . 2
2o Wf(k)'ﬂf(k).f)r(k k) < 7i(k) —R7i(k)/ R#;(k)? ~ case, |7||* can be bounded by O > =1 (T{I—f;) =
p(k) — p(k) [l

O (max {{z2 —1-1), and the ||| factor becomes

If we view the right side of the above equality as a func- significant for any power-law exponent 5 < 1.
. - . . R7: (k)2 Note that the expected length of every random walk
tion of 7;(k), it takes maximum when > = 1, or . 1 o
(e is 7=, which is a constant. Hence, by Lemma 5, the
[17:]2
R

equivalently 7;(k) = . Thus, the random vari-

time cost of Algorithm 3 can be bounded by O(@) .
ables in Equation (17) can be bounded by R4/ IF® —  Recall that after we derive the estimated matrix D,



14 Hanzhi Wang et al.

-1
- S 10 e
B-
1=
2 =t -2 -2
10 10 - 10 =1
o b 3 = 3 °
= 10° J 1p° @ 10"
T 10 g 210
I = P
S0 210 S 104
x w £
T x 3
=10° S 10° S10°
-6 L[[[5-MC 6 L[-=-MC 6L[-=-MC
0 PRSIm o PRSIm o PRSIm
- Linearization % Linearization - Linearization
10 10

-7
104 102 102 107 10° 10" 102 10° 10* 10°
preprocessing time(s) -AS

7
104 102 102 107" 10° 10! 10?2 10° 10* 10°
preprocessing time(s) -GQ

7
10* 102 102 107" 10° 10" 10% 10° 10* 10°
preprocessing time(s) -Pl

10!

1 -1
& 0 &
-2 =t
= 10
102 a 102 =t .
3| 10 — -
£ 10° 2 = 2 10°
S0 210° 210
w
s g K4
© © [}
=10° g T~ =10°
107
|- . \\ ==
—}PRSim 108 F|——PRSim ——PRSim
% Linearization = Linearization = Linearization

107 10°
10 102 102 107" 10° 10" 10 10% 10* 10° 10°
preprocessing time(s) -HT

Fig. 3 MaxError v.s. Preprocessing time on small graphs

410° 102 107 10° 10’
preprocessing time(s) -WV

102 10° 10* 10°

-=-MC -5-MC -=-MC
——PRSIm —F-PRSim —-PRSIm
107 - Linearization|4 107 % Linearization| { 10 ——Linearization| {
BN
T 102 LN 8 10 N @ 102
o Al g { -
S. 3 S .93 hal 5.3 0
E10 £10 210
x w w
S % El
=10+ =10 =10
10° 10° 10°
10 10 10

107
10* 102 102 107 10° 10" 102 10° 10* 10°

preprocessing time(s) -HP

6
10° 10* 10° 102 107" 10° 10" 10% 10° 10*
index size(GB) -P|

-6
10° 10 102 102 107" 10° 10' 102 10° 10*
index size(GB) -GQ

10° 100 100
TMC_ 5-MC “5-MC
| - PRSIm 10! —-PRSIm . —-PRSIm
10 —#rLinearization|§ - Linearization| 10 —#cLinearization|
10°? E
=102 > - a 102
£10 o £ 100 SN T
N L ~8 o
Z10° 2 10 u% 10°
w
% g %
13 ©
=10 g0 8 0
10°
-5 -5
10 107 10

1

-6
10° 10 102 102 107" 10° 10' 10 10° 10*
index size(GB) -AS

-6

0

10®° 10 10 102 107" 10° 10' 102 10° 10*
index size(GB) -HT

Fig. 4 MaxError v.s. Index size on small graphs

the linearized summation for 5 takes O(mlog 1) time.
Consequently, the total time cost of the optimized Ex-
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0
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Table 5 Datasets.
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— 2 D T,
actSim is O (Hﬂi”szlofgn +mlog %>’ which follows The- P;It EJEPSI')at ndirocted 3,8918 5730
orem 2. ca-GrQc (GQ) undirected 5,242 28,968
AS-2000(AS) undirected 6,474 25,144
CA-HepTh(HT) undirected 9,877 51,946
Wikivote (WV) directed 7,115 103,689
R CA-HepPh (HP) undirected 12,008 236978
5 Experiments DBLP-Author (DB) |undirected | 5,425,963 17,298,032
LiveJournal (LJ) directed 4,847,571 68,475,391
In this section, we experimentally study ExactSim and IndoChina (1c) directed 7,414,768| 191,606,827
. . Orkut-Links (OL) |undirected | 3,072,441 234,369,798
the other single-source algorithms. We first evaluate Ex- 14-2004 (IT) directed 41.290.682| 1,135.718.909
actSim against four methods MC, ParSim, Lineariza- Twitter (TW) directed | 41,652,230| 1,468,364,884
tion and PRSim to prove ExactSim’s ability of exact Wiki-P1 (WP) dynamic 1,033,050 25,026,208
computation (i.e., €, = 1077). Then we conduct an Wiki-De (WD) dynamic 2,166,669| 86,337,879

