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Abstract SimRank is a popular measurement for eval-

uating the node-to-node similarities based on the graph

topology. In recent years, single-source and top-k Sim-

Rank queries have received increasing attention due to

their applications in web mining, social network anal-

ysis, and spam detection. However, a fundamental ob-

stacle in studying SimRank has been the lack of ground

truths. The only exact algorithm, Power Method, is

computationally infeasible on graphs with more than

106 nodes. Consequently, no existing work has evalu-

ated the actual accuracy of various single-source and

top-k SimRank algorithms on large real-world graphs.

In this paper, we present ExactSim, the first algo-

rithm that computes the exact single-source and top-k
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SimRank results on large graphs. This algorithm pro-

duces ground truths with precision up to 7 decimal

places with high probability. With the ground truths

computed by ExactSim, we present the first experi-

mental study of the accuracy/cost trade-offs of existing

approximate SimRank algorithms on large real-world

graphs and synthetic graphs. Finally, we use the ground

truths to exploit various properties of SimRank distri-

butions on large graphs.
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1 Introduction

Computing link-based similarity is an overarching prob-

lem in graph analysis and mining. Amid the existing

similarity measures [31,40,49,48], SimRank has emerged

as a popular metric for assessing structural similarities

between nodes in a graph. SimRank was introduced

by Jeh and Widom [13] to formalize the intuition that

“two pages are similar if they are referenced by simi-

lar pages.” Given a directed graph G = (V,E) with n

nodes {v1, . . . , vn} and m edges, the SimRank matrix

S defines the similarity between any two nodes vi and

vj as follows:

S(i, j) =


1, for i = j;∑
vi′∈I(vi)

∑
vj′∈I(vj)

c · S(i′, j′)

din(vi) · din(vj)
, for i 6= j.

(1)

Here, c is a decay factor typically set to 0.6 or 0.8 [13,

26]. I(vi) denotes the set of in-neighbors of vi, and

din(vi) denotes the in-degree of vi. SimRank aggre-

gates similarities of multi-hop neighbors of vi and vj to
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produce high-quality similarity measure, and has been

adopted in various applications such as recommenda-

tion systems [20], link prediction [27], and graph em-

beddings [35].

A fundamental obstacle for studying SimRank is

the lack of ground truths on large graphs. Currently,

the only methods that compute the SimRank matrix

is Power Method and its variations [13,25], which in-

herently takes Ω(n2) space and at least Ω(n2) time as

there are Ω(n2) node pairs in the graphs. This com-

plexity is infeasible on large graphs (n ≥ 106). Con-

sequently, the majority of recent works [16,29,34,10,

17,21,32,44,14,24,39] focus on single-source and top-k

queries. Given a source node vi, a single-source query

asks for the SimRank similarity between every node

and vi, and a top-k query asks for the k nodes with

the highest SimRank similarities to vi. Unfortunately,

computing ground truths for the single-source and top-

k queries on large graphs still remains an open problem.

To the best of our knowledge, Power Method is still

the only way to obtain exact single-source and top-k

results, which is not feasible on large graphs. Due to

the hardness of exact computation, existing works on

single-source and top-k queries focus on approximate

computations with efficiency and accuracy guarantees.

The lack of ground truths has severely limited our

understanding towards SimRank and SimRank algo-

rithms. First of all, designing approximate algorithms

without the ground truths is like shooting in the dark.

Most existing works take the following approach: they

evaluate the accuracy on small graphs where the ground

truths can be obtained by the Power Method withΩ(n2)

space complexity. Then they report the efficiency/ scal-

ability results on large graphs with consistent parame-

ters. This approach is flawed for the reason that con-

sistent parameters may still lead to unfair comparisons.

For example, some of the existing methods generate a

fixed number of random walks from each node, while

others fix the maximum error ε and generate logn
ε2 ran-

dom walks from each node. If we increase the graph size

n, the comparison becomes unfair as the latter methods

require more random walks from each node. Secondly,

it is known that the structure of large real-world graphs

can be very different from that of small graphs. Conse-

quently, the accuracy results on small graphs can only

serve as a rough guideline for accessing the actual error

of the algorithms in real-world applications. We believe

that the only right way to evaluate the effectiveness of

a SimRank algorithm is to evaluate its results against

the ground truths on large real-world graphs.

Second, the lack of ground truths has also prevented

us from exploiting the distribution of SimRank on real-

world graphs. For example, it is known [7] that the

PageRank of most real-world graphs follows the power-

law distribution. The natural question is that, does Sim-

Rank also follow the power-law distribution on real-

world graphs? Furthermore, the performances of some

existing methods [38] depend on the density of the Sim-

Rank, which is defined as the percentage of node pairs

with SimRank similarities larger than some threshold

ε. Analyzing the distribution or density of SimRank is

clearly infeasible without the ground truths.

Finally, the lack of ground truths restricts us to

conduct scientific benchmarking experiments towards

these existing approximation algorithms. Without in-

sightful experimental observations, we are hard to ex-

plore the connections between algorithms’ characteris-

tics and performances. For example, what kinds of al-

gorithms tend to show better scalabilities? Algorithms

belonging to which categories can perform better trade-

off lines? A comprehensive benchmarking survey is fun-

damentally based on the ground truths.

Exact Single-Source SimRank Computation. In

this paper, we study the problem of computing the

exact single-source SimRank results on large graphs.

A key insight is that exactness does not imply abso-

lutely zero error. This is because SimRank values may

be infinite decimals, and we can only store these values

with finite precision. Moreover, we note that the ground

truths computed by Power Method also incur an error

of at most cL, where L is the number of iterations in

Power Method. In most applications, L is set to be large

enough such that cL is smaller than the numerical error

and thus can be ignored. In this paper, we aim to de-

velop an algorithm that answers single-source SimRank

queries with an additive error of at most εmin = 10−7.

Note that the float type in various programming lan-

guages usually support precision of up to 6 or 7 decimal

places. So by setting εmin = 10−7, we guarantee the al-

gorithm returns the same answers as the ground truths

in the float type. As we shall see, this precision is ex-

tremely challenging for existing methods. To make the

exact computation possible, we are also going to allow

a small probability to fail. We define the probabilistic

exact single-source SimRank algorithm as follows.

Definition 1 With probability at least 1−1/n, for ev-

ery source node vi ∈ V , a probabilistic exact single-

source SimRank algorithm answers the single-source

SimRank query of vi with additive error of at most

εmin = 10−7.

Our Contributions. In this paper, we propose Ex-

actSim, the first algorithm that enables probabilistic

exact single-source SimRank queries on large graphs.

We show that existing single-source methods share a
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common complexity term O
(
n logn
ε2min

)
, and thus are un-

able to achieve exactness on large graphs. However, Ex-

actSim runs in O
(

logn
ε2min

+m log 1
εmin

)
time, which is

feasible for both large graph size m and small error

guarantee εmin. We also apply several non-trivial opti-

mization techniques to reduce the query cost and space

overhead of ExactSim. In our empirical study, we show

that ExactSim is able to compute the ground truth with

a precision of up to 7 decimal places within one hour on

graphs with billions of edges. Hence, we believe Exact-

Sim is an effective tool for producing the ground truths

for single-source SimRank queries on large graphs.

Comparison with the conference version[36]. We

make the following new contributions over the confer-

ence version.

– We conduct a comprehensive survey on all single-

source SimRank algorithms which can support large

graphs. We summarize the complexity of each method

and analyze the reasons why these methods cannot

achieve exactness on large graphs.

– Based on the ground truths provided by ExactSim,

we conduct the first empirical study on the accu-

racy/cost trade-offs of existing approximate single-

source algorithms on large real-world graphs and

synthetic graphs.

– We use ExactSim to exploit various properties of

SimRank on large real-world graphs. In particular,

we show that the single-source SimRank values fol-

low the power-law distribution on real-world graphs.

We also study the density of SimRank values on

large graphs.

2 Preliminaries and Related Work

In this section, we review the state-of-the-art single-

source SimRank algorithms which can support large

graphs. We introduce a taxonomy to classify these al-

gorithms into three categories: Monte Carlo methods,

iterative methods, and local push/sampling methods.

Note that our ExactSim algorithm is largely inspired

by three prior works: Linearization [29], PRSim [39]

and pooling [24], and we will describe them in details.

In Section 5, we will also use the ground truths provided

by ExactSim to evaluate the algorithms mentioned in

this section. Table 1 summaries the notations used in

this paper.

2.1 Monte Carlo Methods

A popular interpretation of SimRank is the meeting

probability of random walks. In particular, we consider a

Table 1 Table of notations.

Notation Description

n,m the numbers of nodes and edges in G

I(vi),O(vi) the in/out-neighbor set of node vi

S, S(i, j) the SimRank matrix and the SimRank
similarity of vi and vj

c the decay factor in the definition of Sim-
Rank

ε, εmin additive error parameter and error re-
quired for exactness (εmin = 10−7)

P , D the transition matrix and the diagonal
correction matrix

~πi, ~π`i , the Personalized PageRank and `-hop
Personalized PageRank vectors of node
vi

~h`i the `-hop Hitting Probability vector of vi

random walk from node u that, at each step, moves to

a random in-neighbor with probability
√
c, and stops

at the current node with probability 1 −
√
c. Such a

random walk is called a
√
c-walk. Suppose we start a√

c-walk from node vi and a
√
c-walk from node vj , we

call the two
√
c-walks meet if they visit the same node

at the same step. It is known [34] that

S(i, j) = Pr[two
√
c-walks from vi and vj meet]. (2)

According to Equation (2), we can employ Monte-

Carlo sampling to estimate S(i, j). That is, by simulat-

ing adequate pairs of
√
c-walks from nodes vi, vj , the

percentage of the walks that meet in the walking pro-

cess serves as the estimator of S(i, j). Hence, we classify

the approximation algorithms as Monte Carlo methods

if they use the fraction of target random walks to esti-

mate the meeting probability based on Equation (2) or

its variants.

MC [9] makes use of Equation (2) to derive a Monte-

Carlo algorithm for computing single-source SimRank.

In the preprocessing phase, we simulate R
√
c-walks

from each node in V . Given a source node vi, we com-

pare the
√
c-walks from vi and from each node vj ∈ V ,

and use the fraction of
√
c-walks that meet as an estima-

tor for S(i, j). By standard concentration inequalities,

the maximum error of estimated S(i, j) is bounded by

ε with high probability if we set R = O
(

logn
ε2

)
, leading

to a preprocessing time of O
(
n logn
ε2

)
.

