Research Track Paper

KDD 20, August 23-27, 2020, Virtual Event, USA

Personalized PageRank to a Target Node, Revisited

Hanzhi Wang
hanzhi_wang@ruc.edu.cn
School of Information
Renmin University of China

Sibo Wang
swang@se.cuhk.edu.hk

Department of Systems Engineering

and Engineering Management

The Chinese University of Hong Kong

ABSTRACT

Personalized PageRank (PPR) is a widely used node proximity mea-
sure in graph mining and network analysis. Given a source node s
and a target node t, the PPR value 7(s, t) represents the probabil-
ity that a random walk from s terminates at ¢, and thus indicates
the bidirectional importance between s and t. The majority of the
existing work focuses on the single-source queries, which asks for
the PPR value of a given source node s and every node t € V. How-
ever, the single-source query only reflects the importance of each
node t with respect to s. In this paper, we consider the single-target
PPR query, which measures the opposite direction of importance
for PPR. Given a target node t, the single-target PPR query asks
for the PPR value of every node s € V to a given target node
t. We propose RBS, a novel algorithm that answers approximate
single-target queries with optimal computational complexity. We
show that RBS improves three concrete applications: heavy hit-
ters PPR query, single-source SimRank computation, and scalable
graph neural networks. We conduct experiments to demonstrate
that RBS outperforms the state-of-the-art algorithms in terms of
both efficiency and precision on real-world benchmark datasets.

CCS CONCEPTS

- Mathematics of computing — Graph algorithms; « Infor-
mation systems — Data mining,.

KEYWORDS

Personalized PageRank, single-target query, graph mining

*Zhewei Wei is the corresponding author. Work partially done at Beijing Key Labora-
tory of Big Data Management and Analysis Methods, and at Key Laboratory of Data
Engineering and Knowledge Engineering, MOE, Renmin University of China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °20, August 23-27, 2020, Virtual Event, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08....$15.00
https://doi.org/10.1145/3394486.3403108

Zhewei Wei"
zhewei@ruc.edu.cn
Gaoling School of Artificial
Intelligence
Renmin University of China

657

Junhao Gan
junhao.gan@unimelb.edu.au
School of Computing and Information
Systems
University of Melbourne

Zengfeng Huang
huangzf@fudan.edu.cn
School of Data Science

Fudan University

ACM Reference Format:

Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang.
2020. Personalized PageRank to a Target Node, Revisited. In Proceedings of
the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD °20), August 23-27, 2020, Virtual Event, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3394486.3403108

1 INTRODUCTION

Personalized PageRank (PPR), as a variant of PageRank [46], focuses
on the relative significance of a target node with respect to a source
node in a graph. Given a directed graph G = (V, E) with n nodes
and m edges, the PPR value 7(s, t) of a target node ¢ with respect
to a source node s is defined as the probability that an a-discounted
random walk from node s terminates at ¢. Here an a-discounted
random walk represents a random traversal that, at each step, either
terminates at the current node with probability @, or moves to a
random out-neighbor with probability 1 — a. For a given source
node s, the PPR value of each node t sum up to), cy 7(s, t) = 1,
and thus 7 (s, t) reflects the significance of node ¢ with respect to
the source node s. On the other hand, PPR to a target node can be
related to PageRank: the summation of PPR from each node s € V
to a given target node ¢ is X sy 7(s, t) = n - n(t), where 7(t) is the
PageRank of ¢ [46]. Large 7 (s, t) also shows the great contribution
s made for t’s PageRank, the overall importance of t. Therefore,
7(s, t) indicates bidirectional importance between s and t.

PPR has widespread applications in the area of data mining, in-
cluding web search [23], spam detection [4], social networks [21],
graph neural networks [29, 63], and graph representation learn-
ing [45, 54, 64], and thus has drawn increasing attention during the
past years. Studies on PPR computations can be broadly divided into
four categories: 1) single-pair query, which asks for the PPR value
of a given source node s and a given target node ¢; 2) single-source
query, which asks for the PPR value of a given source node s to
every node t € V as the target; 3) single-target query, which asks
for the PPR value of every node s € V to a given target node t. 4)
all-pairs query, which asks for the PPR value of each pair of nodes.
While single-pair and single-source queries have been extensively
studied [37, 39, 59, 61], single-target PPR query is less understood
due to its hardness. In this paper, we study the problem of efficiently
computing the single-target PPR query with error guarantee. We
demonstrate that this problem is a primitive of both practical and
theoretical interest.

https://doi.org/10.1145/3394486.3403108
https://doi.org/10.1145/3394486.3403108

Research Track Paper

KDD 20, August 23-27, 2020, Virtual Event, USA

Table 1: Complexity of single-source and single-target PPR queries.

Single-Target PPR

Single-Source PPR

Random target node Worst case
Monte-Carlo [14] | Backward Search [38] Ours Backward Search [38] Ours
Relative error O(%) O(%) 6(5) O(ZueV w) é(%(t))
Addtiveeror | 0(2) o(2) 0() [0 (Zuey doustprent) [65,y Yieustirtes)

1.1 Motivations and Concrete Applications

We first give some concrete applications of the single-target PPR
query. We will elaborate on how to use our single-target PPR algo-
rithm to improve the complexity for these applications in Section 5.
Approximate heavy hitters in PPR. The heavy hitters PPR prob-
lem [58] asks for all nodes s € V such that z(s, t) > ¢ - nx(t) with
a given node t and a parameter ¢. As opposite to the single-source
PPR query, which asks for the important nodes for a given source
node s, heavy hitters PPR query asks for the nodes s € V for which
t is important. The motivation of the heavy hitters PPR query is
to consider the opposite direction of importance as a promising
approach to enhance the effectiveness of recommendation. Intu-
itively, the single-target query is a generalization of heavy hitters
PPR query.

Approximate single-source SimRank. SimRank is a widely used
node similarity measure proposed by Jeh and Widom[22]. Com-
pared with PPR, SimRank is symmetric and thus is of independent
interest in various graph mining tasks [25, 32, 34, 41, 52]. A large
number of works [14, 24, 30, 31, 33, 35, 43, 50, 53, 66] focus on the
single-source SimRank query, which asks for the SimRank similarity
between a given node u and every other node v € V. Following [50],
we can formulate SimRank in the framework of a-discounted ran-
dom walks. In particular, if we revert the direction of every edge
in the graph, the SimRank similarity s(u, v) of node u and v equals
to the probability that two a-discounted random walks from u and
v visit at the same node w with the same steps. As a result, it is
shown in [60] that the bottleneck of the computational complexity
of single-source SimRank depends on how fast we can compute
the single-target PPR value for each node v and the target node
w € V. Hence, by improving the complexity of single-target PPR
query, we can also improve the performance of the state-of-the-art
single-source SimRank algorithms.

Approximate PPR matrix and graph neural networks. In re-
cent years, graph neural networks have drawn increasing atten-
tion due to their applications in various machine learning tasks.
Graph neural networks focus on learning a low-dimensional la-
tent representation for each node in the graph from the structural
information and the node features. Many graph neural network
algorithms are closely related to the approximate PPR matrix prob-
lem, which computes the approximate PPR value for every pair
of nodes s, t € V. For example, a few unsupervised graph embed-
ding methods, such as HOPE [45] and STRAP [64], suggest that
directly computing and decomposing the approximate PPR matrix
into low-dimensional vectors achieves satisfying performance in
various downstream tasks. On the other hand, several recent works
on semi-supervised graph neural networks, such as APPNP [28],
PPRGo [63], and GDC [29], propose to use the (approximate) PPR

658

matrix to smooth the node feature matrix. It is shown [29] that the
approximate PPR matrix outperforms spectral methods, such as
GCN [27] and GAT [55], in various applications.

