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Abstract—In many modern applications, input data is repre-
sented as matrices and often arrives continuously. The ability to
summarize and approximate data matrices in streaming fashion
has become a common requirement in many emerging environ-
ments. In these applications, input data is usually generated
at multiple distributed sites and simply centralizing all data
is often infeasible. Therefore, novel algorithmic techniques are
required. Furthermore, in most of these applications, queries
must be answered solely based on the recently observed data
points (e.g., data collected over the last hour/day/month), which
makes the problem even more challenging. In this paper, we
propose to study the problem of tracking matrix approximations
over distributed sliding windows. In this problem, there are m
distributed sites each observing a stream of d-dimensional data
points. The goal is to continuously track a small matrix B as an
approximation to A,,, the matrix consists of data points in the
union of the streams which arrived during the last /W time units.
The quality of the approximation is measured by the covariance
error |AT A, — BTB|/|A|lZ [1], and the primary goal is to
minimize communication, while providing provable error guar-
antee. We propose novel communication-efficient algorithms for
this problem. Our sampling-based algorithms continuously track
a weighted sample of rows according to their squared norms,
which generalize and simplify the sampling techniques in [2]. We
also propose deterministic tracking algorithms that require only
one-way communication and provide better error guarantee. All
algorithms have provable guarantees, and extensive experimental
studies on real and synthetic datasets validate our theoretical
claims and demonstrate the efficiency of these algorithms.

I. INTRODUCTION

In many applications, including network traffic monitoring,
financial data analysis, and real-time anomaly detection, data
is received as continuous high-volume streams. Under such
settings, decisions usually have to be made in real time (e.g.,
detection of DDoS attacks), and thus traditional database query
processing methods are not suitable for such applications.
The ability to summarize massive streaming data continuously
becomes crucial, i.e., dynamically maintaining a compact
summary (a.k.a. synopsis or sketch) of the input stream, which
can be used to provide approximate query answers.

Large-scale streaming processing applications are also in-
herently distributed: streaming tuples are continuously re-
ceived at multiple, possibly geographically dispersed, dis-
tributed sites (sensor nodes, routers, smart phones, etc). Ef-
ficiently tracking the value of a function over the union of
streams has become a key procedure to support real-time
decision making such as detection of fraudulent transactions,
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user interest prediction, and network health monitoring. This
motivates the distributed monitoring model [3], which has
attracted great attention in recent years (e.g. [2, 4, 5, 6, 7]). In
this model, there are multiple distributed sites, each observing
a disjoint stream of items, and a single coordinator, whose goal
is to monitor (or track) a function over the union of the streams
at all times. In such distributed applications, communication
efficiency is always a primary concern either due to limited
bandwidth or other practical reasons. For example, in sensor
networks, it is usually impractical to install new batteries
for geographically dispersed sensor nodes, and thus power
consumption is typically the main concern. As the battery drain
for sending messages exceeds by several orders of magnitude
the drain for local operations within a node, reducing com-
munication is critical to sensor networks [8, 9]. Therefore,
in this paper, we mainly aim at reducing the communication
cost, which is also a conventional methodology used in most
previous works on distributed monitoring model [1, 2, 4, 10].

Despite the success of the distributed monitoring model, a
bulk of prior works focus on simple aggregate queries (e.g.,
counts, item frequencies, and quantiles) and low-dimensional
data. In many tasks of machine learning, information retrieval,
and large-scale data analytics, the input data is represented as
large matrices [11, 12, 13]. For example, in textual analysis,
a set of documents is modeled as a matrix whose rows
correspond to different documents and columns correspond to
words; in image analysis, each image is represented as a row
containing either pixel values or a set of derived features. Such
data is often huge, complex, and continuously generated at
multiple sources, and summarizing such large matrix data has
become a common requirement in many emerging application
environments. Recently a new line of research, represented
by [13], focuses on the row-update streaming model. In this
model, each item in the stream is a row of a matrix; the goal
is to maintain a good approximation to the matrix consisting
of all the rows received so far. We have seen a flurry of
activities in the area of matrix approximation on centralized
streams [14, 15, 16, 17]. While as far as we know, [1] is the
only work on distributed tracking of matrix approximations.

In streaming processing, items naturally carry timestamps,
and recent data is usually more interesting than outdated data.
For instance, in network analysis, to detect DDoS attacks,
one should track frequency statistics over a short past period
rather than the entire history [18]. The sliding window model
is arguably one of the most prominent and intuitive time-
decaying models [19, 20, 21], which considers only a window
of the most recent items seen in the stream thus far.
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Motivation. In this paper, we study the problem of contin-
uously tracking of a matrix approximation over distributed
sliding windows. We propose communication-, space- and
time-efficient algorithms for maintaining a covariance sketch!
over sliding windows in the distributed monitoring model.
Dynamically tracking a covariance sketch has been widely
used as a building block in many applications (e.g., low rank
approximation [14], anomaly detection [15], online PCA [22],
and spectral clustering [23]). Our problem is motivated by
applications in sensor networks, distributed databases, cloud
computing. We provide two concrete applications.

(1) Approximate PCA for Change Detection. In principle
component analysis, the goal is to compute an orthonormal
basis of a lower dimensional subspace which captures the
variance of the data as much as possible. Interestingly, it
was shown that the top-k right singular vectors of a co-
variance sketch approximate the optimal PCA basis of the
original matrix well [14]. Therefore, we can perform PCA
on a much smaller sketch matrix instead of on the original
one. A particular application of PCA is to detect changes in
multidimensional data streams [24]. More concretely, changes
are detected by comparing the PCA basis of the testing window
(i.e., the current window) to the PCA basis of a fixed reference
window which has been extracted earlier. Hence, the ability
to continuously maintain an (approximate) PCA basis of the
current window is crucial to this approach.

(2) Anomaly detection. In a recent work [15], covariance
sketch is used as the main tool for streaming anomaly detection
in the centralized setting. Given a set of non-anomalous data
points observed so far (represented as a matrix A), function
f(A,x) is used to measure the anomaly score of a new data
point z. However it is infeasible to compute f(A,x) exactly.
Then it is shown that if B has small covariance error w.r.t.
A, then f(A,z) can be approximated accurately by f(B,z),
which can be computed much more efficiently in terms of
running time and space. Note that in real situations, anomaly
is often supposed to be detected based on data within a sliding
window (due to concept drift, i.e., new patterns of normal
data appear over time), and input data might be generated at
multiple distributed sites. [15] did not address these issues, and
we believe, our algorithms can be used as tools for window-
based anomaly detection over distributed streams.

A. Problem definitions

Notations. We use m for the number of sites, and d for the
dimension of each row. R is the maximum ratio of squared
norms of any two rows in the matrix and N is the maximum
number of rows in a sliding window. We remark that our
protocols do not need to know R or N in advance. A,, refers
to the matrix that consists of all active rows, i.e., rows included
by current window. For a d-dimensional vector z, ||x| is the
{5 norm of x. We use z; to denote the ith entry of z. Let
A € R™*? be a matrix of dimension n x d with n > d. We
use a; to denote the ith row of A, and a; ; for the (4, j)-th entry
of A. We write the (reduced) singular value decomposition of
A as (U, X, V) = SVD(A). We use ||A||2 or ||A] to denote
the spectral norm of A, which is the largest singular value of

A, and ||A||F for the Frobenius Norm, which is /. . a?