READS [14] is an optimized version of the MC-based

algorithm. The key idea is to build an index of nR com-

pressed
√
c-walks such that the algorithm only needs to

generate a few more
√
c-walks in the query phase. An

appealing feature of READS is that its index support

efficient insertions and deletions of edges. Consequently,
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Table 2 Comparison of MC-based SimRank algorithms.

Algorithm Query Time
Preprocessing

time
Index Size

Dynamic

update time

MC [9] O (n logn/ε2) O (n logn/ε2) O (n logn/ε2) -

READS [14] O (n logn/ε2) O (n logn/ε2) O (n logn/ε2) O (logn/ε2)

TSF [32] O (n logn/ε2) O (n logn/ε2) O (n logn/ε2) O (logn/ε2)

Uniwalk [28] O
(
n2 ˙logn/ε2

)
0 0 O

(
n2 ˙logn/ε2

)

READS is able to support approximate single-source

queries on large dynamic graphs. The theoretical query

cost of READS remains O
(
n logn
ε2

)
.

TSF [32] is a MC-based algorithm for single-source

and top-k SimRank queries on both static and dynamic

graphs. TSF builds an index that consists of Rg one-

way graphs, each of which contains the coupling of ran-

dom walks of length T from each node. In the query

phase, TSF samples Rq more random walks for each

one-way graph to provide the final estimators. TSF al-

lows two random walks to meet multiple times and as-

sumes that there is no cycle with a length shorter than

T , leading to a lower precision in practice. The query

time of TSF is bounded by O(nRgRq), which is in turn

bounded by O
(
n logn
ε2

)
for ε additive error.

Uniwalk [28] is a MC-based method for single-source

and top-k SimRank computation on undirected graphs.

It randomly generates R unidirectional random walks

from the given source node s. With the help of a recti-

fied factor, Uniwalk regards the probability of the node

s walking along the unidirectional path to the terminal

node t as the SimRank value S(s, t), that is, two ran-

dom walks starting from s and t meet at the midpoint

of the original unidirectional path. The query time of

Uniwalk is bounded by O(RL), where L denotes the ex-

pected length of the unidirectional path. However, the

rectified factor can influence the error bound. On the

graph with a hub node, R can reach O
(
n2 ˙logn
ε2

)
for ε

additive error. Hence, the query time of Uniwalk can

be bounded by O
(
n2 ˙logn
ε2

)
.

2.2 Iterative Methods

Given a graph G = (V,E), let P denote the (reverse)

transition matrix, that is, P (i, j) = 1/din(vj) for vi ∈
I(vj), and P (i, j) = 0 otherwise. S denotes the Sim-

Rank matrix. Yu et al. [47] proves that the definition

formula of SimRank can be expressed as

S =
(
cP>SP

)
∨ I, (3)

where I denotes an n× n identity matrix, and ∨ is an

element-wise maximum operator that for any matrices

A,B ∈ Rn×n and ∀i, j ∈ {0, 1, ..., n−1}, (A∨B)(i, j) =

max{A(i, j), B(i, j)}. Equation (3) provides an iterative

calculation method to derive SimRank results. That is,

we can initialize S = I, and repeat the iteration to up-

date matrix S. We classify all the SimRank algorithms

as iterative methods if they calculate SimRank values

via iterative updating based on Equation (3) or its vari-

ants. We list all the iterative methods which can sup-

port single-source SimRank queries on large graphs in

the following.

Linearization and ParSim. It is shown in two inde-

pendent works, Linearization [29] and ParSim [45], that

the iterative definition equation (3) can be expressed as

the following linear summation:

S = cP>SP +D =

+∞∑
`=0

c`
(
P `
)>
DP `, (4)

where D is the diagonal correction matrix with each

diagonal element D(k, k) taking value from 1 − c to 1.

Consequently, a single-source query for node vi can be

computed by

S · ~ei =

+∞∑
`=0

c`
(
P `
)>
DP ` · ~ei, (5)

where ~ei denotes the one-hot vector with the i-th ele-

ment being 1 and all other elements being 0. Assuming

the diagonal matrix D is correctly given, the single-

source query for node vi can be approximated by

SL · ~ei =

L∑
`=0

c`
(
P `
)>
DP ` · ~ei, (6)

where L is the number of iterations. After L itera-

tions, the additive error reduces to cL. So setting L =

O
(
log 1

ε

)
is sufficient to guarantee a maximum error of

ε. At the `-th iterations, the algorithm performs 2`+ 1

matrix-vector multiplications to calculate c`
(
P `
)>
DP `·

~ei, and each matrix-vector multiplication takes O(m)

time. Consequently, the total query time is bounded by
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Table 3 Comparison of iterative SimRank algorithms.

Algorithm Query Time
Preprocessing

Time
Index Size

Dynamic

update time

Linearization [29] O
(
m log2 1

ε

)
O(n log 1

ε
log n

ε
logn/ε2) O(n) -

ParSim [45] O{min{m log 1
ε
, d2 log 1

ε }} 0 0 -

O
(∑L

`=1m`
)

= O(mL2) = O
(
m log2 1

ε

)
. Maehara et

al. and Yu et al. also show in [29] and [45] that if we

first compute and store the transition probability vec-

tors ~u` = P ` · ~ei for ` = 0, . . . , L, then we can use the

following equation to compute

SL · ~ei = D · ~u0
+ cP>(D · ~u1 +· · ·+ cP>(D · ~uT−1 + cP> ·D · ~uT ) · · · ).

(7)

This optimization reduces the query time toO
(
m log 1

ε

)
.

While it requires a memory size of O(nL) = O
(
n log 1

ε

)
,

which is usually several times larger than the graph size

m. Therefore, [29] only uses the O
(
m log2 1

ε

)
algorithm

in the experiments.

Besides the large space overhead, another problem

with Linearization and ParSim is that the diagonal cor-

rection matrix D is hard to compute. Linearization [29]

formulates D as the solution to a linear system, and

proposes a Monte Carlo solution that takes O
(
n logn
ε2

)
to derive an ε-approximation of D. On the other hand,

ParSim directly setsD = (1−c)I, where I is the identity

matrix. This approximation basically ignores the first

meeting constraint and has been adopted in many other

SimRank works [11,12,42,19,41,44,16]. It is shown that

the similarities calculated by this approximation are

different from the actual SimRank [16]. However, the

quality of this approximation is still a myth due to the

lack of ground truths on large graphs.

2.3 Local Push/Sampling Methods

Compared with Monte Carlo and iterative methods, lo-

cal push/sampling methods locally restrict each Sim-

Rank update operation and omit to touch a large frac-

tion of nodes on the graphs in each update. Hence, the

time cost of each update operation is smaller than O(n).

This allows local push/sampling methods to outperform

other methods in terms of scalability.

SLING [34] is an index-based SimRank algorithm that

supports fast single-source and top-k queries on static

graphs. Let ~h`i = (
√
cP )

` · ~ei denote the `-hop hitting

probability vector of vi. Note that ~h`i describes the prob-

ability of an
√
c-walk from node vi visiting each node

at its `-th step. [34] suggests that equation (5) can be

re-written as

S(i, j) =

∞∑
`=0

n∑
k=1

~h`i(k) · ~h`j(k) ·D(k, k). (8)

where D(k, k) denote the k-th entry in the diagonal

correction matrix D. It is shown [34] that D(k, k) can

be characterized by the meeting probability of two
√
c-

walks from the same node vk:

D(k, k) = Pr[two
√
c-walks from vk never meet]. (9)

This interpretation implies a simple Monte-Carlo algo-

rithm for estimating D(k, k): we simulate R pairs of√
c-walks from vk, and use the fraction of pairs that

do not meet as the estimator for D(k, k). By setting

R = O
(

logn
ε2

)
, we can approximate each D(k, k) with

additive error ε. SLING precomputes each D(k, k) in

the preprocessing phase using O
(
n logn
ε2

)
time. SLING

also precomputes ~h`i(k) with additive error ε for each `

and vi, vk ∈ V , using a local push algorithm [5]. Given a

single-source query for node vi, SLING retrieves ~h`i(k)
~h`j(k) and D(k, k) for each vj , vk ∈ V from the in-

dex, and uses Equation (8) to estimate S(i, j) for each

vj ∈ V . SLING answers a single-source query with

time O(min{n/ε,m}), and the index size is bounded

by O
(
n
ε

)
.

ProbeSim [24] is an index-free solution based on re-

verse local sampling and local push. ProbeSim starts by

sampling a
√
c-walk from the source node vi. For the

`-th node vk on the
√
c-walk, ProbeSim uses a Probe

algorithm to reversely sample each node vj at level `

with probability ~h`j(k), the hitting probability that any

other node vj ∈ V can reach vk at the `-th step. It is

shown in [24] that each sample takes O(n) time, and we

need O
(

logn
ε2

)
samples to ensure an maximum error of

ε with high probability. Consequently, the query time

of ProbeSim is bounded by O
(
n logn
ε2

)
. ProbeSim nat-

urally works on dynamic graphs due to its index-free

nature.
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Table 4 Comparison of local push/sampling SimRank algorithms.

Algorithm Query Time
Preprocessing

time
Index Size

Dynamic

update time

SLING [34]
O (n/ε)

O
(
m
ε

+
n log n

δ

ε2

)
O (n/ε) -

O
(
m log2 1

ε

)
ProbeSim [24] O (n logn/ε2) 0 0 O (n logn/ε2)

PRSim [39] O (n logn · ‖~πi‖2/ε2). O (m/ε) O
(
min{n

ε
,m}

)
-

TopSim [17] O (m2n/n2n) 0 0 O (m2n/n2n)

PRSim [39] introduces a partial indexing and a probe

algorithm. Let ~π`i = (1 −
√
c)~h`i = (1 −

√
c) (
√
cP )

` · ~ei
denote the `-hop Personalize PageRank vector of vi.

In particular, ~π`i (k) is the probability that a
√
c-walk

from node vi stops at node vk in exactly ` steps. PRSim

suggests that equation (5) can be re-written as

S(i, j) =
1

(1−
√
c)2

∞∑
`=0

n∑
k=1

~π`i (k) · ~π`j(k) ·D(k, k). (10)

PRSim precomputes ~π`j(k) with additive error ε for each

` and vj , vk ∈ V , using a local push algorithm [5].