The computation bottleneck for these graph learning algorithms

is the computation of the approximate PPR matrix, as the power
method takes at least O(n?) time and space and is not scalable
on large graphs. On the other hand, there are two alternative ap-
proaches to compute the approximate PPR matrix: issue a single-
source query to every source node s € V to compute 7(s, t),t € V,
or issue a single-target query to every target node ¢t € V to compute
(s, t),s € V. As we shall see in Section 5, the later approach is
superior as it can provide the absolute error guarantee. Therefore,
by proposing a faster single-target PPR algorithm, we also improve
the computation time of the approximate PPR matrix. In particu-
lar, we show that our new single-target PPR algorithm computes
the approximate PPR matrix in time sub-linear to the number of
edges in the graphs, which significantly improves the scalability of
various graph neural networks.
Theoretical motivations. Unlike the single-source PPR query, the
complexity of the single-target PPR query remains an open problem.
In particular, given a source node s, it is known that a simple Monte-
Carlo algorithm can approximately find all nodes t € V such that
7(s,t) = & with constant probability in O(1/6) time (see Section 2
for a detailed discussion), where O denotes the Big-Oh notation
ignoring the log factors. Note that there are at most O(1/J) nodes
t with 7(s,t) > 8, which implies that there is a lower bound of
Q(1/8) and thus the simple Monte Carlo algorithm is optimal. On
the other hand, given a random target node t, the state-of-the-art
single-target PPR algorithm finds all nodes s € V with z(s,t) > §
in O(d/8) time, where d is the average degree of the graph. Thus,
there is an O(d) gap between the upper bound and lower bound for
the single-target PPR problem. For dense graphs such as complete
graphs, the O(d) gap is significant. Therefore, an interesting open
problem is: is it possible to achieve the same optimal complexity as
the single-source PPR query for the single-target PPR query?

1.2 Problem defintion and Contributions

Problem definition. In this paper, we consider the problem of
efficiently computing approximate single-target PPR queries. Fol-
lowing [10], the approximation quality is determined by relative
or additive error. More specifically, we define approximate single-
target PPR with additive error as follows.

Definition 1.1 (Approximate Single-Target PPR with additive error).
Given a directed graph G = (V, E), a target node ¢, an additive error
bound ¢, an approximate single-target PPR query with additive
error returns an estimated PPR value 7 (s, t) for each s € V, such

Research Track Paper

that

|7(s, 1) — m(s,t)| < ¢

M
holds with a constant probability.

For single-target PPR query with relative error, we follow the
definition of [10].

Definition 1.2 (Approximate Single-Target PPR with relative error).
Given a directed graph G = (V, E), a target node ¢, and a threshold
d, an approximate single-target PPR with relative error returns
an estimated PPR value 7(s, t) for each s € V, such that for any
(s, t) > 6,

(s, 1) — (s,)] < 1—10 (s, 1) @)

holds with a constant probability.

Note that to simplify the presentation, we assume that the rela-
tive error parameter and success probability are constants follow-
ing [10]. We can boost the success probability to arbitrarily close to
1 with the Median-of-Mean trick [12], which only adds a log factor
to the running time. For these two types of error, we propose Ran-
domized Backward Search (RBS), a unified algorithm that achieves
optimal complexity for the single-target PPR query. We summarize
the properties of the RBS algorithm as follows.

o Given a target node t, RBS answers a single-target PPR query with
constant relative error for all z(s, t) > § with constant probability

%(t)) time. This result suggests that RBS achieves

using 0 (
optimal time complexity for the single-target PPR query with
%(t)) nodes with 7(s, t) > 6.
o Given a random target node ¢, RBS answers a single-target PPR

query with an additive error ¢ with constant probability using

relative error, as there may be O (

N . . L .
@) (T) time. This query time complexity improves previous
bound for single-targe PPR query with additive error by a factor

of Vd. Table 1 presents a detailed comparison between RBS and
the state-of-the-art single-target PPR algorithm.

We demonstrate that the RBS algorithm improves the complexity
of single-source SimRank computation, heavy hitters PPR query,
and PPR-related graph neural networks in Section 5. We also con-
duct an empirical study to evaluate the performance of RBS. The
experimental results show that RBS outperforms the state-of-the-art
single-target PPR algorithm on real-world datasets.

2 PRELIMINARY
2.1 Existing Methods

Power Method is an iterative method for computing single-source
and single-target PPR queries [46]. Recall that, at each step, an
a-discounted random walk terminates at the current node with
a probability or moves to a random out-neighbor with (1 — «)
probability. This process can be expressed as the iteration formula
with single-source PPR vector.

®)

where 75 denotes the PPR vector with respect to a given source
node s, €s denotes the one-hot vector with €s(s) = 1, and P denotes
the transition matrix where

s =1 —-a)Ts - P+a-eés,

659

KDD 20, August 23-27, 2020, Virtual Event, USA

Table 2: Table of notations.

Notation Description

n, m
Nin(u), Nous(u)
din(u), dow: (1)
n(s, t), (s, t)

the numbers of nodes and edges in G

the in/out neighbor set of node u

the in/out degree of node u

the true and estimated PPR values of node s to #.

the true and estimated ¢-hop PPR values of node
stot.

7e(s, t), 7e(s, t)

a the teleport probability that a random walk termi-
nates at each step

£ the additive error parameter

1 the relative error threshold

d the average degree, d = 2

o the Big-Oh notation ignoring the log factors

P(i.j) = { Tty [o e Mot 4)
0, otherwise.
Reversing this process, we can also compute single-target PPR
values with the given target node t. The iteration formula should
be adjusted correspondingly:
7?[:(1—0()77._'}'1)7--'—0('6_}.

®)

Power Method can be used to compute the ground truths for
the single-source and single-target query. After £ = log;_,(¢) it-
erations, the absolute error can be bounded by (1 — a)l = ¢. Since
each iteration takes O(m) time, it follows that the Power Method
computes the approximate single-target PPR query with additive
error in O (m -log %) time. Note that the dependence on the error
parameter ¢ is logarithmic, which implies that the Power Method
can answer single-target PPR queries with high precision. However,
the query time also linearly depends on the number of edges, which
limits its scalability on large graphs.
Backward Search [38] is a local search method that efficiently
computes the single-target PPR query on large graphs. Algorithm 1
illustrates the pseudo-code of Backward Search. We use residue
r?(s, t) to denote the probability mass to be distributed at node s,
and reserve 7% (s, t) denotes the probability mass that will stay at
s permanently. For initialization, Backward Search sets r?(u, t) =
er(u, t) = 0 for Vu € V, except for the residue rb(t, t) = 1. In each
push operation, it picks the node v with the largest residue rP(v, 1),
and transfer a fraction of « to nh(v, t), the reserve of v. Then the
algorithm transfers the other (1 — «) faction to the in-neighbors of
v. For each in-neighbor u of v, the residue rP(u,t),u € Nip(v) is
incremented by %. After all in-neighbors are processed,
the algorithm sets the residue of v to be 0. The process ends when
the maximum residue descends below the error parameter e. Fi-
nally, Backward Search uses the reserve b (s, t) as the estimator
for 7(s, t), s € V. Backward Search utilizes the following property
of the single-target PPR vector.

PROPOSITION 2.1. Denote I{u = v} as the indicator variable such
that I{u = v} = 1 ifu = v. ForVs,t € V, n(s, t) satisfies that

1-«a

dout(u)

(s, t) =
u€N;,(t)

sa(s,u) +a - I{s =t}.

(6)

Research Track Paper

Algorithm 1: Backward Search [38]

Input: Graph G = (V, E), target node ¢, teleport probability «,
additive error parameter ¢

Output: Reserve 7b(s,t) foralls € V

for eachu € V do

L rb(u, t), rrb(u,) « 0;

s Pt t) — 1

while The largest r’(v,t) > e do

5 b, 1) « 7P, 1) + a - rb(v, 1);

[

[N}

'S

6 for each u € Ni"(v) do
7 L b(u t)(—rb(u H+1-a)- & (v(fl))
8 b, 1) < 0;

©

return 7% (s, t) as the estimator for (s, t),s € V;

Utilizing this property, it is shown in [38] that the residues and
reserves of Backward Search satisfies the following invariant:

(s, t) = ﬂb(s,)+ Z rb(u, t) - (s, u).

uev

™

Note that when the Backward Search algorithm terminates, all
residues r?(u, t) < ¢. It follows that #%(s, t) < n(s,t) < 7%(s, 1) +
€ Duey (s, u) = 7b(s,t) + ¢, where Duey m(s,u) = 1. There-
fore, Backward Search ensures an additive error of ¢. It is shown
in [38] that the running time of Backward Search is bounded by

o) (ZMEV din(u):f(ua [))
dour(u)-7(u,t)

ward Search can also be bounded by O (Zuev &) Due

to space limitations we omit this proof, and refer the reader to the
full version of the paper [1]. If the target node ¢ is randomly se-

. We claim that the running time of Back-

lected, the complexity becomes O(%), where d is the average degree
of the graph. For relative error, we can set § = ©(¢) and obtain a

dou:(u()svr(u,)])

worst-case complexity of O (Zuev and an average

complexity of O(%), respectively.

