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Abstract
days and path planning in dynamic spatial networks becomes an important issue. In this light, we propose and investigate a

With the increasing availability of real-time traffic information, dynamic spatial networks are pervasive nowa-

novel problem of dynamically monitoring shortest paths in spatial networks (DSPM query). When a traveler aims to a des-
tination, his/her shortest path to the destination may change due to two reasons: 1) the travel costs of some edges have been
updated and 2) the traveler deviates from the pre-planned path. Our target is to accelerate the shortest path computing in
dynamic spatial networks, and we believe that this study may be useful in many mobile applications, such as route planning
and recommendation, car navigation and tracking, and location-based services in general. This problem is challenging due
to two reasons: 1) how to maintain and reuse the existing computation results to accelerate the following computations, and
2) how to prune the search space effectively. To overcome these challenges, filter-and-refinement paradigm is adopted. We
maintain an expansion tree and define a pair of upper and lower bounds to prune the search space. A series of optimization
techniques are developed to accelerate the shortest path computing. The performance of the developed methods is studied
in extensive experiments based on real spatial data.

Keywords shortest path, dynamic spatial network, spatial database, location-based service

1 Introduction information relevant to their travel. In the meantime,

with the increasing availability of real-time traffic infor-

The continued proliferation of GPS-equipped mo-
bile devices!!! (e.g., vehicle navigation systems and
smart phones) and the proliferation of online map-
based services (e.g., Google Maps®, Bing Maps@, and
MapQuest@) enable people to acquire their current
geographic positions in real time and to retrieve spatial

mation, dynamic road networks are pervasive and path
planning in dynamic spatial networks becomes an im-
portant issue. In this light, we propose and investigate
a novel problem of efficiently monitoring shortest paths
in dynamic spatial networks. When a traveler targets
at a destination, his/her shortest path to the destina-
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tion may be continuously changing due to two reasons:
1) the travel cost of some edges has changed (e.g., at
peak hours, 7:00 am~9:00 am or 17:00 pm~19:00 pm,
the travel costs may increase) and 2) the traveler devi-
ates from the pre-planned path. Our target is to accel-
erate the shortest path computing in dynamic spatial
networks, and we believe that this study may be use-
ful in many mobile applications, such as route planning
and recommendation, car navigation and tracking, and
location-based services in general.

Fig.1 shows two cases of shortest path update: 1)
some edges’ travel costs have changed and 2) the mov-
ing object deviates from the pre-planned path. Here,
P1, P2, ---, Ps are vertices in a spatial network. A moving
object o’s current position is p1, and ps is the destina-
tion. Path r1 = (p1, p4, p3, p2) is a pre-planned shortest
path from p; to ps. In case 1), an edge (p1, p4) is over-
crowded and its travel cost increases.

V23

Py Dg
7, Over-Crowded

2y
Ps P
o &
[N o Py P~
SPeviation
~
S T,
D —— )
Ps Ps

(b)

Fig.1. Two cases of shortest path update. (a) Travel-cost cha-
nge. (b) Deviation.

Hence, the shortest path r; expires and is replaced
by a new shortest path ra = (p1,ps,ps, p7, Pe; P3, P2)-
In case 2), a moving object o deviates from the pre-
planned path r; and it arrives at p;. Compared with
going back to r1, path ro = (ps, ps, pr, Ps, P3, P2) has
less travel cost and 75 is the new shortest path from
0’s current position to ps. Our target is to accelerate
the new shortest path computing in the aforementioned
two cases.
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The proposed dynamic shortest path monitoring
(DSPM) query is applied in spatial networks, since in
a large number of practical scenarios, objects move
in such networks (e.g., roads, railways, rivers) rather
than in a Euclidean space. A straightforward approach
of the DSPM query is recomputing the shortest path
from a moving object’s current position to the destina-
tion using network expansion method (e.g., Dijkstra’s
algorithm[® or A* algorithm[®). However, especially
in a large spatial network, recomputing shortest paths
using network expansion method is time-consuming, if
the network is updated frequently or the moving ob-
ject does not follow the pre-planned path. Existing
network expansion methods are lack of effective prun-
ing techniques to prune the search space. Such high
computation cost may prevent the DSPM query from
being answered efficiently. To the best of our knowl-
edge, there is no existing method that can process the
DSPM query efficiently. Existing studies of dynamic
path planning!*-®! are mainly based on pre-defined traf-
fic models (e.g., time-dependent road networks), and
instant traffic conditions and moving object deviations
are not taken into account.