ablation study to demonstrate the effectiveness of the

optimization techniques. Finally, based on the ground  Datasets and Environment. We use six small datasets,

truths computed by ExactSim, we conduct a compre-
hensive empirical study on existing single-source Sim-
Rank algorithms and SimRank distributions.

six large datasets, and two dynamic datatsets obtained
from [1-3]. The details of these datasets can be found
in Table 5. All experiments are conducted on a machine
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Fig. 6 Precision@500 v.s. Query time on large graphs

with an Intel(R) Xeon(R) E7-4809 @2.10GHz CPU and
196GB memory.

5.1 Evaluation towards ExactSim

Methods and Parameters. We evaluate ExactSim
with the four state-of-the-art methods, including one
Monte Carlo method: MC [9], two iterative methods:
Linearization [29] and ParSim [45], and one Local push/
sampling methods: PRSim [39]. For a fair comparison,
we run each algorithm in the single thread mode on
static graphs.

MC has two parameters: the length of each random
walk L and the number of random walks per node r.
We vary (L,r) from (5,50) to (5000, 50000) on small
graphs and from (5,50) to (50,500) on large graphs.
ParSim has one parameter L, the number of iterations.
We vary it from 50 to 5 x 10° on small graphs and from

10" 10° 10" 10% 10° 10* 10°
query time(s) -IT

0.2
104 10° 102 107 10° 10" 10% 10° 10* 10°
query time(s) -TW

5 to 500 on large graphs. Finally, Linearization, PRSim,
and ExactSim share the same error parameter ¢, and
we vary ¢ from 107! to 1077 (if possible) on both small
and large graphs. We evaluate the optimized ExactSim
unless otherwise stated. In all experiments, we set the
decay factor ¢ of SimRank as 0.6.

Metrics. We use MaxError and Precision@k to eval-
uate the quality of the single-source and top-k results.
Given a source node v; and an approximate single-
source result with n similarities S’(i,j),j =1,...,n,
MazxError is defined to be the maximum error over
n similarities: MaxError = maxj_, ‘5‘(2,]) — S(4,7)|-
Given a source node v; and an approximate top-k re-
sult Vi, = {v1,..., v}, Precision@k is defined to be the
percentage of nodes in Vi that coincides with the ac-
tual top-k results. In our experiments, we set k to be
500. Note that this is the first time that top-k queries
with £ > 100 are evaluated on large graphs. On each
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Fig. 8 MaxError v.s. Index size on large graphs

dataset, we generate 50 query nodes for each dataset.
For each set of parameters and each method, we issue
one query from each query node and report the aver-
age MaxError and Precision@500 among the 50 query
nodes.

Experiments on small graphs. We first evaluate Ex-
actSim against other single-source algorithms on six
small graphs. We compute the ground truths of the
single-source and top-k queries using Power Method [13].
We omit a method if its query or preprocessing time ex-
ceeds 24 hours.

Fig. 1 shows the tradeoffs between MaxError and
the query time of each algorithm. The first observation
is that ExactSim is the only algorithm that consistently
achieves an error of 10~7 within 10* seconds. Lineariza-
tion is able to achieve a faster query time when the er-
ror parameter ¢ is large. However, as we set ¢ < 1075,

Linearization is troubled by its O ("lg#) preprocess-

index size(GB) -IT

index size(GB) -TW

ing time and is unable to finish the computation of the
diagonal matrix D in 24 hours.

Fig. 2 presents the tradeoffs between Precision@500
and query time of each algorithm. We observe that
ExactSim with ¢ = 1077 is able to achieve a preci-
sion of 1 on all six graphs. This confirms the exact-
ness of ExactSim. We also note that ParSim is able to
achieve high precisions on most of graphs despite its
large MaxFError in Fig. 1. This observation demon-
strates the effectiveness of the D ~ (1 — ¢)I approxi-
mation on small datasets. Finally, for the index-based
methods MC, PRSim, and Linearization, we also plot
the tradeoffs between Maxz Error and preprocessing time/
index size in Fig. 3 and Fig. 4. The index sizes of Lin-
earization form a vertical line, as the algorithm only re-
computes and stores a diagonal matrix D. PRSim gen-
erally achieves the smallest error given a fixed amount
of preprocessing time and index size.
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Table 6 Memory overhead on large graphs.

