JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Building Graphs at Scale via Sequence of
Edges: Model and Generation Algorithms

Yu Liu, Lei Zou, and Zhewei Wei

Abstract—Real-world graphs exhibit many interesting properties that differentiate them from random graphs, which have been
extensively studied for the past decades. For various proposed generative models, a majority of them build the graph by sequentially
adding each node and the attached edges. However, the growth of many real-world graphs, such as social networks, is naturally
modeled by the sequential insertion of edges. Unfortunately, to the best of our knowledge, no generative model has been proposed to

reveal this process.

We propose the first sequence-of-edges model, denoted as temporal preferential attachment (TPA). It relies on preferential attachment
(PA), one of the most influential mechanisms to generate scale-free graphs, and takes time-decay effect and node fitness into
consideration. Empirical analysis demonstrates that our model preserves several key properties of the real-world graphs, including both
the properties observed from the snapshot graphs (e.g., power-law distribution) and temporal properties observed from the graph
generation process (e.g., shrinking diameter). Meanwhile, our model is sufficiently general to accommodate several forms of time decay
and fitness distributions. Then, we design two efficient algorithms that generate TPA graphs with billions of edges in several minutes.

Index Terms—Complex graph model, sequence-of-edges graph, temporal preferential attachment, massive graph generation.

1 INTRODUCTION

RAPHS are widely used to model the relationships between
Gobjects in various applications, such as websites [1], social
networks [2] and knowledge graphs [3]. Some of the real-world
graphs, such as social networks and graph streams, exhibit struc-
tural properties that are fundamentally different from those of
random graphs, e.g., the Erdés and Rényi’s graphs [4]. Tracing
back to the pioneering work [5] in early 20th century, consid-
erable research has been devoted to the study of the properties
of real-world graphs, with new observations and understandings
continuously arising in the past ten years. These findings not only
further our understanding of graph theory, but also change the way
we design graph algorithms and systems. For example, the fact that
the degrees of real-world graphs follow heavy-tailed distribution
facilitates a number of efficient graph algorithms [6], [7]. On the
other hand, the same property poses new challenges for graph-
parallel systems [8].

The study of structural properties on real-world graphs can
be broadly divided into three categories. First, there exists many
early work [9], [10], [11] that focus on making observations for
various structural properties on real-world graphs. Second, based
on these observations, a significant amount of research [12], [13],
[14], [15] tries to propose complex graph models that explain the
observed properties. Finally, to incorporate the growing need of
large synthetic graphs [16], [17], a few recent work [18], [19],
[20], [21] focuses on designing efficient algorithms to generate
synthetic graphs that look like real-world graphs. State-of-the-
art algorithms can generate a billion-edge graph on a commodity
machine [21], or a trillion-sized graph in the distributed environ-

o Y Liu and L. Zou are with Peking University, Beijing 100871, China.
E-mail: {dokiliu,zoulei} @pku.edu.cn.

o Z Wei is with Renmin University of China, Beijing 100872, China.
E-mail: zhewei@ruc.edu.cn.
The corresponding author of this work is Lei Zou.

ment [20]. This not only avoids the privacy concerns of real-world
data, but also facilitates the evaluation of algorithms and systems
for large graphs.

Motivations. As pointed by [13], growth is the very important
property of real-world graphs. Nonetheless, graphs generated
by various applications exhibit fundamentally different growth
patterns. For citation networks and Wikipedia graphs, they evolve
in a node-centric way, i.e., the graph expands by additions of nodes
(e.g., papers, entities) and the attached edges. We formally define
this process as follows.

Definition 1 (Sequence-of-nodes graph). The generation pro-
cess of a sequence-of-nodes graph G is defined as G =
(G1,...,Gr, Gry1,...), where

Gk+1.V =GR Vu {vk+1},
Grpi1.E =G EU {('Uk+17u)a u € Sk—H}-

Here vy, 1 denotes a new node not belonging to Gy, Gy, denotes
a snapshot graph, and G,.V (resp. Gi.FE) represents the set of
nodes (resp. edges) of Gy. For k € [1,00), the graph expands by
adding node vi1 to the current graph Gy, with a set of attached
edges. Denote by Sy the set of the other endpoint of each edge,
it holds that Si+1 C Gi.V.

In general, we do not exclude the possibility of adding edges
between existing nodes upon inserting v 1. To this end, the set
of inserted edges are represented by {(vi+1,u),u € Spp1} U
{(wiy, uj,)s - .., (uq,uj,)}, where u;s and u s belong to G.V.
We refer to the former (resp. latter) set of edges as external (resp.
internal) edges.

On the other hand, graphs such as social networks and com-
munication networks can not be properly modeled by the above
process, as they all grow in an edge-centric way. For example,
social network grows by building new edges (e.g., friendship, the
follow relationship) between nodes (i.e., users). However, each

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

newly established interaction does not necessarily involve the
addition of new users. In fact, interaction among existing users
evolves over time and composes a large fraction of edges in the
network. Another example is the graphs that can be represented
by a sequence of time-stamped edges, such as graph streams. It is
natural to model these graphs by a sequence-of-edges manner.

Definition 2 (Sequence-of-edges graph). The generation pro-
cess of a sequence-of-edges graph is defined as G =
(G1,...,Gr,Giy1,...), where

Gk+1.V =GRV U {uk+1} U {Uk+1},
Gipy1.EFE =G EU {(uk+1,vk+1)}.

For k € [1,00), the graph grows by adding an edge (uj+1, V+1)
to the current graph Gy. Note that the two endpoints upy1 and
V41 do not have to be nodes in GV, and can be newly added
ones.

Unfortunately, very few works have put their emphasis on the
sequence-of-edges modeling of real-world graphs, if they exist.
The classical Barabdsi-Albert (BA) model [13] is regarded as one
of the most influential sequence-of-nodes models among many
other preferential attachment-based ones [22], [23]. Meanwhile, a
few prevalent graph generation mechanisms, such as the recursive
graph model [24], [25] and the hyperbolic unit disk model [14],
need to fix the number of nodes (and edges) in advance as the
Erd6s-Rényi (ER) model [4] and thus ignore the growth process.
Although follow-up literature [26] improves the dynamicity to
some extent, they are inherently unsuitable to model temporal or
streaming graphs. Instead, we aim to propose a sequence-of-edges
model by non-trivially integrating several key ingredients of the
PA-based model, which is powerful enough to explain the well-
recognized properties of real-world graphs, and yet simple enough
so we can design highly scalable algorithms that generate large
synthetic datasets.

Contributions. Our principal contribution in this paper is summa-
rized as follows.

o We propose temporal preferential attachment (TPA), the first
sequence-of-edges generative model that captures the edge-
centric growth over a wide range of real-world graphs, such as
social networks and communication networks. Our model relies
on the well-studied ingredients including degree-based prefer-
ential attachment [13], [27], the time-decay effect [22], [28],
and node fitness [23], [29], and we non-trivially integrate them
into the sequence-of-edges framework. Besides, our model is
sufficiently general to accommodate various forms of aging and
fitness. We also observe the existence of the TPA mechanism
via empirical analysis of two real-world graphs.

e We design two efficient generation algorithms for the TPA
model, by integrating the idea of logarithmic binning and state-
of-the-art generation techniques for BA graph [21], [30]. We
theoretically prove that our algorithm has asymptotically lower
or the same time and space complexity compared to the algo-
rithms for the simple BA model. Moreover, our algorithms can
be naturally applied to several recent preferential attachment-
based models with aging [22], [23], [29]. We believe this is the
very first work to investigate the fast generation of these models.

« We conduct extensive empirical analysis to study the properties
of our TPA model and the efficiency of the generation algorithm.
Experimental results demonstrate that the TPA model preserves

2
TABLE 1
Table of notations.
Notation Description
G graph represented by a sequence of time-stamped
edges e, ea, . ..
Gt induced subgraph of G by edges of timestamp < ¢
e = (u,v,t(e)) | atime-stamped edge
d(v) the degree of a node v
t(v),t(e) the time of a node v or edge e
t current time
o1 power law exponent [31]
fG),9() the degree-based (resp. temporal) PA function
Ba, Bt the degree-based (resp. temporal) PA parameter
h(v) fitness of node v
Dy, the fitness distribution, parameterized by 3; and
hmaz

several critical properties of real-world graphs, such as power-
law distribution and shrinking diameter [12]. We also conduct
parameter sensitivity analysis to show the robustness and gen-
erality of our model. Finally, our generation algorithms manage
to build billion-edge graphs within several minutes, which is
comparable to state of the art of the BA model.

Table 1 lists notations that are frequently used in the remainder
of the paper.

2 RELATED WORK

There exists an abundance of existing work from observation
of real-world graph phenomenon to the generation of massive
synthetic graphs. We categorize them as follows.

2.1 Complex Graph Models
2.1.1

Preferential attachment (PA) [13] is arguably one of the most
influential mechanisms to generate graphs of heavy-tailed dis-
tribution due to its succinctness and interpretability. Generally
speaking, when a new node is added, preferential attachment
determines how to connect edges from it to existing nodes based
on their attractiveness. Based on the assumption, [13] proposes the
Barabdsi-Albert (BA) model which generates random power-law
graphs (referred to as BA graphs) using the following two steps.
Step 1. Start with a small graph of mq vertices generated ran-
domly.

Step 2. At every time step, add a new vertex with m edges
connecting to m distinct vertices already present in the graph. For
each connection the selection of the existing vertex is governed by
the following equation:

Classical preferential attachment-based models

, d(v)
Pr[v is attached] S d(w)’ 1)
Here the summation takes consideration of all existing nodes in the
graph. It has been proved that the BA model generates power-law
graphs with exponent v = 3, i.e., Pr[d(v) = k] oc k5.

