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ABSTRACT
Personalized PageRank (PPR) is a widely used node proximity mea-

sure in graph mining and network analysis. Given a source node s
and a target node t , the PPR value π (s, t) represents the probabil-
ity that a random walk from s terminates at t , and thus indicates

the bidirectional importance between s and t . The majority of the

existing work focuses on the single-source queries, which asks for

the PPR value of a given source node s and every node t ∈ V . How-

ever, the single-source query only re�ects the importance of each

node t with respect to s . In this paper, we consider the single-target
PPR query, which measures the opposite direction of importance

for PPR. Given a target node t , the single-target PPR query asks

for the PPR value of every node s ∈ V to a given target node

t . We propose RBS, a novel algorithm that answers approximate

single-target queries with optimal computational complexity. We

show that RBS improves three concrete applications: heavy hit-

ters PPR query, single-source SimRank computation, and scalable

graph neural networks. We conduct experiments to demonstrate

that RBS outperforms the state-of-the-art algorithms in terms of

both e�ciency and precision on real-world benchmark datasets.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Infor-
mation systems→ Data mining.
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1 INTRODUCTION
Personalized PageRank (PPR), as a variant of PageRank [46], focuses
on the relative signi�cance of a target node with respect to a source

node in a graph. Given a directed graph G = (V ,E) with n nodes

andm edges, the PPR value π (s, t) of a target node t with respect

to a source node s is de�ned as the probability that an α -discounted
random walk from node s terminates at t . Here an α-discounted
randomwalk represents a random traversal that, at each step, either

terminates at the current node with probability α , or moves to a

random out-neighbor with probability 1 − α . For a given source

node s , the PPR value of each node t sum up to

∑
t ∈V π (s, t) = 1,

and thus π (s, t) re�ects the signi�cance of node t with respect to

the source node s . On the other hand, PPR to a target node can be

related to PageRank: the summation of PPR from each node s ∈ V
to a given target node t is

∑
s ∈V π (s, t) = n · π (t), where π (t) is the

PageRank of t [46]. Large π (s, t) also shows the great contribution

s made for t ’s PageRank, the overall importance of t . Therefore,
π (s, t) indicates bidirectional importance between s and t .

PPR has widespread applications in the area of data mining, in-

cluding web search [23], spam detection [4], social networks [21],

graph neural networks [29, 63], and graph representation learn-

ing [45, 54, 64], and thus has drawn increasing attention during the

past years. Studies on PPR computations can be broadly divided into

four categories: 1) single-pair query, which asks for the PPR value

of a given source node s and a given target node t ; 2) single-source
query, which asks for the PPR value of a given source node s to
every node t ∈ V as the target; 3) single-target query, which asks

for the PPR value of every node s ∈ V to a given target node t . 4)
all-pairs query, which asks for the PPR value of each pair of nodes.

While single-pair and single-source queries have been extensively

studied [37, 39, 59, 61], single-target PPR query is less understood

due to its hardness. In this paper, we study the problem of e�ciently

computing the single-target PPR query with error guarantee. We

demonstrate that this problem is a primitive of both practical and

theoretical interest.
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Table 1: Complexity of single-source and single-target PPR queries.

Single-Source PPR

Single-Target PPR

Random target node Worst case

Monte-Carlo [14] Backward Search [38] Ours Backward Search [38] Ours

Relative error Õ
(
1

δ

)
O

(
¯d
δ

)
Õ

(
1

δ

)
O

(∑
u∈V

dout (u)·π (u,t )
δ

)
Õ

(
nπ (t )
δ

)
Additive error Õ

(
1

ε2

)
O

(
¯d
ε

)
Õ

( √
¯d
ε

)
O

(∑
u∈V

dout (u)·π (u,t )
ε

)
Õ

(∑
u∈V

√
dout (u)·π (u,t )

ε

)
1.1 Motivations and Concrete Applications
We �rst give some concrete applications of the single-target PPR

query. We will elaborate on how to use our single-target PPR algo-

rithm to improve the complexity for these applications in Section 5.

Approximate heavy hitters in PPR. The heavy hitters PPR prob-

lem [58] asks for all nodes s ∈ V such that π (s, t) > ϕ · nπ (t) with
a given node t and a parameter ϕ. As opposite to the single-source

PPR query, which asks for the important nodes for a given source

node s , heavy hitters PPR query asks for the nodes s ∈ V for which

t is important. The motivation of the heavy hitters PPR query is

to consider the opposite direction of importance as a promising

approach to enhance the e�ectiveness of recommendation. Intu-

itively, the single-target query is a generalization of heavy hitters

PPR query.

Approximate single-source SimRank. SimRank is awidely used

node similarity measure proposed by Jeh and Widom[22]. Com-

pared with PPR, SimRank is symmetric and thus is of independent

interest in various graph mining tasks [25, 32, 34, 41, 52]. A large

number of works [14, 24, 30, 31, 33, 35, 43, 50, 53, 66] focus on the

single-source SimRank query, which asks for the SimRank similarity

between a given nodeu and every other nodev ∈ V . Following [50],

we can formulate SimRank in the framework of α-discounted ran-

dom walks. In particular, if we revert the direction of every edge

in the graph, the SimRank similarity s(u,v) of node u and v equals

to the probability that two α-discounted random walks from u and

v visit at the same node w with the same steps. As a result, it is

shown in [60] that the bottleneck of the computational complexity

of single-source SimRank depends on how fast we can compute

the single-target PPR value for each node v and the target node

w ∈ V . Hence, by improving the complexity of single-target PPR

query, we can also improve the performance of the state-of-the-art

single-source SimRank algorithms.

Approximate PPR matrix and graph neural networks. In re-

cent years, graph neural networks have drawn increasing atten-

tion due to their applications in various machine learning tasks.

Graph neural networks focus on learning a low-dimensional la-

tent representation for each node in the graph from the structural

information and the node features. Many graph neural network

algorithms are closely related to the approximate PPR matrix prob-

lem, which computes the approximate PPR value for every pair

of nodes s, t ∈ V . For example, a few unsupervised graph embed-

ding methods, such as HOPE [45] and STRAP [64], suggest that

directly computing and decomposing the approximate PPR matrix

into low-dimensional vectors achieves satisfying performance in

various downstream tasks. On the other hand, several recent works

on semi-supervised graph neural networks, such as APPNP [28],

PPRGo [63], and GDC [29], propose to use the (approximate) PPR

matrix to smooth the node feature matrix. It is shown [29] that the

approximate PPR matrix outperforms spectral methods, such as

GCN [27] and GAT [55], in various applications.

The computation bottleneck for these graph learning algorithms

is the computation of the approximate PPR matrix, as the power

method takes at least O(n2) time and space and is not scalable

on large graphs. On the other hand, there are two alternative ap-

proaches to compute the approximate PPR matrix: issue a single-

source query to every source node s ∈ V to compute π (s, t), t ∈ V ,

or issue a single-target query to every target node t ∈ V to compute

π (s, t), s ∈ V . As we shall see in Section 5, the later approach is

superior as it can provide the absolute error guarantee. Therefore,

by proposing a faster single-target PPR algorithm, we also improve

the computation time of the approximate PPR matrix. In particu-

lar, we show that our new single-target PPR algorithm computes

the approximate PPR matrix in time sub-linear to the number of

edges in the graphs, which signi�cantly improves the scalability of

various graph neural networks.