Memory overhead (GB) | DB c IT TW
Basic ExactSim 2.49 | 3.40 | 18.95 | 19.12
Optimized ExactSim 0.47 | 0.58 | 3.26 3.54
Graph size (GB) 0.48 | 1.88 | 10.94 | 13.30

Experiments on large graphs. For now, we have
both theoretical and experimental evidence that Ex-
actSim is able to obtain the exact single-source and
top-k SimRank results. In this section, we will treat
the results computed by ExactSim with ¢ = 1077 as
the ground truths to evaluate the performance of Ex-
actSim with larger € on large graphs.

Fig. 5 and Fig. 6 show the trade-offs between the
query time and MaxzError/Precision@500 of each al-
gorithm. Fig. 7 and Fig. 8 display the MaxFError and
preprocessing time/index size plots of the index-based
algorithms. For ExactSim with ¢ = 1077, we set its
MazxError as 1077 and Precision@500 as 1. We observe
from Fig. 6 that ExactSim with ¢ = 10° also achieves a
precision of 1 on all four graphs. This suggests that the
top-500 results of ExactSim with e = 107° are the same
as that of ExactSim with ¢ = 1077, In other words,
the top-500 results of ExactSim actually converge after
e = 1075, This is another strong evidence of the exact
nature of ExactSim. From Fig. 5, we also observe that
ExactSim is the only algorithm that achieves an error
of less than 1076 on all six large graphs. In particular,
on the TW dataset, no existing algorithm can achieve
an error of less than 10™%, while ExactSim is able to
achieve exactness within 10 seconds.

Ablation study. We now evaluate the effectiveness of
the optimization techniques. Recall that we use sam-
pling according to 7;(k)? and local deterministic ex-
ploitation to reduce the query time, and sparse Lin-
earization to reduce the space overhead. Fig. 9 shows
the time/error tradeoffs of the basic ExactSim and the
optimized ExactSim algorithms. Under similar actual
error, we observe a speedup of 10 — 100 times. Table 6
shows the memory overhead of the basic ExactSim and
the optimized ExactSim algorithms. We observe that
the space overhead of the basic ExactSim algorithm is

usually larger than the graph size, while sparse Lin-
earization reduces the memory usage by a factor of 3—5
times. This demonstrates the effectiveness of our opti-
mizing techniques.

5.2 Benchmarking Approximate SimRank Algorithms

We have proved the effectiveness of ExactSim on both
small and large graphs against the state-of-the-art meth-
ods in each category. In the following, we will use the
ground truths computed by ExactSim to evaluate the
performances of existing single-source SimRank algo-
rithms. To the best of our knowledge, this is the first
experimental study on the accuracy/cost tradeoffs of
SimRank algorithms on large graphs.

Methods. Recall that in Section 2, we present a de-
tailed analysis about all existing single-source SimRank
algorithms which can support large graphs. Because
Uniwalk only supports undirected graphs, we omit it
methods in our evaluation and consider the other nine
single-source algorithms, including three Monte Carlo
methods: MC [9], READS [14] and TSF [32], two it-
erative methods: Linearization [29] and ParSim [45],
and four Local push/sampling methods: ProbeSim [24],
PRSim [39], SLING [34] and TopSim [17]. Among them,
ProbeSim and ParSim are index-free methods, and the
others are index-based methods; READS, TSF, ProbeSim,
TopSim and ParSim can handle dynamic graphs, and
the other methods can only handle static graphs. For
the fairness of evaluation, we conduct each method in
the single thread mode.

Experiments on Real-World Graphs. We first eval-
uate the performance of each method on real-world
graphs. The parameters of MC, ParSim, Linearization
and PRSim are the same as that in Section 5.1. Be-
sides, READS has two parameters: the length of each
random walk L and the number of random walks per
node 7. To cope with its better optimization, we vary
(L,r) in larger ranges, from (10%,10%) to (10°%,107) on
small graphs and from (10, 100) to (500, 5000) on large
graphs. TSF has three parameters R, R, and T', where
R, is the number of one-way graphs, R, is the number
of samples at query time and T is the number of iter-
ations/steps. We vary (R4, Rq,T) from (100,20, 10) to
(10000, 2000, 1000) on small graphs and from (100, 20, 10)
to (4000, 800,400) on large graphs. TopSim has four pa-
rameters T, h,n, and H, which correspond to the max-
imum length of a random walk, the lower bound of the
degree to identify a high degree node, the probability
threshold to eliminate a path, and the size of prior-
ity pool, respectively. As advised in paper [17], we fix
1/h =100 and = 0.001 and vary (T, H) from (3,100)
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Fig. 11 Trade-offs: AvgError@50 v.s. Query time on large graphs

to (20, 10%) on small graphs and from (3, 100) to (7, 10°)
on large graphs. ProbeSim and SLING share the same
error parameter ¢, and we vary ¢ from 107! to 10~7 (if
possible) on both small and large graphs.