To avoid overwhelming index size, PRSim only pre-

computes ~π`j(k) for a small subset of vk. Furthermore,

PRSim computes D by estimating the product ~π`i (k) ·
D(k, k) together with an O

(
logn
ε2

)
time Monte-Carlo

algorithm. Finally, PRSim proposes a new Probe algo-

rithm that samples each node vj according to ~π`j(k).

The average query time of PRSim is bounded by

O
(
n logn
ε2 ·

∑n
k=1 ~π(k)2

)
, where ~π(k) denotes the PageR-

ank of vk. It is well-known that on scale-free networks,

the PageRank vector ~π follows the power-law distri-

bution, and thus ‖~π‖2 =
∑n
k=1 ~π(k)2 is a value much

smaller than 1. However, for worst-case graphs or even

some “bad” source nodes on scale-free networks, the

running time of PRSim remains O
(
n logn
ε2

)
.

TopSim [17] is an index-free algorithm based on lo-

cal exploitation. Given source node vi, TopSim firstly

finds all nodes vk reachable from vi within ` = 1, . . . , L

steps. For each such vk on the `-th level, TopSim deter-

ministically computes ~h`j(k), the probability that each

vj reaches vk in exactly ` steps. [17] also proposes vari-

ous optimizations to reduce the query cost. Due to the

dense structures of real-world networks, TopSim is only

able to exploit a few levels on large graphs, which leads

to a low precision.

2.4 Other Related Work

Besides the state-of-the-art methods that we discuss

above, there are several other techniques for SimRank

computation, which we review in the following. Power

method [13] is the classic algorithm that computes all-

pair SimRank similarities for a given graph. Power method

recursively computes the SimRank Matrix S based on

Equation (3). Several follow-up works [26,47,43] im-

prove the efficiency or effectiveness of the power method

in terms of either efficiency or accuracy. However, these

methods still incur O(n2) space overheads, as there are

O(n2) pairs of nodes in the graph. Finally, there are ex-

isting works on SimRank similarity join [33,30,51] and

the variants of SimRank [6,9,22,46,50], but the pro-

posed solutions are inapplicable for top-k and single-

source SimRank queries.

Pooling. Finally, pooling [24] is an experimental method

for evaluating the accuracy of top-k SimRank algo-

rithms without the ground truths. Suppose the goal is

to compare the accuracy of top-k queries for z algo-

rithms A1, . . . , Az. Given a query node vi, we retrieve

the top-k nodes returned by each algorithm, remove the

duplicates, and merge them into a pool. Note that there

are at most `k nodes in the pool. Then we estimate

S(i, j) for each node vj in the pool using the Monte

Carlo algorithm. We set the number of random walks

to be O
(

logn
ε2min

)
so that we can obtain the ground truth

of S(i, j) with high probability. After that, we take the

k nodes with the highest SimRank similarity to vi from

the pool as the ground truth of the top-k query, and use

this “ground truth” to evaluate the precision of each of

the ` algorithms. Note that the set of these k nodes is

not the actual ground truth. However, it represent the

best possible k nodes that can be found by the ` al-

gorithms that participate in the pool and thus can be

used to compare the quality of these algorithms.

Although pooling is proved to be effective in our

scenario where ground truths are hard to obtain, it has

some drawbacks. First of all, the precision results ob-

tained by pooling are relative and thus cannot be used

outside the pool. This is because the top-k nodes from

the pool is not the actual ground truth. Consequently,

an algorithm that achieves 100% precision in the pool

may have a precision of 0% when compared to the ac-
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tual top-k result. Secondly, the complexity of pooling

z algorithms is O
(
kz logn
ε2min

)
, so pooling is only feasible

for evaluating top-k queries with small k. In particular,

we cannot use pooling to evaluate the single-sources

queries on large graphs.

2.5 Limitations of Existing Methods

We now analyze the reasons why existing methods are

unable to achieve exactness (a.k.a an error of at most

εmin = 10−7). First of all, ParSim and TSF ignore the

first meeting constraint and thus incur large errors. For

other methods that enforce the first meeting constraint,

they all incur a complexity term of O
(
n logn
ε2

)
, either in

the preprocessing phase or in the query phase. In par-

ticular, SLING and Linearization simulate O
(
n logn
ε2

)
random walks to estimate the diagonal correction ma-

trix D. For ProbeSim, MC, READS and PRSim, this

complexity is caused by simulating random walks in the

query phase or the preprocessing phase. The O
(
n logn
ε2

)
complexity is infeasible for exact SimRank computation

on large graphs, since it combines two expensive terms

n and 1
ε2min

. As an example, we consider the IT dataset

used in our experiment, with 4 ∗ 107 nodes and over 1

billion edges. In order to achieve a maximum error of

εmin = 10−7, we need to simulate n logn
ε2 ≈ 1023 random

walks. This may take years, even with parallelization on

a cluster of thousands of machines.

Besides, there are many works focusing on all-pairs

SimRank queries [37,19,41,12,26]. As we shall show

in Section 5.3, the number of node pairs whose Sim-

Rank values are more than 10−4 can nearly achieve n2.

For large graphs with million nodes, like Twitter(TW)

dataset with 4 × 107 nodes, this can cost 104 TB for

storage, not to mention the exact SimRank computa-

tion for each node pair. Hence, it’s may infeasible for

exact all-pairs SimRank computation within reasonable

time.

3 Basic ExactSim Algorithm

In this section, we present ExactSim, a probabilistic

algorithm that computes the exact single-source Sim-

Rank results within reasonable running time. We first

present a basic version of ExactSim. In Section 4, we

will introduce some more advanced techniques to opti-

mize the query and space cost.

Our ExactSim algorithm is largely inspired by three

prio works: pooling [24], Linearization [29] and PRSim

[39]. We now discuss how ExactSim extends from these

existing methods in details. These discussions will also

reveal the high level ideas of the ExactSim algorithm.

1. Despite its limitations, pooling [24] provides a key

insight for achieving exactness: while an O
(
n logn
ε2

)
algorithm is not feasible for exact SimRank com-

putation on large graphs, we can actually afford an

O
(

logn
ε2

)
algorithm. The 1

ε2 term is still expensive

for ε = εmin = 10−7, however, the new complex-

ity reduces the dependence on the graph size n to

logarithmic, and thus achieves very high scalability.

2. Linearization [29] and ParSim [45] show that if the

diagonal correction matrix D is correctly given, then

we can compute the exact single-source SimRank re-

sults in O
(
m log 1

c

1
εmin

)
time and O

(
n log 1

c

1
εmin

)
extra space. For typical setting of c (0.6 to 0.8),

the number of iterations log 1
c

1
εmin

= log 107 ≤ 73

is a constant, so this complexity is essentially the

same as that of performing BFS multiple times on

the graphs. The scalability of the algorithm is con-

firmed in the experiments of [45], where D is set

to be (1 − c)I. Moreover, the exact algorithms [31]

for Personalized PageRank and PageRank also in-

curs a running time of O
(
m log 1

εmin

)
, and has been

widely used for computing ground truths on large

graphs.

3. While the O
(
n logn
ε2

)
complexity seems unavoidable

as we need to estimate each entry in the diagonal

correction matrixD with additive error ε, PRSim [39]

shows that it only takes O
(

logn
ε2

)
time to estimate

the product ~π`i (k) ·D(k, k) with additive error ε for

each k = 1, . . . , n and ` = 0, . . . ,∞, where ~π`i is the

`-hop Personalized PageRank vector of vi. This re-

sult provides two crucial observations: 1) It is pos-

sible to answer an single-source query without an

ε-approximation of each D(k, k); 2) The accuracy

of each D(k, k) should depend on ~πi(k), the Person-

alized PageRank of vk with respect to the source

node vi.

We combine the ideas of PRSim and Linearization/

ParSim to derive the basic ExactSim algorithm. Given

an error parameter ε, ExactSim fixes the total number

of
√
c-walk samples to be R=O

(
logn
ε2

)
, and distributes

a fraction of R ·~πi(k) samples (note that
n∑
k=1

~πi(k)=1) to

estimate D(k, k). Then it performs Linearization/ Par-

Sim with the estimated D to obtain the single-source

result. The algorithm runs in O
(

logn
ε2 +m log 1

ε

)
time

and uses O
(
n log 1

ε

)
extra space. Since both complexity

terms O
(

logn
ε2

)
and O

(
m log 1

ε

)
are feasible for εmin =
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Algorithm 1: Basic ExactSim Algorithm

Input: Graph G with transition matrix P , source
node vi, maximum error ε

Output: Estimated single-source SimRank vector
S · ~ei

1 L =
⌈
log 1

c

2
ε

⌉
;

2 ~π0
i , ~πi = (1−

√
c)~ei;

3 for ` from 1 to L do

4 ~π`i =
√
cP · ~π`−1

i ;

5 ~πi = ~πi + ~π`;

6 R = 6 logn
(1−
√
c)4ε2

;

7 for k from 1 to n do
8 Invoke Algorithm 2 with R(k) = dR · ~πi(k)e to

obtain an estimator D̂(k, k) for D(k, k);

9 ~s0 = 1
1−
√
c
D̂ · ~πLi ;

10 for ` from 1 to L do

11 ~s` =
√
cP> · ~s`−1 + 1

1−
√
c
D̂ · ~πL−`i ;

12 Clear ~s`−1;

13 return ~sL;

Algorithm 2: Basic method for estimating

D(k, k)

Input: Graph G, node vk, number of samples R(k)

Output: D̂(k, k) as an estimation for D(k, k)

1 D̂(k, k) = 0;
2 for x from 1 to R(k) do
3 Sample two independent

√
c-walks from vk;

4 if The two
√
c-walks do not meet then

5 D̂(k, k) = D̂(k, k) + 1/R(k);

6 return D̂(k, k);

10−7 and large graph size m, we have a working algo-

rithm for exact single-source SimRank queries on large
graphs.