4,7 6

'A type of matrix approximation that will be defined in the next section.
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Notation Descriptions

a; a row in the matrix stream

d the dimension of a row

R the maximum ratio of squared norms of rows
w window size

Ay the matrix within the current sliding window
N the maximum number of rows in a sliding window
m the number of sites

4 the size of sample set

B a matrix approximation to A,,

5 error parameter

Table I: Symbols and descriptions

Given another matrix B with the same number of columns as
A, [4; B] is the matrix formed by concatenating the rows of
A and B. See Table I for a summary.

Covariance sketch. In this paper, we measure the quality
of matrix approximation by the well-known covariance error.
More formally, given a target n x d matrix A and an approx-
imation parameter ¢, we call another matrix B € Rf*4 ap
e-covariance sketch of A, if the covariance error is at most ¢,
ie. |[ATA - BTB|/||A||% < e. In practice, we want ¢ < n.
Alternatively, it is known [13] that the covariance error can be
equivalently defined as max,, .1 |[|Az||* — || Bz|||/||Al%-
Intuitively, a covariance sketch preserves the norm (or length)
of A in any direction x.

Tracking covariance sketch over distributed time-based
sliding windows. Formally, we model a data stream as an
infinite sequence S = {(a;,t;) | ¢ = 1,---,00}, where a;
is a row (or record) with d numerical attributes and ¢; is the
timestamp of a;. Assume %,,, is the current time, given a
window size W, we use A,, to denote the matrix formed by all
the rows whose timestamps are in the range (t,00w — W, tnow)s
which is our target matrix. We call a row active, if it is in
A,,. Note that the number of rows in a time window could
vary drastically over time. If the window size W is infinite,
the model degenerates to the standard distributed monitoring
model, and we will simply call it the infinite window model.
At time t;, the record a; appears at exactly one of the m
distributed sites S, 59, ,S;,. The goal is to maintain or
track a smaller matrix B which has covariance error at most
€ to A, at the coordinator site C. Each of the m sites
communicates with C' via a two-way communication channel.

We remark that there is an alternative sliding window
model called sequence-based sliding window, which considers
the last W items in the stream. However, as argued in [2],
time-based model is often more useful in practice; besides,
sequence-based model is quite different from time-based slid-
ing window in the distributed setting (although it is a special
case of time-based model in the centralized setting), thus
requires a different set of techniques [2]. Therefore, attention
is focused on time-based sliding window in this paper.

B. Our contributions

In this paper, we provide several algorithms/protocols for
our problem. The protocols can be divided into two categories:
(1) sampling based, and (2) deterministic tracking.

Sampling based. In sampling based protocols, we aim to pick
random samples of rows in the sliding window with probability
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Algorithms Communication (Words)

;‘15 log % log (NR) + mlog (NR)

Space per site (Words)
s% log £ log (NR)

Priority Sampling

ES Sampling E% log L log (NR) + 2 log (NR) E% log L log (NR)
DAL md Jog (NR) d*> + % log (NR)
DA2 md Jog (NR) 4% log(NR)

Table II: Asymptotic bounds on communication and space of our
protocols for tracking covariance sketch over distributed sliding
windows. The cost of sampling protocols holds with high probability.

proportional to their squared norms, i.e. weighted sampling.
Though random sampling, as a fundamental tool for analyzing
big data, has been extensively studied in the centralized set-
ting [25], it is highly non-trivial to extend it to the distributed
setting. The sampling problem in the distributed sliding win-
dow model was only recently studied in [2], but so far all the
techniques only work for uniform sampling. We emphasize
that uniform sampling (each row is sampled with the same
probability) does not work for covariance sketch. Consider
an n X 2 matrix A, where the first row is [n,0] and all the
other rows are [0,1], then ||A|%2 = n?> + n — 1 and ATA
is a 2 x 2 diagonal matrix whose upper left entry is n2. If
we uniformly sample ¢ rows, then with probability 1 — ¢/n
(which is high when ¢ is sublinear in n) the first row will not
be sampled and consequentially the covariance error of the
sketch matrix is too large (at least n?/(n? 4+ n) ~ 1 for large
n). In this paper, we provide the first protocols for continuous
weighted sampling over distributed sliding windows. In the
centralized setting, there are two well-known methods for
weighted sampling, namely priority sampling of [26] and ES
sampling of [27]. Based on techniques from [2], we propose
a general framework, which extends both methods to the
distributed sliding window model. Our framework works for
both sampling with and without replacement.

Deterministic tracking with one-way communication. We
also provide two deterministic tracking algorithms based on
two algorithmic frameworks. One simple but crucial observa-
tion is that, to track a global covariance sketch, the coordinator
only needs to track each of the m local matrices separately,
i.e., at any time, the coordinator maintains an e-covariance
sketch for each site separately. To do so, our first framework
uses a surprisingly simple idea. Roughly speaking, each site
tracks the covariance error between its local sliding-window
matrix and the sketch that coordinator currently has, and will
send a message only when the error exceeds a threshold. This
simple idea is actually quite general, and also works for simple
aggregate queries such as counting, item frequencies, and
order statistics, which can simplify the algorithms in [28]. We
also provide a second approach, which alternatively tracks the
local matrix of each site by combining the forward-backward
framework of [28] with iferative matrix sketching of [13]. One
property of our deterministic protocols is they only use one-
way communication, i.e., all communication is from sites to
the coordinator, which is desired in many applications.

Theoretical analysis and experimental studies. We provide
rigorous analysis for each of our protocols. The asymptotic
bounds on communication cost and space usage are listed in
Table II. Moreover, we conduct extensive experimental studies
on both real and synthetic datasets to test and compare the
performances of proposed algorithms.
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C. Related work

Matrix approximation problems have been extensively
studied in the centralized streaming model. The row-update
streaming model is most related to our study. In this model,
each item in the stream is a row of a matrix; the goal is to
maintain a good approximation to the matrix consisting of all
the rows received so far with limited space. Liberty [13] pro-
posed the Frequent Direction (FD) algorithm, which maintains
an e-covariance sketch using O(d/¢) space. [14, 16] improved
and generalized the original FD. More recently, [17] provided
algorithms for maintaining covariance sketch in the sliding
window model. But none of above works can be applied in
distributed setting without incurring high communication cost.
Other error measures of matrix approximation are also widely
studied, we refer to a recent survey by Woodruff [29].

In the popular distributed monitoring model, numerous
works have been done for tracking simple aggregate queries [2,
4, 5, 6, 7]. See the recent survey by Cormode [3] for more
references. A work closely related to ours is [1], which
considers the problem of tracking covariance sketch in the
standard distributed monitoring model. However, all of their
techniques only work for unbounded streams (i.e., there is no
item expiration). In the sliding window model, the algorithms
not only need to process new data received, they also need
to handle expirations, which is often considered the main
challenge. Generally, there is no easy way to convert an
unbounded streaming algorithm to a sliding window algorithm
whether in the centralized or distributed setting.

Tracking simple aggregate queries, such as counts, heavy
hitters, and quantiles, in the distributed sliding window model
has also attracted lots of attention in recent years [2, 10,
28, 30]. However, to the best of our knowledge, there is
no comprehensive study of tracking matrix approximation in
this model. Cormode et. al. [2] considered the problem of
tracking random samples over distributed sliding windows, but
current techniques only work for unweighted sampling, and
thus cannot be used to track matrix approximation.

Qutline. Section II presents sampling algorithms for dis-
tributed time-based sliding window. Section III introduces
deterministic algorithms to tracking sum and tracking matrix
over distributed time-based sliding window, and provides firm
proofs for communication complexity and space complexity
of these algorithms. Section IV evaluates all the introduced
algorithms using extensive experiments. Finally we conclude
the paper in Section V.