Fig. 10 to Fig. 15 present the benchmarking studies
of existing single-source algorithms against the ground
truths. Specifically, Fig. 10 plots the trade-offs between
query time and MaxzError. Fig. 11 shows the trade-off
lines between query time and AvgError@50, where

1 AL ..
Angrror@sz Z ‘S(l,j)—S(ZJ) )

v; €V

where Vj, denotes the set of approximate top-k nodes.
Fig. 12 draws the trade-off plots between query time
and Precision@500. Fig. 13 shows the relations between
memory cost and MaxError. Besides, as for those index-
based methods, Fig. 14 and Fig. 15 plot the trade-offs
between preprocessing time/index size and MazError,
respectively.

From these experimental results, we can derive the
following observations. First of all, PRSim generally
provides the best overall performance among the index-
based methods in terms of query-time/error tradeoffs.
This suggests that the local push/sampling approach is
more suitable for large graphs. Secondly, the two recent
dynamic methods, ProbeSim and READS, achieve sim-
ilar accuracy on large graphs for the typical query time
range (< 10 seconds) of the approximate algorithms.
However, ProbeSim is an index-free algorithm and thus
has better scalability. In particular, READS runs out
of memory on the TW dataset with the number of sam-
ples per node r > 1000. Thirdly, ParSim is unable to
achieve the same high precisions as it does on small
graphs, which suggests that the D ~ (1 — ¢)I approxi-
mation is not as effective on large graphs. SLING and
Linearization also quickly become unbearable on large

nlogn

graphs due to their O (572) preprocessing time. This
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Fig. 13 Trade-offs: MaxError v.s. Memory Cost on large graphs

shows the necessity of evaluating the accuracy on large
graphs. Finally, Fig. 13 shows iterative methods (Par-
Sim and Linearization) perform the best in terms of
space overhead.

Besides, we evaluate sensitivity of each method to
the choice of k as for the Precision@k. Fig. 16 shows the
precision plots with varying k from 10 to 1000 on DB
and TW datasets. For each method, we only pick one
group of parameters to view the change of Precision@k.
For fairness, we try to keep each method staying in
the same level of precision by appropriate parameter
settings. In detail, we set L = 20, r = 200 for MC; L =5
for ParSim; L = 100, r = 10 for READS; R, = 100,
R, =20, T =10 for TSF; T' = 4 and H = 1000 for
TopSim; € = 0.1 for Linearization, PRSim, ProbeSim,
and SLING. We observe that larger k always leads to
low precisions. The only exception is ParSim on TW,
which shows a slightly increment with larger k. This

reflects that ParSim can maintain the relative order of
top-k nodes well.

Experiments on Synthetic Datasets. We also ana-
lyze the trade-off of each method with fixed parameters
on synthetic datasets to vary network structures and
sizes. For fairness, we choose the parameters to guar-
antee the accuracy of each method remains in the same
level. In particular, we set L = 50 and r = 500 for MC;
L = 500 for ParSim; L = 10 and r = 100 for READS;
R, =100, Ry = 20 and T' = 10 for TSF; T' = 3 and
H =100 for TopSim; € = 0.1 for Linearization, PRSim,
ProbeSim and SLING. On each dataset, we also gen-
erate 50 query nodes for each dataset. For each set of
parameters and each method, we issue one query from
each query node and report the average MazxError and
Precision@500 among the 50 query nodes.

We first evaluate the performance of each method
on power-law graphs. Using the hyperbolic graph gen-
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erator given in [4,15], we generate a set of graphs with
various power-law exponent v, graph size n and average
degree d. We fix the graph size n = 100,000, the aver-
age degree d = 10 and vary 7 from 2.0 to 3.0. Fig. 17(a)
reports the query time of each . From Fig. 17(a), we
observe that the query time of most of methods increase
with 1/v except for Linearization, ParSim and SLING.
For Linearization and ParSim, in the query phase, the
two iterative methods repeat to do matrix multiplica-
tions with fixed times, leading to the unchanged query

index size(GB) -IT

index size(GB) -TW

time. As for SLING, it heavily relies on the index and
its query time with large ¢ is too short to be impacted
by 7. In Fig. 17(b), we fix v = 3 and d = 10, and
vary n from 10* to 107 to evaluate the trade-offs be-
tween query time and the graph size n. We observe
that local push/sampling methods’ scalabilities outper-
form other methods in general. This is because these
methods mainly focus on local information and are less
influenced by the graph size. For Fig. 17(c), we try to
explore the performance of each method on the power-
law graphs with different average degrees. Specifically,
we fix v = 3 and n 100,000, and vary d from 5
to 1,000. We observe that the query time of PRSim in-
creases at the slowest speed among these methods. This
reveals the ability of PRSim to support dense graphs.
On the contrary, TopSim shows a rapidly growing query
time as the average degree increases.