Theoreticalmotivations.Unlike the single-source PPR query, the

complexity of the single-target PPR query remains an open problem.

In particular, given a source node s , it is known that a simple Monte-

Carlo algorithm can approximately �nd all nodes t ∈ V such that

π (s, t) ≥ δ with constant probability in Õ(1/δ ) time (see Section 2

for a detailed discussion), where Õ denotes the Big-Oh notation

ignoring the log factors. Note that there are at most O(1/δ ) nodes
t with π (s, t) ≥ δ , which implies that there is a lower bound of

Ω(1/δ ) and thus the simple Monte Carlo algorithm is optimal. On

the other hand, given a random target node t , the state-of-the-art
single-target PPR algorithm �nds all nodes s ∈ V with π (s, t) ≥ δ
in Õ( ¯d/δ ) time, where

¯d is the average degree of the graph. Thus,

there is anO( ¯d) gap between the upper bound and lower bound for

the single-target PPR problem. For dense graphs such as complete

graphs, the O( ¯d) gap is signi�cant. Therefore, an interesting open

problem is: is it possible to achieve the same optimal complexity as

the single-source PPR query for the single-target PPR query?

1.2 Problem de�ntion and Contributions
Problem de�nition. In this paper, we consider the problem of

e�ciently computing approximate single-target PPR queries. Fol-

lowing [10], the approximation quality is determined by relative

or additive error. More speci�cally, we de�ne approximate single-

target PPR with additive error as follows.

De�nition 1.1 (Approximate Single-Target PPR with additive error).
Given a directed graphG = (V ,E), a target node t , an additive error

bound ε , an approximate single-target PPR query with additive

error returns an estimated PPR value π̂ (s, t) for each s ∈ V , such
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that

|π̂ (s, t) − π (s, t)| ≤ ε (1)

holds with a constant probability.

For single-target PPR query with relative error, we follow the

de�nition of [10].

De�nition 1.2 (Approximate Single-Target PPR with relative error).
Given a directed graph G = (V ,E), a target node t , and a threshold

δ , an approximate single-target PPR with relative error returns

an estimated PPR value π̂ (s, t) for each s ∈ V , such that for any

π (s, t) > δ ,

|π̂ (s, t) − π (s, t)| ≤
1

10

· π (s, t) (2)

holds with a constant probability.

Note that to simplify the presentation, we assume that the rela-

tive error parameter and success probability are constants follow-

ing [10]. We can boost the success probability to arbitrarily close to

1 with the Median-of-Mean trick [12], which only adds a log factor

to the running time. For these two types of error, we propose Ran-

domized Backward Search (RBS), a uni�ed algorithm that achieves

optimal complexity for the single-target PPR query. We summarize

the properties of the RBS algorithm as follows.

• Given a target node t , RBS answers a single-target PPR querywith

constant relative error for all π (s, t) ≥ δ with constant probability

using Õ
(
nπ (t )
δ

)
time. This result suggests that RBS achieves

optimal time complexity for the single-target PPR query with

relative error, as there may be O
(
nπ (t )
δ

)
nodes with π (s, t) ≥ δ .

• Given a random target node t , RBS answers a single-target PPR
query with an additive error ε with constant probability using

Õ
(√

¯d
ε

)
time. This query time complexity improves previous

bound for single-targe PPR query with additive error by a factor

of

√
¯d . Table 1 presents a detailed comparison between RBS and

the state-of-the-art single-target PPR algorithm.

We demonstrate that the RBS algorithm improves the complexity

of single-source SimRank computation, heavy hitters PPR query,

and PPR-related graph neural networks in Section 5. We also con-

duct an empirical study to evaluate the performance of RBS. The

experimental results show that RBS outperforms the state-of-the-art

single-target PPR algorithm on real-world datasets.

2 PRELIMINARY
2.1 Existing Methods
Power Method is an iterative method for computing single-source

and single-target PPR queries [46]. Recall that, at each step, an

α-discounted random walk terminates at the current node with

α probability or moves to a random out-neighbor with (1 − α)
probability. This process can be expressed as the iteration formula

with single-source PPR vector.

®πs = (1 − α) ®πs · P + α · ®es , (3)

where ®πs denotes the PPR vector with respect to a given source

node s , ®es denotes the one-hot vector with ®es (s) = 1, and P denotes

the transition matrix where

Table 2: Table of notations.

Notation Description

n,m the numbers of nodes and edges in G

Nin (u), Nout (u) the in/out neighbor set of node u

din (u), dout (u) the in/out degree of node u

π (s, t ), π̂ (s, t ) the true and estimated PPR values of node s to t .

π` (s, t ), π̂` (s, t ) the true and estimated `-hop PPR values of node

s to t .

α the teleport probability that a random walk termi-

nates at each step

ε the additive error parameter

δ the relative error threshold

¯d the average degree,
¯d = m

n

Õ the Big-Oh notation ignoring the log factors

P(i, j) =

{
1

dout (vi )
, i f vj ∈ Nout (vi ),

0, otherwise .
(4)

Reversing this process, we can also compute single-target PPR

values with the given target node t . The iteration formula should

be adjusted correspondingly:

®πt = (1 − α) ®πt · P> + α · ®et . (5)

Power Method can be used to compute the ground truths for

the single-source and single-target query. After ` = log
1−α (ε) it-

erations, the absolute error can be bounded by (1 − α)` = ε . Since
each iteration takes O(m) time, it follows that the Power Method

computes the approximate single-target PPR query with additive

error in O
(
m · log 1

ε

)
time. Note that the dependence on the error

parameter ε is logarithmic, which implies that the Power Method

can answer single-target PPR queries with high precision. However,

the query time also linearly depends on the number of edges, which

limits its scalability on large graphs.

Backward Search [38] is a local search method that e�ciently

computes the single-target PPR query on large graphs. Algorithm 1

illustrates the pseudo-code of Backward Search. We use residue

rb (s, t) to denote the probability mass to be distributed at node s ,

and reserve πb (s, t) denotes the probability mass that will stay at

s permanently. For initialization, Backward Search sets rb (u, t) =

πb (u, t) = 0 for ∀u ∈ V , except for the residue rb (t , t) = 1. In each

push operation, it picks the node v with the largest residue rb (v, t),

and transfer a fraction of α to πb (v, t), the reserve of v . Then the

algorithm transfers the other (1 − α) faction to the in-neighbors of

v . For each in-neighbor u of v , the residue rb (u, t),u ∈ Nin (v) is

incremented by
(1−α )rb (v,t )

dout (u)
. After all in-neighbors are processed,

the algorithm sets the residue of v to be 0. The process ends when

the maximum residue descends below the error parameter ε . Fi-

nally, Backward Search uses the reserve πb (s, t) as the estimator

for π (s, t), s ∈ V . Backward Search utilizes the following property

of the single-target PPR vector.