Algorithm 1 illustrates the pseudocode of the basic

ExactSim algorithm. Note that to cope with Personal-

ized PageRank, we use the fact that ~π`i = (1−
√
c) ·

(
√
cP )

` · ~ei and re-write Equation (5) as

S · ~ei =
1

1−
√
c

∞∑
`=0

(√
cP>

)`
D · ~π`i . (11)

Given a source node vi and a maximum error ε, we first

set the number of iterations L to be L =
⌈
log 1

c

2
ε

⌉
(line

1). We then iteratively compute the `-hop Personalized

PageRank vector ~π`i = (
√
cP )

` · ~ei for ` = 0, . . . , L, as

well as the Personalized PageRank vector ~πi =
∑L
`=0 ~π

`
i

(lines 2-5). To obtain an estimator D̂ for the diagonal

correction matrix D, we set the total number of samples

to be R = 6 logn
(1−
√
c)4ε2

(line 6). For each D(k, k), we set

R(k) = dR~πi(k)e and invoke Algorithm 2 to estimate

D(k, k) (lines 7-8). Algorithm 2 essentially simulates

R(k) pairs of
√
c-walks from node vk and uses the frac-

tion of pairs that do not meet as an estimator D̂(k, k)

for D(k, k). Finally, we use Equation (11) to iteratively

compute ~s0 = 1
1−
√
c
D̂ · ~πLi ,

~s1 =
√
cP> · ~s0 +

1

1−
√
c
D̂ · ~πL−1i

=
1

1−
√
c

(√
cP> · D̂ · ~πLi + D̂ · ~πL−1i

) (12)

(lines 9-12),..., and

~sL=

(√
cP>

(
· · · (
√
cP>·D̂ · ~πL+D̂ · ~πL−1)+· · ·

)
+D̂ · ~π0

)
1−
√
c

=
1

1−
√
c

L∑
`=0

(√
cP>

)`
D̂ · ~π`i . (13)

We return ~sL as the single-source query result (line 13).

Analysis. To derive the running time and space over-

head of the basic ExactSim algorithm, note that com-

puting and storing each `-hop Personalized PageRank

vector ~π`i takes O(m) time and O(n) space. This re-

sults a running time of O(mL) and a space overhead

of O(nL). To estimate the diagonal correction matrix

D, the algorithm simulates R pairs of
√
c-walks, each

of which takes 1√
c

= O(1) time. Therefore, the running

time for estimating D can be bounded by O(R). Fi-

nally, computing each ~s ` also takes O(m) time, result-

ing an additional running time of O(mL). Summing up

all costs, and we have the total running time is bounded

by O(mL + R) = O
(

logn
ε2 +m log 1

ε

)
, and the space

overhead is bounded by O(nL) = O
(
n log 1

ε

)
.

We now analyze the error of the basic ExactSim

algorithm. Recall that ExactSim returns ~sL(j) as the

estimator for S(i, j), the SimRank similarity between

the source node vi and any other node vj . We have the

following Theorem.

Theorem 1 With probability at least 1− 1/n, for any

source node vi ∈ V , the basic ExactSim provide an

single-source SimRank vector ~sL such that, for any node

vj ∈ V , we have
∣∣~sL(j)− S(i, j)

∣∣ ≤ ε.
Theorem 1 essentially states that with high probability,

the basic ExactSim algorithm can compute any single-

source SimRank query with additive ε. The proof of

Theorem 1 is fairly technical. However, the basic idea

is to show that the variance of the estimator ~sL(j) can

be bounded by O( 1
R ) = O(ε2). In particular, we first

note that by Equation (13), ~sL(j) can be expressed as

~sL(j) = ~e>j · ~sL =
1

1−
√
c
~e>j ·

L∑
`=0

(√
cP>

)`
D̂ · ~π`i

=
1

(1−
√
c)2

L∑
`=0

(
(1−

√
c)
(√
cP
)` · ~ej)> · D̂ · ~π`i .
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Since (1−
√
c) (
√
cP )

` · ~ej = ~π`j , we have

~sL(j) =
1

(1−
√
c)2

L∑
`=0

(
~π`j
)> · D̂ · ~π`i . (14)

Summing up over the diagonal elements of D follows

that

~sL(j) =
1

(1−
√
c)2

L∑
`=0

n∑
k=1

~π`i (k) · ~π`j(k) · D̂(k, k). (15)

We observe that there are two discrepancies between

~sL(j) and the actual SimRank value S(i, j) (10): 1)

We change the number of iterations from ∞ to L, and

2) we use the estimator D̂ to replace actual diagonal

correction matrix D. For the first approximation, we

can bound the error by cL ≤ ε/2 if ExactSim sets

L =
⌈
log 1

c

2
ε

⌉
. Consequently, we only need to bound

the error from replacing D with D̂. In particular, we

will make use of the following Bernstein Inequality.

Lemma 1 (Bernstein Inequality [8]) Let X1, · · ·, XR

be independent random variables with |Xi| < b for i =

1, . . . , R. Let X = 1
R ·
∑R
i=1Xi, we have

Pr[|X−E[X]| ≥ λ] ≤ 2 ·exp

(
− λ2 ·R

2R ·Var[X] + 2bλ/3

)
,

(16)

where Var[X] is the variance of X.

To make use of Lemma 1, we need to express ~sL(j)

as the average of independent random variables. In par-

ticular, let D̂r(k, k), r = 1, . . . , R(k) denote the r-th

estimator of D(k, k) by Algorithm 2. We observe that

each D̂r(k, k) is a Bernoulli random variable, that is,

D̂r(k, k) = 1 with probability D(k, k) and D̂r(k, k) = 0

with probability 1−D(k, k). We have

~sL(j) =
1

(1−
√
c)2

L∑
`=0

n∑
k=1

~π`i (k) · ~π`j(k) ·
∑R(k)
r=1 D̂r(k, k)

R(k)

=
1

(1−
√
c)2

n∑
k=1

R(k)∑
r=1

∑L
`=0 ~π

`
i (k) · ~π`j(k)

R(k)
· D̂r(k, k).

Let ρ(k) = R(k)/R be the fraction of pairs of
√
c-walks

assigned to vk, it follows that

~sL(j)=
1

R
· 1

(1−
√
c)2

n∑
k=1

Rρ(k)∑
r=1

∑L
`=0 ~π

`
i (k) · ~π`j(k)

ρ(k)
·D̂r(k, k).

(17)

We will treat each
∑L
`=0 ~π

`
i (k)·~π

`
j(k)

ρ(k) · D̂r(k, k) as an inde-

pendent random variable. The number of such random

variables is
∑n
k=1Rρ(k) = R, so we have expressed

~sL(j) as the average of R independent random vari-

ables. To utilize Lemma 1, we first bound the variance

of ~sL(j).

Lemma 2 The variance of ~sL(j) is bounded by

Var[~sL(j)] ≤ 1

(1−
√
c)4R

n∑
k=1

~πi(k)2~πj(k)2

ρ(k)
·D(k, k).

(18)

In particular, by setting ρ(k) = R(k)/R = dR~πi(k)e/R
in the basic ExactSim algorithm, we have

Var[~sL(j)] ≤ 1

(1−
√
c)4R

. (19)

Note that we only need Inequality (19) to derive the er-

ror bound for the basic ExactSim algorithm. The more

complex Inequality (18) will be used to design various

optimization techniques.

Proof [Proof of Lemma 2] Note that D̂r(k, k) is a Bernoulli

random variable with expectation D(k, k), and thus

has variance Var[D̂r(k, k)] = D(k, k)(1 − D(k, k)) ≤
D(k, k). Since D̂r(k, k)’s are independent random vari-

ables, we have

Var[~sL(j)]

=
1

(1−
√
c)4R2

n∑
k=1

Rρ(k)∑
r=1

(∑L
`=0 ~π

`
i (k) · ~π`j(k)

ρ(k)

)2

·Var[D̂r(k, k)]

=
1

(1−
√
c)4R

n∑
k=1

(∑L
`=0~π

`
i (k)·~π`j(k)

)2
ρ(k)

·D(k, k)(1−D(k, k)).

By the Cauchy-Schwarz inequality, we have(
L∑
`=0

~π`i (k) · ~π`j(k)

)2

≤

(
L∑
`=0

~π`i (k)

)2( L∑
`=0

~π`j(k)

)2

≤ ~πi(k)2~πj(k)2.

Combining with the fact that 1−D(k, k) ≤ 1, we have

Var[~sL(j)]≤ 1

(1−
√
c)4R

n∑
k=1

~πi(k)2~πj(k)2

ρ(k)
·D(k, k). (20)

and the first part of the Lemma follows.

Plugging ρ(k) = R(k)/R = dR~πi(k)e/R ≥ ~πi(k)

into Lemma 2, we have

Var[~sL(j)] ≤ 1

(1−
√
c)4R

n∑
k=1

~πi(k)2~πj(k)2

~πi(k)
·D(k, k)

≤ 1

(1−
√
c)4R

n∑
k=1

~πi(k).
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For the last inequality, we use the fact that D(k, k) ≤
1 and ~πj(k) ≤ 1. Finally, since

∑n
k=1 ~πi(k) = 1, we

have Var[~sL(j)] ≤ 1
(1−
√
c)4R

, and the second part of the

Lemma follows.

Proof (Proof of Theorem 1) We are now ready to prove

Theorem 1. To utilize Bernstein Inequality given in

Lemma 1, we also need to bound b, the maximum value

of the random variables
∑L
`=0

~π`i (k)·~π
`
j(k)

ρ(k) · D̂r(k, k). We

have∑L
`=0 ~π

`
i (k) · ~π`j(k)

~πi(k)
·D̂r(k, k) ≤

∑L
`=0 ~π

`
i (k)

~πi(k)
≤ ~πi(k)

~πi(k)
= 1.

Applying Bernstein Inequality with b=1 and Var[~sL(j)]≤
1

(1−
√
c)4R

, where R = 6 logn
(1−
√
c)4ε2

, we have Pr[|~sL(j) −
E[~sL(j)]| > ε/2] < 1/n3. Combining with the ε/2 error

introduced by the truncation L, we have Pr[|~sL(j) −
S(i, j)| > ε] < 1/n3. By union bound over all possible

target nodes j = 1, . . . , n and all possible source nodes

i = 1, . . . , n, we ensure that for all n possible source

node and n target nodes,

Pr[∀i, j, |~sL(j)− S(i, j)| > ε] < 1/n,

and the Theorem follows.

4 Optimizations

Although the basic ExactSim algorithm is a working al-

gorithm for exact single-source SimRank computation

on large graphs, it suffers from some drawbacks. First of

all, the O(n log 1
ε ) space overhead can be several times

larger than the actual graph size m. Secondly, we still

need to simulate R = O
(

logn
ε2

)
of pairs of

√
c-walks,

which is a significant cost for εmin = 10−7. Although

parallelization can help, we are still interested in devel-

oping algorithmic techniques that reduces the number

of random walks. In this section, we provide three op-

timization techniques that address these drawbacks.