Single-source algorithms. The Monte-Carlo algorithm [14] com-
putes the approximate single-source PPR query by sampling abun-
dant random walks from source node s and using the proportion of
the random walks that terminate at ¢ as the estimator of 7 (s, t). Ac-
cording to Chernoff bound, the number of random walks required
for an additive error ¢ is O(;—Z), while the number of random walks
required to ensure constant relative error for all PPR larger than ¢ is
é(%) This simple method is optimal for single-source PPR queries
with relative error, as there are at most O(%) nodes t with PPR
n(s, t) > 8. However, the Monte-Carlo algorithm does not work for
single-target queries, as there lacks of a mechanism for sampling
source nodes from a given target node. Moreover, it remains an
open problem whether it is possible to achieve the same optimal
O(%) complexity for the single-target query.

Forward Search [6] is the analog of Backward Search, but for
single-source PPR queries. Similar to Backward Search, Forward
Search uses residue rf (s, u) to denote the probability mass to be
distributed at node u, and 7/ (s, u) to denote the probability mass
that will stay at node u permanently. For initialization, Forward

660

KDD 20, August 23-27, 2020, Virtual Event, USA

Search sets rf(s, u) = JTf(S, u) = 0for Vu € V, except for the residue
rf(s,s) = 1. In each push operation, it picks the node u with the
largest residue/degree ratio rf (s,u)/doyt(u), and transfer a fraction
of a to nf (s, u), the reserve of u. Then the algorithm transfers the
other (1—a) faction to the out-neighbors of u. For each out-neighbor

v of u, the residue rf (s, v) is incremented by M After all
in-neighbors are processed, the algorithm sets thlé remdue of u to
be 0. The process ends when the maximum residue/degree ratio
descends below the error parameter ¢. Finally, Forward Search uses
the reserve =/ (s, u) as the estimator for 7(s,u), u € V.

As shown in [6], Forward Search runs in O(1/¢) time. However,
the major problem with Forward Search is that it can only ensure an
additive error of edyy+(u) for each PPR value 7(s, u) on undirected
graphs. Compared to the ¢ error bound by Backward Search, this
weak error guarantee makes Forward Search unfavorable when
we need to compute the approximate PPR matrix in various graph
neural network applications. We also note that there are a few
works [57, 59, 61] that combines Forward Search, Backward Search
and Monte-Carlo to answer single-single PPR queries. However,
these methods are not applicable to the single-target PPR queries.
2.2 Other related work

PPR has been extensively studied for the past decades [5-9, 11, 13—
20, 23, 26, 36, 37, 40, 42, 44, 48, 49, 51, 59, 62, 65, 67-69]. Existing
work has studied other variants of PPR queries. Research work on
exact single-source queries [11, 26, 42, 46, 51, 69] aims at improving
the efficiency and scalability of the Power Method. Research work
on single-source top-k queries [36, 37, 40, 42, 56, 59, 69] focuses
on (approximately) returning k nodes with the highest PPR values
to a given source node. Single-pair PPR queries are studied by
[14, 36, 37, 40, 56], which estimates the PPR value of a given pair of
nodes. PPR computation has also been studied on dynamic graphs
[9, 11, 44, 47, 48, 67, 68] and in the distributed environment [8,
19]. These studies, however, are orthogonal to our work. Table 2
summaries the notations used in this paper.

3 THE RBS ALGORITHM

High-level ideas. In this section, we present Randomized Back-
ward Search (RBS), an algorithm that achieves optimal query cost
for the single-target query. Compared to the vanilla Backward
Search (Algorithm 1), we employ two novel techniques. First of
all, we decompose the PPR value 7(s, t) into the £-hop Personal-
ized PageRank m¢(s, t), which is defined as the probability that an
a-discounted random walk from s terminates at ¢ at exactly ¢ steps.
For different ¢, such events are mutually exclusive, and thus we
can compute the original PPR value by 7(s,t) = X 7° | m¢(s, t). Fur-
St (st
log;_,, 6, which only adds a small additive error 0 to the

thermore, we can truncate the summation to 7(s, t) =
where L =
final estimator and 6 = O (¢). Secondly, we introduce randomiza-
tion into the push operation of the Backward Search algorithm to
reduce the query cost. Recall that in the vanilla Backward Search
algorithm, each push operation transfers an (1 — «) faction of the
probability mass from the current node u to each of its in-neighbors.
This operation is expensive as it touches all the in-neighbors of
v and thus leads to the d overhead. We avoid this complexity by
pushing the probability mass to a small random subset of v’s in-
neighbors. The probability for including an in-neighbor u depends

Research Track Paper

;;; 1 Push deterministically
Push according to
random number r
A

No push

Level I
Push deterministically
~
~
Push N ~
~ ~
randomly No push >~

Level I+1
Level 1+2

Figure 1: Sketch of Randomized Backward Search

on the out-degree of u. We show that this randomized push op-
eration is unbiased and has bounded variance, which enables us
to derive probabilistic bounds for both additive error and relative
€error.

Sorted adjacency lists. Before presenting our algorithm, we as-
sume the in-adjacency list of each node is sorted in the ascending
order of the out-degrees. More precisely, let {u, . .., u4} denote the
in-adjacency list of v. We assume that doy,:(11) < ..., < dour(ug).
We claim that it is possible to sort all the in-adjacency lists in
O(m-+n) time, which is asymptotically the same as reading the graph
into the memory. This means we can pre-sort the graph as we read
the graph into the main memory without increasing the asymptotic
cost. More specifically, we construct a tuple (¢, v, doy+(u)) for each
edge (u,v) € E, and use counting sort to sort (u, v, doy, (1)) tuples
in the ascending order of dyy;(u). Since each doy (1) is bounded
by n, and there are m tuples, the cost of counting sort is bounded
by O(m + n). Finally, for each u, v, dyy; (1), we append u to the
end of v’s in-adjacency list. This preprocessing algorithm runs in
O(m + n) time, which is asymptotically the same as reading the
graph structure.

Algorithm description. Algorithm 2 illustrates the pseudocode
of the RBS algorithm. Consider a directed graph G = (V, E), target
node t, and a teleport probability a. The algorithm takes in two ad-
ditional parameters: error parameter and sampling function A(u).
We can manipulate these two parameters to obtain the additive or
relative error guarantees. Recall that O denotes the Big-Oh notation
ignoring the log factors. For single-target PPR query with additive
error, we set 0 to be (5(5), the maximum additive error allowed, and
A(u) = \Jdous (). For relative error, we set 0 = O(8), the threshold
for constant relative error guarantee, and A(u) = 1.

For initialization, we set the maximum number of hops L to be
log;_, 0 (line 1). We then initialize the estimators 7,(s, t) = 0 for
Vs € V and V¢ € [0, L] except for my(t,t) = a (Line 2-3). We itera-
tively push the probability mass from level 0 to L—1 (line 4). At level

KDD 20, August 23-27, 2020, Virtual Event, USA

Algorithm 2: Randomized Backward Search

Input: Directed graph G = (V, E) with sorted adjacency lists,
target node t € V, teleport probability «, error
parameter 6, sampling function A(u)

Output: Estimator 7(s, t) for eachs € V

1 L« log;_,6;

2 fip(s,t) «—O0for£=0,...,L,seV;
3 fp(t,t) « a;

4 for{=0toL—-1do

5 for each v € V with non-zero iy(v, t) do

6 for eachu € Nj,(v) and doys(u) < W
do

7 | () ey () + U0,

8 r « rand(0, 1);

9 for eachu € Njp(v) and

A(u)-(l—aae)ﬁg(v,t) < dour(u) < A(u)-(l;zéfrg(v,t) do

o A 0
10 | A () = A () + el

1 return all non-zero 7(s,t) = Zﬁzo 7p(s,t) for each s € V;

-

¢, we pick a node v € V with non-zero estimator 7¢(v, t), and push
7¢(v, t) to a subset of its in-neighbors (line 5). More precisely, for an

Aw)-(1-a)7te(v, 1)

in-neighbor u with out-degree doy, ¢ (1) < , we de-

terministically push a probability mass of %

to the (€+1)-
hop estimator ¢, 1(u, t) (lines 6-7). Recall that the in-neighbors of v
are sorted according to their out-degrees. Therefore, we can sequen-
tially scan the in-adjacency list of v until we encounter the first in-
neighbor u with doy,r(u) > W. For in-neighbors with
higher out-degrees, we generate a random number r from (0, 1), and

push a probability mass of % to 7p41(u, t) for each in-neighbor

u with doy(u) < W (lines 8 -10). Similarly, we can
sequentially scan the in-adjacency list of v until we encounter the

Aw)-A-a)ite(v,t) ¢
W.Fmaﬂy

first in-neighbor u with doy(u) > after

all L hops are processed, we return 7(s,) = ZIE:O 7te(s, t) as the es-
timator for each 7(s, t),s € V. The sketch map of the above process
is shown in Figure 1.