Proposition 2.1. Denote I {u = v} as the indicator variable such
that I {u = v} = 1 if u = v . For ∀s, t ∈ V , π (s, t) satis�es that

π (s, t) =
∑

u ∈Nin (t )

1 − α

dout (u)
· π (s,u) + α · I {s = t}.

(6)
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Algorithm 1: Backward Search [38]

Input: GraphG = (V ,E), target node t , teleport probability α ,
additive error parameter ε

Output: Reserve πb (s, t) for all s ∈ V
1 for each u ∈ V do
2 rb (u, t),πb (u, t) ← 0;

3 rb (t , t) ← 1;

4 while The largest rb (v, t) > ε do
5 πb (v, t) ← πb (v, t) + α · rb (v, t);

6 for each u ∈ N in (v) do

7 rb (u, t) ← rb (u, t) + (1 − α) · r
b (v,t )

dout (u)

8 rb (v, t) ← 0;

9 return πb (s, t) as the estimator for π (s, t), s ∈ V ;

Utilizing this property, it is shown in [38] that the residues and

reserves of Backward Search satis�es the following invariant:

π (s, t) = πb (s, t) +
∑
u ∈V

rb (u, t) · π (s,u). (7)

Note that when the Backward Search algorithm terminates, all

residues rb (u, t) ≤ ε . It follows that πb (s, t) ≤ π (s, t) ≤ πb (s, t) +
ε
∑
u ∈V π (s,u) = πb (s, t) + ε , where

∑
u ∈V π (s,u) = 1. There-

fore, Backward Search ensures an additive error of ε . It is shown
in [38] that the running time of Backward Search is bounded by

O
(∑

u ∈V
din (u)·π (u,t )

ε

)
. We claim that the running time of Back-

ward Search can also be bounded byO
(∑

u ∈V
dout (u)·π (u,t )

ε

)
. Due

to space limitations we omit this proof, and refer the reader to the

full version of the paper [1]. If the target node t is randomly se-

lected, the complexity becomesO(
¯d
ε ), where

¯d is the average degree

of the graph. For relative error, we can set δ = Θ(ε) and obtain a

worst-case complexity of O
(∑

u ∈V
dout (u)·π (u,t )

δ

)
and an average

complexity of O(
¯d
δ ), respectively.

Single-source algorithms. The Monte-Carlo algorithm [14] com-

putes the approximate single-source PPR query by sampling abun-

dant random walks from source node s and using the proportion of

the random walks that terminate at t as the estimator of π (s, t). Ac-
cording to Cherno� bound, the number of random walks required

for an additive error ε is Õ( 1ε2 ), while the number of random walks

required to ensure constant relative error for all PPR larger than δ is

Õ( 1δ ). This simple method is optimal for single-source PPR queries

with relative error, as there are at most O( 1δ ) nodes t with PPR

π (s, t) ≥ δ . However, the Monte-Carlo algorithm does not work for

single-target queries, as there lacks of a mechanism for sampling

source nodes from a given target node. Moreover, it remains an

open problem whether it is possible to achieve the same optimal

O( 1δ ) complexity for the single-target query.

Forward Search [6] is the analog of Backward Search, but for

single-source PPR queries. Similar to Backward Search, Forward

Search uses residue r f (s,u) to denote the probability mass to be

distributed at node u, and π f (s,u) to denote the probability mass

that will stay at node u permanently. For initialization, Forward

Search sets r f (s,u) = π f (s,u) = 0 for ∀u ∈ V , except for the residue

r f (s, s) = 1. In each push operation, it picks the node u with the

largest residue/degree ratio r f (s,u)/dout (u), and transfer a fraction

of α to π f (s,u), the reserve of u. Then the algorithm transfers the

other (1−α) faction to the out-neighbors ofu. For each out-neighbor

v of u, the residue r f (s,v) is incremented by
(1−α )r f (s,u)

dout (u)
. After all

in-neighbors are processed, the algorithm sets the residue of u to

be 0. The process ends when the maximum residue/degree ratio

descends below the error parameter ε . Finally, Forward Search uses

the reserve π f (s,u) as the estimator for π (s,u), u ∈ V .

As shown in [6], Forward Search runs in O(1/ε) time. However,

the major problemwith Forward Search is that it can only ensure an

additive error of εdout (u) for each PPR value π (s,u) on undirected

graphs. Compared to the ε error bound by Backward Search, this

weak error guarantee makes Forward Search unfavorable when

we need to compute the approximate PPR matrix in various graph

neural network applications. We also note that there are a few

works [57, 59, 61] that combines Forward Search, Backward Search

and Monte-Carlo to answer single-single PPR queries. However,

these methods are not applicable to the single-target PPR queries.

2.2 Other related work
PPR has been extensively studied for the past decades [5–9, 11, 13–

20, 23, 26, 36, 37, 40, 42, 44, 48, 49, 51, 59, 62, 65, 67–69]. Existing

work has studied other variants of PPR queries. Research work on

exact single-source queries [11, 26, 42, 46, 51, 69] aims at improving

the e�ciency and scalability of the Power Method. Research work

on single-source top-k queries [36, 37, 40, 42, 56, 59, 69] focuses

on (approximately) returning k nodes with the highest PPR values

to a given source node. Single-pair PPR queries are studied by

[14, 36, 37, 40, 56], which estimates the PPR value of a given pair of

nodes. PPR computation has also been studied on dynamic graphs

[9, 11, 44, 47, 48, 67, 68] and in the distributed environment [8,

19]. These studies, however, are orthogonal to our work. Table 2

summaries the notations used in this paper.

3 THE RBS ALGORITHM
High-level ideas. In this section, we present Randomized Back-
ward Search (RBS), an algorithm that achieves optimal query cost

for the single-target query. Compared to the vanilla Backward

Search (Algorithm 1), we employ two novel techniques. First of

all, we decompose the PPR value π (s, t) into the `-hop Personal-
ized PageRank π`(s, t), which is de�ned as the probability that an

α-discounted random walk from s terminates at t at exactly ` steps.
For di�erent `, such events are mutually exclusive, and thus we

can compute the original PPR value by π (s, t) =
∑∞

`=0 π`(s, t). Fur-

thermore, we can truncate the summation to π̂ (s, t) =
∑L

`=0 π`(s, t)
where L = log

1−α θ , which only adds a small additive error θ to the

�nal estimator and θ = Õ (ε). Secondly, we introduce randomiza-

tion into the push operation of the Backward Search algorithm to

reduce the query cost. Recall that in the vanilla Backward Search

algorithm, each push operation transfers an (1 − α) faction of the

probability mass from the current nodeu to each of its in-neighbors.