Despite its simplicity, the popular BA model has several limits.
First, the graph does not contain nodes of degree less than m
as opposed to most real-world graphs, where a large portion of
the nodes have smaller degrees (e.g., one or two). Therefore, a
few follow-up work [32], [33] proposes PA-based models with a

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

random number of initial edges. In particular, when a new node
v is inserted to the graph, the number of attached edges follows
Poisson distribution [33] (i.e., Pr[d;,(v) = k])‘kljrk) or the
power law [32] (i.e., Pr[d;n(v) = k] oc K Yinit), Second, [27]
considers more generalized PA functions and proposes the notion
of non-linear preferential attachment:

) d(v)ﬁd
Pr[v is attached] = S ()i)
where (34 is referred to as the preferential attachment exponent.
However, they prove that the power-law distribution is found only
when 4 = 1. When 34 > 1, a single node connects to nearly all
other nodes; while for 84 < 1, the degree distribution changes to
stretched exponential.

For the above models, preferential attachment is only applied
for the addition of nodes. More precisely, since one endpoint of
each edge is the new node and only the other one is chosen
preferentially, we say the PA mechanism is one-sided. On the
other hand, [34] discusses the rwo-sided PA for the addition of
internal edges between two existing nodes v; and v;. They also
consider the transitivity, which denotes the effect of the common
neighbors of v; and v;:

Prlv; and v; build a new edge| o 3)
fd(w:) - f(d(v;)) - f/(IN(vi) O N(w))D)- 4
Here f(-) (and f’(-)) represents the degree-based PA function.

2.1.2 PA-based models with aging and fitness

The aging phenomenon has been observed in graphs such as
citation networks and analyzed by some existing literature [35],
[36], [37]. In particular, [22], [28] integrate the time-decay effect!
to the PA mechanism. For example, a few literature assumes the
PA function as follows:

Pr[v is attached] x f(d(v)) - g(At(v)), (5)

where f(d(v)) is a generalized PA function based on node
degree, while g(-) describes the time-decay effect that a node
is less attractive as time goes on, which can be power law
[22] (e, g(At(v)) = At(v)_’gt) or exponential [28] (i.e.,
g(At(v)) = e PAHv)) Note that the definition of time decay
depends on the assumption that the graph is generated via the
sequential addition of nodes and edges. For real-world graphs, let
t denote the time at present, then At(v) can be defined as t —t(v),
where ¢(v) is the timestamp at which node v first appears. For
synthetic graphs, following almost all previous works, the nodes
are numbered from 1 to n according to their insertion order. Then,
at time ¢, we have At(v;) = t — 4. Also note that for simplicity of
notation, we omit the subscript ¢ for node degree and time decay
throughout the paper.

Furthermore, recent studies [23], [29], [38] also consider node
fitness to model the intrinsic differences between nodes that can
not be simply represented by degree-based and temporal PA.
Formally, the preferential probability is defined as follows:

Pr[v is attached] o< f(d(v)) - g(At(v)) - h(v), (6)

where h(v) is the fitness of node v, a constant sampled from
some specific distribution (e.g., exponential) upon node insertion.
We refer to the model as dynamic preferential attachment (DPA).

1. We will use these two terms interchangeably.

TABLE 2
Representative PA-based models and their function forms.
(Specifications for different function forms are as follows. Power law:
f(z) = z—%; Exponential: f(x) = e~%%; Poisson: f(z) = a*e~%/z!;
Log-normal: f(z) = e~4log” (++1) where a is the function parameter.)

Model PA function Aging form Fitness

BA [13] f(d(v)) (linear) N/A N/A

[27] f(d(v)) (non-linear) N/A N/A

[22] Power law N/A

[28] Fd())g(At(v)) Exponential N/A

[29] Log-normal (Fitted)
[38] f(d(v))g(At(v))h(v) | Power law/Exponential | Exponential
DPA [23] Log-normal (General)

Existing study [23] demonstrates that the power-law distribution
can be restored by introducing fitness to strengthen the old-get-
richer effect. Otherwise, the time decay implies old nodes should
be less attractive, resulting in exponential degree distribution. We
list in Table 2 the representative PA-based models, along with
their concrete forms of the PA function and the fitness settings.
Due to the theoretical result of [27], most of them assume linear
preference based on degree, i.e., f(d(v)) = a-d(v)+b. Following
most existing literature, we only discuss the undirected graph
models for simplicity, and the conclusions can be easily extended
to its directed version.

2.1.3 Graph models based on other mechanisms

Except for preferential attachment, numerous complex graph mod-
els have been proposed according to various presumed or observed
generation mechanisms, such as the recursive graph models [24],
[25], the hyperbolic unit disk model [14], models with mixed
strategies [12], [15], and static model [39] which takes the degree
distribution as given, to name a few. Nonetheless, not all of them
focus on the generative process, i.e., the sequential insertion of
nodes and edges. For example, the recursive models [24], [25] are
based on matrix products and thus do not focus on the growth
of network over time. It is not straightforward to modify them to
model the behaviors of real-world graphs related to the growth
process.

2.2 Observations of Real-world Graphs
2.2.1 Properties of real-world graphs

We classify the properties observed in real-world graphs as the
static properties and the temporal properties (or dynamic proper-
ties). We will use these two terms interchangeably.

Static properties. The properties observed by only one snapshot
graph are referred to as static properties. For example, various
distributions related to graph structures have been observed to
approximately obey the power law, including the distribution of
node degree [40], singular values and first singular vectors [24],
the size of connected components [10], and etc. The most well-
studied property is perhaps the power-law distribution of node
degrees. First observed by [41] and re-discovered by [13], this
property is extensively investigated by follow-up work, such as
[9] and [31]. It states that on real-world graphs, the number of
nodes of degree k is (approximately) in inverse proportion to k7,
where v € (1, 00) denotes the power-law exponent.

Temporal properties. If some property is observed from a tem-
poral graph that is defined by a sequence of edges or a sequence
of snapshot graphs, it is called the temporal properties. Several
properties of temporal graphs have been revealed, such as edge
densification [12] and shrinking diameter. As the graph grows

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

larger, edge densification states that the average degree of the
graph will increase, while shrinking diameter suggests that the
effective diameter will continuously decrease and finally reach a
stable value. Another important temporal property is the aging
phenomenon, which has been extensively investigated by existing
literature. Intuitively, it says that the old nodes (i.e., node appears
early in the graph) tend to be less attractive as the graph expands.

2.2.2 Growth mechanism of the real-world graphs

Among the proposed graph generation mechanisms to build
complex graph models, several of them have been observed
in real-world graphs, such as preferential attachment and the
communities-within-communities [42] phenomenon. In particular,
preferential attachment has been extensively investigated [43],
[44] and its existence in many real-world graphs have been proved.
Also note that in early literature of the PA-based models [13],
[27], preferential attachment is assumed rather than observed. We
briefly describe the observation procedure as follows. Let G}, be
a snapshot graph, e.g., consisting all edges in the temporal graph
whose timestamp is less than £. Then, we check a sequence of
edges inserted after ¢, and for each edge connecting to nodes in
G, we record the degree of that node. Then, we get a histogram
to approximately reveal the node preference w.r.t. degree.

2.2.3 Measurement of graph statistics

Graph statistics such as average degree, effective diameter, and
clustering coefficient [11] reveal the structural properties of a
graph. KONECT [45] lists a variety of graphs statistics for real-
world graphs. In particular, the power-law exponent <y is perhaps
the most important statistics to model the skewed distribution of
graphs. Noticing that the curve fitting method on the log-log plot
of degree distribution is biased and lacks theoretical guarantee,
Newman [31] first proposes a maximum likelihood estimation
(MLE) method to compute y. Follow-up work [46], [47] presents
the testing method to judge if the distribution is more similar to
power law than others, e.g, the log-normal distribution.

As for the estimation of the PA exponent 34, early work either
relies on curve fitting [43], [44] or presumes the form of the PA
function (e.g., as polynomial [44], [48], [49]). Pham [50] and
Inoue [34] lately propose the maximum likelihood-based method
to estimate 34. This method works very well for the observation
of the one-sided degree-based preferential attachment, but suffers
from efficiency problems when applied to more complicated PA
functions (e.g., two-sided PA) and on large graphs.

2.3 Generative Algorithms for Scale-free Graphs

Recently, progress has been made on the fast generation of large
synthetic graphs. In particular, [30] proposes the stochastic accep-
tance (SA) algorithm based on rejection sampling. [21] studies the
generation of billion-edge BA graphs using a commodity machine.
They propose ROLL, an efficient in-memory generation algorithm
based on two optimizations. First, nodes of the same degree are
placed into buckets. Therefore, the preferential node selection can
be implemented as bucket selection followed by random sampling
inside a bucket. Second, they introduce a binary search tree to
speed up inter-bucket selection. On graphs larger than millions
of nodes, ROLL is at least one order of magnitude faster than
existing techniques such as SA [30]. Besides, a few works [17],
[19] study preferential attachment in the parallel setting, while [51]
discusses the approximate generation of BA graphs. However, all
known algorithms are designed for the PA-based models where

4

the PA functions are one-sided and only depend on node degree.
It is not clear how these algorithms can be extended to PA-based
models with aging while maintaining the efficiency. To the best of
our knowledge, the more recent PA-based models [23], [28], [29],
[38] still have the problem of scalable generation.

Except the PA-based models, a line of works [18], [20], [26],
[52] consider the generation of massive graphs for recursive and
hyperbolic unit disk models. Another closely related topic is graph
upscaling [53], [54], which expands a given real-world graphs by
some specific mechanism such as preferential attachment other
than generate synthetic graphs from scratch. Nevertheless, they
still model the graph generation in the sequence-of-nodes manner,
and do not focus on the temporal effect in the growth process.