To overcome the weakness of the baseline method,
we propose a novel two-phase search algorithm to com-
pute the DSPM query efficiently. Initially, we compute
the shortest path from the source to the destination
using network expansion method. We maintain the ex-
pansion tree and compute the upper and lower bounds
of the shortest path distances (from the vertices in the
tree to the destination). If a moving object travels along
with the shortest path and there is no update (travel
cost change) in the expansion tree, it is not necessary
to recompute the shortest path. Otherwise, we have
to recompute a new shortest path from the moving ob-
ject’s current location to the destination. We adopt
filter-and-refinement paradigm and we use the upper
and lower bounds to prune the search space. We can
avoid devoting unnecessary search effort to paths un-
likely to be the optimal choice and further enhance the
query efficiency.

To sum up, the main contributions of this paper are
as follows.

e We study a novel problem of monitoring shortest
path in dynamic spatial networks (DSPM query). It
provides new features for advanced spatiotemporal in-
formation systems, and benefits users in many popular
mobile applications such as route planning and recom-
mendation, car navigation and tracking, and location-
based services in general.
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e We define a pair of upper and lower bounds of
shortest path distances to prune the search space effec-
tively.

e We develop two efficient algorithms to compute
the DSPM query in two cases, and the filter-and-
refinement paradigm is adopted.

e We conduct extensive experiments to investigate
the performance of the developed algorithms on real
spatial data.

The rest of the paper is organized as follows. Sec-
tion 2 introduces dynamic spatial networks used in this
paper as well as the problem definition. The dynamic
shortest path monitoring (DSPM) query processing is
introduced in Section 3, which is followed by the experi-
mental results in Section 4. This paper is concluded in
Section 6 after discussions on related work in Section 5.

2 Preliminaries
2.1 Spatial Networks

A dynamic spatial network is modeled as a con-
nected and undirected graph G(V, E, F, W), where V
is a vertex set and £ C V x V is an edge set. A ver-
tex v; € V represents a road intersection or an end
of a road. An edge ey = (v;,v;) € E is defined by
two vertices and represents a road segment that en-
ables the travel between vertices v; and v;. Function
F:V UFE — Geometries records the geometrical in-
formation of the spatial network . In particular, it
maps a vertex and an edge to the point location of the
corresponding road intersection and to a polyline rep-
resenting the corresponding road segment, respectively.

Function W:E — R is a function that assigns a real-
valued weight to each edge. The weight w(e) of edge
e represents the corresponding road segment’s travel
cost or some other relevant properties such as its travel
timel®, which may be obtained from instant traffic
data, and hence w(e) is a dynamic value.

In this paper, w(e) represents the travel time along
e and we define that

e.dist

w(e) =
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always selects the vertex with the minimum distance la-
bel for expansion, for a vertex p; € T, we have that

sd(pi,p) + cost(p) > cost(p;).
Otherwise, we will have

sd(s, pi) + sd(pi,p) + cost(p) < sd(s,pi) + cost(p;)
= sd(s,p) + cost(p) < sd(s,p;) + cost(p;),

which conflicts with p ¢ T. O

2

. DSPM Query Processing in the First

Py Case

yn

Fig.2. Expansion tree.

For example, in Fig.2, sd(ps, p)+ cost(p) > cost(ps).
If the travel cost of sd(ps, p) is updated to sd’(pg, p) (no
matter sd(ps,p) > sd'(ps,p) or sd(ps,p) < sd'(ps,p)),
we have that sd(ps,p) = Eaist(P6, P)/Smax. According
to the triangular inequality, we have that

Edist (s, p)
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in Fig.3, where p,p1,...,p9 are vertices, s = p; and
d = pg, and SP(s,d) = (p1,ps,Ppa,Ps,Po) is the pre-
planned shortest path. Vertex s = p; is the root of
the expansion tree. A moving object o deviates from
SP(s,d) and p is its current position.
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Fig.3. Deviation.