Sparse Linearization. We design a sparse version of

Linearization that significantly reduces the O
(
n log 1

ε

)
space overhead while retaining the O(ε) error guaran-

tee. Recall that this space overhead is causing by stor-

ing the `-hop Personalized PageRank vectors ~π`i for

` = 0, . . . , L. We propose to make the following sim-

ple modification: Instead of storing the dense vector ~π`i ,

we sparsify the vector by removing all entries of with

~π`i (k) ≤ (1−
√
c)2ε. To understand the effectiveness of

this approach, recall that a nice property of the `-hop

Personalized PageRank vectors is that all possible en-

tries sum up to
∑∞
`=0

∑n
k=1 ~π

`
i (k) =

∑n
k=1 ~π

`(k) = 1.

By the Pigeonhole principle, the number of ~π`i (k)’s that

are larger than (1 −
√
c)2ε is bounded by 1

(1−
√
c)2ε

.

Thus the space overhead is reduced to O
(
1
ε

)
. This over-

head is acceptable for exact computations where we set

ε = εmin = 10−7, as it does not scale with the graph

size.

Sampling according to ~πi(k)2. Recall that in the

basic ExactSim algorithm, we simulate R pairs of
√
c-

walks in total, and distribute ~πi(k) fraction of the R

samples to estimate D(k, k). A natural question is that,

is there a better scheme to distribute these R sam-

ples? It turns out if we distribute the samples accord-

ing to ~πi(k)2, we can further reduce the variance of

the estimator and hence achieve a better running time.

More precisely, we will set R(k) = R
⌈
~πi(k)

2

‖~πi‖2

⌉
, where

‖~πi‖2 =
∑n
k=1 ~πi(k)2 is the squared norm of the Per-

sonalized PageRank vector ~πi.

Local deterministic exploitation for D. The in-

equality (18) in Lemma 2 also suggests that we can

reduce the variance of the estimator ~sL(j) by refining

the Bernoulli estimator D̂(k, k). Recall that we sam-

ple R(k) = dR~πi(k)e or R(k) = R
⌈
~πi(k)

2

‖~πi‖2

⌉
pairs of

√
c-walks to estimate D(k, k). If ~πi(k) is large, we will

simulate a large number of
√
c-walks from vk to esti-

mate D(k, k). In that case, the first few steps of these

random walks will most likely visit the same local struc-

tures around vk, so it makes sense to exploit these local

structures deterministically, and use the random walks

to approximate the global structures. More precisely, let

Z`(k) denote the probability that two
√
c-walks from vk

first meet at the `-th step. Since these events are mu-

tually exclusive for different `’s, we have

D(k, k) = 1− Pr[two
√
c-walks from vkmeet]

= 1−
∞∑
`=1

Z`(k).

The idea is to deterministically compute
∑`(k)
`=1 Z`(k)

for some tolerable step `(k), and using random walks

to estimate the other part
∑∞
`=`(k)+1 Z`(k). It is easy to

see that by deterministically computing Z`(k) for the

first `(k) levels, we reduce the variance Var(D(k, k)) by

at least c`(k).

A simple algorithm to compute Z`(k) is to list all

possible paths of length ` from vk and aggregate all

meeting probabilities of any two paths. However, the

number of paths increases rapidly with the length `,

which makes this algorithm inefficient on large graphs.

Instead, we will derive the close form for Z`(k) in terms

of the transition probailities. In particular, let Z`(k, q)

denote the probability that two
√
c-walks first meet at

node vq at their `-th steps. We have Z`(k)=
∑n
q=1 Z`(k, q),
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Algorithm 3: Improved method for estimat-

ing D(k, k)

Input: Graph G, node vk, sample number R(k)

Output: An estimator D̂(k, k) for D(k, k)
1 if din(vk) = 0 then

2 return D̂(k, k) = 1;

3 else if din(vk) = 1 then

4 return D̂(k, k) = 1− c;
5 P `(x, k) = 0 for ` ≥ 0, x ∈ V ;
6 P 0(k, k) = 1;
7 Ek = 0;
8 for ` from 0 to ∞ do

9 for each vq with non-zero
(
P>

)`
(k, q) do

10 Calculate Z`(k, q) using equation (22);

11 for `′ from 0 to ` do

12 for each vq′ with non-zero
(
P>
) −̀̀ ′

(k, q′) do

13 for each vx with non-zero
(
P>
)`′

(q′, x) do
14 for each vq ∈ I(vx) do

15
(
P>

)`′+1
(q′, q)+ =

(P>)
`′
(q′,x)

din(vx)
;

16 Ek+ = 1;

17 if Ek ≥ 2R(k)√
c

then

18 `(k) = ` and goto
OUTLOOP;

19 ` = `+ 1;

20 OUTLOOP;

21 D̂(k, k) = 1−
∑`(k)
`=1

∑n
q=1 Z`(k, q);

22 for z from 1 to R(k) do
23 Sample two independent non-stop random walks

from vk;
24 if Two random walks reaches nodes vx and vy at

the `(k) steps without meeting then
25 Sample a

√
c-walks from vx and vy;

26 if the two
√
c-walks meet then

27 D̂(k, k) = D̂(k, k)− c`(k)/R(k);

28 return D̂(k, k);

and hence

D(k, k) = 1−
∞∑
`=1

n∑
q=1

Z`(k, q). (21)

Recall that P ` (the `-th power of the (reverse) transi-

tion matrix P ) is the `-step (reverse) transition matrix.

We have the following Lemma that relates Z`(k, q) with

the transition probabilities.

Lemma 3 Z`(k, q) satisfies the following recursive form:

Z`(k, q) =c`
(
P>
)`

(k, q)2

−
`−1∑
`′=1

n∑
q′=1

c`
′ (
P>
)`′

(q′, q)2Z`−`′(k, q
′).

(22)

Proof Note that (
√
c)
` (
P>
)`

(k, q) is the probability

that a
√
c-walk from vk visits vq at its `-th step. Conse-

quently, c`
(
P>
)`

(k, q)2 is the probability that two
√
c-

walks from node vk visit node vq at their `-th step simul-

taneously. To ensure this is the first time that the two√
c-walks meet, we subtract the probability mass that

the two
√
c-walks have met before. In particular, recall

that Z`′(k, q
′) is the probability that two

√
c-walks from

node vk first meet at vq′ in exactly `′ steps. Due to the

memoryless property of the
√
c-walk, the two

√
c-walks

will behave as two new
√
c-walks from vq′ after their `′-

th step. The probability that these two new
√
c-walks

visitis vq in exact ` − `′ steps is c`−`
′ (
P>
)`−`′

(q′, q)2.

Summing up q′ from 1 to n and `′ from 1 to `− 1, and

the Lemma follows.

Given a node vk and a pre-determined target level

`(k), Lemma 3 also suggests a simple algorithm to com-

pute Z`(k, q) for all ` ≤ `(k). We start by performing

BFS from node vk for up to `(k) levels to calculate the

transition probabilities
(
P>
)`

(k, q) for ` = 0, . . . , `(k)

and vq ∈ V . For each node q′ visited at the `′-th level,

we start a BFS from q′ for `(k) − `′ levels to calcu-

late
(
P>
)`(k)−`′

(q′, q) for ` = 1, . . . , `(k) and vq ∈ V .

Then we use equation (22) to calculate Z`(k, q) for

` = 0, . . . , `(k) and q ∈ V . Note that this approach ex-

ploits strictly less edges than listing all possible paths

of length `(k), as some of the paths are combined in the

computation of the transition probabilities.

However, a major problem with the above method

is that the target level `(k) has to be predetermined,

which makes the running time unpredictable. An im-

proper value of `(k) could lead to the explosion of the

running time. Instead, we will use an adaptive algo-

rithm to compute Z`(k).

Algorithm 3 illustrates the new method for estimat-

ing D(k, k). Given a node vk and a sample number

R(k), the goal is to give an estimator for D(k, k). For

the two trivial case din(k) = 0 and din(k) = 1, we re-

turn D(k, k) = 1 and 1− c accordingly (lines 1-4). For

other cases, we iteratively compute all possible tran-

sition probabilities
(
P>
)`′+1

(q′, q) for all vq′ that is

reachable from k with ` − `′ steps (lines 5-10). Note

that these vq′ ’s are the nodes with
(
P>
)`−`′

(k, q′) > 0.

To ensure the deterministic exploitation stops in time,

we use a counter Ek to record the total number of

edges traversed so far (line 11). If Ek exceeds 2R(k)√
c

,

the expected number of steps for simulating R(k) pairs

of
√
c-walks, we terminate the deterministic exploita-

tion and set `(k) as the current target level for vk
(lines 12-13). After we fix `(k) and compute

∑`(k)
`=1 Z`(k)

(lines 14-17), we will use random walk sampling to es-
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timate
∑∞
`=`(k)+1 Z`(k) (lines 18-23). In particular, we

start two special random walks from vk. The random

walks do not stop in its first `(k) steps; after the `(k)-

th step, each random walk stops with probability
√
c

at each step. It is easy to see that the probability of

the two special random walks meet after `(k) steps

is 1
c`(k)

∑∞
`=`(k)+1 Z`(k). Consequently, we can use the

fraction of the random walks that meet multiplied by

c`(k) as an unbiased estimator for
∑∞
`=`(k)+1 Z`(k).

Parallelization. The ExactSim algorithm is highly par-

allelizable as it only uses two primitive operations: matrix-

(sparse) vector multiplication and random walk simu-

lation. Both operations are embarrassingly paralleliz-

able on GPUs or multi-core CPUs. The only exception

is the local deterministic exploitation for D(k, k). To

parallelize this operation, we can apply Algorithm 3 to

multiple vk simultaneously. Furthermore, we can bal-

ance the load of each thread by applying Algorithm 3

to nodes vk’s with similar number of samples R(k) in

each epoch.

4.1 Analysis

Recall that Algorithm 3 provides an improved method

for estimating D(k, k). By invoking Algorithm 3 into

the whole ExactSim structure (line 8 in Algorithm 1),

we can derive the optimized version of ExactSim. The

following theorem presents the complexity analysis of

the optimized ExactSim in terms of time cost and space

overhead.