Besides, we use Erdds and Rényi (ER) model to gen-
erate non-power-law graphs for evaluations. According
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Fig. 19 Results on stochastic block graphs

to ER model, any pair of node will be assigned an edge
with a specified probability p. In Fig. 18(a), we vary the
graph size n from 10* to 10°. We adjust the probabil-
ity p to fix the average degree d = 10. In Fig. 18(b), we
vary d from 5 to 10% with fixed n = 100, 000. Because by
fixing the average degree, the structures of ER graphs
nearly remain unchanged with the increment of n. As
shown in Fig. 18(a), the query time of MC-based meth-
ods (MC,READS and TSF) does not increase with n
on the ER graphs. However, we observe that the query
time of the three methods show obvious increments on
power-law graphs. We attribute this difference to the
existence of the hub nodes on power-law graphs.

Finally, we generate graphs using the stochastic block
model with four parameters, including the graph size n,
the number of clusters ¢, the probability p to assign an
edge for any pair of node belonging to the same clus-
ter and the probability ¢ to assign an edge for any two
nodes belonging to different clusters. In Fig. 19(a), we
modulate the values of p and ¢ to keep the average de-
gree d = 10, the number of clusters ¢ = 5, and vary
the graph size n from 10% to 10°. In Fig. 19(b), we fix

102 10% 5
average degree

(b) Query time v.s. d.

10°

50 100 500
number of clusters

(c) Query time v.s. clusters.

n = 10° and ¢ = 5, adjust p and ¢ to vary the average
degree d from 10 to 1000. In Fig. 19(c), we vary the
number of clusters ¢ from 5 to 500 and fix n = 10°,
d = 10. We observe that the result of each method
is similar with that on ER graphs, which reflects that
stochastic block model is a generalized version of ER
model. Fig. 19(c) shows that the number of clusters
does not has a significant effect on the query time of
these methods.

Experiments on Dynamic Datasets. In this sec-
tion, we evaluate the performances of the methods which
can support dynamic graphs. Recall that ParSim [45],
ProbeSim [24], and TopSim [17] are index-free methods
and can support dynamic graphs naturally. READS [14]
and TSF [32] are two index-based methods which can
support dynamic graphs by modifying index structures.
Since the vertex modification can be treated as sev-
eral edge modifications, we use the two dynamic graphs
WD and WP which only contains edge modifications
for ease of readibility. The parameters of each method
are the same with that in Section 5.2. For the four
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index-free methods, we run them on the final graphs
of WP and WD. For READS and TSF, we first load
the initial graph without the last 10,000 edge mod-
ifications and construct the index. Then we run the
two methods on the dynamic graphs with 10,000 edge
modifications. After the updating process, we compare
the computational quality of the six methods and plot
their trade-offs between the query time and MaxEr-
ror/Precision@500 in Fig. 20 and Fig. 21, respectively.
In Fig. 20, we observe that each method’s performance
is similar with that on static graphs. ProbeSim achieves
the highest approximation quality within the same query
time. We observe that the performances of index-free
methods are similar with that on static graphs. ProbeSim
still shows the best performance among these meth-
ods. However, the MaxzFError of READS is hard to be
reduced with increasing query time. This is very dif-
ferent from what we have observed on static graphs,
where READS and ProbeSim achieve similar accuracy.
In Fig. 22, 23, and 24, we plot the trade-offs between
MaxError and preprocessing time/index size/updating
time of the two index-based methods TSF and READS.
Note that the updating time is the average time per
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edge insertion/deletion in the updating process. We ob-
serve that the two methods both incur large maximum
error. READS shows a better performance than TSF.

5.3 SimRank Distribution

We now design experiments to seek the answers for two
open questions regarding the distribution of SimRank:

— Does the single-source SimRank result follow the
power-law distribution on real-world graphs?

— What is the density of SimRank values on real-world
graphs?