For each vertex p; in the expansion tree, we compute
a lower bound of the shortest path distance sd(p;,d).
The computation procedure is from leaf nodes to the
root. For example, in Fig.3, pg, p7 and pg are leaf nodes.
For a leaf node pj;, its distance lower bound is defined
by

Sd(pj7 d)lb = COSt(pj) = Edist (pja d)/SmaX;

and we have that sd(p;,d).lb < sd(p;,d).
For a non-leaf node py, its distance lower bound is
defined by

sd(pg,d).lb = min

Vp;(p;-pre=pk

){Sd(pj, d).1b + sd(pr. p;)},

where py, is the parent node of p; in the expansion tree,
and it is clear that sd(py,d).lb < sd(p,d).

For each vertex in SP(s,d), we compute and record
its shortest path distance to d. To find the shortest
path from a moving object’s current position p to the
destination d, network expansion is conducted from p.
Once a vertex in SP(s,d) is scanned (e.g., vertex p3 in
Fig.3), we have an accessible path from p to d. Path
P = {p,ps,ps,ps,p9) is an accessible path, and we can
compute its length as P.dist = sd(p,ps) + sd(p3,po).
The lengths of accessible paths can be used to define
the upper bound of shortest path distance UB.

UB = min{P;.dist},

where P; is an accessible path.

On the other hand, if a vertex in the expansion tree
T is scanned (e.g., vertex po in Fig.3), we can estimate
the shortest path distance from p to d via ps as

Sd(paPQa d) 2 Sd(p7p2) + Sd(an d)lb
I

sd(p, p2,d).lb = sd(p,p2) + sd(p2,d).lb.

If the value of sd(p, p2, d).lb exceeds UB, there does not
exist a shortest path from p to d via ps; thus ps can be
pruned safely.

The search process of DSPM query processing in the
second case is detailed in Algorithm 2.

. DSPM Query Processing in the
Second Case
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compare and update the value of UB (lines 13~15).
If v is in the expansion tree T'(s), we compute the
lower bound of shortest path distance sd(p,v,d).lb =
sd(p,v) + sd(v,d).lb. 1f sd(p,v) + sd(v,d).lb > UB,
there does not exist a shortest path from p to d via
v, and v can be pruned safely (lines 16~18). For
each adjacent vertex n of vertex v, we compare its dis-
tance label n.dist with sd(p,n) + w(v,n) + cost(n). If
n.dist is greater than sd(p,v) + w(v,n) + cost(n) and
sd(p,v) +w(v,n) + cost(n) is less than UB, we update
the value of n.dist and put n into O, (lines 19~24).

4 Experiments

We conducted extensive experiments on real spa-
tial datasets to demonstrate the performance of the
proposed dynamic shortest path monitoring (DSPM)
query. The two datasets used in our experiments were
Beijing Road Network (BRN) and North America Road
Network (NRN), which contain 28342 vertexes and
175812 vertexes respectively, stored in adjacency lists.

In the experiments, the graphs were memory resi-
dent when running A* algorithm!®!, as the memory oc-
cupied by BRN or NRN was less than 20 MB. All algo-
rithms were implemented in Java and run on a Windows
7 platform with an Intel i7-4770k processor (3.50 GHz)
and 16 GB memory. Unless stated otherwise, experi-
mental results are averaged over 20 independent trails
with different query inputs. The main performance
metrics are CPU time and the number of visited ver-
tices. The number of visited vertices is used as a metric
since it describes the number of data accesses.

The parameter settings are detailed in Table 1. In
both BRN and NRN, the shortest path length (the
number of vertices in the shortest path) varies from
20 to 100, and 60 is the default value. In the first case
(travel cost change), by default, 3% of all edges change
their travel costs. In the second case (deviation), the
deviation distance varies from 1 to 5, and 3 is the de-
fault value. The deviation distance is defined by the
shortest path distance from the moving object’s cur-
rent position to the deviation point.