Theorem 2 Let ~πi denote the Personalized PageRank
vector with regards to node vi. Then with probability at

least 1− 1
n , for any source node vi ∈ V , the optimized

ExactSim can return a single-source SimRank vector

~sL with O
(
‖~πi‖2 logn

ε2 +m log 1
ε

)
time cost and O

(
1
ε

)
space overhead, such that for any node vj ∈ V , we have∥∥~sL(j)− S(i, j)

∥∥ ≤ ε.
Concerning the three optimization techniques men-

tioned above, sparse Linearization may influence the

space overhead; Sampling according to ~πi(k)2 reduces

the number of random walks, which can impact the time

cost of estimating D. Local deterministic exploitation

can reduce the variance Var(D(k, k)), while the level of

time and space complexity remains the same due to the

setting of `(k). Consequently, to prove Theorem 2, we

can only analysis sparse Linearization for space bound,

and sampling according to ~πi(k)2 for time cost, respec-

tively.

Firstly, as for the space overhead, the following lemma

proves that the sparse Linearization will only introduce

an extra additive error of ε. If we scale down ε by a

factor of 2, the total error guarantee and the asymp-

totic running time of ExactSim will remain the same,

and the space overhead is reduced to O
(
1
ε

)
.

Lemma 4 The sparse Linearization introduces an ex-

tra additive error of ε and reduces the space overhead

to O
(
1
ε

)
.

Proof We note that the sparse Linearization introduces

an extra error of (1−
√
c)2ε to each ~π`i (k), k = 1, . . . , n,

` = 0, . . . ,∞. According to equation (15), the estimator

~sL(j) can be expressed as

~sL(j)=
1

(1−
√
c)2

L∑
`=0

n∑
k=1

(
~π`i (k)±(1−

√
c)2ε

)
·~π`j(k)·D̂(k, k).

(23)

Thus, the error introduced by sparse Linearization can

be bounded by

1

(1−
√
c)2

∞∑
`=0

n∑
k=1

(1−
√
c)2ε · ~π`j(k) · D̂(k, k). (24)

Using the facts that
∑∞
`=0

∑n
k=1 ~π

`
j(k) = 1 and D̂(k, k)≤

1, the above error can be bounded by 1
(1−
√
c)2
· (1 −

√
c)2ε = ε, and the lemma follows.

Then we analysis the time cost of Algorithm 3. The

following Lemma shows that by sampling according to

~πi(k)2, we can reduce the number of sample R by a

factor of ‖~πi‖2.

Lemma 5 By sampling according to ~πi(k)2, the num-

ber of random samples required is reduced to O
(
‖~πi‖2 logn

ε2

)
.

Proof Recall that ρ(k) is the fraction of sample assigned

to D(k, k). We have ρ(k) =
⌈
R~πi(k)

2

‖~πi‖2

⌉
/R ≥ ~πi(k)

2

‖~πi‖2 . By

the inequality (18) in Lemma 2, we can bound the vari-

ance of estimator ~sL(j) as

Var[~sL(j)] ≤ 1

(1−
√
c)4R

n∑
k=1

~πi(k)2~πj(k)2

ρ(k)
·D(k, k)

≤ 1

(1−
√
c)4R

‖~πi‖2
n∑
k=1

~πj(k)2 =
1

(1−
√
c)4R

‖~πi‖2‖~πj‖2.

Here, we use the facts that ‖~πj‖2 =
∑n
k=1 ~πj(k)2 and

D(k, k) ≤ 1. Since we need to bound the variance for

all possible nodes vj (and hence all possible ‖~πj‖2), we

make the relaxation that ‖~πj‖2 ≤ ‖~πj‖21 = 1, where

‖~πj‖21 = (
∑n
k=1 |~πj(k)|)2. And thus

Var[~sL(j)] ≤ 1

(1−
√
c)4R

‖~πi‖2.

This suggest that by sampling according to ~πi(k)2, we

reduce the variance of the estimators by a factor ‖~πi‖2.
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Fig. 1 MaxError v.s. Query time on small graphs
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Fig. 2 Precision@500 v.s. Query time on small graphs

Recall that the ExactSim algorithm computes the Per-

sonalized PageRank vector ~πi before estimating D, we

can obtain the value of ‖~πi‖2 and scale R down by a

factor of ‖~πi‖2. This simple modification will reduce the

running time to O
(
‖~πi‖2 logn

ε2

)
.

One small technical issue is that the maximum of

the random variables
∑∞
`=0 ~π

`
i (k)·~π

`
j(k)

ρ(k) ·D̂r(k, k) may gets

too large as the fraction ρ(k) gets too small. However,

by the facts that ρ(k) =
⌈
R~πi(k)

2

‖~πi‖2

⌉
/R and D̂r(k, k) ≤ 1,

we have∑∞
`=0 ~π

`
i (k)·~π`j(k)

ρ(k)
·D̂r(k, k) ≤ ~πi(k)

ρ(k)
=R~πi(k)/

⌈
R~πi(k)2

‖~πi‖2

⌉
.

If we view the right side of the above equality as a func-

tion of ~πi(k), it takes maximum when R~πi(k)
2

‖~πi‖2 = 1, or

equivalently ~πi(k) =
√
‖~πi‖2
R . Thus, the random vari-

ables in Equation (17) can be bounded by R
√
‖~πi‖2
R =

‖~πi‖
√
R. Plugging b=‖~πi‖

√
R and Var[~sL(j)]≤ ‖~πi‖2

(1−
√
c)4R

into Bernstein Inequality, and the lemma follows.

To demonstrate the effectiveness of sampling ac-

cording to ~πi(k)2, notice that in the worst case, ‖~πi‖2
is as large as ‖~πi‖21 = 1, so this optimization technique

is essentially useless. However, it is known [7] that on

scale-free networks, the Personalized PageRank vector

~πi follows a power-law distribution: let ~πi(kj) denote

the j-th largest entry of ~πi, we can assume ~πi(kj) ∼
j−β

n1−β for some power-law exponent β ∈ (0, 1). In this

case, ‖~πi‖2 can be bounded by O

(∑n
j=1

(
j−β

n1−β

)2)
=

O
(
max

{
lnn
n , 1

n2−2β

})
, and the ‖~πi‖2 factor becomes

significant for any power-law exponent β < 1.

Note that the expected length of every random walk

is 1
1−
√
c
, which is a constant. Hence, by Lemma 5, the

time cost of Algorithm 3 can be bounded byO
(
‖~πi‖2 logn

ε2

)
.

Recall that after we derive the estimated matrix D,
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Fig. 3 MaxError v.s. Preprocessing time on small graphs
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Fig. 4 MaxError v.s. Index size on small graphs

the linearized summation for ~sL takes O(m log 1
ε ) time.

Consequently, the total time cost of the optimized Ex-

actSim is O
(
‖~πi‖2 logn

ε2 +m log 1
ε

)
, which follows The-

orem 2.

5 Experiments

In this section, we experimentally study ExactSim and

the other single-source algorithms. We first evaluate Ex-

actSim against four methods MC, ParSim, Lineariza-

tion and PRSim to prove ExactSim’s ability of exact

computation (i.e., εmin = 10−7). Then we conduct an

ablation study to demonstrate the effectiveness of the

optimization techniques. Finally, based on the ground

truths computed by ExactSim, we conduct a compre-

hensive empirical study on existing single-source Sim-

Rank algorithms and SimRank distributions.

Table 5 Datasets.

Data Set Type n m
PPI (PI) undirected 3,890 38739
ca-GrQc (GQ) undirected 5,242 28,968
AS-2000(AS) undirected 6,474 25,144
CA-HepTh(HT) undirected 9,877 51,946
Wikivote (WV) directed 7,115 103,689
CA-HepPh (HP) undirected 12,008 236978
DBLP-Author (DB) undirected 5,425,963 17,298,032
LiveJournal (LJ) directed 4,847,571 68,475,391
IndoChina (IC) directed 7,414,768 191,606,827
Orkut-Links (OL) undirected 3,072,441 234,369,798
It-2004 (IT) directed 41,290,682 1,135,718,909
Twitter (TW) directed 41,652,230 1,468,364,884
Wiki-Pl (WP) dynamic 1,033,050 25,026,208
Wiki-De (WD) dynamic 2,166,669 86,337,879

Datasets and Environment. We use six small datasets,

six large datasets, and two dynamic datatsets obtained

from [1–3]. The details of these datasets can be found

in Table 5. All experiments are conducted on a machine
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Fig. 5 MaxError v.s. Query time on large graphs
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Fig. 6 Precision@500 v.s. Query time on large graphs

with an Intel(R) Xeon(R) E7-4809 @2.10GHz CPU and

196GB memory.

5.1 Evaluation towards ExactSim

Methods and Parameters. We evaluate ExactSim

with the four state-of-the-art methods, including one

Monte Carlo method: MC [9], two iterative methods:

Linearization [29] and ParSim [45], and one Local push/

sampling methods: PRSim [39]. For a fair comparison,

we run each algorithm in the single thread mode on

static graphs.

MC has two parameters: the length of each random

walk L and the number of random walks per node r.

We vary (L, r) from (5, 50) to (5000, 50000) on small

graphs and from (5, 50) to (50, 500) on large graphs.

ParSim has one parameter L, the number of iterations.

We vary it from 50 to 5×105 on small graphs and from

5 to 500 on large graphs. Finally, Linearization, PRSim,

and ExactSim share the same error parameter ε, and

we vary ε from 10−1 to 10−7 (if possible) on both small

and large graphs. We evaluate the optimized ExactSim

unless otherwise stated. In all experiments, we set the

decay factor c of SimRank as 0.6.

Metrics. We use MaxError and Precision@k to eval-

uate the quality of the single-source and top-k results.

Given a source node vi and an approximate single-

source result with n similarities Ŝ(i, j), j = 1, . . . , n,

MaxError is defined to be the maximum error over

n similarities: MaxError = maxnj=1

∣∣∣Ŝ(i, j)− S(i, j)
∣∣∣.

Given a source node vi and an approximate top-k re-

sult Vk = {v1, . . . , vk}, Precision@k is defined to be the

percentage of nodes in Vk that coincides with the ac-

tual top-k results. In our experiments, we set k to be

500. Note that this is the first time that top-k queries

with k > 100 are evaluated on large graphs. On each



16 Hanzhi Wang et al.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

preprocessing time(s) -DB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
E

rr
o
r 

-D
B

MC
Linearization
PRSim

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

preprocessing time(s) -LJ

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
E

rr
o
r 

-L
J

MC
Linearization
PRSim

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

preprocessing time(s) -IC

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
E

rr
o
r 

-I
C

MC
Linearization
PRSim

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

preprocessing time(s) -OL

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
E

rr
o
r 

-O
L

MC
Linearization
PRSim

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

preprocessing time(s) -IT

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
E

rr
o
r 

-I
T

MC
Linearization
PRSim

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

preprocessing time(s) -TW

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
E

rr
o
r 

-T
W

MC
Linearization
PRSim

Fig. 7 MaxError v.s. Preprocessing time on large graphs
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Fig. 8 MaxError v.s. Index size on large graphs

dataset, we generate 50 query nodes for each dataset.