We use ExactSim to compute the ground truths
of 50 random single-source queries on each of the six
large graphs. Then we compute the average frequency
of SimRank values in every range of length 10~°, and
plot these frequencies against the SimRank values in
Fig. 25. Besides, we plot the frequency distribution of
Personalized PageRank(PPR) computed by its Power
Method [31] with teleport probability e = 0.2, which
has been proved following the power law [23]. The re-
sults suggest SimRank values indeed exhibit a power-
law shaped distribution on real-world graphs as PPR
does. In particular, the power-law exponent (slope) on
TW appears to be significantly more skewed than that
on IT, which explains why TW is a harder dataset for
computing single-source SimRank queries. For sake of
completeness, we also plot the degree distributions of
the six graphs in Fig. 26. We compute the average fre-
quency of each degree in every range of length 10. We
observe that the largest degree can achieve 106 on TW,
which is apparently larger than other datasets. This
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also demonstrates the hardness to compute SimRank
on TW.

Besides, we plot the SimRank distribution on syn-
thetic power-law graphs in Fig. 27 using the Kronecker
graph model [18], which can generate large graphs of
million nodes. We fix the probability seed matrix as
(0.9,0.5;0.5,0.1) and vary the graph size n from 10° to
5 x 107. On the four synthetic graphs, SimRank val-
ues still exhibit a power-law shaped distribution. We
also plot the degree distribution of the four synthetic

power-law graphs in Fig. 28. The degree distribution of
the four synthetic graphs are all power-law shaped.

In comparison, we generate non-power-law graphs
using the Erdés and Rényi(ER) model, and show the
SimRank distributions on the synthetic non-power-law
graphs. According to the settings of ER-model, an edge
is attached to each node with a user-defined probability
p. We vary the number of nodes n from 10* to 5 x
10°, and tune p to guarantee the average degree d =
10. Fig. 29 plots the SimRank and PPR distributions.
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Fig. 30 displays the degree distributions on these ER
graphs. We observe that the distributions of SimRank
and PPR both show non-power-law shaped curves on
ER graphs.

Next, we analyze the density of single-source Sim-
Rank queries. The density of SimRank is the percentage
of SimRank values that are larger than some threshold
e. Fig. 31 shows the average density of 50 queries on
six large datasets, with ¢ varying from 0.1 to 10~7. The
result shows that the densities can vary widely on dif-
ferent datasets. For example, on the TW dataset, the
density of SimRank values quickly reaches close to 1
for ¢ < 107%. On the other hand, the density on the

IT dataset seems to converge on 10~4. This suggests
that density-sensitive methods such as [38] can achieve
satisfying results on IT and may run out of memory on
dense graphs such as TW. This result also implies that
it is essentially hopeless to design an exact algorithm
for all-pair queries on large real-world graphs, as the
number of non-zero entries in the SimRank matrix can
be as large as O(n?).

6 Conclusions

This paper presents ExactSim, an algorithm that pro-
duces the ground truths for single-source and top-k
SimRank queries with precision up to 7 decimal places
on large graphs. Using the ground truths computed by
ExactSim, we present the first experimental study of
the accuracy/cost tradeoffs of existing SimRank algo-
rithms on large graphs. We also exploit various proper-
ties of the distributions of SimRank on large real-world

graphs. For future work, we note that the O (105#)

complexity of ExactSim prevents it from achieving a
precision of 10714 (i.e., the precision of the double type).
To achieve such extreme precision, we need an algo-

rithm with O (k’%) complexity, which remains a ma-

jor open problem in SimRank study.



ExactSim: Benchmarking Single-Source SimRank Algorithms with High-Precision Ground Truths 25

7 ACKNOWLEDGEMENTS

Zhewei Wei was supported by National Natural Science
Foundation of China (NSFC) No. 61972401 and No.
61932001, by the Fundamental Research Funds for the
Central Universities and the Research Funds of Renmin
University of China under Grant 18XNLG21, and by
Alibaba Group through Alibaba Innovative Research
Program. The work is partially done at Beijing Key

Laboratory of Big Data Management and Analysis Meth-
ods, MOE Key Lab DEKE, Renmin University of China,

and Pazhou Lab, Guangzhou, 510330, China. Hanzhi
Wang was supported by the Outstanding Innovative
Talents Cultivation Funded Programs 2020 of Renmin
Univertity of China. Ye Yuan was supported by NSFC
No. 61932004 and No. 61622202, and by FRFCU No.
N181605012. Ji-Rong Wen was supported by NSFC No.
61832017, and by Beijing Outstanding Young Scientist
Program NO. BJJWZYJH012019100020098. Xiaoyong
Du was supported by NSFC No. U1711261.