4 ANALYSIS

In this section, we analyze the theoretical property of the RBS
algorithm. Recall that for single-target PPR query with additive
error, we set A(u) to be \/doy (1) and @ = O(¢) to be the error bound.
For relative error, we set A(u) = 1 and 8 = O(8), the threshold for
constant relative error guarantee. Recall that O denotes the Big-Oh
notation ignoring the log factors. Theorem 4.1 and 4.2 provide the
theoretical results of running time and error guarantee for the RBS
algorithm with additive and relative error, respectively.

THEOREM 4.1. By setting A(u) = 1 and 8 = O(5), Algorithm 2
answers the single-target PPR queries with a relative error threshold
& with high probability. The expected worst-case time cost is bounded

by O (%(t)) If the target node t is chosen uniformly at random from

V, the time cost becomes 0 (%)

Research Track Paper

THEOREM 4.2. By setting Au) = \/dou:(u) and 6 = O(e), Algo-
rithm 2 answers the single-target PPR queries with an additive error
parameter € with high probability. The expected worst-case time cost
is bounded by

E[Cost] = O % Z Vldour(u) - m(u, 1) .

uev
If the target node t is chosen uniformly at random from V, the time

cost becomes O (‘/TE), where d is the average degree of the graph.
To prove Theorem 4.1 and 4.2, we need several technical lemmas.
In particular, we first prove that Algorithm 2 provides an unbiased
estimator for the £-hop PPR values (s, t).
LEMMA 4.3. Algorithm 2 returns an estimator 7¢(s,t) for each
7e(s, t) such that E [7e(s, t)] = me(s,t) holds forVs € V and € €
{0,1,2,...,L}.

Next, we bound the variance of the £-hop estimators.

LEMMA 4.4. Foranys € V and{ € {0,1,2,...,L}, the variance of
each estimator 7t¢(s, t) obtained by Algorithm 2 satisfies that:

1) If we set A(u) = 1, then Var [#¢(s, t)] < Ome(s, t).

2) If we set A(u) = \/doy ¢ (1), then Var [#,(s, t)] < ab?.

The following lemma analyzes the expected query cost of the
RBS algorithm.

LEMMA 4.5. Let C;o141 denote the total cost during the whole push
process from level 0 to level (L—1), the expected time cost of algorithm 2
can be expressed as that

B [Crorat] € =5 ") m(us)
uev

Note that A(u) is an adjustable sampling function that balances
the variance and time cost. In our case, it is a function of node u.
Hence, we do not extract A(u) from the last summation symbol.
With the help of Lemma 4.3, 4.4 , and 4.5, we are able to prove
Theorem 4.1 and 4.2. For the sake of readability, we defer all proofs
to the appendix.

5 APPLICATIONS

In this section, we discuss how the RBS algorithm improves the
three concrete applications mentioned in Section 1: heavy hitters
PPR query, single-source SimRank computation, and approximate
PPR matrix computation.

Heavy hitters PPR computation. Following the definition
in [58], we define the c-approximate heavy hitter as follows.

Definition 5.1 (c-approximate heavy hitter). Given a real value
0 < ¢ < 1, a constant real value 0 < ¢ < 1, two nodes s, ¢ in V, we
say that s is:

e ac -absolute ¢ -heavy hitter of t if 7 (s,) > (1 + ¢)¢ - nz(t);
e ac -permissible ¢-heavy hitter of ¢ if (1 — ¢)¢ - nn(t) < 7(s, 1) <

(1+¢)¢ - nr(t);

e not a ¢ -approximate ¢ -heavy hitter of ¢, otherwise.

Given a target node ¢, a heavy hitter algorithm is required to
return all ¢ -absolute ¢ -heavy hitters and to exclude all nodes that
are not a ¢ -approximate ¢ -heavy hitter of t. Wang et al. utilizes
the traditional Backward Search to derive the c-approximate heavy

hitter[58]. The time complexity is O (Zuev %) in the
worst case.

662

KDD 20, August 23-27, 2020, Virtual Event, USA

On the other hand, by running the RBS algorithm with relative
error threshold § = c¢nz(t), we can return the c-approximate
heavy hitter for node ¢ with high probability. By Theorem 4.1, the

running time of RBS algorithm is bounded by O (%(t)) =0 (é)

Note that this complexity is optimal up to log factors, as there may

be O (é) heavy hitters for node ¢. Therefore, RBS achieves optimal

worst-case query complexity for the c-approximate heavy hitter
problem.

Single-source SimRank computation. Recall that if we revert
the direction of every edge in the graph, the SimRank similar-
ity s(u,v) of node u and v equals to the probability that two a-
discounted random walks from u and v visit at the same node
w with the same steps. PRSim [60] and SLING [53], two state-
of-the-art SimRank algorithms, formulate the SimRank in terms
of ¢-hop PPR: s(u,v) = m Z;ozo Dwev Te(u, w)me(v, wn(w),
where 7g(u, w) is the £-hop PPR with decay factor « = 1 — +/c,
and n(w) is a value called the last meeting probability. SLING [53]
proposes to use Backward Search to precompute an approximation
of 7y(v, w) with additive error ¢ for each w,v € V,£ = 0,...,c0,
while PRSim [60] only precomputes an approximation of 7¢(v, w)
for node w with large PageRanks. Recall that the running time of
the Backward Search algorithm on a random node ¢ is O (%) It
follows that the total precomputation cost for SLING or PRSim is
bounded by O (%) However, according to Theorem 4.2, if we re-
place the Backward Search algorithm with the new RBS algorithm
with additive error, the running time for a random target node ¢

vd

T) And thus the total precomputation time is

)

is improved to O (

improved to O (

Approximate PPR matrix. As mentioned in Section 1, computing
the approximate PPR matrix is the computational bottleneck for var-
ious graph embedding and graph neural network algorithms, such
as HOPE [45], STRAP [64], PPRGo [63] and GDC [29]. However,
computing the PPR matrix is costly; Applying the Power Method
to n nodes takes O(mn) time, which is infeasible on large graphs.
PPRGo [63] proposes to apply Forward Search to each source node
s € V to construct the approximate PPR matrix; While STRAP [64]
employs Backward Search to each target node ¢t € V to compute
7(s,t),s € V and then put 7(s, t) into an inverted list indexed by s.
For the former approach, recall that the Forward Search only guar-
antees an additive error of edyy¢(t) for the estimator of (s, t) [6],
which is undesirable for nodes with high degrees. On the other hand,
the latter approach incurs a running time of O (%) for computing
an approximate PPR matrix with additive error ¢. By replacing the
Backward Search algorithm with the new RBS algorithm with ad-

ditive error, we can improve the complexity to O (%Fd) which is

sub-linear to the number of edges m.

6 EXPERIMENTS

This section experimentally evaluates the performance of RBS
against state-of-the-art methods. Section 6.1 presents the empirical
study for single-target PPR queries. Section 6.2 applies RBS to three
concrete applications to show its effectiveness. The information of
the datasets we used is listed in table 3. All datasets are obtained

Research Track Paper

Table 3: Data Sets.

Data Set Type n m
ca-GrQc (GQ) undirected 5,242 28,968
AS-2000(AS) undirected 6,474 25,144
DBLP-Author (DB) | undirected 5,425,963 17,298,032
IndoChina (IC) directed 7,414,768 191,606,827
Orkut-Links (OL) undirected 3,072,441 234,369,798
1t-2004 (IT) directed 41,290,682 | 1,135,718,909
Twitter (TW) directed 41,652,230 | 1,468,364,884

from [2, 3]. All experiments are conducted on a machine with an
Intel(R) Xeon(R) E7-4809 @2.10GHz CPU and 196GB memory.