For each set of parameters and each method, we issue

one query from each query node and report the aver-

age MaxError and Precision@500 among the 50 query

nodes.

Experiments on small graphs. We first evaluate Ex-

actSim against other single-source algorithms on six

small graphs. We compute the ground truths of the

single-source and top-k queries using Power Method [13].

We omit a method if its query or preprocessing time ex-

ceeds 24 hours.

Fig. 1 shows the tradeoffs between MaxError and

the query time of each algorithm. The first observation

is that ExactSim is the only algorithm that consistently

achieves an error of 10−7 within 104 seconds. Lineariza-

tion is able to achieve a faster query time when the er-

ror parameter ε is large. However, as we set ε ≤ 10−5,

Linearization is troubled by its O
(
n logn
ε2

)
preprocess-

ing time and is unable to finish the computation of the

diagonal matrix D in 24 hours.

Fig. 2 presents the tradeoffs between Precision@500

and query time of each algorithm. We observe that

ExactSim with ε = 10−7 is able to achieve a preci-

sion of 1 on all six graphs. This confirms the exact-

ness of ExactSim. We also note that ParSim is able to

achieve high precisions on most of graphs despite its

large MaxError in Fig. 1. This observation demon-

strates the effectiveness of the D ∼ (1 − c)I approxi-

mation on small datasets. Finally, for the index-based

methods MC, PRSim, and Linearization, we also plot

the tradeoffs betweenMaxError and preprocessing time/

index size in Fig. 3 and Fig. 4. The index sizes of Lin-

earization form a vertical line, as the algorithm only re-

computes and stores a diagonal matrix D. PRSim gen-

erally achieves the smallest error given a fixed amount

of preprocessing time and index size.
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Fig. 9 Basic ExactSim v.s. Optimized ExactSim

Table 6 Memory overhead on large graphs.

Memory overhead (GB) DB IC IT TW

Basic ExactSim 2.49 3.40 18.95 19.12

Optimized ExactSim 0.47 0.58 3.26 3.54

Graph size (GB) 0.48 1.88 10.94 13.30

Experiments on large graphs. For now, we have

both theoretical and experimental evidence that Ex-

actSim is able to obtain the exact single-source and

top-k SimRank results. In this section, we will treat

the results computed by ExactSim with ε = 10−7 as

the ground truths to evaluate the performance of Ex-

actSim with larger ε on large graphs.

Fig. 5 and Fig. 6 show the trade-offs between the

query time and MaxError/Precision@500 of each al-

gorithm. Fig. 7 and Fig. 8 display the MaxError and

preprocessing time/index size plots of the index-based

algorithms. For ExactSim with ε = 10−7, we set its

MaxError as 10−7 and Precision@500 as 1. We observe

from Fig. 6 that ExactSim with ε = 106 also achieves a

precision of 1 on all four graphs. This suggests that the

top-500 results of ExactSim with ε = 10−6 are the same

as that of ExactSim with ε = 10−7. In other words,

the top-500 results of ExactSim actually converge after

ε = 10−6. This is another strong evidence of the exact

nature of ExactSim. From Fig. 5, we also observe that

ExactSim is the only algorithm that achieves an error

of less than 10−6 on all six large graphs. In particular,

on the TW dataset, no existing algorithm can achieve

an error of less than 10−4, while ExactSim is able to

achieve exactness within 104 seconds.

Ablation study. We now evaluate the effectiveness of

the optimization techniques. Recall that we use sam-

pling according to ~πi(k)2 and local deterministic ex-

ploitation to reduce the query time, and sparse Lin-

earization to reduce the space overhead. Fig. 9 shows

the time/error tradeoffs of the basic ExactSim and the

optimized ExactSim algorithms. Under similar actual

error, we observe a speedup of 10− 100 times. Table 6

shows the memory overhead of the basic ExactSim and

the optimized ExactSim algorithms. We observe that

the space overhead of the basic ExactSim algorithm is

usually larger than the graph size, while sparse Lin-

earization reduces the memory usage by a factor of 3−5

times. This demonstrates the effectiveness of our opti-

mizing techniques.

5.2 Benchmarking Approximate SimRank Algorithms

We have proved the effectiveness of ExactSim on both

small and large graphs against the state-of-the-art meth-

ods in each category. In the following, we will use the

ground truths computed by ExactSim to evaluate the

performances of existing single-source SimRank algo-

rithms. To the best of our knowledge, this is the first

experimental study on the accuracy/cost tradeoffs of

SimRank algorithms on large graphs.

Methods. Recall that in Section 2, we present a de-

tailed analysis about all existing single-source SimRank

algorithms which can support large graphs. Because

Uniwalk only supports undirected graphs, we omit it

methods in our evaluation and consider the other nine

single-source algorithms, including three Monte Carlo

methods: MC [9], READS [14] and TSF [32], two it-

erative methods: Linearization [29] and ParSim [45],

and four Local push/sampling methods: ProbeSim [24],

PRSim [39], SLING [34] and TopSim [17]. Among them,

ProbeSim and ParSim are index-free methods, and the

others are index-based methods; READS, TSF, ProbeSim,

TopSim and ParSim can handle dynamic graphs, and

the other methods can only handle static graphs. For

the fairness of evaluation, we conduct each method in

the single thread mode.

Experiments on Real-World Graphs. We first eval-

uate the performance of each method on real-world

graphs. The parameters of MC, ParSim, Linearization

and PRSim are the same as that in Section 5.1. Be-

sides, READS has two parameters: the length of each

random walk L and the number of random walks per

node r. To cope with its better optimization, we vary

(L, r) in larger ranges, from (102, 103) to (106, 107) on

small graphs and from (10, 100) to (500, 5000) on large

graphs. TSF has three parameters Rg, Rq and T , where

Rg is the number of one-way graphs, Rq is the number

of samples at query time and T is the number of iter-

ations/steps. We vary (Rg, Rq, T ) from (100, 20, 10) to

(10000, 2000, 1000) on small graphs and from (100, 20, 10)

to (4000, 800, 400) on large graphs. TopSim has four pa-

rameters T, h, η, and H, which correspond to the max-

imum length of a random walk, the lower bound of the

degree to identify a high degree node, the probability

threshold to eliminate a path, and the size of prior-

ity pool, respectively. As advised in paper [17], we fix

1/h = 100 and η = 0.001 and vary (T,H) from (3, 100)
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Fig. 10 Trade-offs: MaxError v.s. Query time on large graphs
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Fig. 11 Trade-offs: AvgError@50 v.s. Query time on large graphs

to (20, 109) on small graphs and from (3, 100) to (7, 106)

on large graphs. ProbeSim and SLING share the same

error parameter ε, and we vary ε from 10−1 to 10−7 (if

possible) on both small and large graphs.

Fig. 10 to Fig. 15 present the benchmarking studies

of existing single-source algorithms against the ground

truths. Specifically, Fig. 10 plots the trade-offs between

query time and MaxError. Fig. 11 shows the trade-off

lines between query time and AvgError@50, where

AvgError@k =
1

k

∑
vj∈Vk

∣∣∣Ŝ(i, j)− S(i, j)
∣∣∣ ,

where Vk denotes the set of approximate top-k nodes.

Fig. 12 draws the trade-off plots between query time

and Precision@500. Fig. 13 shows the relations between

memory cost and MaxError. Besides, as for those index-

based methods, Fig. 14 and Fig. 15 plot the trade-offs

between preprocessing time/index size and MaxError,

respectively.

From these experimental results, we can derive the

following observations. First of all, PRSim generally

provides the best overall performance among the index-

based methods in terms of query-time/error tradeoffs.

This suggests that the local push/sampling approach is

more suitable for large graphs. Secondly, the two recent

dynamic methods, ProbeSim and READS, achieve sim-

ilar accuracy on large graphs for the typical query time

range (< 10 seconds) of the approximate algorithms.

However, ProbeSim is an index-free algorithm and thus

has better scalability. In particular, READS runs out

of memory on the TW dataset with the number of sam-

ples per node r > 1000. Thirdly, ParSim is unable to

achieve the same high precisions as it does on small

graphs, which suggests that the D ∼ (1− c)I approxi-

mation is not as effective on large graphs. SLING and

Linearization also quickly become unbearable on large

graphs due to their O
(
n logn
ε2

)
preprocessing time. This
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Fig. 12 Trade-offs: Precision@500 v.s. Query time on large graphs
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Fig. 13 Trade-offs: MaxError v.s. Memory Cost on large graphs

shows the necessity of evaluating the accuracy on large

graphs. Finally, Fig. 13 shows iterative methods (Par-

Sim and Linearization) perform the best in terms of

space overhead.

Besides, we evaluate sensitivity of each method to

the choice of k as for the Precision@k. Fig. 16 shows the

precision plots with varying k from 10 to 1000 on DB

and TW datasets. For each method, we only pick one

group of parameters to view the change of Precision@k.

For fairness, we try to keep each method staying in

the same level of precision by appropriate parameter

settings. In detail, we set L = 20, r = 200 for MC; L = 5

for ParSim; L = 100, r = 10 for READS; Rg = 100,

Rq = 20, T = 10 for TSF; T = 4 and H = 1000 for

TopSim; ε = 0.1 for Linearization, PRSim, ProbeSim,

and SLING. We observe that larger k always leads to

low precisions. The only exception is ParSim on TW,

which shows a slightly increment with larger k. This

reflects that ParSim can maintain the relative order of

top-k nodes well.

Experiments on Synthetic Datasets. We also ana-

lyze the trade-off of each method with fixed parameters

on synthetic datasets to vary network structures and

sizes. For fairness, we choose the parameters to guar-

antee the accuracy of each method remains in the same

level. In particular, we set L = 50 and r = 500 for MC;

L = 500 for ParSim; L = 10 and r = 100 for READS;

Rg = 100, Rq = 20 and T = 10 for TSF; T = 3 and

H = 100 for TopSim; ε = 0.1 for Linearization, PRSim,

ProbeSim and SLING. On each dataset, we also gen-

erate 50 query nodes for each dataset. For each set of

parameters and each method, we issue one query from

each query node and report the average MaxError and

Precision@500 among the 50 query nodes.