References

e

10.

11.

12.

13.

14.

http://snap.stanford.edu/data.
http://law.di.unimi.it/datasets.php.
http://konect.uni-koblenz.de/networks.

Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov.
Hyperbolic graph generator. Computer Physics Com-
munications, 196:492-496, 2015.

Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Lo-
cal graph partitioning using pagerank vectors. In FOCS,
pages 475-486, 2006.

Toannis Antonellis, Hector Garcia Molina, and Chi Chao
Chang. Simrank++: query rewriting through link anal-
ysis of the click graph. PVLDB, 1(1):408-421, 2008.
Bahman Bahmani, Abdur Chowdhury, and Ashish Goel.
Fast incremental and personalized pagerank. VLDB,
4(3):173-184, 2010.

Fan R. K. Chung and Lincoln Lu. Concentration in-
equalities and martingale inequalities: A survey. Internet
Mathematics, 3(1):79-127, 2006.

Daniel Fogaras and Balazs Racz. Scaling link-based sim-
ilarity search. In WWW, pages 641-650, 2005.

Déniel Fogaras, Baldzs Raécz, Karoly Csalogany, and
Tamas Sarlés. Towards scaling fully personalized pager-
ank: Algorithms, lower bounds, and experiments. Inter-
net Mathematics, 2(3):333-358, 2005.

Yuichiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa,
and Makoto Onizuka. Efficient search algorithm for sim-
rank. In ICDE, pages 589-600, 2013.

Guoming He, Haijun Feng, Cuiping Li, and Hong Chen.
Parallel simrank computation on large graphs with iter-
ative aggregation. In KDD, pages 543-552, 2010.

Glen Jeh and Jennifer Widom. Simrank: a measure of
structural-context similarity. In SIGKDD, pages 538—
543, 2002.

Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-
Wing Wong. Reads: a random walk approach for efficient
and accurate dynamic simrank. PPVLDB, 10(9):937—
948, 2017.

15.

21.

22.

23.

25.

27.

28.

29.

31.

32.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kit-
sak, Amin Vahdat, and Maridn Bogund. Hyperbolic
geometry of complex networks.  Physical Review FE,
82(3):036106, 2010.

. Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi

Kawarabayashi. Scalable similarity search for simrank.
In SIGMOD, pages 325-336, 2014.

Pei Lee, Laks V. S. Lakshmanan, and Jeffrey Xu Yu. On
top-k structural similarity search. In ICDE, pages 774—
785, 2012.

. Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg,

Christos Faloutsos, and Zoubin Ghahramani. Kronecker
graphs: an approach to modeling networks. Journal of
Machine Learning Research, 11(2), 2010.

. Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou

Sun, Yintao Yu, and Tianyi Wu. Fast computation of
simrank for static and dynamic information networks. In
EDBT, pages 465-476, 2010.

. Lina Li, Cuiping Li, Hong Chen, and Xiaoyong Du.

Mapreduce-based simrank computation and its applica-
tion in social recommender system. In 2013 IEEFE in-
ternational congress on big data, pages 133-140. IEEE,
2013.

Zhenguo Li, Yixiang Fang, Qin Liu, Jiefeng Cheng,
Reynold Cheng, and John Lui. Walking in the cloud:
Parallel simrank at scale. PVLDB, 9(1):24-35, 2015.
Zhenjiang Lin, Michael R Lyu, and Irwin King. Match-
sim: a novel similarity measure based on maximum neigh-
borhood matching. KAIS, 32(1):141-166, 2012.

Nelly Litvak, Werner RW Scheinhardt, and Yana
Volkovich. In-degree and pagerank: why do they follow
similar power laws? Internet mathematics, 4(2-3):175—
198, 2007.

Yu Liu, Bolong Zheng, Xiaodong He, Zhewei Wei, Xi-
aokui Xiao, Kai Zheng, and Jiaheng Lu. Probesim: scal-
able single-source and top-k simrank computations on
dynamic graphs. PVLDB, 11(1):14-26, 2017.

Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and De-
nis Turdakov. Accuracy estimate and optimization tech-
niques for simrank computation. The VLDB Journal,
19(1):45-66, 2010.

. Dmitry Lizorkin, Pavel Velikhov, Maxim N. Grinev, and

Denis Turdakov. Accuracy estimate and optimization
techniques for simrank computation. VLDB J., 19(1):45—
66, 2010.

Linyuan Lii and Tao Zhou. Link prediction in complex
networks: A survey. Physica A: statistical mechanics and
its applications, 390(6):1150-1170, 2011.