Table 1. Parameter Settings

J. Comput. Sci. & Technol., July 2016, Vol.31, No.4
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Fig.4. Performance of the DSPM algorithm in the first case (DSPM-1). (a) CPU-time with respect to the shortest path length of
BRN. (b) Number of visited vertices with respect to the shortest path length of BRN. (c) CPU-time with respect to the shortest path
length of NRN. (d) Number of visited vertices with respect to the shortest path length of NRN. (e) CPU-time with respect to travel
cost change of BRN. (f) Number of visited vertices with respect to travel cost change of BRN. (g) CPU-time with respect to travel
cost change of NRN. (h) Number of visited vertices with respect to travel cost change of NRN.
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the DSPM algorithms of both cases still have a high
query performance, and outperform the baseline algo-
rithm by a factor of 2 in terms of both CPU time and
visited vertices. It is worth to note that the CPU time
is not fully aligned with the number of visited vertices.
To prune the search space, the DSPM algorithm needs
more computational effort to maintain its bounds. In
some cases, the increased computation cost may offset
the benefits of the reduction in the number of visited
vertices.

5 Related Work
5.1 Path Planning Queries

Network-based path planning!” is pervasive. Gene-
rally, path planning queries can be classified into two
categories: path planning in static spatial networks,
and path planning in dynamic spatial networks. In
static spatial networks, Dijkstra’s algorithm? and A*
algorithm[®! are two general methods based on network
expansion to compute the shortest path from a single
source to a destination. In Dijkstra’s algorithm, a net-
work expansion is expanded from a source s. A priority
heap H is adopted to maintain the unscanned vertexes.
At each time, a vertex v with the minimum distance
label is selected. It is removed from H and labeled as
“scanned” vertex. Then, all unscanned neighbor ver-
tices of v are put into H, until the destination d is
reached and the shortest path from s to d is found. In
the A* algorithm, the value of sd(s,v)+dg(v,d), where
dg(v,d) is the Euclidean distance between v and d, is
used as the distance label of vertex v, to estimate the
network distance from s to d via v. The A* algorithm
is a heuristic search method, and its performance is
greater than that of Dijkstra’s algorithm in general.

Group nearest neighborl®l, aggregate nearest
neighbor!®, and collective travel planning!” queries
have multiple sources and a single destination. Group
nearest neighbor and aggregate nearest neighbor
queries assume that each traveler goes to the destina-
tion directly, and the collective travel planning query
assumes that travelers go to the destination via k meet-
ing points. They may go to the meeting point individ-
ually, and then go together to the destination by col-
lective travel. The collective travel planning problem is
Max-SNP hard.

Time-dependent road network!*10-11]

and proba-
bilistic road network!®! are two representative dynamic
spatial networks. A time-dependent road network can

be established according to speed patterns from his-
torical traffic information, which motivates the time-
dependent shortest path query[‘l]. Time-dependent
shortest path query is a variant of dynamic shortest
path problem, which is designed to find the best de-
parture time for users, to minimize the global travel-
ing time from a source to a destination over a large
road network, where the traffic conditions are dynami-
cally changing from time to time. The challenge of this
problem lies in the dynamic edge delay. In probabilistic
road networks, each edge is assigned a set of probabilis-
tic data to describe the traveling cost along this edge,
and probabilistic shortest path queries®! ask for 1) the
fastest path constrained by a probability threshold, and
2) the path with the highest probability constrained by
a travel time threshold. There also exist other dynamic
spatial networks. For example, Shang et al.l'0-12
trajectory data to establish traffic-aware spatial net-
works, and then they planned the fastest paths based

used

on a probabilistic threshold.
Despite the bulk of literatures on shortest path

queries(2-5:10-11]

, none of existing work can address the
proposed DSPM query due to two reasons: Dijkstra’s
algorithm and A* algorithm are based on static spa-
tial networks, and time-dependent and probabilistic
shortest>12] path queries are based on different traf-
fic models from ours (their models are mainly based
on pre-computation, historical traffic information, and
fixed traffic models, and instant traffic information is
not taken into account; instant traffic information, e.g.,

traffic accidents, is not predictable).

5.2 Trajectory-Based Travel Planning

The trajectory-based travel planning queries can
be further divided into trajectory-to-object search and
trajectory-to-trajectory search. In the trajectory-to-
object search, queries aim to find objects spatially close
to a query path according to some distance metrics. For
example, the path nearest neighbor (PNN) query!!3-14
maintains an up-to-date path nearest neighbor result as
the user is moving along a predefined route. Moreover,
the path nearby cluster query!!? further extends the
PNN query to find the POI clusters spatially close to a
given path. In trajectory-to-trajectory search, queries
retrieve the trajectories that have similar curve and are
spatially close to a query trajectory. Travelers can use
the travel history of other travelers to guide their own
trips. Zheng et al. studied this problem in Euclidean
spacel'dl and Shang et al. studied the problem in spa-

tial networks!1718l,
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There also exist several interesting directions on
path planning!'9-2°! spatial-social information process-
ing2-26] " and network information processing2731,
which may be considered in our future studies.