II. SAMPLING ALGORITHMS

In the sampling based algorithms, our goal is to maintain
a random sample set of rows on the coordinator, where
the rows are chosen with probabilities proportional to their
squared norms. The size of sample set should be at least
¢ = Q(%logl) to produce a e-covariance sketch with high
probability [1]. In the centralized setting, there are two well-
known techniques for random weighted sampling, namely ES
sampling [27] and priority sampling [26]. Both of them use the
following framework: to sample ¢ items without replacement,
the algorithm assigns each item a random priority based on
its weight, and picks items with top-¢ priorities as the sample
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set. The main differences between ES sampling and priority
sampling are the ways to assign priorities and create estimates.

We propose a general framework in the distributed sliding
window model, which efficiently tracks the set of items with
top-{ priorities regardless of how their priorities are calculated,
and thus works for both techniques above. The key challenge is
that, even when later arrivals are dominated by earlier items (in
terms of priority), they cannot be simply discarded. Otherwise,
when earlier items expire, there may be insufficient later items
kept to provide a sample of size ¢. This challenge also exists
in unweighted sampling (due to non-uniform arrival rate of
items), and was resolved in [2] either by storing all active
items or using a complicated level-sampling data structure. The
weighted version is more challenging, but we provide a solu-
tion, which is more general (handling weights), uses the same
communication and space, and is simpler to implement. Next,
we will mainly focus on priority sampling. We first show how
to do sampling without replacement, then discuss sampling
with replacement. ES sampling can be applied similarly. For
simplicity, we assume that there are always more than ¢ active
rows. Otherwise, the coordinator can retrieve all active rows.

A. Priority Sampling

Priority Sampling without Replacement (PWOR). In
priority sampling, each item a; with weight w; is assigned
a priority value p; = ‘;’— where wu; is a random number
uniformly chosen from (0, 1). The goal is to track the set of
items with top-¢ priority values. In the row sampling problem,

each item is a row a; with weight w; = ||a;||%.

A simple protocol. Our first protocol works as follows. At
any time, all the sites maintain the same threshold 7, which is
the ¢-th largest priority value among all active rows. When a
new row a; is observed by the site \S;, it is assigned a priority
value p; defined as above. If p; > 7, the site sends (a;, t;, p;)
to the coordinator and discards it. Otherwise, the site stores
it locally until there are ¢ rows in the same site that arrive
later than a; but have higher priority values than p; or until a;
is sent to the coordinator. The coordinator maintains a queue
S, which contains the set of rows with top-¢ priority values.
The tuples sent from sites are inserted into S and the expired
tuples (t; < tpow — W) are removed from S. The coordinator
always adjusts 7 to ensure |S| = ¢: (1) When |S| > ¢, the
coordinator increases 7 and moves unqualified tuples (p; <
7) to S’ (candidate set), and new 7 is broadcast; (2) When
|S| < ¢, the coordinator decreases T by negotiating with all
sites and S’, so that the number of qualified tuples (p; > 7 and
unexpired) is exactly £. The new threshold 7 is broadcast and
all qualified tuples held by sites are forwarded to coordinator.

Our first protocol is given in Algorithm 1. At a site j,
each observed row a; is assigned a priority value p; (line 2).
The tuple (a;,t;, p;) is sent to coordinator if p; is greater than
the threshold 7 (line 3-4), otherwise it is appended to a local
queue @ (line 5). Then site j removes all rows that expire (line
7) and rows that are dominated by ¢ later rows (line 8-11). At
each timestamp, the coordinator always checks if there are
new samples being received, and appends these samples to the
sample set S (line 13-14). Then, the coordinator removes all
rows in S and S’ that expire (line 15-16). Next, the coordinator
calls the procedure Update_threshold, in which it adjusts 7

836

and S if the size of sample set |S| # ¢ (line 17). Firstly, while
|S| > ¢, the coordinator keeps moving the sample with the
minimum priority value in S to the candidate sample set S’
until |S| = ¢ (line 19-21). Notice that such rows still have the
chance to become top-£ in term of priority when old samples
expire. Secondly, if |S| < ¢ (due to expiration of old samples),
coordinator initializes a set P by requesting from S’ and each
of m sites (totally m + 1 sources) their local highest priority
values (line 22-24). Then, the algorithm repeats the following
process until |S| reaches ¢: at first, the coordinator finds the
highest priority p,, in P, and retrieves the pair (a,, pp, t,) from
the corresponding source (either a site or S/, while only a
retrieve from the site incurs communication), and inserts the
pair into the sample set S (line 26-27); next, the coordinator
removes p, from P, and requests the next highest priority
from the same source as that of p,, i.e., either S’ or a site that
provided p,, (line 28-29). Finally, the coordinator updates 7 to
be the minimum priority in .S, and broadcasts 7 to m sites if
7 has changed since the last timestamp (line 30-31).

Definition 1 (/-dominance). Given a sequence of rows
ai,as,- - ,ay, each of which is assigned a (random) priority
value as in priority sampling. We say a; is left {-dominated if
there are ¢ rows before a; which have greater priority values
than p;. The right {-dominance is defined analogously.

The correctness of the above algorithm is based on a simple
observation: if a; is right ¢-dominated by later rows, then a;
will never be in the top-¢ before it expires. In our protocol
each site only discards rows that have been right /-dominated
by later rows, and thus no potential top-¢ row is discarded.
Thereby, the correctness follows, since the coordinator always
maintains the global top-¢ rows among all rows currently
stored in the whole system. Despite the apparent simplicity,
it’s unclear whether this protocol has any theoretical guarantee
on communication cost and space usage. We will give a formal
analysis. The next lemma is crucial to our analysis, the proof
of which is technical and is presented in our full version [31].

Lemma 1. For a sequence of N rows with the maximum
ratio of squared norms bounded by R, the number of rows
that are not left (-dominated is bounded by O(¢log %) with
probability 1 — e~ 9. Similarly, the number of rows that are
not right {-dominated is also bounded by O({log %) with
probability 1 — e~ 9 by symmetry.

Lemma 2. During a time window, with probability 1—e~*(),
the total communication cost is O(d¢log (N R)+m/{log(N R))
and each site stores O(£log (NR)) rows, where N is the
maximum number of rows in a window.

Proof: We consider any fixed time interval (¢, ¢+ W], and
bound the number of rows sent in this time. Let a1, -+ ,an
denote the sequence of rows arrive during (¢, ¢+ W]. Consider
the rows sent immediately after being observed. By definition,
it is clear that the rows sent immediately are not left /-
dominated in the sequence ai,--- ,an. According to Lemma
1, the number of such rows is bounded by O(¢log (N R)) with
probability 1 — e~*(®) (leads to O(d/log (N R)) communica-
tion). After a row is sent to the coordinator, the threshold needs
to be updated, which incurs O(m) communication, and thus
O(mflog(NR)) words in total with probability 1 — e,
Secondly, when a row in S expires, at most one row will be
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Algorithm 1 Priority Sampling without replacement (PWOR)

Algorithm 2 Lazy-broadcast protocol

: procedure PROCESS_ROWS(row a;)
Choose u; €Unif(0, 1) and set p;
if p; > 7 then

Send (a4, p;, ;) to coordinator.
else Append (a;, p;, t;, count; = 0) to the end of Q.
for (ap, pp, tp, count,) € Q do

if t, <t — W then Remove (a,, pp, tp, count,).