We first evaluate the performance of each method

on power-law graphs. Using the hyperbolic graph gen-
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Fig. 14 Trade-offs: MaxError v.s. Preprocessing time on large graphs
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Fig. 15 Trade-offs: MaxError v.s. Index size on large graphs
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Fig. 16 Precision@k v.s. k

erator given in [4,15], we generate a set of graphs with

various power-law exponent γ, graph size n and average

degree d̄. We fix the graph size n = 100, 000, the aver-

age degree d̄ = 10 and vary γ from 2.0 to 3.0. Fig. 17(a)

reports the query time of each γ. From Fig. 17(a), we

observe that the query time of most of methods increase

with 1/γ except for Linearization, ParSim and SLING.

For Linearization and ParSim, in the query phase, the

two iterative methods repeat to do matrix multiplica-

tions with fixed times, leading to the unchanged query

time. As for SLING, it heavily relies on the index and

its query time with large ε is too short to be impacted

by γ. In Fig. 17(b), we fix γ = 3 and d̄ = 10, and

vary n from 104 to 107 to evaluate the trade-offs be-

tween query time and the graph size n. We observe

that local push/sampling methods’ scalabilities outper-

form other methods in general. This is because these

methods mainly focus on local information and are less

influenced by the graph size. For Fig. 17(c), we try to

explore the performance of each method on the power-

law graphs with different average degrees. Specifically,

we fix γ = 3 and n = 100, 000, and vary d̄ from 5

to 1,000. We observe that the query time of PRSim in-

creases at the slowest speed among these methods. This

reveals the ability of PRSim to support dense graphs.

On the contrary, TopSim shows a rapidly growing query

time as the average degree increases.

Besides, we use Erdős and Rényi (ER) model to gen-

erate non-power-law graphs for evaluations. According
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(a) Query time v.s. γ. (b) Query time v.s. n. (c) Query time v.s. d̄.

Fig. 17 Results on power-law graphs
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(a) Query time v.s. n. (b) Query time v.s. d̄.

Fig. 18 Results on non-power-law graphs
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(a) Query time v.s. n. (b) Query time v.s. d̄. (c) Query time v.s. clusters.

Fig. 19 Results on stochastic block graphs

to ER model, any pair of node will be assigned an edge

with a specified probability p. In Fig. 18(a), we vary the

graph size n from 104 to 106. We adjust the probabil-

ity p to fix the average degree d̄ = 10. In Fig. 18(b), we

vary d̄ from 5 to 103 with fixed n = 100, 000. Because by

fixing the average degree, the structures of ER graphs

nearly remain unchanged with the increment of n. As

shown in Fig. 18(a), the query time of MC-based meth-

ods (MC,READS and TSF) does not increase with n

on the ER graphs. However, we observe that the query

time of the three methods show obvious increments on

power-law graphs. We attribute this difference to the

existence of the hub nodes on power-law graphs.

Finally, we generate graphs using the stochastic block

model with four parameters, including the graph size n,

the number of clusters c, the probability p to assign an

edge for any pair of node belonging to the same clus-

ter and the probability q to assign an edge for any two

nodes belonging to different clusters. In Fig. 19(a), we

modulate the values of p and q to keep the average de-

gree d̄ = 10, the number of clusters c = 5, and vary

the graph size n from 104 to 106. In Fig. 19(b), we fix

n = 105 and c = 5, adjust p and q to vary the average

degree d̄ from 10 to 1000. In Fig. 19(c), we vary the
number of clusters c from 5 to 500 and fix n = 105,

d̄ = 10. We observe that the result of each method

is similar with that on ER graphs, which reflects that

stochastic block model is a generalized version of ER

model. Fig. 19(c) shows that the number of clusters

does not has a significant effect on the query time of

these methods.

Experiments on Dynamic Datasets. In this sec-

tion, we evaluate the performances of the methods which

can support dynamic graphs. Recall that ParSim [45],

ProbeSim [24], and TopSim [17] are index-free methods

and can support dynamic graphs naturally. READS [14]

and TSF [32] are two index-based methods which can

support dynamic graphs by modifying index structures.

Since the vertex modification can be treated as sev-

eral edge modifications, we use the two dynamic graphs

WD and WP which only contains edge modifications

for ease of readibility. The parameters of each method

are the same with that in Section 5.2. For the four
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Fig. 20 MaxError v.s. Query time on dynamic graphs
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Fig. 21 Precision@500 v.s. Query time on dynamic graphs
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Fig. 22 MaxError v.s. Preprocessing time on dynamic graphs
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Fig. 23 MaxError v.s. Index size on dynamic graphs
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Fig. 24 MaxError v.s. Update Time per edge inser-
tion/deletion on dynamic graphs

index-free methods, we run them on the final graphs

of WP and WD. For READS and TSF, we first load

the initial graph without the last 10,000 edge mod-

ifications and construct the index. Then we run the

two methods on the dynamic graphs with 10,000 edge

modifications. After the updating process, we compare

the computational quality of the six methods and plot

their trade-offs between the query time and MaxEr-

ror/Precision@500 in Fig. 20 and Fig. 21, respectively.

In Fig. 20, we observe that each method’s performance

is similar with that on static graphs. ProbeSim achieves

the highest approximation quality within the same query

time. We observe that the performances of index-free

methods are similar with that on static graphs. ProbeSim

still shows the best performance among these meth-

ods. However, the MaxError of READS is hard to be

reduced with increasing query time. This is very dif-

ferent from what we have observed on static graphs,

where READS and ProbeSim achieve similar accuracy.

In Fig. 22, 23, and 24, we plot the trade-offs between

MaxError and preprocessing time/index size/updating

time of the two index-based methods TSF and READS.

Note that the updating time is the average time per

edge insertion/deletion in the updating process. We ob-

serve that the two methods both incur large maximum

error. READS shows a better performance than TSF.

5.3 SimRank Distribution

We now design experiments to seek the answers for two

open questions regarding the distribution of SimRank:

– Does the single-source SimRank result follow the

power-law distribution on real-world graphs?

– What is the density of SimRank values on real-world

graphs?

We use ExactSim to compute the ground truths

of 50 random single-source queries on each of the six

large graphs. Then we compute the average frequency

of SimRank values in every range of length 10−5, and

plot these frequencies against the SimRank values in

Fig. 25. Besides, we plot the frequency distribution of

Personalized PageRank(PPR) computed by its Power

Method [31] with teleport probability α = 0.2, which

has been proved following the power law [23]. The re-

sults suggest SimRank values indeed exhibit a power-

law shaped distribution on real-world graphs as PPR

does. In particular, the power-law exponent (slope) on

TW appears to be significantly more skewed than that

on IT, which explains why TW is a harder dataset for

computing single-source SimRank queries. For sake of

completeness, we also plot the degree distributions of

the six graphs in Fig. 26. We compute the average fre-

quency of each degree in every range of length 10. We

observe that the largest degree can achieve 106 on TW,

which is apparently larger than other datasets. This
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Fig. 25 The distribution of SimRank and PPR on real-world graphs
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Fig. 26 Degree distribution of real-world graphs
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Fig. 27 SimRank and PPR distribution of the Kronecker graphs (varying n from 106 to 5 ∗ 107)

also demonstrates the hardness to compute SimRank

on TW.

Besides, we plot the SimRank distribution on syn-

thetic power-law graphs in Fig. 27 using the Kronecker

graph model [18], which can generate large graphs of

million nodes. We fix the probability seed matrix as

(0.9, 0.5; 0.5, 0.1) and vary the graph size n from 106 to

5 × 107. On the four synthetic graphs, SimRank val-

ues still exhibit a power-law shaped distribution. We

also plot the degree distribution of the four synthetic

power-law graphs in Fig. 28. The degree distribution of

the four synthetic graphs are all power-law shaped.

In comparison, we generate non-power-law graphs

using the Erdős and Rényi(ER) model, and show the

SimRank distributions on the synthetic non-power-law

graphs. According to the settings of ER-model, an edge

is attached to each node with a user-defined probability

p. We vary the number of nodes n from 104 to 5 ×
105, and tune p to guarantee the average degree d =

10. Fig. 29 plots the SimRank and PPR distributions.
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Fig. 28 Degree distribution of the Kronecker graphs (varying n from 106 to 5 ∗ 107)
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Fig. 29 The distribution of SimRank and PPR on E-R graphs (varying n from 104 to 5× 105)
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Fig. 30 Degree distribution on E-R graphs (varying n from 104 to 5× 105)
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Fig. 31 SimRank density on large graphs

Fig. 30 displays the degree distributions on these ER

graphs. We observe that the distributions of SimRank

and PPR both show non-power-law shaped curves on

ER graphs.

Next, we analyze the density of single-source Sim-

Rank queries. The density of SimRank is the percentage

of SimRank values that are larger than some threshold

ε. Fig. 31 shows the average density of 50 queries on

six large datasets, with ε varying from 0.1 to 10−7. The

result shows that the densities can vary widely on dif-

ferent datasets. For example, on the TW dataset, the

density of SimRank values quickly reaches close to 1

for ε < 10−4. On the other hand, the density on the

IT dataset seems to converge on 10−4. This suggests

that density-sensitive methods such as [38] can achieve

satisfying results on IT and may run out of memory on

dense graphs such as TW. This result also implies that

it is essentially hopeless to design an exact algorithm

for all-pair queries on large real-world graphs, as the

number of non-zero entries in the SimRank matrix can

be as large as O(n2).

6 Conclusions

This paper presents ExactSim, an algorithm that pro-

duces the ground truths for single-source and top-k

SimRank queries with precision up to 7 decimal places

on large graphs. Using the ground truths computed by

ExactSim, we present the first experimental study of

the accuracy/cost tradeoffs of existing SimRank algo-

rithms on large graphs. We also exploit various proper-

ties of the distributions of SimRank on large real-world

graphs. For future work, we note that the O
(

logn
ε2

)
complexity of ExactSim prevents it from achieving a

precision of 10−14 (i.e., the precision of the double type).

To achieve such extreme precision, we need an algo-

rithm with O
(

logn
ε

)
complexity, which remains a ma-

jor open problem in SimRank study.
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