6 Conclusions

In this paper, we proposed and investigated a novel
problem of planning shortest paths in dynamic spatial
networks, and the change of some edges’ travel cost
and the deviation of moving objects are taken into ac-
count. Our target is to accelerate the shortest path
computing in dynamic spatial networks, and we believe
that this study may be useful in many mobile applica-
tions, such as route planning and recommendation, car
navigation and tracking, and location-based services in
general. We developed two efficient algorithms based on
filter-and-refinement paradigm, and we devised a series
of pruning techniques to prune the search space effec-
tively. The performance of the developed methods was
studied in extensive experiments based on real spatial
data.

(1]

2]

8

References

Parkinson B, Spiker Jr J, Axelrad P, Enge P. Global po-
sitioning system: Theory and applications. In Progress in
Astronautics and Aeronautics 163, Zarchan P(ed.), Amer-
ican Institute of Aeronautics and Astronautics, Inc., 1996.
Dijkstra E W. A note on two problems in connection with
graphs. Numerische Mathematik, 1959, 1(1): 269-271.
Hart P E, Nilsson N J, Raphael B. A formal basis for
the heuristic determination of minimum cost paths. /[EEE
Transactions on Systems Science and Cybernetics, 1968,
4(2): 100-107.

Ding B, Yu J X, Qin L. Finding time-dependent shortest
paths over large graphs. In Proc. the 11th EDBT, March
2008, pp-205-216.

Hua M, Pei J. Probabilistic path queries in road networks:
Traffic uncertainty aware path selection. In Proc. the 13th
EDBT, March 2010, pp.347-358.

Yang B, Guo C, Jensen C S et al. Stochastic skyline
route planning under time-varying uncertainty. In Proc. the
30th IEEE International Conference on Data Engineering,
March 31-April 4, 2014, pp.136-147.

Shang S, Chen L, Wei Z et al. Collective travel planning
in spatial networks. IEEE Trans. Knowl. Data Eng., 2016,
28(5): 1132-1146.

Papadias D, Shen Q, Tao Y et al. Group nearest neighbor
queries. In Proc. the 20th ICDE, March 30-April 2, 2004,
pp.301-312.



Shuo Shang et al.: Dynamic Shortest Path Monitoring in Spatial Networks 647

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

[23]

[24]

[25]

[26]

Papadias D, Tao Y, Mouratidis K et al. Aggregate nearest
neighbor queries in spatial databases. ACM Transactions
on Database Systems, 2005, 30(2): 529-576.

Shang S, Lu H, Pedersen T B et al. Finding traffic-aware
fastest paths in spatial networks. In Proc. the 13th SSTD,
Aug. 2013, pp.128-145.

Shang S, Lu H, Pedersen T B et al. Modeling of traffic-
aware travel time in spatial networks. In Proc. the 14th
IEEE MDM, June 2013, pp.247-250.

Shang S, Liu J, Zheng K et al. Planning unobstructed paths
in traffic-aware spatial networks. Geolnformatica, 2015,
19(4): 723-746.

Chen Z, Shen H T, Zhou X. Monitoring path nearest neigh-
bor in road networks. In Proc. ACM SIGMOD, June 2009,
pp.591-602.

Shang S, Yuan B, Deng K et al. PNN query processing on
compressed trajectories. GeolInformatica, 2012, 16(3): 467-
496.

Shang S, Zheng K, Jensen C S et al. Discovery of path
nearby clusters in spatial networks. IEEE Transactions on
Knowledge and Data Engineering, 2015, 27(6): 1505-1518.
Zheng K, Shang S, Yuan N J et al. Towards efficient search
for activity trajectories. In Proc. the 29th ICDE, April 2013,
pp-230-241.

Shang S, Ding R, Yuan B et al. User oriented trajectory
search for trip recommendation. In Proc. the 15th EDBT,
March 2012, pp.156-167.

Shang S, Ding R, Zheng K et al. Personalized trajectory
matching in spatial networks. The VLDB Journal, 2014,
23(3): 449-468.