X. Luo, J. Gao, C. Zhou, and J. X. Yu. Uniwalk: Uni-
directional random walk based scalable simrank compu-
tation over large graph. In 2017 IEEE 33rd Interna-
tional Conference on Data Engineering (ICDE), pages
325-336, April 2017.

Takanori Maehara, Mitsuru Kusumoto, and Ken-ichi
Kawarabayashi. Efficient simrank computation via lin-
earization. CoRR, abs/1411.7228, 2014.

. Takanori Maehara, Mitsuru Kusumoto, and Ken-ichi

Kawarabayashi. Scalable simrank join algorithm. In
ICDE, pages 603-614, 2015.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: bringing order
to the web. 1999.

Yingxia Shao, Bin Cui, Lei Chen, Mingming Liu, and
Xing Xie. An efficient similarity search framework for
simrank over large dynamic graphs. PVLDB, 8(8):838—
849, 2015.



26

Hanzhi Wang et al.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Wenbo Tao, Minghe Yu, and Guoliang Li. Efficient top-
k simrank-based similarity join. PVLDB, 8(3):317-328,
2014.

Boyu Tian and Xiaokui Xiao. SLING: A near-optimal
index structure for simrank. In SIGMOD, pages 1859—
1874, 2016.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and
Emmanuel Miiller. Verse: Versatile graph embeddings
from similarity measures. In WWW, pages 539-548. In-
ternational World Wide Web Conferences Steering Com-
mittee, 2018.

Hanzhi Wang, Zhewei Wei, Ye Yuan, Xiaoyong Du, and
Ji-Rong Wen. Exact single-source simrank computation
on large graphs. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data,
pages 653-663, 2020.

Yue Wang, Yulin Che, Xiang Lian, Lei Chen, and Qiong
Luo. Fast and accurate simrank computation via forward
local push and its parallelization. IEEE Transactions on
Knowledge and Data Engineering, 2020.

Yue Wang, Lei Chen, Yulin Che, and Qiong Luo. Accel-
erating pairwise simrank estimation over static and dy-
namic graphs. The VLDB Journal, 28(1):99-122, Febru-
ary 2019.

Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang,
Yu Liu, Xiaoyong Du, and Ji-Rong Wen. Prsim: Sublin-
ear time simrank computation on large power-law graphs.
In SIGMOD, pages 1042-1059. ACM, 2019.

Wensi Xi, Edward A Fox, Weiguo Fan, Benyu Zhang,
Zheng Chen, Jun Yan, and Dong Zhuang. Simfusion:
measuring similarity using unified relationship matrix. In
SIGIR, pages 130-137. ACM, 2005.

Weiren Yu, Xuemin Lin, and Wenjie Zhang. Fast incre-
mental simrank on link-evolving graphs. In ICDE, pages
304-315, 2014.

Weiren Yu, Xuemin Lin, Wenjie Zhang, Lijun Chang,
and Jian Pei. More is simpler: Effectively and effi-
ciently assessing node-pair similarities based on hyper-
links. PVLDB, 7(1):13-24, 2013.

Weiren Yu and Julie McCann. Gauging correct relative
rankings for similarity search. In CIKM, pages 1791—
1794, 2015.

Weiren Yu and Julie A. McCann. Efficient partial-pairs
simrank search for large networks. PVLDB, 8(5):569-
580, 2015.

Weiren Yu and Julie A McCann. Efficient partial-pairs
simrank search on large networks. Proceedings of the
VLDB Endowment, 8(5):569-580, 2015.

Weiren Yu and Julie Ann McCann. High quality graph-
based similarity search. In SIGIR, pages 83-92, 2015.
Weiren Yu, Wenjie Zhang, Xuemin Lin, Qing Zhang,
and Jiajin Le. A space and time efficient algorithm for
simrank computation. World Wide Web, 15(3):327-353,
2012.

Jing Zhang, Jie Tang, Cong Ma, Hanghang Tong,
Yu Jing, and Juanzi Li. Panther: Fast top-k similarity
search on large networks. In SIGKDD, pages 1445-1454.
ACM, 2015.

Peixiang Zhao, Jiawei Han, and Yizhou Sun. P-rank: a
comprehensive structural similarity measure over infor-
mation networks. In CIKM, pages 553-562. ACM, 2009.
Peixiang Zhao, Jiawei Han, and Yizhou Sun. P-rank: a
comprehensive structural similarity measure over infor-
mation networks. In CIKM, pages 553-562, 2009.
Weiguo Zheng, Lei Zou, Yansong Feng, Lei Chen, and
Dongyan Zhao. Efficient simrank-based similarity join
over large graphs. PVLDB, 6(7):493-504, 2013.