This operation is expensive as it touches all the in-neighbors of

v and thus leads to the
¯d overhead. We avoid this complexity by

pushing the probability mass to a small random subset of v’s in-
neighbors. The probability for including an in-neighbor u depends
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Figure 1: Sketch of Randomized Backward Search

on the out-degree of u. We show that this randomized push op-

eration is unbiased and has bounded variance, which enables us

to derive probabilistic bounds for both additive error and relative

error.

Sorted adjacency lists. Before presenting our algorithm, we as-

sume the in-adjacency list of each node is sorted in the ascending

order of the out-degrees. More precisely, let {u1, . . . ,ud } denote the
in-adjacency list of v . We assume that dout (u1) ≤ . . . , ≤ dout (ud ).
We claim that it is possible to sort all the in-adjacency lists in

O(m+n) time, which is asymptotically the same as reading the graph

into the memory. This means we can pre-sort the graph as we read

the graph into the main memory without increasing the asymptotic

cost. More speci�cally, we construct a tuple (u,v,dout (u)) for each
edge (u,v) ∈ E, and use counting sort to sort (u,v,dout (u)) tuples
in the ascending order of dout (u). Since each dout (u) is bounded
by n, and there arem tuples, the cost of counting sort is bounded

by O(m + n). Finally, for each u,v,dout (u), we append u to the

end of v’s in-adjacency list. This preprocessing algorithm runs in

O(m + n) time, which is asymptotically the same as reading the

graph structure.

Algorithm description. Algorithm 2 illustrates the pseudocode

of the RBS algorithm. Consider a directed graph G = (V ,E), target
node t , and a teleport probability α . The algorithm takes in two ad-

ditional parameters: error parameter θ and sampling function λ(u).
We can manipulate these two parameters to obtain the additive or

relative error guarantees. Recall that Õ denotes the Big-Oh notation

ignoring the log factors. For single-target PPR query with additive

error, we set θ to be Õ(ε), the maximum additive error allowed, and

λ(u) =
√
dout (u). For relative error, we set θ = Õ(δ ), the threshold

for constant relative error guarantee, and λ(u) = 1.

For initialization, we set the maximum number of hops L to be

log
1−α θ (line 1). We then initialize the estimators π̂`(s, t) = 0 for

∀s ∈ V and ∀` ∈ [0,L] except for π0(t , t) = α (Line 2-3). We itera-

tively push the probability mass from level 0 to L−1 (line 4). At level

Algorithm 2: Randomized Backward Search

Input: Directed graph G = (V ,E) with sorted adjacency lists,

target node t ∈ V , teleport probability α , error
parameter θ , sampling function λ(u)

Output: Estimator π̂ (s, t) for each s ∈ V
1 L← log

1−α θ ;

2 π̂`(s, t) ← 0 for ` = 0, . . . ,L, s ∈ V ;

3 π̂0(t , t) ← α ;

4 for ` = 0 to L − 1 do
5 for each v ∈ V with non-zero π̂`(v, t) do
6 for each u ∈ Nin (v) and dout (u) ≤

λ(u)·(1−α )π̂` (v,t )
αθ

do
7 π̂`+1(u, t) ← π̂`+1(u, t) +

(1−α )π̂` (v,t )
dout (u)

;

8 r ← rand(0, 1);

9 for each u ∈ Nin (v) and
λ(u)·(1−α )π̂` (v,t )

αθ < dout (u) ≤
λ(u)·(1−α )π̂` (v,t )

rαθ do
10 π̂`+1(u, t) ← π̂`+1(u, t) +

αθ
λ(u) ;

11 return all non-zero π̂ (s, t) =
∑L

`=0 π̂`(s, t) for each s ∈ V ;

`, we pick a node v ∈ V with non-zero estimator π̂`(v, t), and push

π̂`(v, t) to a subset of its in-neighbors (line 5). More precisely, for an

in-neighbor u with out-degree dout (u) ≤
λ(u)·(1−α )π̂` (v,t )

αθ , we de-

terministically push a probability mass of
(1−α )π̂` (v,t )

dout (u)
to the (`+1)-

hop estimator π̂`+1(u, t) (lines 6-7). Recall that the in-neighbors ofv
are sorted according to their out-degrees. Therefore, we can sequen-

tially scan the in-adjacency list of v until we encounter the �rst in-

neighbor u with dout (u) >
λ(u)·(1−α )π̂` (v,t )

αθ . For in-neighbors with

higher out-degrees, we generate a random number r from (0, 1), and

push a probability mass of
αθ
λ(u) to π̂`+1(u, t) for each in-neighbor

u with dout (u) ≤
λ(u)·(1−α )π̂` (v,t )

rαθ (lines 8 -10). Similarly, we can

sequentially scan the in-adjacency list of v until we encounter the

�rst in-neighbor u with dout (u) >
λ(u)·(1−α )π̂` (v,t )

rαθ . Finally, after

all L hops are processed, we return π̂ (s, t) =
∑L

`=0 π̂`(s, t) as the es-
timator for each π (s, t), s ∈ V . The sketch map of the above process

is shown in Figure 1.

4 ANALYSIS
In this section, we analyze the theoretical property of the RBS

algorithm. Recall that for single-target PPR query with additive

error, we set λ(u) to be
√
dout (u) and θ = Õ(ε) to be the error bound.

For relative error, we set λ(u) = 1 and θ = Õ(δ ), the threshold for

constant relative error guarantee. Recall that Õ denotes the Big-Oh

notation ignoring the log factors. Theorem 4.1 and 4.2 provide the

theoretical results of running time and error guarantee for the RBS

algorithm with additive and relative error, respectively.

Theorem 4.1. By setting λ(u) = 1 and θ = Õ(δ ), Algorithm 2
answers the single-target PPR queries with a relative error threshold
δ with high probability. The expected worst-case time cost is bounded

by Õ
(
nπ (t )
δ

)
. If the target node t is chosen uniformly at random from

V , the time cost becomes Õ
(
1

δ

)
.
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Theorem 4.2. By setting λ(u) =
√
dout (u) and θ = Õ(ε), Algo-

rithm 2 answers the single-target PPR queries with an additive error
parameter ε with high probability. The expected worst-case time cost
is bounded by

E[Cost] = Õ

(
1

ε

∑
u ∈V

√
dout (u) · π (u, t)

)
.

If the target node t is chosen uniformly at random from V , the time

cost becomes Õ
(√

¯d
ε

)
, where ¯d is the average degree of the graph.

To prove Theorem 4.1 and 4.2, we need several technical lemmas.

In particular, we �rst prove that Algorithm 2 provides an unbiased

estimator for the `-hop PPR values π`(s, t).
Lemma 4.3. Algorithm 2 returns an estimator π̂`(s, t) for each

π`(s, t) such that E [π̂`(s, t)] = π`(s, t) holds for ∀s ∈ V and ` ∈
{0, 1, 2, ...,L}.

Next, we bound the variance of the `-hop estimators.