3 TPA: OUR SEQUENCE-OF-EDGES MODEL
3.1

In this section, we propose our temporal preferential attachment
(TPA) model, aiming at reflecting the edge-centric growth of real-
world networks. We formally describe the TPA model as follows.
Step 1. Start with a small random graph (e.g., ER graph) G,
which consists k vertices {v1, ..., vy }. Note that the subscript k
represents the number of nodes in the current graph. Place one
virtual node vy 1 outside of Gy. For simplicity, we can set k = 1.
Step 2. At each time, add one edge e = (uq1,us) between nodes
{v1,. .., Vg, Vk11}-

e For each v € {v1,...,vx}, the node preference, denoted
by tpa(v), is computed by a general PA function, which will
be illustrated in Section 3.2. The preference of vi41 is a
constant o € [1,00) given as model parameter.

e Both endpoints u1 and us of e is chosen in proportional to the
node preference. As long as a self-loop is formed (u1 = us),
we re-sample us.

o If Vi1 is chosen as one endpoint of e, add it (and e) to the
current graph, and place virtual node vy 9. Otherwise, we
only add the edge to the graph.

Model Specification

We have the following specifications for the proposed model.
First, the above process generates an undirected graph. Since the
direction of the edge is, to a large extent, independent of the
generation process, following previous works [13], [22], [23],
[28], [29], we do not focus on the edge direction. Second, in the
baseline model, we only place one virtual node each time. One
may extend the model by placing a set virtual nodes, however,
note that it is sufficient to consider only two cases, i.e., the number
of virtual nodes is either one or two. This is because edges come
sequantially, and each edge has exact two endpoints. To be precise,
assume the preference of each virtual node is equal and computed
by a general function a(-). Therefore, setting n,, virtual nodes is
equivalent to setting only one virtual node of preference n,, - a(-).
For now, we do not discuss the case that contains two virtual
nodes, where the new edge may connect them and we generate a
graph with many connected components.

Note that we assume the preference of the virtual node be a
constant, for the following reasons. Except for the simplicity, it
reflects the fact that as the graph grows, the percentage of internal
edges becomes larger, which naturally leads to edge densification
and shrinking diameter. We do not exclude the possibility of more
complicated choices, such as setting the preference as a slowly
(e.g., sub-linear) increasing function of the graph size, but that is
beyond the scope of this paper.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

3.2 The Attachment Function

We demonstrate how to compute the preference of the existing
nodes. Indeed, we adopt a general function as in [23], [29], [38]:

tpa(v) = f(d(v)) - g(At(v)) - h(v), ©)

which consists three independent parts.

The degree-based PA function f(-) is a monotonic increasing
function of node degree. By default, we set it as the power-law
(i.e., polynomial) function:

Fld(v)) = d(v)™, ®)

where 34 is the preferential attachment exponent [27], [43], [44],
satisfying that 34 € [0, 00).

Similarly, the temporal PA function g(-) is a monotonic
decreasing function of node age. The function has a general form
and can be power law, exponential or log-normal decay. (Please
refer to Table 2 for their definitions.) The function parameter
B¢ € [0,00) is referred to as the temporal preferential attachment
exponent. We assume nodes are numbered vq, . .., Vg, . .. by their
insertion order. By supposing nodes are inserted sequentially and
at a steady rate, which is implied by existing sequence-of-nodes
models, the time decay of node vy, at time ¢ is ¢t — k. We use this
assumption by default. Note that another option is to assume edges
come at a steady rate, e.g., for temporal and streaming graphs. In
this case, t(vy) is the number of edges in G_1 when it is added
to the graph, and At(vy,) can be defined accordingly.

Finally, we use a general distribution Dj, to generate node
fitness, which can be power-law (Pr[h(v) = k] oc k=P7),
exponential (Pr[h(v) = k] oc e *57) or Poisson distributed
(Pr[h(v) = k] oc By%e=Pr/kl), where By € [0,00) is the
model parameter and h(v) is the fitness of v. We use another
parameter A,,q. to limit the upper bound of node fitness, i.e.,
h(v) € {1,..., hmaqe} for each node v. Note that we assume
the node fitness h(v) is an integer so that it can be efficiently
generated. By default, we use the Poisson distributed fitness,
because it is less skewed and condensation [55] is not obvious.
Remarks. Compared to the one-sided DPA model, we only
need one extra parameter (i.e., &) to control the graph density.
Nonetheless, our model is sufficiently general to accommodate
several forms of f,g, and h. As will be demonstrated in the
empirical analysis, many combinations with a wide range of
parameter values result in graphs exhibiting power-law distribution
and several other static and temporal properties.

We also briefly explain why other prominent graph generation
mechanisms can not be trivially extended to model temporal
graphs. Consider the recursive graph models [24], [25] and the
dynamic hyperbolic model [26]. Suppose the graph now contains
n nodes vy, ...,vy,. Inserting v, to the graph means adding
one row and one column to the matrix for recursive graph models,
while for [26] the node is put to the hyperbolic space. Then,
whether vy, 1 has an edge to each existing node v;(i € [1,n]) is
determined immediately by the underlying generation mechanism.
Moreover, to check all possible edges, the cost is prohibitive for
sizeable graphs.

3.3 Generation Algorithm

We describe our baseline graph generation algorithm for the TPA
model. We refer to the algorithm as TPA-U-RW, where "U”
denotes that the algorithm generates undirected graphs. For now,
we first ignore node fitness, i.e., assuming that h(v) follows the

Algorithm 1: Basic algorithm for the TPA model (TPA-U-
RW)

Input: n, the degree-based PA function f(-) (and B4), the temporal PA
function g(+) (and S3¢), o
Output: An undirected graph G, of n nodes
1 Initialize G'; with a single node v1;
i =1;
while i < n do
while true do
do

fromNode <— RW-Select(G;_1, f(-),g(-),);
toNode < RW-Select(G;_1, f(-),g(), a);
while fromNode == toNode;
if fromNode == v; or toNode == v; then
G; < G;_1 Uwv; (and the corresponding edge) ;
L break;

else
| insert edge (fromNode,toNode) into G;_1;

L R N N)

—
- =

-
w N

| i+

15 return G

-
-

uniform distribution. We will discuss later how to integrate fitness
to the generation algorithm.

Given the number of nodes n, the degree-based PA function
f(-) and parameter (4, the temporal PA function ¢(-) and pa-
rameter [3;, and the preference « for virtual nodes, TPA-U-RW
generates an undirected TPA graph of n nodes. Here we follow
the paradigm of previous PA-based models [13], [22], [23], which
takes the number of nodes as input. In contrast, our algorithm can
also takes the number of edges as input and generates a graph with
unfixed number of nodes. However, these two configurations are
equivalent when considering the properties of the generated graph.
For similar reasons, by default we assume the nodes are numbered
1,...n and come at a steady rate. Therefore, we have t(v) = v.

The intuition of the algorithm is straightforward: given a
set of nodes with corresponding preferences, we can implement
preferential node selection by the roulette wheel. The pseudo-
code is illustrated in Algorithm 1. We initialize the graph with
one single vertex vy, denoted as GG1 (Line 1). Then, a sequence
of edges is inserted into the current graph. For each edge, its two
endpoints (fromNode and toNode) are determined by roulette
wheel selection, a procedure denoted as RW-Select (Lines 6-
7). We eliminate self-loops in Line 8. Recall that the algorithm
incorporates node insertion by placing a virtual node of preference
« in roulette wheel selection. The algorithm terminates when
n nodes have been inserted. Notice that G1,Gs, ..., G, only
represents different stages of the generated graph, rather than n
different graph instances.

Procedure RW-Select chooses a node v as an endpoint ac-
cording to the TPA attachment function, with pseudo-code shown
in Algorithm 2. It implements the straightforward roulette wheel
selection. First, it sums the preference of all nodes given the
current graph G and the preference of the virtual node (Line
1). Note that the concrete forms and the corresponding parameters
for degree-based and temporal PA functions are given as input.
Then it randomly generates a floating point number 7 € [0, Sum)
(Line 2) and finds the smallest ¢ such that Z;Zl % > rand
i < k (Lines 5-10). Otherwise, a new node vy is returned as
default (Line 4). It can be proved that the selection probability of
v, € [1, k + 1] is proportional to tpa(v;) defined in Equation 7.

Indeed, algorithm TPA-U-RW generates a multi-edged graph,
as defined by our TPA model. To be precise, two nodes u and v

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 2: RW-Select

Algorithm 3: GenFitness

Input: current graph G, f(+) (and B4), g(-) (and B¢), and «;

Output: A randomly chosen node v by our attachment function,
v €[l k+1]

Sum + 25:1 gJZ(Adt(ZB% + o

Uniformly generate a random number r € [0, Sum);

Initialize o < 0O;

chosenNode < k + 1;

fori =11t kdo

: £(d(i))
if o + FIONIO)) > r then

chosenNode < 1;
break;

® N A M AW N e

9 else

£(d(0) .
v | [e et Sy

11 return chosenNode;

can be connected by multiple edges €1, . . . , e} inserted at different
timestamp. This is a reasonable assumption for temporal graphs
and graph streams. To generate a simple graph, we have two
choices: (1) Remove all duplicated edges if the timestamp can be
ignored to the application; or (2) We store all edges in the memory
(e.g., as adjacency lists). Once an chosen edge already exists, we
repeat the edge selection process (Lines 6-7 of Algorithm 1). It
turns out that duplicated edges do not affect the graph properties
qualitatively.
Generating TPA graph with varied node fitness. Note that the
fitness value of each node v can be easily integrated to Lines
1,6,&10 of Algorithm 2. We assign a constant value h(v) to node
v upon its insertion, following the distribution Dj,. To speed up
this process, we employ the Alias method, which takes O(1) time
for each node. The procedure is demonstrated in Algorithm 3.
Indeed, if we assume the degree-based PA function is power-
law (i.e., polynomial), which is often the case, the node fitness can
be processed together with the degree-based PA function. Suppose
the node fitness follows some distribution D, = {p1,...,pp,... }
where p; = Pr[h(v) = i]. We demonstrate that the product of
degree-based PA function and fitness can be rewritten as

f(d(v)) - h(v) = f(d(v) - I (v)), ©)

where h/(v) is the transformed fitness following another distribu-
tion D}, Specifically, since f(d(v)) = d(v)P?, we have h(v) =
I (v)g , and therefore /'(v) follows distribution {pf, ..., p}, '}
where !, = [},{fﬁ] and p}; pg/ﬁd. Letw(v) = d(v)-h'(v)
be the weight of node v. Then, it is sufficient to replace d(v)
by w(v) in Algorithm 2. When node v receives an edge, we
increase its weight by h'(v). As we will see in the next section,
this facilitates the design of efficient generation algorithms.