6.1 Single-Target Query

Metrics and experimental setup. For a given query node, we
apply the Power Method [46] with L = [logl_a(10_7)'| iterations
to obtain the ground truths of the single-target queries based on

the following formula: 7; = (1 — a)77; - PT + a - é;. To evaluate the
additive error, we consider MaxAdditiveErr, which is defined that:

®)

where 7(v;, t) is the estimator of PPR value x(vj, t). For relative
error, there lacks a practical metric that evaluates the relative error
threshold §. Hence, we consider the Precision@k, which evaluates
the quality of the single-target top-k queries. More precisely, let
Vi and Vi denote the set containing the nodes with single-target
top-k queries returned by the ground truth and the approximation
methods, respectively. Precision@k is defined as the percentage of

MaxAdditiveErr = max |m(vj, t) — #(vi, t)]
vieV

nodes in V}, that coincides with the actual top-k results V. In our
experiment, we set k = 50. On each dataset, we sample 100 target
query nodes according to their degrees and report the averages of
the MaxAdditiveErr and Precision@k for each evaluated methods.
Results. We evaluate the performance of RBS against Backward
Search [38] for the single-target PPR query. For RBS, we set A(u) =
Vdout (1) and 6 = ¢ for additive error, A(u) = 1and 0 = § for relative
error. For Backward Search (BS), we set ¢ = § for relative error. We
vary the additive error parameter ¢ and relative threshold 6 from
0.1 to 107 in both experiments. Following previous work [56], we
set the decay factor « to be 0.2.

Figure 2 shows the tradeoffs between the MaxAdditiveErr and
the query time for the additive error experiments. Figure 3 presents
the tradeoffs between Precision@k and the query time for the rela-
tive error experiments. In general, we observe that under the same
approximation quality, RBS outperforms BS by orders of magnitude
in terms of query time. We also observe that RBS offers a more sig-
nificant advantage over BS when we need high-quality estimators.
In particular, to obtain an additive error of 107% on IT, we observe
a 100x query time speedup for RBS. From Figure 3, we also observe
that the precision of RBS with relative error approaches 1 more
rapidly, which concurs with our theoretical analysis.

6.2 Applications

We now evaluate RBS in three concrete applications: heavy hitters
query, single-source SimRank computation and approximate PPR
matrix approximation.

Heavy hitters PPR query. Recall that in section 5, the heavy hitter
of target node ¢ is defined as node s with (s, t) > ¢-nn(t), where ¢

663

KDD 20, August 23-27, 2020, Virtual Event, USA

is a parameter. Following [58], we fix ¢ = 107 in our experiments.
Since the number of true heavy hitters is oblivious to the algorithms,

we use the F1 score instead of precision to evaluate the approximate

algorithms, where the F1 score is defined as F1 = Lprecision-recall
precision+recall

We set A(u) = 1 and 0 = 6 for RBS, and ¢ = § for BS, and set § from
0.1to 107° to illustrate how the F1 score varies with the query time.

In general, RBS returns a higher F1I score than BS does, given the
same amount of query time. In particular, to achieve an F1 score of
1 on the IC dataset, RBS requires a query time that is 80x less than
BS does. The results suggest that by replacing BS with RBS, we can
improve the performance of heavy hitters PPR queries.
Single-source SimRank computation. As claimed in section 5,
SimRank can be expressed in terms of PPR values as below:
s(u,v) = W Z?:o Ywev Te(u, w)re(v, w)n(w). The state-of-
the-art single-source SimRank methods, SLING [53] and PRSim [60],
pre-compute the ¢-hop PPR values 7n¢(v, w) with the Backward
Search algorithm and store them in index. We take PRSim as exam-
ple to show the benefit from replacing BS with RBS.

Following [60], we evaluate the tradeoffs between the preprocess-
ing time with MaxAdditiveErr@50, the maximum additive error of
single-source top-50 SimRank values for a given query node. PRSim
has one error parameter ¢. We vary it in {0.5,0.1,0.05, 0.01,0.005}
to plot the tradeoffs. We sample 100 query nodes uniformly and
use the pooling method in [60] to derive the actual top-50 SimRank
values for each query node, and return the average of the MaxAd-
ditiveErr@50 for each approximate method. Figure 5 illustrates the
tradeoffs between the preprocessing time with MaxAdditiveErr@50.
We observe that by replacing BS with RBS, we can achieve a signif-
icantly lower preprocessing time without increasing the approxi-
mation quality of the single-source SimRank results. This suggests
RBS also outperforms BS for computing £-hop PPR to a target node.
Approximate PPR matrix. An approximate PPR matrix consists
of PPR estimators for all pairs of nodes, and is widely used in graph
learning. Recall that PPRGo [63] proposes to apply Forward Search
(FS) to each source node s € V to construct the approximate PPR
matrix, while STRAP [64] employs Backward Search (BS) to each
target node ¢t € V to compute 7(s,t),s € V and then put (s, t)
into an inverted list indexed by s. We evaluate RBS against FS and
BS in terms of additive error and running time for computing the
approximate PPR matrix.

Due to the scalability limitation of the Power Method, we conduct
this experiment on two small datasets: GQ and AS. We set A(u) =
Vdou:(u) and 0 = ¢ for RBS, and vary the additive error parameter
¢ in RBS from 0.1 to 107°. Similarly, we vary the parameter ¢ of
FS and BS from 0.1 to 107, Figure 6 shows the tradeoffs between
MaxAdditiveErr of PPR values of all node pairs and the running
time for the three methods. We first observe that given the same
error budget, BS outperforms FS in terms of running time. This
result concurs with our theoretical analysis that FS only guarantees
an additive error of edyy,(t) while BS guarantees an additive error
of e. Therefore, it may be worthy of taking the extra step to convert
the single-target PPR results into inverted lists indexed by the
source nodes. On the other hand, by replacing BS with RBS, we can
further improve the tradeoffs between the running time and the
approximation quality, which demonstrates the superiority of ours.

Research Track Paper

KDD 20, August 23-27, 2020, Virtual Event, USA

10% 10° 10*
Preprocessing time(s) -TW

Figure 5: Single-source SimRank: Tradeoffs between MaxAd-

ditiveErr @50 and preprocessing time.
10° 10°

o' 102
Preprocessing time(s) -IT

10!
w102
210
510°

10

AdditiveE:

10°
%

3
=10°

-©-BS
-5-RBS
< FS

107

< FS

6 5 10% 108 102 1 6 5 1 0

running time(s) -GQ

10° 107 10" 10* 10° 102

running time(s) -AS

Figure 6: Approximate PPR matrix: tradeoffs between Max-
AdditiveErr and running time.

7 CONCLUSION

In this paper, we study the single-target PPR query, which measures
the importance of a given target node ¢ to every node s in the graph.
We present an algorithm RBS to compute approximate single-target
PPR query with optimal computational complexity. We show that
RBS improves three concrete applications in graph mining: heavy
hitters PPR query, single-source SimRank computation, and scalable
graph neural networks. The experiments suggest that RBS outper-
forms the state-of-the-art algorithms in terms of both efficiency and
precision on real-world benchmark datasets. For future work, we
note that a few works combine the Backward Search algorithm with
the Monte-Carlo algorithm to obtain near-optimal query cost for