Wang F, Zhu Z. Global path planning of wheeled robots us-
ing multi-objective memetic algorithms. In Proc. the 1jth
IDEAL, Oct. 2013, pp.437-444.

Guo X, Zhang D, Wu K et al. MODLoc: Localizing mul-
tiple objects in dynamic indoor environment. IEEE Trans-
actions on Parallel and Distribution Systems, 2014, 25(11):
2969-2980.

Shang S, Xie K, Zheng K et al. VID join: Mapping trajecto-
ries to points of interest to support location-based services.
Journal of Computer Science and Technology, 2015, 30(4):
725-744.

Li B, Tan S, Wang M et al. Investigation on cost assignment
in spatial image steganography. IEEE Transactions on In-
formation Forensics and Security, 2014, 9(8): 1264-1277.
Li B, Wang M, Li X et al. A strategy of clustering mod-
ification directions in spatial image steganography. IEEE
Transactions on Information Forensics and Security, 2015,
10(9): 1905-1917

Yang X S, Pei J, Sun W. Elastic image registration using
hierarchical spatially based mean shift. Comp. in Bio. and
Med., 2013, 43(9): 1086-1097.

Zhou F, Jiao J, Lei B Y. A linear threshold-hurdle model
for product adoption prediction incorporating social net-
work effects. Inf. Sci., 2015, 307: 95-109.

Wang J, Huang J Z, Guo J et al. Recommending high-utility
search engine queries via a query-recommending model.
Neurocomputing, 2015, 167(C): 195-208.

[27] Dai M, Sung C. Achieving high diversity and multiplexing
gains in the asynchronous parallel relay network. Trans.
Emerging Telecommunications Technologies, 2013, 24(2):
232-243.

(28] Zhang D, Lu K, Mao R. A precise RFID indoor localization
system with sensor network assistance. China Communica-
tions, 2015, 12(4): 13-22.

[29] Huang X, Cheng H, Li R H et al. Top-k structural diversity
search in large networks. VLDB J., 2015, 24(3): 319-343.

[30] Wu R, Li C, Lu D. Power minimization with derivative
constraints for high dynamic GPS interference suppression.
SCIENCE CHINA Information Sciences, 2012, 55(4): 857-
866.

[31] Zhao Q, Liew S, Zhang S, Yu Y. Distance-based location
management utilizing initial position for mobile communi-
cation networks. IEEE Trans. Mob. Comput., 2016, 15(1):
107-120.

Shuo Shang is a professor of com-
puter science at China University of
Petroleum, Beijing. He was a research
assistant professor at the Department of
Computer Science, Aalborg University,
Denmark. He received his B.S. degree
from Peking University, Beijing, in 2008,
and Ph.D. degree from The University
of Queensland, Australia, in 2012 respectively, both in
computer science. His research interests include efficient
query processing in spatio-temporal databases, spatial
trajectory computing, and location-based social media. He
has served on program committees and as session chairs
for several database conferences and as invited reviewer
for several database journals, including ICDE, TKDE,
The VLDB Journal, ACM TIST, Geolnformatica, KAIS,
DKE, and IEICE Transactions.

Lisi Chen is a Ph.D. candidate
with DANTE Group at Nanyang Tech-
nological University, Singapore. His
research interests include geo-textual
data management, spatial keyword
query evaluation, and location-based
social networks.

Zhe-Wei Wei is an associate profes-
sor at Renmin University of China. He
obtained his Ph.D. degree in computer
science and engineering from The Hong
Kong University of Science and Tech-
nology in 2012. His research interests
include streaming algorithms and data
structures.



648 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

Dan-Huai Guo is an associate Ji-Rong Wen is a professor at

professor of computer science at Com- Renmin University of China. He is
also a National “1000 Plan” Expert

of China. His main research interest

puter Network Information Center,
Chinese Academy of Sciences, Beijing.
His research interests include spatial lies on Web big data management,
database, data mining, and machine information retrieval, data mining, and

learning. machine learning. He was a senior

i

researcher at MSRA, and he has more
than 50 U.S. patents in Web search and related areas.
He has published extensively on prestigious international
conferences and journals. He is currently the associate
editor of ACM Transactions on Information Systems
(TOIS). He is a senior member of IEEE.