_ b at site j
_ llaal®

1
2
3
4:
5:
6
7
8 if p; > p, then
count,+ = 1.
10: if count, > ¢ then

11: Remove (ay, pp, tp, count,) from Q.
12: procedure PROCESS_SAMPLES(time ¢) > at coordinator

9:

13: for (a;, p;,t;) = receive_rows(t) do

14: Insert (a;, p;, t;) to S.

15: for (ap, pp,tp) € 5,5 do

16: if t, <t — W then Remove (ay, pp, tp).
17: Update_threshold().

18: procedure UPDATE_THRESHOLD() > at coordinator

19: while |S| > ¢ do

20: Find the minimum p, in S;

21: Move (ayp, pp,tp) to candidate sample set .S”.

22: if |S| < ¢ then

23: Initialize P = 0;

24: Request from S’ and each site their local highest
priority values, and insert them into P.

25: while |S| < ¢ do

26: Find the highest priority p, in P;

27: Retrieve (ay,, pp,t,) and insert it to S;

28: Remove p, from P;

29: Request the next highest priority from the same
source that provided p,, and insert it into P.

30: Update 7 to be the minimum priority in S

31 Broadcast 7 if 7 has changed since the last timestamp.

sent to the coordinator. Note that all rows in S that expire
during (¢,t + W] arrived in the time interval (¢ — W,t],
and the number of such rows, as shown above, is bounded
by O(¢log(NR)) with probability 1 — e~?(*), Therefore, the
number of rows sent due to expiration of earlier samples is at
most O(¢log(NR)) per window with probability 1 — e~?(),
When a row in S expires, O(m) communication is needed to
locate the row with highest priority among all unsent rows, thus
O(mllog(NR)) words in total with probability 1 — e~
We next bound the space usage at any fixed time t'. Let
A = by,--- ,by be the sequence of rows observed in time
interval (¢’ —W,t'] at site S;. At time ¢/, site S; only maintains
all rows that are not right /-dominated in the sequence A. By
Lemma 1, the number of rows stored by site S; is bounded
by O(¢log (N R)) with probability 1 — e~(®), ]

Drawbacks of Algorithm 1. In the above protocol, the thresh-
old changes O(¢log(NR)) times per window with high prob-
ability. Each time it incurs additional O(m) communication,
leading to a O(m{log(INR)) term in overall communication
cost, which is significant when d is small. Moreover, every
time 7 changes, the whole system needs to be synchronized.
In practice, frequent synchronizations greatly downgrade the
overall performance of distributed systems. Motivated by these,
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procedure UPDATE_THRESHOLD() > at coordinator
if |S| > 4/ then
Assign 7 the 2¢-th priority value in S
Broadcast 7 to m sites.
for each (ap, pp,tp) in S with p, < 7 do
Move (ap, pp,tp) to S’
if |S| < ¢ then
while | S| < 2¢ do
T=T7/2;
Broadcast 7 to m sites;
Collect rows from S’ and all sites that satisfies
p > 7, and insert them into S.

12: procedure UPDATE_THRESHOLD(threshold 7) > at site j

1:
2
3
4
5:
6
7
8
9

10:
11:

13: if 7 < 7; then

14: for (ap, pp, tp, count,) € Q with p, > 7 do
15: Send (ap, pp,tp) to coordinator;

16: Remove (ay, pp, tp, count,) from Q.

17: Set 7; = 7.

we propose a lazy-broadcast protocol that significantly reduces
the number of updates in 7.

An improved protocol: Lazy-broadcast protocol. In lazy-
broadcast protocol, the number of samples maintained by the
coordinator is between £ and 4/, i.e. £ < |S| < 44, rather than
exactly £. The coordinator only changes the threshold when
the condition is violated. More precisely, when |S| exceeds
4/¢, the coordinator increases 7 to remove half of rows in S;
when |S| is less than ¢, the coordinator halves 7 to collect
more rows from sites until |S| > 2¢.

Lazy-broadcast protocol is demonstrated in Algorithm 2.
The procedure of processing new observed rows in each site
and the procedure of processing new samples in coordinator
are the same as in Algorithm 1, thus omitted. After processing
new samples, if the coordinator finds that |S| exceeds 4¢, it
assigns 7 the 2/-th priority value of all rows in sample set,
and broadcasts it to all sites (line 3-4). The samples whose
priority values are less than 7 are moved to the candidate set
S’ (line 5-6). If the coordinator finds that | S| is less than ¢ (due
to expiration), it keeps halving the threshold, collecting valid
rows (i.e., rows with priority values greater than 7) from S’
and all sites, and inserting such rows into S, until | S| exceeds
2¢ (line 7-11). Besides, on acquiring a new threshold 7 from
the coordinator, site S; compares it with the old 7;. If 7 < 7,
site .S; should send all active rows with priority values greater
than 7 to the coordinator, and remove them from @ (line 13-
16). Finally, site j sets local threshold 7; = 7 (line 17).

Analysis. The correctness of the protocol is easy to prove,
which we omit. The space usage is the same. We next analyze
the communication cost and the number of threshold updates.

Lemma 3. During any time interval (t,t+ W], the communi-
cation cost of the lazy-broadcast protocol is O(dllog (NR) +
mlog(NR)) with probability 1 — e=®), and the number of
updates of T is O(log (N R)) with high probability.

Proof: With a slightly more complicated argument than
that in the proof of Lemma 2, we can prove that all sites
send totally O(¢log (N R)) rows per window with high prob-
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ability (see full version [31]). Now we bound the number of
broadcasts, i.e., the number of times 7 is updated. Consider
two consecutive increases of 7 at t; and o respectively. At
time ¢; + 1, the size of S becomes 2/, while at ¢, the size of
S is 44. Note that we cannot simply conclude that the exact
2¢ rows are sent from all sites, since the rows in S’ could be
added back to S. We consider two cases. If 7 does not decrease
between ¢; and t5, then no rows in S’ will be added back to S.
Therefore, at least 2¢ rows are sent from sites during this time
period. Otherwise, if 7 decreases at some time t* € (t1,t2),
then there are at least £ rows in S from time ¢; have expired.
As a result, between any two consecutive increases of 7, either
2¢ rows are sent to the coordinator or at least ¢ samples
expire. During a time window, the total number of rows sent
is O(¢log(NR)) with probability 1 — e~*(¥) and the number
of sampled rows get expired is at most O(¢log(NR)) with
probability 1 — e~ and thus the number of times that 7
increases is at most O(log(N R)) with probability 1 — =),

Now consider the moment when |S| becomes /, i..,
7 needs to be halved. Assume [ is the minimum weight
among all rows, and thus the maximum weight is R/3. We
claim that, with high probability, 7 < NRf (proof in the
full version [31]). On the other hand, the minimum possible
priority value is 3, and thus the number of iterations of the
while loop in line 8 of Algorithm 2 is at most O(log(NR)).
After this, |S| > 2¢, which means before the next time when
|S| = ¢, there are at least £ rows in S expiring. Therefore, the
number of times that |.S| reaches ¢ is O(log(NR)) during a
time window (since O(¢log(N R)) sampled rows will expire
during a time window with high probability, as shown in the
proof of Lemma 2). Since we have shown, each time |S|
becomes ¢, it incurs O(log(N R)) updates of threshold, the
threshold 7 is updated for at most O(log® (NR)) times during
a time window with high probability. This can be reduced to
O(log(NR)) by a more careful analysis. [ |

Output a covariance sketch. It was known that (e.g. [1]),
we only need to sample ¢ = O(E%log %) rows to achieve
e-covariance error with high probability. To get a valid co-
variance sketch, we rescale all sampled rows properly to get
unbiased estimators. For priority sampling, we assign each
sampled row a; a new weight v; = max{||a;||?, 7} [26],
where 7 is the ¢-th largest priority value, i.e., set a; = H;’Wai
for all sampled rows. By stacking all rescaled rows together,
the matrix B = [a1;aq; - -+ ;as] is an e-covariance sketch.