Time complexity. It is easy to see that the complexity of Al-
gorithm 1 is O(nm), where n (resp. m) denotes the number of
nodes (resp. edges) of the generated graph?. To be precise, each
edge insertion invokes RW-Select twice, and the time complexity
of RW-Select is O(n).

Space complexity. For each node v € {1,2,...,n}, we only
need to store d(v). Recall that t(v) = v is recorded implicitly.
Therefore the space cost of TPA-U-RW is O(n).

2. Careful readers may notice that Algorithm 1 incurs an extra cost by
avoiding self-loops. In practice, very few self-loops are generated thus the
cost is negligible.

Input: Dy, Bf, hmaz, and node v
Output: The fitness value i (v) for node v
1 Let p; denote Pr[h(v) = 4], which can be computed by D}, (and with
ﬁf)s Vi € {17 ey hmaz};
2 Construct Alias structure A for probability distribution
{P1s+ Phimas >
3 Sample k with probability ps and set h(v) « k;

4 return h(v);

4 FAST GENERATION ALGORITHM

4.1 Rationale

For practical use, it is essential to generate large-sized graphs
in TPA model efficiently. Unfortunately, the time complexity of
TPA-U-RW is O(nm), which prevents it from massive graph
generation. In practice, it takes nearly one hour to generate a TPA
graph of 100,000 nodes with an average degree d = 10.

Despite the existing optimization techniques [21], [30] for
BA graph generation, the introduction of time decay inherently
prevents a trivial application for the TPA model. For instance,
the stochastic acceptance method [30] relies on maintaining the
maximum degree at all times, which is trivial for BA graphs.
As for the TPA model, after the insertion of a new node (or
edge), all nodes should have their time updated, and the maximum
TPA score has to be computed from scratch. [21] proposes a tree
structure combined with bucketing in that for BA model, all nodes
of identical degrees have the same preference. Obviously, it does
not hold for TPA graphs. To alleviate the side effect of aging,
we introduce logarithmic binning, with little modification on the
definition of node time. Precisely, we place nodes into a sequence
of bins, called T-Bucket, satisfying that (1)no more than two T-
Buckets have the same bucket size, defined as the number of
nodes inside; (2)a larger bucket is merged from two buckets each
with half of its size; and (3)older nodes are placed in T-Bucket of
larger size. The bucket list is maintained during graph generation.
We explain it by the example in Fig. 1. Assume there have been
already 10 nodes placed in 5 T-Buckets, as shown in Fig. 1(a).
At time £ = 11, a new node 11 is added (Fig. 1(b)). At present,
there exist three T-Buckets of size 1. Thus, we merge the older
two containing 9 and 10 respectively into one bucket with its size
doubled (Fig. 1(c)). This could result in a cascading merge of
larger T-Buckets, as illustrated in Fig. 1(d), until condition (1) is
satisfied.

EEnmmpinhas e Emininink

(a) (b)
(b GadEopam,t,
(c) (d)

Fig. 1. Merging logarithmic bins.

To accommodate logarithmic binning, we slightly modify the
definition of At(v) in the TPA model. Recall that At(v) = ¢t —
t(v), where t(v) = v is the node id numbered from 1 to n. Denote
by At’(v) the size of T-Bucket to which v belongs. We have the
following lemma.

Lemma 1. Given a TPA graph G with nodes stored in a list of
T-Buckets, for any v € V' it satisfies that

At(v)/4 < At (v) < At(v), (10

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

where At'(v) = |TB(v)
v.

, and T B(v) is the T-Bucket containing

Proof. First, note that the size of any T-Bucket is some power of
2. Another observation is that, if a T-Bucket of size 2¢ exists, there
must be at least one bucket of size 27, for each j € [0,). W.Lo.g.
we assume v is in this T-bucket. The number of nodes coming after
vin G is at least Z;;B 27 = 2¢—1, and at most 2 Z;‘:o 2 —1=
2i+2 _ 3, since placing one more node incurs cascading merging,
which will put v into a bucket of size 211, O

Next, we will show how to improve the generation efficiency
of the TPA model by incorporating logarithmic binning and
optimizations for degree-based PA models.

4.2 The TPA-U-SA algorithm

According to the analysis above, to improve the efficiency of
Algorithm 1, we should accelerate the node selection phase for
each edge insertion. With the idea of logarithmic binning, every
node selection by the TPA function can be decomposed into two
steps, i.e., the inter-bucket selection which chooses a T-Bucket by
its weight (i.e., the sum of preference of nodes inside), followed by
the intra-bucket selection to finally choose a node. In this section,
we propose the TPA-U-SA algorithm, which exploits the properties
of the TPA model to speed up intra-bucket selection.

In [30], Lipowski and Lipowska proposed the stochastic ac-
ceptance (SA) algorithm. Generally speaking, given a set of events
with probability distribution p1, pa, ..., P, to select an event based
on the probabilities, first it selects an event uniformly at random,
say event i. Second, with probability p;/pma. it accepts the
selection, or else the process is repeated until this condition is
satisfied. The number of repetition is O(Pyqz /D) in expectation,
where Pmazx = maX{p17p27~-~7pn} and p = ZZL:l pz/n It
has been proved as state-of-the-art for generating small-sized BA
graphs®. For instance, it is the most efficient algorithm to generate
a BA graph of n < 10° and d = 2.

Our TPA model favors the idea of stochastic acceptance
(SA) because it always contains lots of T-Buckets of small size.
Precisely, let 7 be the threshold that SA can efficiently implement
random selection from any power law distribution of smaller size.
For a TPA graph of size n, there are at least log,7 T-Buckets
of size less than 7, and at most log,n — log,7 buckets of larger
size. Even with 7 = 10°, more than half T-Buckets should be
optimized by SA selection for a billion-node graph. Secondly,
for TPA graph, older and larger T-Buckets have considerably
higher average degree than the newer and smaller buckets. As a
consequence, the degree (i.e., probability) distribution inside each
T-Bucket is less skewed. This could speed up the SA algorithm
inside a T-Bucket.

The above discussion indicates that the SA algorithm for
the TPA model could be more efficient than for the BA model.
Our algorithm, denoted by TPA-U-SA, is based on the modi-
fied version of Algorithm 1. We list the modifications in Al-
gorithm 4. First, we need a list to store all the T-Buckets with
their corresponding weights. Specifically, the weight of T-Bucket
TB is defined as the sum of TPA score for all nodes in T'B:

3. Another simple but quite efficient algorithm is as follows. First choose an
edge randomly, followed by choosing one of its endpoints for attachment. We
do not consider this method for two reasons. First, it has to store all edges in
memory with space cost O(m), whereas other methods only need O(n) space.
Second and more importantly, this method can not be extended to non-linear
or temporal preferential attachment, which is common in real-world graphs.

Algorithm 4: Fast generation algorithm for TPA-U model

1. Insert after the 1st line of Alg. 1:

Initialize t BucketList = () and add T'B; with node v1;

2. Insert after the 10th line of Alg. 1:

Initialize T-Bucket T'B; with node v;, add it to the front of
tBucket List;

mergeTBucket(t Bucket List);

Algorithm 5: SA-Select

Input: ¢ BucketList of current graph G, f(+) (and B4), g(-) (and
B¢), and a;
Output: A randomly chosen node v by temporal preferential
attachment, v € {v1, ..., vp41}
1 Uniformly generate a random number r € [0, 1);
2 ifr < a/(a + ZTBEtBucketList ’LU(TB)) then
3 | chosenNode = viq1;

4 else

5 Randomly select a T-Bucket 7'B; from t Bucket List according to
its weight w(T'B;), by roulette wheel and starting from the tail,

6 while true do

7 Select a node v from 7" B; uniformly at random;

8 Uniformly generate a random number r € [0, 1);

9 if r < f(d(v))/maxyerp, f(d(u)) then

10 chosenNode = v;

11 L break;

12 return chosenNode;

w(T'B) = Y ,crptpa(v). Denote by tBucketList the list
of T-Buckets, with newly inserted T-Bucket in front of the list.
We maintain t BucketList after each node insertion, by merging
some buckets when necessary.

We replace the roulette wheel node selection (Algorithm 2) to
the SA-based algorithm (SA-Select) shown in Algorithm 5, which
has the same input and output. Also note that for simplicity, we do
not include node fitness; it can be processed the same way as in
Alg. 1. We first check if the virtual node is selected (Lines 1-3). If
not, the algorithm selects a T-Bucket by roulette wheel (Line 5).
We traverse t Bucket List from the tail to the front, since typically
T-Buckets at the tail have larger weights and thus higher selection
probability. Then, the intra-bucket node selection is implemented
by stochastic acceptance (Lines 6-11) based on the degree factor,
because all nodes in the same T-Bucket are considered having the
identical timestamp.