Lemma 4.4. For any s ∈ V and ` ∈ {0, 1, 2, ...,L}, the variance of
each estimator π̂`(s, t) obtained by Algorithm 2 satis�es that:

1) If we set λ(u) = 1, then Var [π̂`(s, t)] ≤ θπ`(s, t).

2) If we set λ(u) =
√
dout (u), then Var [π̂`(s, t)] ≤ αθ2.

The following lemma analyzes the expected query cost of the

RBS algorithm.

Lemma 4.5. LetCtotal denote the total cost during the whole push
process from level 0 to level (L−1), the expected time cost of algorithm 2
can be expressed as that

E [Ctotal ] ≤
1

αθ

∑
u ∈V

λ(u) · π (u, t).

Note that λ(u) is an adjustable sampling function that balances

the variance and time cost. In our case, it is a function of node u.
Hence, we do not extract λ(u) from the last summation symbol.

With the help of Lemma 4.3, 4.4 , and 4.5, we are able to prove

Theorem 4.1 and 4.2. For the sake of readability, we defer all proofs

to the appendix.

5 APPLICATIONS
In this section, we discuss how the RBS algorithm improves the

three concrete applications mentioned in Section 1: heavy hitters

PPR query, single-source SimRank computation, and approximate

PPR matrix computation.

Heavy hitters PPR computation. Following the de�nition

in [58], we de�ne the c-approximate heavy hitter as follows.

De�nition 5.1 (c-approximate heavy hitter). Given a real value

0 < ϕ < 1, a constant real value 0 < c < 1, two nodes s, t in V , we
say that s is:

• a c -absolute ϕ -heavy hitter of t if π (s, t) > (1 + c)ϕ · nπ (t);
• a c -permissible ϕ-heavy hitter of t if (1 − c)ϕ · nπ (t) ≤ π (s, t) ≤
(1 + c)ϕ · nπ (t);
• not a c -approximate ϕ -heavy hitter of t , otherwise.

Given a target node t , a heavy hitter algorithm is required to

return all c -absolute ϕ -heavy hitters and to exclude all nodes that

are not a c -approximate ϕ -heavy hitter of t . Wang et al. utilizes

the traditional Backward Search to derive the c-approximate heavy

hitter[58]. The time complexity is O
(∑

u ∈V
dout (u)·π (u,t )

ϕnπ (t )

)
in the

worst case.

On the other hand, by running the RBS algorithm with relative

error threshold δ = cϕnπ (t), we can return the c-approximate

heavy hitter for node t with high probability. By Theorem 4.1, the

running time of RBS algorithm is bounded by Õ
(
nπ (t )
δ

)
= Õ

(
1

ϕ

)
.

Note that this complexity is optimal up to log factors, as there may

beO
(
1

ϕ

)
heavy hitters for node t . Therefore, RBS achieves optimal

worst-case query complexity for the c-approximate heavy hitter

problem.

Single-source SimRank computation. Recall that if we revert
the direction of every edge in the graph, the SimRank similar-

ity s(u,v) of node u and v equals to the probability that two α-
discounted random walks from u and v visit at the same node

w with the same steps. PRSim [60] and SLING [53], two state-

of-the-art SimRank algorithms, formulate the SimRank in terms

of `-hop PPR: s(u,v) = 1

(1−
√
c)2

∑∞
`=0

∑
w ∈V π`(u,w)π`(v,w)η(w),

where π`(u,w) is the `-hop PPR with decay factor α = 1 −
√
c ,

and η(w) is a value called the last meeting probability. SLING [53]

proposes to use Backward Search to precompute an approximation

of π`(v,w) with additive error ε for each w,v ∈ V , ` = 0, . . . ,∞,

while PRSim [60] only precomputes an approximation of π`(v,w)
for nodew with large PageRanks. Recall that the running time of

the Backward Search algorithm on a random node t is O
(
¯d
ε

)
. It

follows that the total precomputation cost for SLING or PRSim is

bounded by O
(m
ε
)
. However, according to Theorem 4.2, if we re-

place the Backward Search algorithm with the new RBS algorithm

with additive error, the running time for a random target node t

is improved to Õ
(√

¯d
ε

)
. And thus the total precomputation time is

improved to Õ
(
n
√
¯d

ε

)
.

Approximate PPRmatrix.Asmentioned in Section 1, computing

the approximate PPRmatrix is the computational bottleneck for var-

ious graph embedding and graph neural network algorithms, such

as HOPE [45], STRAP [64], PPRGo [63] and GDC [29]. However,

computing the PPR matrix is costly; Applying the Power Method

to n nodes takes Õ(mn) time, which is infeasible on large graphs.

PPRGo [63] proposes to apply Forward Search to each source node

s ∈ V to construct the approximate PPR matrix; While STRAP [64]

employs Backward Search to each target node t ∈ V to compute

π (s, t), s ∈ V and then put π (s, t) into an inverted list indexed by s .
For the former approach, recall that the Forward Search only guar-

antees an additive error of εdout (t) for the estimator of π (s, t) [6],
which is undesirable for nodes with high degrees. On the other hand,

the latter approach incurs a running time of O
(m
ε
)
for computing

an approximate PPR matrix with additive error ε . By replacing the

Backward Search algorithm with the new RBS algorithm with ad-

ditive error, we can improve the complexity to Õ
(
n
√
¯d

ε

)
, which is

sub-linear to the number of edgesm.

6 EXPERIMENTS
This section experimentally evaluates the performance of RBS

against state-of-the-art methods. Section 6.1 presents the empirical

study for single-target PPR queries. Section 6.2 applies RBS to three

concrete applications to show its e�ectiveness. The information of

the datasets we used is listed in table 3. All datasets are obtained
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Table 3: Data Sets.

Data Set Type n m
ca-GrQc (GQ) undirected 5,242 28,968

AS-2000(AS) undirected 6,474 25,144

DBLP-Author (DB) undirected 5,425,963 17,298,032

IndoChina (IC) directed 7,414,768 191,606,827

Orkut-Links (OL) undirected 3,072,441 234,369,798

It-2004 (IT) directed 41,290,682 1,135,718,909

Twitter (TW) directed 41,652,230 1,468,364,884

from [2, 3]. All experiments are conducted on a machine with an

Intel(R) Xeon(R) E7-4809 @2.10GHz CPU and 196GB memory.

6.1 Single-Target Query
Metrics and experimental setup. For a given query node, we

apply the Power Method [46] with L = dlog
1−α (10

−7)e iterations

to obtain the ground truths of the single-target queries based on

the following formula: ®πt = (1 − α) ®πt · P> + α · ®et . To evaluate the

additive error, we consider MaxAdditiveErr, which is de�ned that:

MaxAdditiveErr = max

vi ∈V
|π (vi , t) − π̂ (vi , t)| (8)

where π̂ (vi , t) is the estimator of PPR value π (vi , t). For relative
error, there lacks a practical metric that evaluates the relative error

threshold δ . Hence, we consider the Precision@k, which evaluates

the quality of the single-target top-k queries. More precisely, let

Vk and V̂k denote the set containing the nodes with single-target

top-k queries returned by the ground truth and the approximation

methods, respectively. Precision@k is de�ned as the percentage of

nodes in V̂k that coincides with the actual top-k results Vk . In our

experiment, we set k = 50. On each dataset, we sample 100 target

query nodes according to their degrees and report the averages of

the MaxAdditiveErr and Precision@k for each evaluated methods.