Note that in lazy-broadcast protocol the coordinator main-
tains a sample set with at least ¢ samples. Intuitively, the
accuracy will be improved by using all available samples,
which are actually “free”. Based on this observation, we also
implemented a variation of PWOR, denoted as PWOR-ALL,
which makes use of all samples available to the coordinator.
A comparison of PWOR and PWOR-ALL will be presented
in the experimental section.

Priority Sampling with Replacement (PWR). We briefly
discuss priority sampling with replacement. This can be done
by maintaining ¢ independent samplers in the coordinator,
each of which uses the above PWOR protocol to maintain
O(1) samples. Although the communication cost is similar to
PWOR, this PWR protocol needs to maintain ¢ independent
thresholds, which requires O(¢log(INR)) threshold synchro-
nizations. To avoid the large cost of broadcasting thresholds,
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we can use a similar sharing-threshold method as in [2] to solve
our problem. The details are included in the full version [31].

B. ES Sampling

In ES sampling without replacement (ESWOR), each row

2

a; is assigned a random priority ul1 /llal , where u; is a random
variable drawn uniformly from (0, 1). To sample ¢ items with-
out replacement, we also pick the ¢ items with highest priority
values. Therefore, the protocol for ES sampling follows the
same framework as for the priority sampling. With some minor
modification, the analysis for priority sampling directly works
for ES sampling. To get a covariance sketch, each sampled
row also needs to be rescaled properly: each row a; in the
sample set is rescaled by a factor of v/7||a;||/||Aw|lr [17].
One technical issue is we need to know [|A,||%. Fortunately
a (1 + ) approximation to ||A,||% is good enough, which
is equivalent to SUM tracking problem. Tracking sum can be
solved either by priority sampling above, or by a deterministic
method to be presented in Section III-A. Compared to the cost
of row sampling, the additional cost to track ||A,]||% by both
methods is negligible. ES sampling with replacement (ESWR)
follows the same framework as PWR.

III. DETERMINISTIC METHODS

We will introduce two deterministic methods for tracking
covariance sketch. To illustrate the idea of our first method,
we will first give a deterministic protocol for tracking sum
over a weighted sliding window stream, which generalizes and
simplifies a protocol in [28] for tracking count.

A. Deterministic SUM tracking

In the SUM tracking problem, each item in the stream has
a weight w;, the goal is to track an estimator to the sum of
weights of all active items. The SUM tracking problem is a
special case of matrix tracking (d=1). In addition, when all
weights are 1, this becomes tracking COUNT, i.e., the total
number of items, which was studied in [10, 28]. In particular,
[28] proposed a general forward-backward framework, which
solves the COUNT problem with optimal communication cost.
Let C)(t) be the number of active items on site S; at time ¢,
then C(t) = 37" CU9(t) is the exact answer to the COUNT
problem. To track C(¢) within relative ¢ error, it is sufficient
to track each C'Y)(t) within ¢ error. The forward-backward
framework [28] is for tracking each individual C')(t). To-
gether with some rounding argument as in [19], the weighted
version can also be solved by forward-backward tracking.

A more direct and efficient approach for tracking SUM.
A more intuitive way is to track the difference between C'V)(t)
and CU)(t), where CU)(t) is the current SUM estimator the
coordinator holds (note the site S; also knows C'7)(t)) and
CU)(t) is the actual SUM the coordinator wishes to track. For
notational convenience, we omit the superscripts and simply
write C¥) as C and C¥) as C. More precisely, S; maintains
D = C —C, and whenever |D| > eC, the site sends D to the
coordinator and updates the estimator C=cC. The correctness
is straightforward, since at any time ¢, |C — C| < eC. The
naive way to maintain exact C' (or D) needs O(N) space.
However, maintaining C' exactly is not necessary, and we only
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Algorithm 3 Improved Protocol for Tracking SUM

: procedure TRACK_SUM(time t)

for (w;,t;) = receive_data(t) do
Insert (w;, ¢;) into gEH;

C = gEH.query().

if |C — C| > eC then
send D = C — C’;

: C=0C.

: procedure RECEIVE_UPDATE(D)

C=C+D.

> at site j

1
2
3
4
5:
6
7
8 > at coordinator
9

need to track an e-approximation C’ to C, which can be
done in O(L log(W R)) space by using generalized exponential
histogram (gEH) [19]. Note that using e-approximation C’
instead of the exact sum C' does not affect the correctness:
by adjusting £ by a constant factor in the beginning, we still
promise an ¢ relative error for tracking SUM.

Theorem 1. Algorithm 3 solves the SUM tracking problem
over distributed sliding windows, which incurs O(Z log(N R))
words of communication per window. The space usage is
O(Llog(NR)) words per site.

Proof: The correctness has been proved above, so we
analyze the number of messages sent by a single site j. We
divide such messages into two types: positive updates (D > 0)
and negative updates (D < 0). For simplicity we assume C is
exact (i.e., without using gEH). The case where C' is only an
¢ relative approximation can be analyzed similarly with more
care. Let us consider any fixed time interval (¢ — 2W,t]. We
call time window (¢t — 2W,¢ — W] the left window, and call
(t — W, t] the right window. Let C}(tnow) be the sum of active
items in the left window at time £,,0,, (t—W < t,00 < 1), i€,
the sum of items in the window (¢now, — W, t], and Cy (tnow)
be the sum of active items in the right window, i.e., the sum
of items in the window (¢t — W, tp0]. We first bound the
number of positive updates. Consider any two consecutive
positive updates that happen at ¢; and t, respectively. By
definition, C(t2) — C(t1) > eC(t2), where C(t) denotes
the value of the variable C' at time ¢ in the algorithm. This
means the sum of weights of items arrive in the time interval
(t1,1to] is at least eC(t2), i.e., C, increases by eC(t2). Clearly
eC(ta) > eC,(t2), and thus C, increases by a factor of
1+ ¢ during any two consecutive positive updates. Since C). is
bounded by N R, the number of positive updates is at most
10g (1 1) (NR) O(1log(NR)). The number of negative
updates can be bounded similarly. The space used by each
site is dominated by the gEH, which is O(2 log(N R)). Since
query and update time of gEH is amortized O(1) [19], the
update time of the algorithm is amortized O(1). |

B. First deterministic protocols for tracking covariance sketch

Let Ag ) be the matrix consisting of active rows at site
S;, so A, [Ag);~~~ ;ASJ"’} is the target matrix. If we
can track each Ag) separately within covariance error e,
i.e., the coordinator has a matrix BY) for each site S; such
that [|[ADTAY — BOTBW| < AP |2, then matrix
B = [BM;...:B™)] is a ¢ covariance sketch with respect
to A,. To see that, we have
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lA5A, = BTB| = Y (APTAQ - BOTBY) |
Jj=1
< Z |ADT AG) — BUT BU)|
j=1
< Y clADIE = clAul
j=1

where we use triangle inequality for spectral norm in the first
inequality above. Therefore, we only consider the problem of
tracking the sliding window matrix on each site separately,
and for notational convenience, we omit the superscripts and
simply write A as A, at below (but it actually means the
sliding window matrix at a single site).