107 107 10

664

10° 10° 10" 10"
102 102 — 10?2 102
8 10° Q02 s 108 E 10°
%m‘ %m" % ‘éjno"‘ @m"‘
2 2 Z E 2
5105 %105 :(,? %105 b ?Ds
S10° S1o® & S10° b }3 &i0°
107 107 107 107 107
10105 0% 10% 102 10" 10 10" 102 ‘Owof’ 10 102 102 10”7 10° 10" 10% 10° 10* 0% 10 102 102 107" 10° 10" 10% 10° 10* 0% 104 10° 102 107 10° 10" 10° 10° 10* 0% 104 10° 102 107 10° 10" 10° 10% 10*
query time(s) -DB query time(s) -IC query time(s) -OL query time(s) -IT query time(s) -TW
Figure 2: Tradeoffs between MaxAdditiveErr and query time.
1 B 1 1 5 o
0.9 0.9 0.9 A
= =}
e 0.8 j £ 0.8 Fos //
3 3 3 A
go7 go7 807 ya:
So6 So0s §06 o
805 805 505 /
. ® o4 . 04 ® 04 O
02 02 02 02 02
10° 10 10% 102 10" 10° 10" 10? 10° 10" 10® 102 10" 10° 10" 10% 10° 10° 10* 10° 102 10" 10° 10" 10% 10° 10° 10* 10® 102 10" 10° 10" 10% 10° 10° 10" 10® 102 10" 10° 10" 10% 10°
query time(s) -DB query time(s) -IC query time(s) -OL query time(s) -IT query time(s) -TW
Figure 3: Tradeoffs between Precision @50 and query time.
1 1 B) 1) 1 1
09 09 o 7/9 09 — 09 EP F 09
08 0.8 / 0.8 0.8 7 P 0.8
Doz Qo7 / / 07 E07 // / Eo7
006 ©06 / 006 / 206 g 0.6
gos 8os i gos / gos / 805
T o4 o4 o To4 04 E T4
03 03 03 / 03 03
0.2 0.2 0.2 O/ 0.2 0.2 o
01 Shes 01 s 01 o s 01 Shes 01 s
10° 10 10° 102 10" 10° 10" 102 10° 10 102 102 10" 10° 10" 10% 10° 10% 10% 10° 102 107 10° 10! 10?2 10° 10° 10% 10° 102 107 10° 10! 102 10° 10° 10 102 102 107 10° 10" 10% 10°
query time(s) -DB query time(s) -IC query time(s) -OL query time(s) -IT query time(s) -TW
Figure 4: Heavy hitters: Tradeoffs between F1 score and query time.
107 10?
N z single-pair queries [37, 40]. An interesting open problem is whether
rock 8 we can replace the Backward Search algorithm with RBS to further
© ©
e g improve the complexity of these algorithms.
Em“ \\D g
2 g 8 ACKNOWLEDGEMENTS
-=-BS
-=-RBS|
104l 104 This research is supported by National Natural Science Foun-

dation of China (No. 61832017, No. 61972401, No. 61932001,
No0.U1936205), by Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098, and by the Fundamental Research
Funds for the Central Universities and the Research Funds of Ren-
min University of China under Grant 18XNLG21. Junhao Gan is sup-
ported by Australian Research Council (ARC) DECRA DE190101118.
Sibo Wang is also supported by Hong Kong RGC ECS Grant No.
24203419. Zengfeng Huang is supported by Shanghai Science and
Technology Commission Grant No. 17JC1420200, and by Shanghai
Sailing Program Grant No. 18YF1401200.

REFERENCES

[1] http://arxiv.org/abs/2006.11876.

[2] http://snap.stanford.edu/data.

[3] http://law.di.unimi.it/datasets.php.

[4] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcroft, Kamal Jain,
Vahab Mirrokni, and Shanghua Teng. Robust pagerank and locally computable
spam detection features. In Proceedings of the 4th international workshop on
Adversarial information retrieval on the web, pages 69-76, 2008.

Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S.
Mirrokni, and Shang-Hua Teng. Local computation of pagerank contributions.
In WAW, pages 150-165, 2007.

Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning
using pagerank vectors. In FOCS, pages 475-486, 2006.

Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and
recommending links in social networks. In WSDM, pages 635-644, 2011.
Bahman Bahmani, Kaushik Chakrabarti, and Dong Xin. Fast personalized pager-
ank on mapreduce. In SIGMOD, pages 973-984, 2011.

Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and
personalized pagerank. VLDB, 4(3):173-184, 2010.

http://arxiv.org/abs/2006.11876
http://snap.stanford.edu/data
http://law.di.unimi.it/datasets.php

Research Track Paper

[10]

(1

[12]

[13

[14]

[15

[16]

(17

(18]

[19

[20]

[21

[22]

[23

[24]

[25

[26]

[27

[28]

[29]

w
)

[31

[32]

[33

[34]

[35]

[36

[37

[38]

[39

[40

Marco Bressan, Enoch Peserico, and Luca Pretto. Sublinear algorithms for local
graph centrality estimation. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 709-718. IEEE, 2018.

Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs.
In WWW, pages 571-580, 2007.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In ICALP, pages 693-703. Springer, 2002.

Mustafa Coskun, Ananth Grama, and Mehmet Koyuturk. Efficient processing of
network proximity queries via chebyshev acceleration. In KDD, pages 1515-1524,
2016.

Déniel Fogaras, Balazs Racz, Karoly Csalogany, and Tamas Sarlés. Towards
scaling fully personalized pagerank: Algorithms, lower bounds, and experiments.
Internet Mathematics, 2(3):333-358, 2005.

Yasuhiro Fujiwara, Makoto Nakatsuji, Makoto Onizuka, and Masaru Kitsuregawa.
Fast and exact top-k search for random walk with restart. PVLDB, 5(5):442-453,
2012.

Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and
Makoto Onizuka. Efficient ad-hoc search for personalized pagerank. In SIGMOD,
pages 445-456, 2013.

Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and
Makoto Onizuka. Fast and exact top-k algorithm for pagerank. In AAAL 2013.
Yasuhiro Fujiwara, Makoto Nakatsuji, Takeshi Yamamuro, Hiroaki Shiokawa,
and Makoto Onizuka. Efficient personalized pagerank with accuracy assurance.
In KDD, pages 15-23, 2012.

Tao Guo, Xin Cao, Gao Cong, Jiaheng Lu, and Xuemin Lin. Distributed algorithms
on exact personalized pagerank. In SIGMOD, pages 479-494, 2017.

Manish S. Gupta, Amit Pathak, and Soumen Chakrabarti. Fast algorithms for
top-k personalized pagerank queries. In WWW, pages 1225-1226, 2008.

Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza
Zadeh. Wtf: The who to follow service at twitter. In WWW, pages 505-514, 2013.
Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity.
In SIGKDD, pages 538-543, 2002.

Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW, pages
271-279, 2003.

Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong. Reads: a random
walk approach for efficient and accurate dynamic simrank. PPVLDB, 10(9):937-
948, 2017.

Ruoming Jin, Victor E Lee, and Hui Hong. Axiomatic ranking of network role
similarity. In KDD, pages 922-930, 2011.

Jinhong Jung, Namyong Park, Sael Lee, and U Kang. Bepi: Fast and memory-
efficient method for billion-scale random walk with restart. In SIGMOD, pages
789-804, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. ICLR, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Person-
alized embedding propagation: Combining neural networks on graphs with
personalized pagerank. CoRR, abs/1810.05997, 2018.

Johannes Klicpera, Stefan WeiA§enberger, and Stephan GAijnnemann. Diffusion
improves graph learning, 2019.

Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi Kawarabayashi. Scalable
similarity search for simrank. In SIGMOD, pages 325-336, 2014.

Pei Lee, Laks V. S. Lakshmanan, and Jeffrey Xu Yu. On top-k structural similarity
search. In ICDE, pages 774-785, 2012.

Lina Li, Cuiping Li, Chen Hong, and Xiaoyong Du. Mapreduce-based simrank
computation and its application in social recommender system. In Big Data
(BigData Congress), 2013 IEEE International Congress on, 2013.

Zhenguo Li, Yixiang Fang, Qin Liu, Jiefeng Cheng, Reynold Cheng, and John Lui.
Walking in the cloud: Parallel simrank at scale. PVLDB, 9(1):24-35, 2015.

David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for social
networks. In CIKM, pages 556—559, 2003.

Yu Liu, Bolong Zheng, Xiaodong He, Zhewei Wei, Xiaokui Xiao, Kai Zheng, and
Jiaheng Lu. Probesim: scalable single-source and top-k simrank computations
on dynamic graphs. PVLDB, 11(1):14-26, 2017.

Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Bidirectional pagerank
estimation: From average-case to worst-case. In WAW, pages 164176, 2015.
Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Personalized pagerank
estimation and search: A bidirectional approach. In WSDM, pages 163-172, 2016.
Peter Lofgren and Ashish Goel. Personalized pagerank to a target node. arXiv
preprint arXiv:1304.4658, 2013.

Peter A. Lofgren, Siddhartha Banerjee, Ashish Goel, and C. Seshadhri. Fast-ppr:
Scaling personalized pagerank estimation for large graphs. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, pages 1436-1445, New York, NY, USA, 2014. ACM.