At last, we specify the procedure for merging T-Buckets, i.e.,

mergeTBuckets in Alg. 4. Each time a new T-Bucket (of size one)
is inserted, we check iteratively from the front of t Bucket List to
see if there exist three consecutive buckets of the same size and
merge the latter two. Otherwise, the procedure stops. Correctness
can be easily proved by induction.
Space complexity. Note that tBucketList can be efficiently
implemented by an array of length n, while each T-Bucket records
its start and end index. We denote by D-Array for the data
structure, which incurs O(n) space cost.

Time complexity. We analyze the computation cost of the TPA-
U-SA algorithm by focusing on the procedure SA-Select, which
will be invoked O(m) times for a TPA graph of m edges. We
also consider the cost of bucket merging. Formally, the cost of
TPA-U-SA is

C(TPA'U'SA) - Z (Cinter(Gni,i) + Cintra(Gni,i)) + Cmergea

1=

1
where Cinter (Gn,. i) (tesp. Cintra (G, i)) denotes the cost of one

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

inter-bucket (resp. intra-bucket) selection on a graph of n; nodes
and i edges, while Cy,erge denotes the cost incurred by mer-
geTBuckets during the generation process. We use the following
two lemmas to bound the cost of inter- and intra-bucket selection,
respectively.

Lemma 2. The expected cost of inter-bucket selection is asymp-
totically O(1).

Proof. To simplify the analysis, we consider the case that no
buckets have the same size, and for the general case, the
proof is analogous. It is reasonable to assume that the cost
is non-decreasing w.r.t. graph size, thus we analyze its upper
bound by considering node selection from the final graph G,,.

Furthermore, let ¢; = max{qu’:(FTTfi)l)} for ¢ € [1,k) and

k = tBucketList.size, whereas w(T B;) denotes the weight
of the ¢-th T-Bucket. Note that c¢; is a small constant less than
1. By assuming the roulette wheel selection starts at the fail of
t Bucket List, the expected cost for inter-bucket selection is

WE

ElCinter] = > (k+1—1i)-Pr[TB; is selected]

i=1

k
= 1—4)-Pr|TB 1 e
; (k+ i) - Pr[T By, is selected] w(TBy)
k k k
i 1-¢ kc;
< E+l—i)-¢" % = Lo = 0(1).
_;('L) C1 (1_01)2 1—c; ()
O

Lemma 3. The expected cost of intra-bucket selection, i.e. the
amortized cost of SA-Select on a graph of n nodes is O(T(5)),
where T'(x) denotes the cost of SA algorithm for a BA graph
(denoted as BA-SA) of x nodes.

Proof. Let T'(x) denote the cost of node selection procedure
inside a T-Bucket of size x. Let cp = max{%},i € [Lk),
which can be taken as a constant smaller than 1. We have

k
E[Cintra] = Y T(ITB]) - Pr[T'B; is selected]

i=1

k
<3 T(%) -e1" 7" Pr[T By, is selected]
=1

Ed
s

k—1
i n i n
SZOCIT(i) S CI'CQ‘T(E)

Qi+l

I
<}

1—c’fc]§ n i
=-—T(5) =0(T(5))

n
T 1l—cics ‘2 2

O

Finally, notice that merging two T-Buckets costs O(1) time
with the D-Array implementation, because we only need to
update the start and end positions of D-Array, along with
the weight of two corresliuonding T-Buckets. The number of
merging operation is O(>;2%" 1) = O(log®n), since each cas-
cading merge generates a new T-Bucket with cost O(l) where
| = tBucketList.size and | = O(logn). Therefore the cost
of intra-bucket selection dominates the others, and our TPA-U-
SA algorithm is asymptotically more efficient than the BA-SA

algorithm.

Theorem 1. Our TPA-U-SA algorithm is asymptotically more
efficient than the SA algorithm for BA model in generating graphs
of the same size.

T-Bucket (tree implementation) T-Bucket (array implementation)

S DI:I [] f

_ _

d,

max

D-Array

Fig. 2. Data structure for the TPA-U-Hybrid algorithm.

Algorithm 6: Hybrid-Select

Input: ¢ BucketList of current graph Gy, f(-) (and Bg), g(-) (and
Bt), o, and switching threshold
Output: A randomly chosen node v by temporal preferential
attachment, v € [1,k + 1]
1 Uniformly generate a random number r € [0,1);
2 Lines 1-3 of Alg. 5;
3 else
4 Randomly select a T-Bucket T'B; according to its weight w (T B;)
from t Bucket List and by roulette wheel;
5 if TB;.size < 7 then

6 L Lines 6-11 of Alg. 5;
7 else
tNode < T B;.tree.root;
9 while ¢t Node is not leaf do
10 Uniformly generate a random number r € [0, 1);
1 if r < tNode.left/(tNode.left + tNode.right) then
12 | tNode + tNode.left;
13 else
14 L tNode < tNode.right;
15 Randomly select a node v from vertices in ¢/Node and set
chosenNode = v;

16 return chosenNode;

4.3 The TPA-U-Hybrid algorithm

The efficiency of the TPA-U-SA algorithm can still be improved
when generating graphs with tens of millions of nodes. Ac-
cording to [21], ROLL-tree based on bucketing and tree search
outperforms SA by a significant margin for generating dense and
sizeable BA graphs. We integrate similar ideas into node selection
inside a T-Bucket, only for large-sized T-Buckets. The basic idea
is illustrated in Fig. 2. When the size of a T-Bucket exceeds
the switching threshold 7, we change its implementation from
D-Array to a tree structure denoted as D-T'ree. Each leaf node
of D-T'ree contains a D-Bucket which stores all nodes of some
specific degree inside the T-Bucket. The binary search tree aims to
speed up inter D-Bucket selection, whereas inside D-Bucket nodes
are chosen uniformly at random.

Algorithm 6 demonstrates our Hybrid-Select procedure, a
substitution for RW-Select and SA-Select. It differs from SA-
Select only when choosing a node from some T-Bucket of size
> 7 (Lines 8-15 of Algorithm 2). We search the tree according
to the weights of tree nodes. For leaf tree nodes containing a D-
Bucket for degree d, its weight is defined by the number of graph
nodes inside multiplied by f (d); while for internal tree nodes, the
weight is the sum of those from its children.

The procedure mergeTBucket (shown in Alg. 7) also needs to
be modified accordingly to include three cases: (1)two D-Arrays
merging into one, (2)two D-Arrays merging into a new D-T'ree,
and (3)merging of two D-T'rees. As discussed before, case (1)
can be implemented in O(1) time. Both case (2) and (3) incur

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 7: mergeTBucket

Input: ¢t BucketList of current graph Gy,
Output: merged t Bucket List, satisfying that the number of
T-Bucket with size s is at most 2, for any s

1 for i = 1 to t BucketList.size — 2 do

2 if |TBq| == ‘TBH_l‘ == ‘TBZ+2‘ then

3 if [T B;| * 2 < 7 then

4 merge 1'B;1 into T'B; 42, by updating the start
and end position of D-Array of T'B;2;

5 Remove T'B;+1 from t Bucket List;

6 else if |T'B;| < 7 and |TB;| x 2 > 7 then

7 Construct a list of D-Buckets from 7'B;11 and
TBito;

8 Construct T' By, by D-Buckets, implemented by
tree ;

9 replace T'B; 12 by T' By, and remove 1'B;41;

10 else

1 Merge all D-Buckets in T'B;y1 into T'B;42;

12 Remove T'B;+1 from t Bucket List;

return t Bucket List;

-
“w

data transfer from D-Array (or D-T'ree) to D-Tree; we bound
the total data transfer by the following lemma.

Lemma 4. For TPA-U-Hybrid, the total amount of data transfer
in procedure mergeTBucket is O(nloglogn).

Proof. Consider the case where all T-Buckets are implemented
as trees (the upper bound). For a T-Bucket containing 2° nodes,
let N(2%) denote the total amount of data transfer upon its
construction. Since it is merged from two T-Buckets of size 2i—1
we have the following recursive equation.

N2 =02 ") +2N(27).

Note that in the merging process, only one T-Bucket moves all
data to the other, and the cost is O(2¢1). Since N(1) = O(1),
we have N(2¢) = O(2° 'logi). Combining the fact that i =
O(logn), the amount of data transfer in generating the graph is
bounded by

ZO(T;llogi) < Z O(2"oglogn) = O(nloglogn) ~ O(n).

O

Space complexity. Compared to TPA-U-SA, for any T-Bucket
implemented as D-T'ree, the extra space cost for each tree node
is O(1), and the number of tree nodes is precisely twice the
number of D-Buckets, i.e., distinct d(v) in this T-Bucket. For
graphs of skewed degree distributions, this extra cost is negligible
compared to O(n) cost to store the degree info. Consequently, the
asymptotical space complexity is also O(n), which is scalable to
massive graphs.
Remarks. Note that in this section, we assume that nodes come
at a steady rate, i.e., t(v) = v, as implicitly implied by most PA-
based models. The above two algorithms can be directly applied to
the case that node time t(v) is defined by the number of existing
edges, i.e., edges come at a steady rate. More precisely, we use
the logarithmic bins to store the edges that come sequentially. In
practice, we do not have to retain each edges in memory; it is
sufficient to store the corresponding new nodes in the same data
structures described above.