High level idea of DA1. First, assume each site is allowed
to store all rows received in the current time window. We use
the same “template” as in SUM tracking, except now C and
C are d x d matrices. Let C = ALA, and C = BTB,
where B is the covariance sketch of A,, maintained by the
coordinator. Site S; maintains C and D = C' — C exactly, and
whenever ||D|| > ¢||A,||%, S; reports the variation. The key
difference here is that S; does not send the whole D, but sends
the “significant directions” of D only, so that the remaining
difference is tolerable. Otherwise, the communication cost
is unbounded. Let D:Zf:1 Aivlv; be the standard eigen-
decomposition of D, i.e., each v; is an eigenvector (as a row
vector) of D corresponding to the eigenvalue \;. The site
S; sends (A;,v;) for all i such that |\;| > el|A,[|%, and
updates C = C + X - v¥v;. For each (M\i, v;) being received,
the coordinator also updates its C' accordingly. Now we have
|ATA, — C|| = ||C - C| < ¢||Aw||% on the coordinator. To
get a e-covariance sketch to A,,, we compute the matrix square
root B of C, ie., C = BTB [32].2 Maintaining C (or D)
exactly needs to store all active rows. As in the SUM tracking
protocol, here we will use the matrix exponential histogram
(mEH) of [17] to save space. The mEH takes O(g2 log(NR))
words of space, and always maintains an e-covariance sketch
Ci to AgAw. Besides, mEH maintains an ¢ relative estimate
|Awll% to ||Awl/%. By adjusting € by a constant factor in
the beginning, we still promise an £ covariance error with
our approach. For simplicity, we use C instead of C’ in all
illustrations. The pseudocode of DA1 is shown in Algorithm 4.
By a similar (but more technical) analysis as in the SUM
tracking protocol, we can show that the communication cost
per window is O("’Td log(NR)) (see [31]). The space usage is

dominated by mEH and C, which is O(g2 log(NR) + d?).

Limitations of DA1. However, there are a few limitations to
the above deterministic algorithm. First, we need to compute
eigen-decomposition of a d x d matrix (i.e., D) frequently,
each of which takes O(d®) time. Secondly, even with matrix
exponential histogram, it requires additional d? space and
O(d?) time per update to maintain D. Hence, the algorithm
is not suitable for large d. Motivated by these, we propose
a second deterministic algorithm DA2 with better scalability
in terms of d. Empirical comparisons of two deterministic
algorithms will be shown in the experiments section.

2B exists, since C' on the coordinator is positive semidefinite, which can
be computed with SVD.
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Algorithm 4 DAI for Tracking Matrix Approximation

1: procedure TRACK_MATRIX(time t) > at site
2 for row (a;,t;) = receive_row(t) do

3 Insert (a;,t;) into mEH,;

4: (C, HAwH%) = mEH.query();

5: D=C-C.

6 if | D|| > ¢||Aw||% then

7 Compute D = Y% AT v;. > Compute

eigen-decomposition of D

8: for |\;| > e[| A, |2 do
9: C=C+X vlv;
10: Send ()\171}1)

: procedure RECEIVE_UPDATE(), v;) > at coordinator

12: C=C+X\ vl

13: procedure QUERY() > at coordinator
14: (U, %, V) =SVD(C);

15: return ©1/2V7T

High level idea of DA2. The most time-consuming part
of DA1 is to compute the eigen-decomposition of D. In DA2,
we will use the frequent direction (FD) algorithm of [13] to
dynamically maintain an approximate of D. The challenge is
that D takes negative updates, i.e., expiration of old rows,
while FD only handles positive updates. The idea of DA2
is motivated by the forward-backward framework [28]. The
whole tracking period is divided into windows of length W:
(0, W], (W, 2W1,--- , (iW, (i+1)W],- - -. Assume the current
time is AW <tpow< (k4 1)W, the target matrix is a concate-
nation of two sub-matrices, namely A (tnow) and Ag(tnow),
corresponding to the expiring window (tnon, — W, kW] and
active window (kW ty0| respectively. When there is no
confusion, we simply write them as A, and A,. As the time
window (tnow — W, tnow| slides, new rows are added to A,
while old rows expire from A.. We then track A, and A,
separately with € covariance error. Tracking A, is essentially
the same as the infinite window case, which can be solved
by a protocol from [1] combined with FD (for efficiency).
However, instead of tracking A, directly, we track M. (t,0u),
the matrix in ((k—1)W, ¢, — W]. Since we have A, (kW) =
[Me(tnow); Ae(tnow)] for any tnon € (KW, (k + 1)W], and
an e-covariance sketch of A.(kW) is already known by
coordinator at time kW, thus given an e-covariance sketch
to M, (tnow), the coordinator can compute an e-covariance
sketch to Ac(tnow). In practice, instead of tracking A. and
A, separatively, the coordinator maintains C=BTB as in
DA1. More precisely, the coordinator simply updates the newly
observed directions (positive) and expired directions (negative)
on C, but doesn’t have to operate eigen decomposition on C,
thus the overall performance won’t be affected.

In the following part, we first assume each site stores all
active rows. Similar as in DA1, we can use matrix exponential
histogram to save space. Although the original infinite window
matrix tracking protocol (P2) in [1] needs two-way communi-
cation, here we only use this for tracking a single site, so it is
essentially a one-way protocol. We call this IWMT protocol.
We regard IWMT as a “black box”, which receives as input
a sequence of rows and sends/outputs another row sequence,
which actually consists of the “significant directions” with the
corresponding timestamps; the covariance error between two
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matrices formed by any prefixes (w.r.t. a specific timestamp)
of the two row sequences is bounded by a given threshold.

We use a IWMT protocol to track A, (forward tracking),
namely /W MTj,. On arrival of new row (a;, t;), site S; inputs
it into IW MT, and sends the out message m;, where m,; is
a 10w and ¢; is the timestamp. The coordinator adds miTmi to
C, an e-covariance sketch of AT A,,. Tracking A, (backward
tracking) is more complicated. At ¢,,,,=kW for some integer
k, site S; runs a IWMT protocol, namely /W MT,, reading the
row sequence of A, (kW) in the reverse time direction locally,
and uses a queue @ to record every message (m;,t;) from
IWMT,_?. Recall that we actually want to track M, (t). To do
so, site .S; starts another INMT protocol at ¢ = kW, namely
IWMT,, which does a forward tracking on @ according
to expiring time, i.e., at any time, we feed IWMT, each
expired row m; in () and send the output. More formally,
let @ = {(m4,t;) | i =1,2,---,} be the messages recorded
by applying IW MT, on A.(kW) in the reverse order of time.
Since site S; has A (kW) at time kW, @ can be computed
instantly by simulating IWMT on the row stream of A, (kW)
in the reverse order. Then, during t,., € (KW, (k + 1)W1,
IW MT, reads the expired rows from @) as t¢,,, increases,
and sends the output messages if necessary.

Note in IWMT protocol [1], a threshold is used to limit
the maximum norm of unsent content. Basically, the larger
the threshold is, the less number of messages are sent. The
thresholds for three IWMT protocols in our algorithm are set
as follow: (1) the input of IWMT, is a row sequence of
descending timestamp (in a reverse order), and on receiving
(ai t;), IWMT, uses €||A.(t; + W)||% as threshold, i.e., the
total squared norms of rows received by IWMT, thus far.
This follows exactly the original INMT protocol. (2) both
IWMT, and IWMT, use ¢||A,||% as the threshold during
t € (kW,(k + 1)W]. This is actually an optimal threshold,
thus the overall communication cost of DA2 can potentially be
much lower compared to a basic forward-backward protocol.