Peter A Lofgren, Siddhartha Banerjee, Ashish Goel, and C Seshadhri. Fast-ppr:
Scaling personalized pagerank estimation for large graphs. In KDD, pages 1436~
1445, 2014.

665

[41

[42

[43

[44

[45

=
&

(47]

[48

[49

[50

o
=

(52

(53]

[54

[55

[56

[57

[58

[61

[62

[63

[65

[66

[67

(68

[69

KDD '20, August 23-27, 2020, Virtual Event, USA

Linyuan Lii and Tao Zhou. Link prediction in complex networks: A survey.
Physica A: statistical mechanics and its applications, 390(6):1150-1170, 2011.
Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi Kawarabayashi.
Computing personalized pagerank quickly by exploiting graph structures. PVLDB,
7(12):1023-1034, 2014.

Takanori Maehara, Mitsuru Kusumoto, and Ken-ichi Kawarabayashi. Efficient
simrank computation via linearization. CoRR, abs/1411.7228, 2014.

Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. Efficient pager-
ank tracking in evolving networks. In KDD, pages 875-884, 2015.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric
transitivity preserving graph embedding. In SIGKDD, pages 1105-1114. ACM,
2016.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: bringing order to the web. 1999.

Hannu Reittu, Ilkka Norros, Tomi Réty, Marianna Bolla, and Fialop Bazso. Regular
decomposition of large graphs: Foundation of a sampling approach to stochastic
block model fitting. Data Science and Engineering, 4(1):44-60, 2019.

CH Ren, Luyi Mo, CM Kao, CK Cheng, and DWL Cheung. Clude: An efficient
algorithm for lu decomposition over a sequence of evolving graphs. In EDBT,
2014.

Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and Eli Upfal. Fast
distributed pagerank computation. Theoretical Computer Science, 561:113-121,
2015.

Yingxia Shao, Bin Cui, Lei Chen, Mingming Liu, and Xing Xie. An efficient
similarity search framework for simrank over large dynamic graphs. PVLDB,
8(8):838-849, 2015.

Kijung Shin, Jinhong Jung, Lee Sael, and U. Kang. BEAR: block elimination
approach for random walk with restart on large graphs. In SIGMOD, pages
1571-1585, 2015.

Nikita Spirin and Jiawei Han. Survey on web spam detection: principles and
algorithms. SIGKDD Explorations, 13(2):50-64, 2011.

Boyu Tian and Xiaokui Xiao. SLING: A near-optimal index structure for simrank.
In SIGMOD, pages 1859-1874, 2016.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Miiller. Verse:
Versatile graph embeddings from similarity measures. In WWW, pages 539-548.
International World Wide Web Conferences Steering Committee, 2018.

Petar VeliA)koviAG, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro LiAS, and Yoshua Bengio. Graph attention networks, 2017.

Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. Hubppr:
Effective indexing for approximate personalized pagerank. PVLDB, 10(3):205-216,
2016.

Sibo Wang, Youze Tang, Xiaokui Xiao, Yang Yin, and Zengxiang Li. Hubppr:
Effective indexing for approximate personalized pagerank. In PVLDB, 2016.
Sibo Wang and Yufei Tao. Efficient algorithms for finding approximate heavy hit-
ters in personalized pageranks. In Proceedings of the 2018 International Conference
on Management of Data, pages 1113-1127, 2018.

Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. FORA: simple
and effective approximate single-source personalized pagerank. In KDD, pages
505-514, 2017.

Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Yu Liu, Xiaoyong Du, and
Ji-Rong Wen. Prsim: Sublinear time simrank computation on large power-law
graphs. In Proceedings of the 2019 International Conference on Management of
Data, pages 1042-1059, 2019.

Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong
Wen. Topppr: top-k personalized pagerank queries with precision guarantees on
large graphs. In SIGMOD, pages 441-456. ACM, 2018.

Yubao Wu, Ruoming Jin, and Xiang Zhang. Fast and unified local search for
random walk based k-nearest-neighbor query in large graphs. In SIGMOD 2014,
pages 1139-1150, 2014.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with
jumping knowledge networks. CoRR, abs/1806.03536, 2018.

Yuan Yin and Zhewei Wei. Scalable graph embeddings via sparse transpose
proximities. CoRR, abs/1905.07245, 2019.

Weiren Yu and Xuemin Lin. IRWR: incremental random walk with restart. In
SIGIR, pages 1017-1020, 2013.

Weiren Yu and Julie A. McCann. Efficient partial-pairs simrank search on large
networks. Proceedings of the Vldb Endowment, 8(5):569-580.

Weiren Yu and Julie A. McCann. Random walk with restart over dynamic graphs.
In ICDM, pages 589-598, 2016.

Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate personalized
pagerank on dynamic graphs. In KDD, pages 1315-1324, 2016.

Fanwei Zhu, Yuan Fang, Kevin Chen-Chuan Chang, and Jing Ying. Incremental
and accuracy-aware personalized pagerank through scheduled approximation.
PVLDB, 6(6):481-492, 2013.

Research Track Paper

A APPENDIX
A.1 Proof of Lemma 4.3

Proor. During a push operation through edge (u, v) from level
£ to level (£ + 1), we denote Xy, 1(u,v) as 7p41(u, t)’s increments
caused by this push. According to Algorithm 2, X, (u,v) is as-

—(1_;317?(1(;;’) determlmstlcally if —(1 “)”[(S;’ £) > ﬁg) Oth-

erwise, Xy, 1(u,v) will be %W,
or 0 with the left probability. If we use {7} to denote the set of
7te(v, t) for all v € V, the expectation of X¢,1(u, v) conditioned on

all estimators {7y} can be derived that

signed as

m with probability

a ;l)frzg(fi t) lf(l a)ﬂe((l)} H S Té))
ElX , A — u ’ dour(u
[Xes1(w0) [{7c}] { 0 AR T i,
(1 =a)ip(v,t)
dowr(u) ’
)

Because fi711(u, t) = 2y eN,,, (u) Xe+1(t, v), the conditional expec-
tation of 7y 1(u, t) conditioned on the value of all estimators {7, }
at {-th level can be derived that

Bl | {1 =B > Xpa(0) | {2}

V€N (u)

- Z E[Xp1(u,0) | {#e}].

VENour(u)

Z ((l - ll)f'[g(v, t)) .
0 Nguy (1) dout (1)
E[E [#ei1(u, t) | {#¢}]], it follows that

R By (M)

VNt (1) doyt(u)

E[#;(x,t)] = mi(x,t) holds for Vx € V and i = 0 in the initial state,
because E [#y(t,t)] = mo(t,t) = a and E [7o(u, t)] = mo(u,t) = 0
(u # t). Assume E [#;(x, t)] = mi(x, t) holds for Vx € Vandi < ¢.

We can derive that
Z ((1 = a)E [#¢(v, t)])

Based on equation (9), we have

Eps(u,t) | {7ie}] = (10)

Because E [#p41(u,)] =

E[p41(u.1)] =

VEN,u (1) dout(u)
(1 - a)me(v,t)
= Z (d—(u) = mpp1(u, 1),
0€Ngur (1) out
which testifies the unbiasedness. |

A.2 Proof of Lemma 4.4
Proor. During each push operation, the randomness comes

from the second scenario that A-a)ze(v,t)

ab_ i
Dot () i) Focus on this

situation,
Var [Xg.1(u,0) | {#,}] S E[X7,,(w,0) | {#}]

~ (ab)2 Mu) - (1-)ie(v,t) ad (1-a)ie(v,t)

Au) af - dour(w) Aw) dout(u)
Note that for each v € Noy (1), Xp41(u, v) is independent with each
other because of the independent generation for the random num-
ber r in Algorithm 2. Applying 7t¢41(4, 1) = Xy en, ., (u) Xe+1(%, V),
the conditional variance of 7y, 1(u, t) is followed that

666

KDD 20, August 23-27, 2020, Virtual Event, USA

Var [#g,1(u, 1) [{#}] = Var[Xp41(w,0) [{#¢}]

2

VENou: (1)
_ab -ty O
MW T deurw)

By the total variance law, Var (741 (u, t)] = E [Var [7p,1(u, t) | {7 }]+
Var [E [#¢41(u, t) | {7¢}]]. Based on equation (11) and the unbiased-
ness of #y(v, t) proven in Lemma 4.3, we have

E[Var [Azs1 (s 1) | {e}]] < 3 (- @E [#¢(v.)]