Results. We evaluate the performance of RBS against Backward

Search [38] for the single-target PPR query. For RBS, we set λ(u) =√
dout (u) andθ = ε for additive error, λ(u) = 1 andθ = δ for relative

error. For Backward Search (BS), we set ε = δ for relative error. We

vary the additive error parameter ε and relative threshold δ from

0.1 to 10
−6

in both experiments. Following previous work [56], we

set the decay factor α to be 0.2.

Figure 2 shows the tradeo�s between the MaxAdditiveErr and
the query time for the additive error experiments. Figure 3 presents

the tradeo�s between Precision@k and the query time for the rela-

tive error experiments. In general, we observe that under the same

approximation quality, RBS outperforms BS by orders of magnitude

in terms of query time. We also observe that RBS o�ers a more sig-

ni�cant advantage over BS when we need high-quality estimators.

In particular, to obtain an additive error of 10
−6

on IT, we observe

a 100x query time speedup for RBS. From Figure 3, we also observe

that the precision of RBS with relative error approaches 1 more

rapidly, which concurs with our theoretical analysis.

6.2 Applications
We now evaluate RBS in three concrete applications: heavy hitters

query, single-source SimRank computation and approximate PPR

matrix approximation.

Heavyhitters PPRquery.Recall that in section 5, the heavy hitter
of target node t is de�ned as node s with π (s, t) > ϕ ·nπ (t), where ϕ

is a parameter. Following [58], we �x ϕ = 10
−5

in our experiments.

Since the number of true heavy hitters is oblivious to the algorithms,

we use the F1 score instead of precision to evaluate the approximate

algorithms, where the F1 score is de�ned as F1 = 2·precision ·r ecall
precision+r ecall .

We set λ(u) = 1 and θ = δ for RBS, and ε = δ for BS, and set δ from

0.1 to 10−6 to illustrate how the F1 score varies with the query time.

In general, RBS returns a higher F1 score than BS does, given the

same amount of query time. In particular, to achieve an F1 score of
1 on the IC dataset, RBS requires a query time that is 80x less than

BS does. The results suggest that by replacing BS with RBS, we can

improve the performance of heavy hitters PPR queries.

Single-source SimRank computation. As claimed in section 5,

SimRank can be expressed in terms of PPR values as below:

s(u,v) = 1

(1−
√
c)2

∑∞
`=0

∑
w ∈V π`(u,w)π`(v,w)η(w). The state-of-

the-art single-source SimRankmethods, SLING [53] and PRSim [60],

pre-compute the `-hop PPR values π`(v,w) with the Backward

Search algorithm and store them in index. We take PRSim as exam-

ple to show the bene�t from replacing BS with RBS.

Following [60], we evaluate the tradeo�s between the preprocess-

ing time with MaxAdditiveErr@50, the maximum additive error of

single-source top-50 SimRank values for a given query node. PRSim

has one error parameter ε . We vary it in {0.5, 0.1, 0.05, 0.01, 0.005}

to plot the tradeo�s. We sample 100 query nodes uniformly and

use the pooling method in [60] to derive the actual top-50 SimRank

values for each query node, and return the average of the MaxAd-
ditiveErr@50 for each approximate method. Figure 5 illustrates the

tradeo�s between the preprocessing time with MaxAdditiveErr@50.
We observe that by replacing BS with RBS, we can achieve a signif-

icantly lower preprocessing time without increasing the approxi-

mation quality of the single-source SimRank results. This suggests

RBS also outperforms BS for computing `-hop PPR to a target node.

Approximate PPR matrix. An approximate PPR matrix consists

of PPR estimators for all pairs of nodes, and is widely used in graph

learning. Recall that PPRGo [63] proposes to apply Forward Search
(FS) to each source node s ∈ V to construct the approximate PPR

matrix, while STRAP [64] employs Backward Search (BS) to each

target node t ∈ V to compute π (s, t), s ∈ V and then put π (s, t)
into an inverted list indexed by s . We evaluate RBS against FS and

BS in terms of additive error and running time for computing the

approximate PPR matrix.

Due to the scalability limitation of the PowerMethod, we conduct

this experiment on two small datasets: GQ and AS. We set λ(u) =√
dout (u) and θ = ε for RBS, and vary the additive error parameter

ε in RBS from 0.1 to 10
−6
. Similarly, we vary the parameter ε of

FS and BS from 0.1 to 10
−6
. Figure 6 shows the tradeo�s between

MaxAdditiveErr of PPR values of all node pairs and the running

time for the three methods. We �rst observe that given the same

error budget, BS outperforms FS in terms of running time. This

result concurs with our theoretical analysis that FS only guarantees

an additive error of εdout (t) while BS guarantees an additive error

of ε . Therefore, it may be worthy of taking the extra step to convert

the single-target PPR results into inverted lists indexed by the

source nodes. On the other hand, by replacing BS with RBS, we can

further improve the tradeo�s between the running time and the

approximation quality, which demonstrates the superiority of ours.
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Figure 2: Tradeo�s between MaxAdditiveErr and query time.
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Figure 3: Tradeo�s between Precision@50 and query time.
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Figure 4: Heavy hitters: Tradeo�s between F1 score and query time.
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Figure 5: Single-source SimRank: Tradeo�s betweenMaxAd-
ditiveErr@50 and preprocessing time.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

running time(s) -GQ

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
A

d
d
it
iv

e
E

rr
 -

G
Q

BS
RBS
FS

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

running time(s) -AS

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
A

d
d
it
iv

e
E

rr
 -

A
S

BS
RBS
FS

Figure 6: Approximate PPR matrix: tradeo�s between Max-
AdditiveErr and running time.

7 CONCLUSION
In this paper, we study the single-target PPR query, which measures

the importance of a given target node t to every node s in the graph.