The worst-case communication cost during the time win-
dow (kW, (k+ 1)W] is no more than twice the cost of IWMT
for tracking a single site, which is O(2log(NR)) [1], and
thus the total communication cost is O(™4log(NR)) per
window. The amortized update time of the IWMT protocol
is O(g) if we use frequent direction of [13] to speed up
the computation. The space usage is dominated by a matrix
exponential histogram used, which is O( 5% log(NR)) [17].

IV. EXPERIMENTS
A. Experiments Setting

In our experiments, we compare all proposed algorithms on
data matrices with various characteristics, aiming to provide
useful guidance on using these algorithms as building blocks
in various applications. Based on our theoretical analysis, we
expect that different algorithms would perform better under
different settings of parameters. A detailed analysis of the
experimental results will be further provided.

3SIWMT., process Ac in the reverse order, but the timestamp of each
message is recorded using the actual time, and thus the messages in @ is
ordered in the reverse order of time.
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Algorithm 5 DA?2 for Tracking Matrix Approximation

procedure TRACK_MATRIX(time t,,0.)
for row a; = receive_row(tnew) do
m; = IWMT,(a;, thow); Send (m;, flag = 1);
Insert (a;, tnow) into mEH,;
if ¢,,0,, == kW for integer k£ then > End of window
Q=IWMT.(mEH,).
for (mi,ti) S Q and t; < thow — W do
m}, = IWMT.(m;,t;); Send (m}, flag = —1);
Remove (my, t;) from Q.
10: procedure RECEIVE_UPDATE(mn;, flag) > at coordinator
11: C =C+ flag x mIm;.
12: procedure QUERY()
(U,%,V)=SVD(C);
return ©1/2V7T

> at site j

1:
2
3
4
5:
6
7
8
9

> at coordinator

Datasets. We use two publicly available datasets “PAMAP”
and “WIKI”, as well as a synthetic data set in the experiments.
The data sets are summarised in Table III.

PAMAP* is a Physical Activity Monitoring dataset, which
is the data of 18 different physical activities (such as walking,
cycling, playing soccer, etc.), performed by 9 subjects wearing
3 inertial measurement units and a heart rate monitor. The
dataset contains 54 columns including a timestamp, an activity
label and 52 attributes of raw sensory data. In our experiments,
we used a subset with N = 814729 rows and d = 43 columns
(removing columns containing missing values). We generate
synthetic timestamps for PAMAP following the Poisson Ar-
rival Process [33] with A = 1. Moreover, we set the window
size such that on average there are approximately 200,000
rows in a window.

WIKPis the text corpus built on the article dump of the
September 2015 version of English Wikipedia. The words
occurring at least 1000 times in the entire corpus are used as
features (columns), and the articles with at least 500 features
are selected as rows. The entry at row ¢ and column j is the
tf-idf weight of article ¢ and word j. The timestamp of each
row is the date when the article is published, i.e., we view
one day as a time unit. The matrix consists of 78608 rows and
7047 columns. The timestamp spans over 3949 days. We set
the window size to 502 such that on average there are 10000
rows in a window.

SYNTHETIC is a random noisy matrix that have been
commonly used for evaluating matrix sketching algorithms
[17][1][13]. The matrix is concatenated by 3 submatrices
of the same size. Each submatrix is generated by formula
A=SDU+N/(¢, where S is a n x d coefficients matrix with
each entry drawn from standard normal distribution, D is a
diagonal matrix with D; ;=1—(i—1)/d, U is a random matrix
satisfying UUT=I;, N contributes additive Gaussian noise
with each entry drawn from standard norm distribution, and ¢
is assigned 10 thus the real signal is recoverable. The matrix
has 300 columns and 500,000 rows. We generate synthetic
timestamps for SYNTHETIC, following the Poisson Arrival
Process [33] with A = 1. We set the window size such that on
average there are approximately 100,000 rows in a window.

“http://www.pamap.org/demo.html
Shttps:/en.wikipedia.org/wiki/Wikipedia:Database_download

841

Data Sets total rows n. d average rows per window ratio R
PAMAP 814,729 43 =~ 200,000 60.78
SYNTHETIC 500,000 300 =~ 100,000 3.72

WIKI 78,608 7047 =~ 10,000 2998.83

Table III: Summary of Data sets.

Algorithms. We compared all of the protocols proposed in this
paper, including sampling based and deterministic tracking al-
gorithms. Since there is no previous work for matrix sketching
that can be adapted to the distributed sliding window model,
we view random sampling as the baseline approach.

(1) Priority sampling. We evaluated priority sampling with-
out replacement PWOR, and its variation PWOR-ALL which
makes use of all “candidate samples”. Intuitively PWOR-ALL
has better accuracy than PWOR, while we still present the
performance of PWOR in our experiment results, since some
applications are required to output exactly ¢ samples, which
is the standard definition of random sampling with or without
replacement. Moreover, it is observed that using more available
samples does not always improve accuracy (details will be
shown later), which is interesting for comparison.

(2) ES sampling. We evaluated ESWOR, the ES sampling
algorithm for without-replacement scheme, and ESWOR-ALL,
a variation of ESWOR that makes use of all “candidate
samples”. ES sampling differs from priority sampling by using
different priority functions and estimators, hence it is interest-
ing to compare their performances on real world datasets.

(3) Deterministic. We evaluated the DA1 and DA2 algo-
rithms. We remark that DA1 is very slow for large dimension
d, and could not finish on WIKI, so we only present the results
of DA1 on PAMAP and SYTHETIC.

Note that we excluded the with-replacement sampling
algorithms from our experiments. Firstly, sampling with re-
placement is extremely time-consuming, and thus is infeasible
for large datasets. Secondly, as observed in [1] and [17],
SWOR is at least as accurate as SWR on most datasets.

Metrics. In the experimental study, we used default value
e = 0.05 and m = 20. Note that for all of our proto-
cols, the theoretical analyses only show asymptotic worst-
case communication costs, which rarely happen in real data
sets. To evaluate above algorithms, we tested the trade-off
between actual communication cost and observed covariance
error. We also measured the communication cost and accuracy
as ¢ and m varied, as well as the update rate and space
usage of each site. The metrics are defined as follows: 1)
Communication cost msg is defined to be the average number
of words sent per window. We assume each real number
takes 1 word. 2) Approximation error err is defined to be
|AT A, — BTB||2/||Aw||%, where A, is the matrix of cur-
rent sliding window and B is the matrix approximation. We
randomly picked 50 query points and measured both average
and maximum error (denoted by avg_err and maz_err).

Setup. We simulated the distributed system on a single ma-
chine to evaluate the proposed metrics, which is a standard
methodology adopted in the distributed monitoring literature.
We agree that implementing distributed monitoring algorithms
in a real distributed system and evaluating the overall per-
formance will be more instructive, which is left as our future
work. For random sampling, we ran the algorithms for 3 times
in each experiment, and reported the average communication
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Figure 1: Results on PAMAP dataset.

cost and error over 3 executions. All algorithms were im-
plemented in Python 3.5.1 using 64-bit addressing and were
executed on Intel Xeon E3-1231V3, clocked at 3.4 GHz.