On the other hand, our fast generation algorithms can be natu-
rally extended to generate PA-based models with time decay and

9

node fitness [22], [23], [28], [29], [38], which can be implemented
by the same data structures and the procedures SA-Select and
Hybrid-Select. As far as we know, this is the first work to consider
the efficient generation of these complex models.

5 EXPERIMENTS

This section experimentally evaluates our proposed models and
generation algorithms. We first empirically evaluate the properties
of TPA graphs, with comparison to other PA-based models. We
also observe the existence of temporal preferential attachment
in real-world networks. Then, we demonstrate the efficiency
of our fast generation algorithms. Our code is available at
https://github.com/pkumod/TemporalPreferential Attachment.

5.1

We empirically study the properties of synthetic graphs generated
by the TPA model and take BA [13] and a generalized version
of DPA [23], [29], [38] for comparison. We evaluate the degree
distribution, as well as two other temporal graph properties, i.e.,
effective diameter over time and the temporal distribution of node
degree.

5.1.1 Degree distribution

We generate four synthetic graphs according to the BA, DPA and
TPA model with |[V| = 10,000 and |E| = 100, 000, and plot
their degree distributions in Figure 3. In particular, for the BA
model, we set the parameter m = 10 (Figure 3(a)). For the DPA
model, we first generate the graph according to [23], [29], [38]
(Figure 3(b)), with linear degree-based preferential attachment
(Bq = 1), power law TPA function with 5; = 0.8, and set the
default node fitness as Poisson distribution with 3y = 5 and
hmaz = 30. We set m = 10 as for the BA model. By default,
we assume t(v) = v for v € {1,...,n} to compute the time
decay. Note that the baseline DPA model has the same problem
with BA, i.e., the minimal degree in the graph equals m. We
observe that it is easy to integrate the DPA model with random
initial degrees [32], [33]. We set the initial degrees follow power
law with an extra parameter 7;y;;, and tune the value of ;¢ so
that the number of edges is 100, 000 (Figure 3(c)). For our model,
we use the same function form and parameters as the DPA model
(except m and “y;ni¢), and tune virtual node preference o so that
|E| = 100,000 (Figure 3(d)).

We have the following conclusions. The degree distribution
of all compared graph models follow power law (approximately).
The BA graph and the baseline DPA graph have a power-law
exponent close to 3, which is independent of graph density. This
is a little counter-intuitive because dense graph always leads to
more heavy-tailed distribution. For the DPA model with random
initial degrees, we have to set 7y;,;+ as 1.1 to generate the graph.
Moreover, the degree distribution exhibits secondary power law,
which implies that one-sided TPA will result in insufficient large-
degree nodes. Here we do not adopt the Poisson distribution [33]
for initialization of node degrees, because in practice the head of
the distribution significantly deviates from power law while the
exponent of the tail stays unchanged. In comparison, our model
fits the power law quite well.

Parameter sensitivity. Next, we conduct parameter sensitivity
analysis to demonstrate the robustness of our model. We show that
the virtual node preference « has a great impact on the density
of the graph as well as the power law exponent y. We fix the
parameters as in Figure 3 except «, and generate graph varying

Properties of TPA graphs

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

10* 10*

,_\
<
*
.
<%

Frequency
=
2
Frequency
N
2

10t

e
i

Degree egree

D
(a) BA (m = 10) (b) DPA (m = 10)
Fig. 3. Degree distribution of BA, DPA, and TPA graphs

H
S
IS

*+ |EI=20,000
EI=50,000 —]
4 |E[=100,000

.
20

Frequency
N
S

o
10
10°

10%
Degree

(a) Degree distribution varying d

10! 100 150 200

() 7 vs.

Fig. 4. Effect of virtual node preference « on ~.

10* 10*

|E|=20,000
|E|=50,000

2 |E=150,000

Exponential aging, Poisson fithess
N & Power law aging & fitness

2

»—\
2%
5
"
<%

a

Frequency
=
S
Frequency
b
5
%

a
A
®n
N
2
a

-
%

10"

an
vy

10"
Degree

(a) Degree distribution varying d

Degree

(b)

Fig. 5. Varying the function form of aging and fitness.

average degrees (Figure 4(a)). We also plot the fitted v using
maximum likelihood estimation [31] and the standard error by
varying « (Figure 4(b)). It turns out that our model is more flexible
in generating power-law graphs with large or small density.

We then vary the function forms of aging and node fitness to
generate TPA graphs. In Figure 5(a), we generate graphs with log-
normal aging function (8; = 0.1). In Figure 5(b), we generate
graphs of |E| = 50,000 and set the aging function as exponential
(B¢ = 0.1) and Poisson fitness (8¢ = 1), or power law functions
for aging (3; = 0.8) and fitness (8 = 3). It show that more
skewed fitness (the blue plot) leads to condensation, i.e., the graph
contains many super-nodes.

At last, we set the degree-based PA function as sub-linear
with 85 = 0.6, power-law aging (8; = 0.8) and vary the
fitness function (Fig. 6(a)). In this case, if the fitness is the less
skewed Poisson distribution with 3 + = 5, the degree distribution
is exponential. The power-law distribution is restored when setting
fitness as power law (3y = 3). We further assume f(-) as the
logarithmic function, i.e., f(d(v)) = log(d(v) 4+ 1)”*, and set
Ba = 1 or B4 = 2 in Fig. 6(b). With more skewed fitness
distribution as in Fig. 6(a), the degree distributions also follow
power law in the tail.

Remarks. Empirically, to generate graphs with heavy-tailed dis-
tribution, the values of B4 and [3; have to be close. If 34 is large

Frequency

10

Frequency

10!

102 10°

Degree

(d) TPA (a = 52)

10! 10

Degree
(C) DPA (’yimt = 1.1)

& Power law (5,=3) A B2
Aoy + Poisson (4:=5)) e, x B
10%F « A%s

10%F 4,58

> e, > %
3 o, 3 A
5 £V S A
S 10 2 S 102 2%
210 % 3 10 ,
o @ *, L
fing J" [
o % o’ %
&

r N
-V NN

10? 10° 10! 10°

Degree Degree

(a) Sub-linear PA (b) Logarithmic PA
Fig. 6. Sub-linear and logarithmic degree-based PA.

10!

45 —— 6 -
Baseline DPA ——/706
—&—DPA (Randon initial indegree) sl 1 5=08
4 [A —a— (=10
g & \ /e
s P s \
8 o s 5
° S—o—& ©°
235 © o \
= =
5 N 545 -
= =
w3 - w
A B 4 e ~
Pl R W
25 35
0 20 40 60 80 100 0 20 40 60 80 100

Percentage of nodes Percentage of nodes

(a) BA, DPA, TPA graphs of Fig. 3 (b) Varying 3; for the TPA model

Fig. 7. Effective diameter of BA, DPA, and TPA graphs.

and S, is small (e.g., 8; = 0), unlike the one-sided model, the
TPA model always tends to insert internal edges, so the node set
grows extremely slow and the graph becomes very dense; if (;
is too large, the graph will not contain nodes of large degree. We
leave theoretical analysis and more extensive investigation of these
parameters as future work.

5.1.2 Effective diameter

We use the graphs generated for Fig. 3 and plot the 90-
percentile effective diameter over time in Fig. 7(a), with the x-
axis being the percentage of nodes of the whole graph (i.e.,
|G+.V|/|G.V| x 100%). Both the BA graph and the two DPA
graphs have increasing diameters. As for the TPA graph, the
effective diameter continuously shrinks with time. To explain this,
note that in the generation of the BA graph, preferential attachment
favors connection between newly inserted nodes and nodes of
high degree, which are those inserted at the very beginning.
Consequently, the diameter is quite small from the very start
and continuously increases with graph size. Although the DPA
model explicitly includes the aging phenomenon, it does not
consider new links between existing edges. Moreover, the effective
diameter of the initial graph (e.g., with first 20% of the nodes) is
small for BA and DPA model. On the other hand, the TPA model
favors three types of edges according to the two-sided temporal

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

N
S
3
-
=]

——BA —— 5706
‘ Baseline DPA 3=0.8
—&—DPA (Random initial indegree) I |
| —a— =10
|

3
v

‘ —e—TPA

3

N
]
3

]

P -
S S

Average degree of the slot
Average degree of the slot

1)

o

0 20 40 60 80 100 20 40 60 80 100
Slot number Slot number

(a) BA, DPA, TPA graphs of Fig. 3 (b) Varying S; for the TPA model
Fig. 8. Node degree vs. birth time.

o

preferential attachment: (a) edge between two old and highly-
connected nodes; (b) edge between two new nodes; and (c) edge
between one old node and one new node. This is because both
an old node of a high degree and a new node with a relatively
lower degree can have a high preference. Intuitively, case (a) and
(b) results in the shrinking of diameter, whereas edges of case
(c) enlarge it. Also, the initial diameter of the TPA graph is much
larger than that of other model, because at the beginning many new
nodes but fewer edges are inserted, and new nodes tend to connect
with each other, resulting in a sparse graph of large diameter.
Parameter sensitivity. Intuitively, parameter 3; mainly controls
the shrinking speed of the effective diameter, because as [
increases, new nodes become more attractive. In Fig. 7(b), we
vary the aging parameter /3; and fix all other parameters the same
as Fig. 7(a) for TPA graphs. It shows that our model can flexibly
adjust the effective diameter over time.