We present an algorithm RBS to compute approximate single-target

PPR query with optimal computational complexity. We show that

RBS improves three concrete applications in graph mining: heavy

hitters PPR query, single-source SimRank computation, and scalable

graph neural networks. The experiments suggest that RBS outper-

forms the state-of-the-art algorithms in terms of both e�ciency and

precision on real-world benchmark datasets. For future work, we

note that a few works combine the Backward Search algorithmwith

the Monte-Carlo algorithm to obtain near-optimal query cost for

single-pair queries [37, 40]. An interesting open problem is whether

we can replace the Backward Search algorithm with RBS to further

improve the complexity of these algorithms.
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A APPENDIX
A.1 Proof of Lemma 4.3

Proof. During a push operation through edge (u,v) from level

` to level (` + 1), we denote X`+1(u,v) as π̂`+1(u, t)’s increments

caused by this push. According to Algorithm 2, X`+1(u,v) is as-

signed as
(1−α )π̂` (v,t )

dout (u)
deterministically if

(1−α )π̂` (v,t )
dout (u)

≥ αθ
λ(u) . Oth-

erwise, X`+1(u,v) will be
αθ
λ(u) with probability

λ(u)·(1−α )π̂` (v,t )
αθ ·dout (u)

,

or 0 with the left probability. If we use {π̂`} to denote the set of

π̂`(v, t) for all v ∈ V , the expectation of X`+1(u,v) conditioned on

all estimators {π̂`} can be derived that

E [X`+1(u,v) | {π̂`}] =

{
(1−α )π̂` (v,t )

dout (u)
, i f (1−α )π̂` (v,t )

dout (u)
≥ αθ

λ(u)
αθ
λ(u) ·

λ(u)(1−α )π̂` (v,t )
αθ ·dout (u)

, otherwise

=
(1 − α)π̂`(v, t)

dout (u)
.

(9)

Because π̂`+1(u, t) =
∑
v ∈Nout (u) X`+1(u,v), the conditional expec-

tation of π̂`+1(u, t) conditioned on the value of all estimators {π̂`}
at `-th level can be derived that

E [π̂`+1(u, t) | {π̂`}] = E


∑

v ∈Nout (u)

X`+1(u,v) | {π̂`}


=

∑
v ∈Nout (u)

E [X`+1(u,v) | {π̂`}] .

Based on equation (9), we have

E [π̂`+1(u, t) | {π̂`}] =
∑

v ∈Nout (u)

(
(1 − α)π̂`(v, t)

dout (u)

)
. (10)

Because E [π̂`+1(u, t)] = E [E [π̂`+1(u, t) | {π̂`}]], it follows that

E [π̂`+1(u, t)] =
∑

v ∈Nout (u)

(
(1 − α)E [π̂`(v, t)]

dout (u)

)
.

E [π̂i (x , t)] = πi (x , t) holds for ∀x ∈ V and i = 0 in the initial state,

because E [π̂0(t , t)] = π0(t , t) = α and E [π̂0(u, t)] = π0(u, t) = 0

(u , t ). Assume E [π̂i (x , t)] = πi (x , t) holds for ∀x ∈ V and i ≤ `.
We can derive that

E [π̂`+1(u, t)] =
∑

v ∈Nout (u)

(
(1 − α)E [π̂`(v, t)]

dout (u)

)
=

∑
v ∈Nout (u)

(
(1 − α)π`(v, t)

dout (u)

)
= π`+1(u, t),

which testi�es the unbiasedness. �

A.2 Proof of Lemma 4.4
Proof. During each push operation, the randomness comes

from the second scenario that
(1−α )π̂` (v,t )

dout (u)
< αθ

λ(u) . Focus on this

situation,

Var [X`+1(u,v) | {π̂`}] ≤ E

[
X 2

`+1(u,v) | {π̂`}
]

=

(
αθ

λ(u)

)
2

·
λ(u) · (1 − α)π̂`(v, t)

αθ · dout (u)
=

αθ

λ(u)
·
(1 − α)π̂`(v, t)

dout (u)
.

Note that for eachv ∈ Nout (u),X`+1(u,v) is independent with each
other because of the independent generation for the random num-

ber r in Algorithm 2. Applying π̂`+1(u, t) =
∑
v ∈Nout (u) X`+1(u,v),

the conditional variance of π̂`+1(u, t) is followed that

Var [π̂`+1(u, t) | {π̂`}] =
∑

v ∈Nout (u)

Var[X`+1(u,v) | {π̂`}]

≤
αθ

λ(u)
·

∑
v ∈Nout (u)

(1 − α)π̂`(v, t)

dout (u)
.

(11)

By the total variance law, Var [π̂`+1(u, t)] = E [Var [π̂`+1(u, t) | {π̂`}]]+
Var [E [π̂`+1(u, t) | {π̂`}]]. Based on equation (11) and the unbiased-
ness of π̂`(v, t) proven in Lemma 4.3, we have

E [Var [π̂`+1(u, t) | {π̂`}]] ≤
αθ

λ(u)
·

∑
v ∈Nout (u)

(1 − α)E [π̂`(v, t)]

dout (u)

=
αθ

λ(u)
·

∑
v ∈Nout (u)

(1 − α)π`(v, t)

dout (u)
=

αθ

λ(u)
· π`+1(u, t).

(12)

Meanwhile, applying equation (10), we can derive

Var [E [π̂`+1(u, t) | {π̂`}]] = Var


∑

v ∈Nout (u)

(
(1 − α)π̂`(v, t)

dout (u)

)
=
(1 − α)2

d2out (u)
· Var


∑

v ∈Nout (u)

π̂`(v, t)

 .
The convexity of variance implies that:

Var


∑

v ∈Nout (u)

π̂`(v, t)

 ≤ dout (u) ·
∑

v ∈Nout (u)

Var [π̂`(v, t)] .

Therefore, we can rewrite Var [E [π̂`+1(u, t) | {π̂`}]] as below:

Var [E [π̂`+1(u, t) | {π̂`}]] ≤
(1 − α)2

dout (u)
·

∑
v ∈Nout (u)

Var [π̂`(v, t)] .

(13)

Applying equation (12) and equation (13), we can derive that

Var [π̂`+1(u, t)] ≤
αθ

λ(u)
· π`+1(u, t) +

(1 − α)2

dout (u)
·

∑
v ∈Nout (u)

Var [π̂`(v, t)] .

Var[π̂i (x , t)] ≤
θ

λ(u) · πi (x , t) holds for ∀x ∈ V when i = 0, because

Var[π̂0(x , t)] = 0. Assume Var[π̂i (x , t)] ≤
θ

λ(u) · πi (x , t) holds for

∀x ∈ V and i < `. Using mathematical induction, we can derive

that

Var [π̂`+1(u, t)] ≤
αθ

λ(u)
· π`+1(u, t) +

(1 − α)2θ

λ(u) · dout (u)
·

∑
v ∈Nout (u)

π`(v, t)

=
αθ

λ(u)
· π`+1(u, t) +

(1 − α)θ

λ(u)
· π`+1(u, t) =

θ

λ(u)
· π`+1(u, t).

For relative error, we set λ(u) = 1 that Var [π̂`+1(u, t)] ≤ θ ·
π`+1(u, t).

For additive error, we set λ(u) =
√
dout (u), and it follows that

Var [π̂`+1(u, t)] ≤
θ

λ(u)
· π`+1(u, t) =

θ

λ(u)
·

∑
v ∈Nout (u)

(1 − α)π`(v, t)

dout (u)
.

Note that
(1−α )π` (v,t )

dout (u)
< αθ

λ(u) in the randomized scenario. So,

Var [π̂`+1(u, t)] ≤
θ

λ(u)
·

∑
v ∈Nout (u)

αθ

λ(u)
=

αθ2

λ2(u)
· dout (u) = αθ2.