B. Performance Study

Error vs. Communication cost. We make the following
observations:

(1) Figure 1(a), 2(a), and 3(a) show the tradeoffs between
the error parameter ¢ and the average actual error of the
protocols. In most cases, the observed error for all protocols
is smaller than €. We also observe that deterministic protocols
provides better error guarantee than sampling methods do,
under the same error parameter <. Inside the sampling family,
using all available samples typically achieves better accuracy.

(2) Figure 1(b), 2(b), and 3(b) show the tradeoffs between
the error parameter ¢ and the communication cost of protocols.
It is worth noticing that as ¢ decreases, the communication
cost of deterministic protocols grows much slower than ran-
dom sampling does, which confirms the dependency of their
asymptotic bound on ¢ (1/e vs. 1/¢2?). Communication cost of
ES sampling is slightly higher than that of priority sampling,
which results from the extra cost of tracking || A ||%.

(3) The tradeoffs between observed error and communi-
cation cost are shown in Figure 1(c),1(d), Figure 2(c),2(d),
and Figure 3(c),3(d) respectively. In the default setting where
m = 20, DA1 and DA2 achieve better “communication vs
error” tradeoff than that of the sampling methods. The ad-
vantage of the deterministic algorithms is more significant for
maximum error. This is as expected, since the error guarantee
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Figure 3: Results on WIKI dataset.

(f) max_err vs. msg on 10 sites.
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of sampling methods is randomized. For the two deterministic
protocols, we have the following observations: (i) DAL is
notably better on SYNTHETIC dataset, where rows of the
matrix are generated from the same distribution; (ii) The two
protocols have similar performance on PAMAP; (iii) DAL is
too slow to finish the experiments on WIKI. For sampling
methods, making use of all available samples (PWOR-ALL
and ESWOR-ALL) usually achieves better tradeoff than top-¢
samples (PWOR and ESWOR). Furthermore, PWOR-ALL sig-
nificantly outperforms ESWOR-ALL on WIKI dataset, while
ESWOR-ALL has slight advantage on PAMAP dataset. They
both behave well on SYNTHETIC dataset.

(4) Another interesting observation is that, on skewed
datasets (PAMAP and WIKI) (i.e. R is large), increasing
the communication does not necessarily reduce the error of
ESWOR-ALL (Figure 1(d), 3(c) and 3(d)). One possible
explanation is that ES sampling rescales each sample a; by

a factor of \”/’%“‘L!F”, after which all samples have the same

squared norm. As a result, a sampled row with small norm will
be greatly stretched, and is over-emphasized in final estimation.
When the size of sample set increases, such “bad” events occur
more frequently and lead to relative high covariance error.
This conjecture is also supported by Figure 3(c) and 3(d),
which show that the maximum error of ESWOR-ALL is higher
than that of ESWOR when communication cost exceeds 107
words. We believe that this is because ESWOR only takes top-
¢ samples, and thus decreases the risk of picking rows with
small norms. On the other hand, priority sampling rescales
a; to make its squared norm equal to max{||a;||, 7¢}, which
sets a ceiling 7y for rows with small norms while ensuring the
contribution of rows with large norms. Hence we recommend
priority sampling rather than ES sampling on skewed datasets.

Varying number of sites. We also conducted experiments to
show how the error and communication cost changes as the
number of sites varies. We set the number of sites for PAMAP
and SYNTHETIC to vary from 5 to 80. The total number
of rows is relatively small for WIKI, so we only tested the
performance for 10 and 20 sites to make sure that each site
receives enough rows. We make the following observations:
(1) The covariance error of all protocols is stable as m
varies (Figure 1(e) and 2(e)); (2) For sampling methods, the
communication cost remains the same as m increases (Figure
1(f) and 2(f)). This is consistent with our analysis, since the
communication cost is dominated by the term O(Ei2 log(NR)),
which does not depend on m. (3) The communication cost of
deterministic protocols clearly has a linear dependence on the
number of sites, which matches our theoretical analysis (both
DA1 and DA2 need O(%d log (NR)) words of communica-
tion). In general, the sampling protocols are scalable with the
site number while the deterministic algorithms are not.

Space usage and update rate. Finally, we measured the space
usage and update rate of all protocols. Figures 4(a)4(b)4(c)
shows the tradeoffs between maximum space usages and the
error parameter £ of all protocols. When ¢ is small, all pro-
tocols store almost all rows observed in the window. In most
cases, the space usages of all protocols are close to each other,
which confirms our theoretical analysis: the space needed by
each site is roughly O(E%) words for both deterministic and
sampling protocols. DA1 requires extra d X d space to maintain
matrix sketches, which is negligible when d is small (PAMAP
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and SYNTHETIC). On the WIKI dataset, however, the space
usage of DA2 does not decrease significantly as ¢ increases.
The reason is that the large ratio R (2998.83 to be exact)
of WIKI dataset greatly limits the compression effect of the
mEH structure. We also note that the space usage of sampling
methods is small when ¢ is set to be small on WIKI dataset.
This is because that each site sends many rows to coordinator
for the large sample set, and thus the number of rows left in
each site is greatly decreased.

Figure 4(d) shows the update rates of protocols (updates
processed per second) under the default setting where ¢ = 0.05
and m = 20. We observe that deterministic protocols process
updates faster than sampling methods for low-dimensional
matrix (PAMAP), while their update rate decreases dramat-
ically as d increases. This is because DAl and DA2 need
to compute matrix factorizations periodically, which leads to
running time quadratic or even cubic in d. For WIKI dataset
(where d ~ 7000), DAL is too slow to finish the experiments,
while the update rate for DA2 is 10 to 100 times slower than
sampling methods. Notice that the update rate of sampling
methods is not affected by d. Interestingly, the sampling
algorithms process update faster on WIKI than on PAMAP.
This is reasonable, since d only affects the time to compute
the norm, which is not the dominating part of the running time.

C. Remarks

We conclude our experimental evaluations with a few
remarks. In general, the deterministic protocols achieves better
“communication vs. error” tradeoff than sampling methods.
Moreover, the deterministic protocols achieve deterministic
error guarantee, which is desirable in some applications. So if
high accuracy is the main concern, the deterministic protocols
are recommended. DA1 and DA2 have similar performance in
terms of accuracy and communication, while DA2 outperforms
DAL in processing time. Therefore, we recommend DA2 for
large d for its time-efficiency, and recommend DAl when
d is small as it is much easier to implement. On the other
hand, the sampling methods trade accuracy for some other
desirable properties. For instance, sampling methods produce
a sketch consists of rows of the original matrix, which im-
proves interpretability and preserves row structure. This is
essential for some applications such as column/row subset
selection [34]. Moreover, the processing time for the sampling
methods process is much faster than that of the deterministic
algorithms when d is large. Inside the sampling schemes, the
overall performance of PWOR-ALL is the best, and thus we
recommend PWOR-ALL for matrix approximation.

V. CONCLUSION

In this paper, we initialize the study of continuously track-
ing a matrix approximation over distributed sliding windows,
and propose protocols with low communication cost and
space usage for the problem. We first consider row sampling
methods, and raise novel algorithms for tracking weighted
random samples over distributed sliding windows, which gen-
eralize and simplify previous works for unweighted sampling.
We also provide two deterministic protocols which only use
one-way communication and have a better dependence on ¢
in terms of communication cost. In addition to theoretical
analysis, extensive experiments are conducted on large-scale
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real and synthetic data sets, and a detailed comparison of their
performances is provided.
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