5.1.3 Node degree vs. birth time

We investigate the relation of node degree d(v) vs. node birth
time t(v) for the PA-based models, including BA, DPA, and TPA.
Again, the tested graphs are those generated for Fig. 3. We set
t(v) = v for simplicity. Then, we split the nodes into 100 slots
according to their insertion time, where the ¢-th slot contains nodes
numbered from ‘Cf(')‘(;‘ (i—1)+1to ‘Cf(')g‘ -4, and plot the average
degree of nodes in each slot against the slot number (Fig. 8(a)).
For both the BA and two DPA graphs, the average degree per
slot continuously decreases. Meanwhile, the average degree of the
first few slots are significantly larger, indicating the old-get-richer
phenomenon. In comparison, for the plot of the TPA graph, there
exist several ”spikes”, and this does not necessarily appear at the
very beginning. The spikes implies that some super-nodes exist
in that slot. Therefore, the newer nodes still have a chance to be
popular (i.e., connected by many nodes), which is in accordance
with the real-world scenarios.

Parameter sensitivity. We also plot in Fig. 8(b) the effect of
B¢. (We only vary this parameter compared to the TPA graph in
Fig. 8(a).) Note that as 3; increases, it is more probable that spikes
appear in slots with large numbers. To generate larger spikes, we
recommend to use more skewed node fitness distributions.

5.2 Observation of TPA in Real-world Graphs

We adopt two real-world datasets to empirically validate the tem-
poral preferential attachment, as shown in Table 3. Both datasets
are obtained from [56]. Each dataset represents a temporal graph,
i.e., a sequence of edges, with each edge containing a from node, a
to node and its timestamp. We preprocess the graphs by sorting the
edges in the ascending order of their corresponding timestamps.
Denote by G the induced subgraph by all edges of timestamp
no larger than ¢. We select a set of edges Fi.,; after time ¢, such

11

TABLE 3
Real-world temporal datasets.

Dataset Edge Type n m
Wiki-Conflicts | undirected, multiple 116,836 5,835,570
Youtube undirected, simple 3,223,585 | 18,750,748

Attach probability
5,

Attach probability

1070 10°
10° 10 10 10° 10° 10%° 10° 10 10* 10° 10° 10%°
deg(u) * deg(v) deg(u) * deg(v)

(a) Wiki-Conflicts (b) Youtube

Fig. 9. Observation of two-sided degree-based PA. Line with circles is
the plot by taking d(u) * d(v) as the argument in Eqg. 11, whereas the
asterisks represent the approximation by viewing d(u) and d(v) as two
independent arguments. For example, assume 5, = 1. Two pairs of
nodes with equal value of degree product (e.g., 1 times 8 vs. 2 times
4) should have same probability of receiving an internal link, though in
practice their probabilities differ slightly. (G contains 75% edges.)

=
o
%
.
o

i =N ——1
2z 2z s ——2
3 3 N 4
T o S 100 —=—8
@ 10 5 10 N
S S o
5 R
£ £ N
E g I
< <

,_.
1S}
o
.
S
BN
1S5
>

10° 10* 10t 10% 10°
At At
(a) Wiki-Conflicts (b) Youtube

Fig. 10. Attachment probability (unnormalized) vs. At, observed from
nodes of degree 1, 2, 4, and 8 respectively.

=
5]
°

that |Etest| < |Gt .F| and check the edges that have at least
one endpoint in G;.V. According to the TPA mechanism, the
probability of two nodes u and v connected by a new edge should
be roughly proportional to

fd(w)) f(d(v))g(At(u))g(At(v))
Yo yea,.v fd@) fdy))g(At(z)g(At(y))

We omit the random disturbance of node fitness here, and employ
the observation method of [43]: we count the number of new edges
between nodes of degree d, age Aty and nodes of degree ds, age
Ats. If TPA holds, the count value should be proportional to

> f(d1) f(d2)g(At1)g(Atz).
u,vEGy,
d(u):d1 ,At(u):Atl,
d(’[}):dg ,At(’u):Atz

an

12)

To reduce fluctuations, we plot the histogram (attachment prob-
ability vs. degree or time decay) by normalizing all degrees and
time decays in [2¢,2%1) to 2¢. We measure the effect of degree
and time decay independently. The results are demonstrated in
Fig 9 & 10. We conclude that node preference has positive
correlation with node degree, and negative correlation with node
age. Even the concrete form of the attachment function is hard to
derive, this is not a big problem because of the generality of our
model.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

sk TPA-U-RW
-5~ BA-RW

A TPA-U-SA - TPA-U-Hybrid

BA-S4 BA-ROLL

s
//, ﬁ/@

Time (sec)
Time (sec)

Fig. 11. Scalability of TPA-U-RW, TPA-U-SA, and TPA-U-Hybrid.

Remarks. We only report the results for nodes of degree 1, 2,
4, and 8 in Fig. 10. This is because there are very few nodes
of large degree, and fewer are connected by new edges during a
small sliding window of edges ¢, therefore the plot fluctuates
significantly. Note that despite the high preference of each large-
degree node, the number of such nodes dominates the value of
Eq. 12. We admit this is a shortcoming of the heuristic observation
method [43]; however, the recently proposed methods [34], [50]
based on maximum likelihood estimation have scalability issues
for complex PA functions or large graphs. Generally, they maxi-
mize the following likelihood:

IL, P(m(t), n(t)|Ge_1, 0(t)) P(G4|Gi_1, m(t), n(t), A),
13)
where the first term describes how many new nodes (n(t)) and
edges (m(t)) are added at time ¢ which is governed by parameters
6(t), while the second term represents the preferential attachment
procedure (A denotes the PA function). For sequence-of-nodes
models, 6(¢t) = 0; while for TPA model, 6(¢t) = {a}. Hence,
our model is fundamentally different from the sequence-of-nodes
models, and the corresponding measurement technique is still an
open problem.

5.3 Evaluation of the Generation Algorithms

To demonstrate the efficiency of our generation algorithm, we
compare with the state-of-the-art algorithms for the BA model
[21]. Note that the BA model is the simplest among the PA-based
models, therefore it has the fastest generation speed. We get the
codes from [21], and implement ours in Java and compile with
JRE 1.8.0_171. Experiments are conducted on a machine with a
Xeon(R) E5-2640@2.60GHz CPU and 96GB memory, and for all
experiments, we report the average of 10 runs. Finally, we conduct
parameter sensitivity analysis for the TPA model.

We evaluate the efficiency of our three algorithms for the
TPA-U model, i.e., TPA-U-RW, TPA-U-SA, and TPA-U-Hybrid.
As an example, we set the parameters as: linear degree-based PA
function f(d(v)) = d(v) (i.e., Bg = 1.0), power-law time-decay
function g(At(v)) with 8; = 0.8, and Poisson fitness distribution
with 85 = 5.0 and Ay,q, = 30. Note that the parameter setting
is the same as in Section 5.1 (including Fig. 3, 4, 7 (a) & 8
(a)). We tune the value of virtual node preference o to generate
undirected TPA graphs varying node size from 1,000 to 50 million
and d € {10,20}. Fig. 11 shows the scalability of our three
algorithms. For comparison, we also plot the running time of
simple roulette wheel (BA-RW), stochastic acceptance (BA-SA),
and ROLL-tree (BA-ROLL) for the BA model.

We have the following conclusions. First, TPA-U-RW is slow
as expected. Moreover, it is more than two orders of magnitude

12

Time (sec)
n w IS
S 8 3
Time (sec])
"
<%

=
S

[} 20 40 60 80 100 10?
Average degree n

Fig. 12. Generation speed vs. d. Fig. 13. Generation speed vs. ;.
slower than BA-RW for BA graphs. To explain this, note that the
computation of node preference under the TPA model is slower
than fetching node degree. Besides, more roulette wheel selection
is conducted because of the two-sided temporal preferential at-
tachment mechanism. Last but not least, as we have shown, early
inserted nodes have a significantly large degree for BA graphs,
thus in practice, the roulette wheel selection should terminate ear-
lier for BA-RW. Second, consistent with the analysis in Section 4.2,
TPA-U-SA is significantly faster than BA-SA. For instance, TPA-U-
SA generates a million-sized graph in less than five seconds, while
for BA-SA, it takes 26 seconds. This phenomenon is more evident
as graph size increases. Finally, the generation speed of TPA-U-
Hybrid closely matches BA-ROLL, which is the state-of-the-art for
preferential attachment based models. For the generation of dense
graphs, the performance is even slightly better. To generate a TPA
graph of 50 million nodes and average degree 20, TPA-U-Hybrid
only needs about five minutes.

Parameter Sensitivity. We first evaluate our TPA-U-Hybrid al-
gorithm by generating graphs with different average degrees.
We generate TPA graphs of one million nodes and vary d €
{10, 20, ..., 100}, using the same model parameter setting as
Fig. 11. The generation time is shown in Fig. 12. It can be seen
that the generation speed w.r.t. average degree is nearly linear,
which proves the scalability of TPA-U-Hybrid.

Next, we investigate the effect of ; on generation speed.
Intuitively, when (; decreases, the old nodes tend to have higher
node preference. Therefore, the weight distribution of the T-
Buckets is more skewed, and we need to visit the buckets of
large size more times. We fix other parameters as in Fig. 11,
and vary f; € {0.6,0.8,1.0} and « (Fig. 13). Decreasing f;
indeed results in the degradation in performance a little bit, but
overall the generation efficiency is not affected. Also note that
for aging functions that decay faster, such as exponential or log-
normal aging, our algorithm can achieve even better performance.

6 CONCLUSION AND FUTURE WORK

This paper presents Temporal Preferential Attachment (TPA), the
first sequence-of-edges model to reveal the edge-centric growth
of some real-world graphs. Our model adopts the preferential
attachment mechanism, and non-trivially integrates several ingre-
dients into the sequence-of-edges framework, including two-sided
attachment, the time-decay effect and node fitness. Nonetheless,
we prove that our model is more robust and flexible than the tradi-
tional PA-based models relying on sequence-of-nodes modeling.
We further propose two efficient generation algorithms that can
be applied to both our model and several PA-based models with
aging. Empirical analysis shows that the TPA model preserves
several key properties of real-world graphs such as power-law

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

distribution and shrinking diameter, while our generation algo-
rithms are highly scalable. For future work, we plan to investigate
TPA graph generation in the distributed environment. Another
interesting problem is to mathematically study the relationship
between the TPA mechanism and the power law exponent.