- /1() veN, z(u) dout(u)
B a_@l (1 - a)me(v, t) a_@ .
S 2 dem G e

VENour(u) ()
12

Meanwhile, applying equation (10), we can derive

Var [E [#¢41(u.1) | {i}]] = Var UEMZEM (%ZS’”)
_(-a? .
LE)] .
7w UE%I(M)M(U)

The convexity of variance implies that:

2.

VENour(u)

Var Z Var [#(v, t)] .

VENour(u)

ﬁ'[(’U, t) < dout(u) .

Therefore, we can rewrite Var [E [, (u,t) | {#¢}]] as below:

Ry
Var B listen) | (o)) < G D Varlg(w.).
T veNour(w)

(13)
Applying equation (12) and equation (13), we can derive that

e (U,) +

Var [#g41(u, t)] < dout(u)

< /1() Z Var [#¢(v, t)] .

VENu s (1)
Var|#i(x,)] < 785 -7

Var[#y(x,t)] =
Vx € V and i < {. Using mathematical induction, we can derive

7i(x, t) holds for Vx € V when i = 0, because
0. Assume Var[7;(x, t)] < /1(j - i (x, t) holds for

that
(1-a)’0)
Varlg (0] < 505) e () + o UENOZW(;AU, t)
(1-a)f _ 0
/1() “mep1 (U t) + @) “mep (U, t) = W Ter1(Ust).

For relative error, we set A(u) = 1 that Var [#p.1(u,t)] < 0 -
mpe1(u,t).
For additive error, we set A(u) = v/doy+(u), and it follows that

0 (1 - a)re(v, 1)
Var [7, u,t)] < - T u,t —_— _—
e (u.0)] < M () = 205 UGNZ(e
our(tt)
Note that M 29_in the randomized scenario. So,
@ S AW
0 af ab?
Var [(u, 0] < 7~ 20 = BT s () = .
AMu) N) Aw) A%(w)

[m]

Research Track Paper

A.3 Proof of Lemma 4.5
Proor. Let Cpyq(u,v) denote the cost of one push operation

(1-a)#e(v, t)
through edge (u, v) from level £ to £ + 1. If Tt[(u) > l(u) the

push operation will be guaranteed once. Otherwise, the push hap-

M) (1-a)7e(v,1) . Hence, we can derive the
a0-doyt(u)

expectation of Cpy1(u, v) conditioned on the value of all estimators
{%¢} at {-th level{7,} that

pens with probability

1, lf (1- a)n[(v t) af
E[Cran(w.0) | {}] = { Moo
1- W, otherwise.
Note that if M > “—9, the conditional expectation
ur(u) Au)

E[Cri1(u,0) | {ﬂf}] satisfies that E[Cpi1(u,v) | {#¢}] =
Mu)-(-a)ite (0, 1) . Thus, we can derive that E [Cpy1(u,) | {7¢}]

a8-doys(u)
Mu)-(-a)ite(o,t) always holds. Applying the unbiasedness of

al-doys(u)
7t¢(v, t) according to Lemma 4.3, we have
Aw) - (1 —)y (v, 1)

E[E[Cosi(u.0) | {2e}]] = — = dour(u)

Recall that C;,;,; denotes the total cost in the whole process

and Cyopq1 = Zle 2ueV 2veN,u (u) Ci(u, v). The expectation of
Crotal can be derived that

Z 2,
i=1ueV veNyy,(u)

AMu) - (1 - a)mi—1(v, t) 1
af - dout(u) 9

<
<

E [Cf+1(us ’U)] =

E[Ctorall = E[Ci(u,v)]

(e8]

<2,),

i=1 u€Vo Ny (u)
According to the property of £-hop PPR that 3177

mi(u, t) = m(u, 1),

LG Z Au) - (u, t),

ueVv

E [Ctotal]<
which proves the lemma. O

A.4 Proof of Theorem 4.1

Proor. We first show that by truncating at the L = log,_, 0
hop, we only introduce an additive error of 8. More precisely, note
that 32, ., a(1-a)' < (1- a)L*) < 9. By setting a 0 that
is significantly smaller than the relative error threshold § or the
additive error bound ¢, we can accomodate the 6 additive error
without increasing the asymptotic query time.

According to Lemma 4.4, we have Var [7,(s, t)] < 07(s, t). By

Chebyshev inequality, we have

Pr [mg(s, £) = 14(s, 1)) = /307, (s, t)] <1/3.

We claim that this variance implies an ¢,-relative error for all
7e(s,t) > 30/¢2. For a proof, note that 6 < e27,(s,t)/3 and con-

sequently /307,(s,t) < +Je2mp(s, t)? = erme(s, t). It follows that

Pr[|ite(s, t) — me(s, t)| = erme(s, t)] < 1/3 for all zp(s,t) > 360/e2.

By setting 0 = E;—L(S, we obtain a constant relative error guarantee
for all m4(s,t) > §/L, and consequently a constant relative error
for n(s,t) > §. To obtain a high probability result, we can apply
the Median-of-Mean trick [12], which takes the median of O(log n)
independent copies of 7,(s, t) as the final estimator to 7y(s, t). This
trick brought the failure probability from 1/3 to 1/n? by increasing

Z Aw)- Z i, t).

667

KDD 20, August 23-27, 2020, Virtual Event, USA

the running time by a factor of O(log n). Applying the union bound
to n source nodes s € V and £ = 0,..., L, the failure probability
becomes 1/n. Finally, by setting A(u) = 1 in Lemma 4.5, we can
rewrite the time cost as below.

b 5 2,)=

B (Crorar] € =5 > M) n(u 1) =
uev uev

nn'(t)

where 7(t) represents t’s PageRank and nx(t) = 3, cy me(u, t)
2

according to PPR’s definition. By setting 6 = £3L and running

O(log n) independent copies of Algorithm 2, the time complexity

can be bounded by O ("”(t)l‘g)g") =0 ("”(t)) If we choose the

target node ¢ uniformly at random from set V, then E [7(¢)] = 7,

and the running time becomes O (3)

A.5 Proof of Theorem 4.2

PRrOOF. Applying Lemma 4.4, we have Var [7,(s, t)] < af?. Con-
sequently, we have Var [7(s, t)] = Var [Zézo (s, t)] < alf?. By
Chebyshev’s inequality, we have Pr [|fr(s, t) — (s, t)| = VSLaO] <
1/3. By setting 6 = ¢/V3La, it follows that 7 (s, t) is an ¢ additive
error for all zz(s, t). Similar to the proof of Theorem 4.1, we can use
the median of O(log n) independent copies of 7 (s, t) as the estima-
tor to reduce the failure probability from 1/3 to 1/n for all source
nodess € V.

For the time cost, Lemma 4.5 implies that

E(Crotarl < = PECRICE u;x/douxu (1)

Recall that we set 8 = ¢/V3La and run O(log n) independent copies
of Algorithm 2, it follows that the running time can be bounded by

0 (% Duev Vdout () - 7(u, t)). If ¢ is chosen uniformly at random,

we have) ;cy JT(u t) = 1. Ignoring the O notation, we have

E[Crorarl < - - Z > Vdour () - m(u,)
teVueV
1
Z Vdour(u) Z”(u)=~ ; Z dout ().
uev tev uev
By the AM-GM inequality, we have ; < Yuev Vdout(u) <
€ dou J
Zuev dow®) _ N7 Hence, E[Crorqr] < 1+ Tyey Vlour @) <

, and the theorem follows.

[m}

vd

	Abstract
	1 Introduction
	1.1 Motivations and Concrete Applications
	1.2 Problem defintion and Contributions

	2 Preliminary
	2.1 Existing Methods
	2.2 Other related work

	3 The RBS Algorithm
	4 Analysis
	5 applications
	6 Experiments
	6.1 Single-Target Query
	6.2 Applications

	7 Conclusion
	8 ACKNOWLEDGEMENTS
	References
	A appendix
	A.1 Proof of Lemma 4.3
	A.2 Proof of Lemma 4.4
	A.3 Proof of Lemma 4.5
	A.4 Proof of Theorem 4.1
	A.5 Proof of Theorem 4.2