�
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A.3 Proof of Lemma 4.5
Proof. Let C`+1(u,v) denote the cost of one push operation

through edge (u,v) from level ` to ` + 1. If
(1−α )π̂` (v,t )

dout (u)
≥ αθ

λ(u) , the

push operation will be guaranteed once. Otherwise, the push hap-

pens with probability
λ(u)·(1−α )π̂` (v,t )

αθ ·dout (u)
. Hence, we can derive the

expectation ofC`+1(u,v) conditioned on the value of all estimators

{π̂`} at `-th level{π̂`} that

E [C`+1(u,v) | {π̂`}] =

{
1, i f (1−α )π̂` (v,t )

dout (u)
≥ αθ

λ(u) ,

1 ·
λ(u)·(1−α )π̂` (v,t )

αθ ·dout (u)
, otherwise .

Note that if
(1−α )π̂` (v,t )

dout (u)
≥ αθ

λ(u) , the conditional expectation

E [C`+1(u,v) | {π̂`}] satis�es that E [C`+1(u,v) | {π̂`}] = 1 ≤
λ(u)·(1−α )π̂` (v,t )

αθ ·dout (u)
. Thus, we can derive that E [C`+1(u,v) | {π̂`}] ≤

λ(u)·(1−α )π̂` (v,t )
αθ ·dout (u)

always holds. Applying the unbiasedness of

π̂`(v, t) according to Lemma 4.3, we have

E [C`+1(u,v)] = E [E [C`+1(u,v) | {π̂`}]] ≤
λ(u) · (1 − α)π`(v, t)

αθ · dout (u)
.

Recall that Ctotal denotes the total cost in the whole process

and Ctotal =
∑L
i=1

∑
u ∈V

∑
v ∈Nout (u)Ci (u,v). The expectation of

Ctotal can be derived that

E [Ctotal ] =
L∑
i=1

∑
u ∈V

∑
v ∈Nout (u)

E [Ci (u,v)]

≤

∞∑
i=1

∑
u ∈V

∑
v ∈Nout (u)

λ(u) · (1 − α)πi−1(v, t)

αθ · dout (u)
=

1

αθ
·
∑
u ∈V

λ(u)·
∞∑
i=1

πi (u, t).

According to the property of `-hop PPR that

∑∞
i=0 πi (u, t) = π (u, t),

E [Ctotal ] ≤
1

αθ

∑
u ∈V

λ(u) · π (u, t),

which proves the lemma. �

A.4 Proof of Theorem 4.1
Proof. We �rst show that by truncating at the L = log

1−α θ
hop, we only introduce an additive error of θ . More precisely, note

that

∑∞
i=L+1 α(1 − α)i ≤ (1 − α)(L+1) ≤ θ . By setting a θ that

is signi�cantly smaller than the relative error threshold δ or the

additive error bound ε , we can accomodate the θ additive error

without increasing the asymptotic query time.

According to Lemma 4.4, we have Var [π̂`(s, t)] ≤ θπ`(s, t). By
Chebyshev inequality, we have

Pr

[
|π̂`(s, t) − π`(s, t)| ≥

√
3θπ`(s, t)

]
≤ 1/3.

We claim that this variance implies an εr -relative error for all

π`(s, t) ≥ 3θ/ε2r . For a proof, note that θ ≤ ε2r π`(s, t)/3 and con-

sequently

√
3θπ`(s, t) ≤

√
ε2r π`(s, t)

2 = εrπ`(s, t). It follows that

Pr [|π̂`(s, t) − π`(s, t)| ≥ εrπ`(s, t)] ≤ 1/3 for all π`(s, t) ≥ 3θ/ε2r .

By setting θ =
ε2r δ
3L , we obtain a constant relative error guarantee

for all π`(s, t) ≥ δ/L, and consequently a constant relative error

for π (s, t) ≥ δ . To obtain a high probability result, we can apply

the Median-of-Mean trick [12], which takes the median of O(logn)
independent copies of π̂`(s, t) as the �nal estimator to π`(s, t). This
trick brought the failure probability from 1/3 to 1/n2 by increasing

the running time by a factor ofO(logn). Applying the union bound

to n source nodes s ∈ V and ` = 0, . . . ,L, the failure probability
becomes 1/n. Finally, by setting λ(u) = 1 in Lemma 4.5, we can

rewrite the time cost as below.

E [Ctotal ] ≤
1

αθ

∑
u ∈V

λ(u) · π (u, t) =
1

αθ

∑
u ∈V

π (u, t) =
nπ (t)

αθ
,

where π (t) represents t ’s PageRank and nπ (t) =
∑
u ∈V π`(u, t)

according to PPR’s de�nition. By setting θ =
ε2r δ
3L and running

O(logn) independent copies of Algorithm 2, the time complexity

can be bounded by O
(
nπ (t )L logn

αε2r δ

)
= Õ

(
nπ (t )
δ

)
. If we choose the

target node t uniformly at random from set V , then E [π (t)] = 1

n ,

and the running time becomes Õ
(
1

δ

)
.

�

A.5 Proof of Theorem 4.2
Proof. Applying Lemma 4.4, we have Var [π̂`(s, t)] ≤ αθ2. Con-

sequently, we have Var [π̂ (s, t)] = Var

[∑L
`=0 π̂`(s, t)

]
≤ αLθ2. By

Chebyshev’s inequality, we have Pr

[
|π̂ (s, t) − π (s, t)| ≥

√
3Lαθ

]
≤

1/3. By setting θ = ε/
√
3Lα , it follows that π̂ (s, t) is an ε additive

error for all π (s, t). Similar to the proof of Theorem 4.1, we can use

the median of O(logn) independent copies of π̂ (s, t) as the estima-

tor to reduce the failure probability from 1/3 to 1/n for all source

nodes s ∈ V .

For the time cost, Lemma 4.5 implies that

E [Ctotal ] ≤
1

αθ

∑
u ∈V

λ(u) · π (u, t) =
1

αθ

∑
u ∈V

√
dout (u) · π (u, t).

Recall that we set θ = ε/
√
3Lα and runO(logn) independent copies

of Algorithm 2, it follows that the running time can be bounded by

Õ
(
1

ε
∑
u ∈V

√
dout (u) · π (u, t)

)
. If t is chosen uniformly at random,

we have

∑
t ∈V π (u, t) = 1. Ignoring the Õ notation, we have

E [Ctotal ] ≤
1

ε
·
1

n
·
∑
t ∈V

∑
u ∈V

√
dout (u) · π (u, t)

=
1

ε
·
1

n
·
∑
u ∈V

√
dout (u)

∑
t ∈V

π (u, t) =
1

ε
·
1

n
·
∑
u ∈V

√
dout (u).

By the AM-GM inequality, we have
1

n ·
∑
u ∈V

√
dout (u) ≤√∑

u∈V dout (u)
n =

√
¯d , Hence, E [Ctotal ] ≤

1

ε ·
1

n ·
∑
u ∈V

√
dout (u) ≤

√
¯d

ε , and the theorem follows. �
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