Acknowledgement. This work was supported by NSFC under
grants 61932001,61961130390 and U20A20174. This work was
also partially supported by Beijing Academy of Artificial Intelli-
gence (BAAI). The corresponding author of this work is Lei Zou
(zoulei@pku.edu.cn).

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

[2] S. Wasserman and K. Faust, Social network analysis: Methods and
applications, vol. 8. Cambridge university press, 1994.

[3] A. Singhal, “Introducing the knowledge graph: things, not strings,”
Official google blog, vol. 5, 2012.

[4] P.Erd6s and A. Rényi, “On the evolution of random graphs,” Publ. Math.
Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17-60, 1960.

[S] M. O. Lorenz, “Methods of measuring the concentration of wealth,”
JASA, vol. 9, no. 70, pp. 209-219, 1905.

[6] C. Gkantsidis, M. Mihail, and A. Saberi, “Conductance and congestion in
power law graphs,” in SIGMETRICS, vol. 31, pp. 148-159, ACM, 2003.

[71 P.Brach, M. Cygan, J. Lacki, and P. Sankowski, “Algorithmic complexity
of power law networks,” in SODA, pp. 1306—1325, 2016.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘“Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
OSDI, pp. 17-30, 2012.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in SIGCOMM, vol. 29, pp. 251-262,
ACM, 1999.

[10] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” Computer
networks, vol. 33, no. 1-6, pp. 309-320, 2000.

[11] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, pp. 440-442, 1998.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densifi-
cation laws, shrinking diameters and possible explanations,” in SIGKDD,
pp. 177-187, ACM, 2005.

[13] A.-L. Barabdsi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

[14] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bogun,
“Hyperbolic geometry of complex networks,” PRE, vol. 82, no. 3,
p. 036106, 2010.

[15] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and
E. Upfal, “Stochastic models for the web graph,” in FOCS, pp. 57-65,
IEEE, 2000.

[16] J. Leskovec, “Dynamics of large networks,” 2008.

[17] M. Alam, M. Khan, and M. Marathe, “Distributed-memory parallel
algorithms for generating massive scale-free networks using preferential
attachment model,” in International Conference on High Performance
Computing, 2013.

[18] M. Penschuck, “Generating practical random hyperbolic graphs in near-
linear time and with sub-linear memory,” in SEA, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[19] A. Yoo and K. Henderson, “Parallel generation of massive scale-free
graphs,” arXiv preprint, 2010.

[20] H. Park and M.-S. Kim, “Trilliong: A trillion-scale synthetic graph
generator using a recursive vector model,” in SIGMOD, pp. 913-928,
ACM, 2017.

[21] A. Hadian, S. Nobari, B. Minaei-Bidgoli, and Q. Qu, “Roll: Fast
in-memory generation of gigantic scale-free networks,” in SIGMOD,
pp. 1829-1842, ACM, 2016.

[22] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of networks with
aging of sites,” PRE, vol. 62, no. 2, p. 1842, 2000.

[23] A. Garavaglia, R. V. D. Hofstad, and G. Woeginger, “The dynamics of
power laws: Fitness and aging in preferential attachment trees,” Journal
of Statistical Physics, vol. 168, no. 6, pp. 1137-1179, 2017.

[24] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in /ICDM, pp. 442-446, SIAM, 2004.

[25] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,
mathematically tractable graph generation and evolution, using kronecker
multiplication,” in PKDD, pp. 133-145, Springer, 2005.

[26]

[27]
(28]
[29]
(30]
(31]

(32]

[33]

[34]

[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

13

M. von Looz, C. L. Staudt, H. Meyerhenke, and R. Prutkin, Fast
generation of dynamic complex networks with underlying hyperbolic
geometry. KIT, Fakultit fiir Informatik, 2014.

P. L. Krapivsky, . Redner, S., and . Leyvraz, F., “Connectivity of growing
random networks,” PRL, vol. 85, no. 21, pp. 4629-32, 2000.

M. Medo, G. Cimini, and S. Gualdi, “Temporal effects in the growth of
networks,” Physical review letters, vol. 107, no. 23, p. 238701, 2011.

D. Wang, C. Song, and A.-L. Barabasi, “Quantifying long-term scientific
impact,” Science, vol. 342, no. 6154, pp. 127-132, 2013.

A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic
acceptance,” Physica A, vol. 391, no. 6, pp. 2193-2196, 2012.

M. E. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323-351, 2005.

M. Deijfen, H. V. D. Esker, R. V. D. Hofstad, and G. Hooghiemstra, “A
preferential attachment model with random initial degrees,” Arkiv F?r
Matematik, vol. 47, no. 1, pp. 41-72, 2009.

P. Sheridan, Y. Yagahara, and H. Shimodaira, “A preferential attachment
model with poisson growth for scale-free networks,” Annals of the
institute of statistical mathematics, vol. 60, no. 4, pp. 747-761, 2008.
M. Inoue, T. Pham, and H. Shimodaira, “Joint estimation of non-
parametric transitivity and preferential attachment functions in scien-
tific co-authorship networks,” Journal of Informetrics, vol. 14, no. 3,
p. 101042, 2020.

L. A. Adamic and B. A. Huberman, “Power-law distribution of the world
wide web,” Science, vol. 287, no. 5461, pp. 2115-2115, 2000.

S. Redner, “Citation statistics from 110 years of physical review,” arXiv
preprint physics/0506056, 2005.

M. E. Newman, “The first-mover advantage in scientific publication,”
EPL (Europhysics Letters), vol. 86, no. 6, p. 68001, 2009.

M. S. Mariani, M. Medo, and Y.-C. Zhang, “Ranking nodes in growing
networks: When pagerank fails,” Scientific reports, vol. 5, p. 16181, 2015.
W. Aiello, F. Chung, and L. Lu, “A random graph model for power law
graphs,” Experimental Mathematics, vol. 10, no. 1, pp. 53-66, 2001.

A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions
in empirical data,” SIAM review, vol. 51, no. 4, pp. 661-703, 2009.

D. J. D. S. Price, “Networks of scientific papers,” Science, pp. 510-515,
1965.

M. E. Newman, “Communities, modules and large-scale structure in
networks,” Nature physics, vol. 8, no. 1, pp. 25-31, 2012.

H. Jeong, Z. Néda, and A.-L. Barabdsi, “Measuring preferential attach-
ment in evolving networks,” EPL, vol. 61, no. 4, p. 567, 2003.

J. Kunegis, M. Blattner, and C. Moser, “Preferential attachment in online
networks: Measurement and explanations,” in WebSci, pp. 205-214,
ACM, 2013.

J. Kunegis, “Konect: the koblenz network collection,” in WWW,
pp. 1343-1350, ACM, 2013.

M. L. Goldstein, S. A. Morris, and G. G. Yen, “Problems with fit-
ting to the power-law distribution,” The European Physical Journal B-
Condensed Matter and Complex Systems, vol. 41, no. 2, pp. 255-258,
2004.

A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature
communications, vol. 10, no. 1, pp. 1-10, 2019.

C. P. Massen and J. P. Doye, “Preferential attachment during the evolution
of a potential energy landscape,” The Journal of chemical physics,
vol. 127, no. 11, p. 114306, 2007.

P. Sheridan, Y. Yagahara, and H. Shimodaira, “Measuring preferential
attachment in growing networks with missing-timelines using markov
chain monte carlo,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 391, no. 20, pp. 5031-5040, 2012.

T. Pham, P. Sheridan, and H. Shimodaira, ‘“Pafit: A statistical method for
measuring preferential attachment in temporal complex networks,” PloS
one, vol. 10, no. 9, p. e0137796, 2015.

Y. C. Lo, H. C. Lai, C. T. Li, and S. D. Lin, “Mining and generating
large-scaled social networks via mapreduce,” Social Network Analysis &
Mining, vol. 3, no. 4, pp. 1449-1469, 2013.

R. Aldecoa, C. Orsini, and D. Krioukov, “Hyperbolic graph generator,”
CPC, vol. 196, pp. 492-496, 2015.

J. Zhang and Y. Tay, “Gscaler: Synthetically scaling a given graph.,” in
EDBT, vol. 16, pp. 53-64, 2016.

H. Park and M.-S. Kim, “Evograph: an effective and efficient graph up-
scaling method for preserving graph properties,” in SIGKDD, pp. 2051—
2059, ACM, 2018.

G. Bianconi and A.-L. Barabasi, “Bose-einstein condensation in complex
networks,” Physical review letters, vol. 86, no. 24, p. 5632, 2001.
http://konect.cc/.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Yu Liu received the BS degree in computer sci-
ence from Shandong University, in 2011, and re-
ceived the M.Eng and PhD degrees from School
of Information, Renmin University, in 2014 and
2018 respectively. He is now a postdoctoral fel-
low at Peking University. His research interests
include complex graph models and approximate
graph algorithms.

Lei Zou received the BS and PhD degrees in
computer science from the Huazhong Univer-
sity of Science and Technology (HUST), in 2003
and 2009, respectively. Now, he is a professor
with Wangxuan Institute of Computer Technol-
ogy, Peking University. His research interests
include graph database and semantic data man-
agement.

Zhewei Wei received the PhD degree in com-
puter science and engineering from the Hong
Kong University of Science and Technology. He
is now a professor with the Renmin University
of China. His research interests include algo-
rithms for massive data, streaming algorithms,
and graph algorithms.

14

