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Abstract With the increasing availability of real-time traffic information, dynamic spatial networks are pervasive nowa-

days and path planning in dynamic spatial networks becomes an important issue. In this light, we propose and investigate a

novel problem of dynamically monitoring shortest paths in spatial networks (DSPM query). When a traveler aims to a des-

tination, his/her shortest path to the destination may change due to two reasons: 1) the travel costs of some edges have been

updated and 2) the traveler deviates from the pre-planned path. Our target is to accelerate the shortest path computing in

dynamic spatial networks, and we believe that this study may be useful in many mobile applications, such as route planning

and recommendation, car navigation and tracking, and location-based services in general. This problem is challenging due

to two reasons: 1) how to maintain and reuse the existing computation results to accelerate the following computations, and

2) how to prune the search space effectively. To overcome these challenges, filter-and-refinement paradigm is adopted. We

maintain an expansion tree and define a pair of upper and lower bounds to prune the search space. A series of optimization

techniques are developed to accelerate the shortest path computing. The performance of the developed methods is studied

in extensive experiments based on real spatial data.

Keywords shortest path, dynamic spatial network, spatial database, location-based service

1 Introduction

The continued proliferation of GPS-equipped mo-

bile devices[1] (e.g., vehicle navigation systems and

smart phones) and the proliferation of online map-

based services (e.g., Google Maps 1○, Bing Maps 2○, and

MapQuest 3○) enable people to acquire their current

geographic positions in real time and to retrieve spatial

information relevant to their travel. In the meantime,

with the increasing availability of real-time traffic infor-

mation, dynamic road networks are pervasive and path

planning in dynamic spatial networks becomes an im-

portant issue. In this light, we propose and investigate

a novel problem of efficiently monitoring shortest paths

in dynamic spatial networks. When a traveler targets

at a destination, his/her shortest path to the destina-
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tion may be continuously changing due to two reasons:

1) the travel cost of some edges has changed (e.g., at

peak hours, 7:00 am∼9:00 am or 17:00 pm∼19:00 pm,

the travel costs may increase) and 2) the traveler devi-

ates from the pre-planned path. Our target is to accel-

erate the shortest path computing in dynamic spatial

networks, and we believe that this study may be use-

ful in many mobile applications, such as route planning

and recommendation, car navigation and tracking, and

location-based services in general.

Fig.1 shows two cases of shortest path update: 1)

some edges’ travel costs have changed and 2) the mov-

ing object deviates from the pre-planned path. Here,

p1, p2, ..., p8 are vertices in a spatial network. A moving

object o’s current position is p1, and p2 is the destina-

tion. Path r1 = 〈p1, p4, p3, p2〉 is a pre-planned shortest

path from p1 to p2. In case 1), an edge 〈p1, p4〉 is over-

crowded and its travel cost increases.
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Fig.1. Two cases of shortest path update. (a) Travel-cost cha-
nge. (b) Deviation.

Hence, the shortest path r1 expires and is replaced

by a new shortest path r2 = 〈p1, p5, p8, p7, p6, p3, p2〉.

In case 2), a moving object o deviates from the pre-

planned path r1 and it arrives at p5. Compared with

going back to r1, path r2 = 〈p5, p8, p7, p6, p3, p2〉 has

less travel cost and r2 is the new shortest path from

o’s current position to p2. Our target is to accelerate

the new shortest path computing in the aforementioned

two cases.

The proposed dynamic shortest path monitoring

(DSPM) query is applied in spatial networks, since in

a large number of practical scenarios, objects move

in such networks (e.g., roads, railways, rivers) rather

than in a Euclidean space. A straightforward approach

of the DSPM query is recomputing the shortest path

from a moving object’s current position to the destina-

tion using network expansion method (e.g., Dijkstra’s

algorithm[2] or A* algorithm[3]). However, especially

in a large spatial network, recomputing shortest paths

using network expansion method is time-consuming, if

the network is updated frequently or the moving ob-

ject does not follow the pre-planned path. Existing

network expansion methods are lack of effective prun-

ing techniques to prune the search space. Such high

computation cost may prevent the DSPM query from

being answered efficiently. To the best of our knowl-

edge, there is no existing method that can process the

DSPM query efficiently. Existing studies of dynamic

path planning[4-5] are mainly based on pre-defined traf-

fic models (e.g., time-dependent road networks), and

instant traffic conditions and moving object deviations

are not taken into account.

To overcome the weakness of the baseline method,

we propose a novel two-phase search algorithm to com-

pute the DSPM query efficiently. Initially, we compute

the shortest path from the source to the destination

using network expansion method. We maintain the ex-

pansion tree and compute the upper and lower bounds

of the shortest path distances (from the vertices in the

tree to the destination). If a moving object travels along

with the shortest path and there is no update (travel

cost change) in the expansion tree, it is not necessary

to recompute the shortest path. Otherwise, we have

to recompute a new shortest path from the moving ob-

ject’s current location to the destination. We adopt

filter-and-refinement paradigm and we use the upper

and lower bounds to prune the search space. We can

avoid devoting unnecessary search effort to paths un-

likely to be the optimal choice and further enhance the

query efficiency.

To sum up, the main contributions of this paper are

as follows.

• We study a novel problem of monitoring shortest

path in dynamic spatial networks (DSPM query). It

provides new features for advanced spatiotemporal in-

formation systems, and benefits users in many popular

mobile applications such as route planning and recom-

mendation, car navigation and tracking, and location-

based services in general.
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• We define a pair of upper and lower bounds of

shortest path distances to prune the search space effec-

tively.

• We develop two efficient algorithms to compute

the DSPM query in two cases, and the filter-and-

refinement paradigm is adopted.

• We conduct extensive experiments to investigate

the performance of the developed algorithms on real

spatial data.

The rest of the paper is organized as follows. Sec-

tion 2 introduces dynamic spatial networks used in this

paper as well as the problem definition. The dynamic

shortest path monitoring (DSPM) query processing is

introduced in Section 3, which is followed by the experi-

mental results in Section 4. This paper is concluded in

Section 6 after discussions on related work in Section 5.

2 Preliminaries

2.1 Spatial Networks

A dynamic spatial network is modeled as a con-

nected and undirected graph G(V,E, F,W ), where V

is a vertex set and E ⊆ V × V is an edge set. A ver-

tex vi ∈ V represents a road intersection or an end

of a road. An edge ek = (vi, vj) ∈ E is defined by

two vertices and represents a road segment that en-

ables the travel between vertices vi and vj . Function

F :V ∪ E → Geometries records the geometrical in-

formation of the spatial network G. In particular, it

maps a vertex and an edge to the point location of the

corresponding road intersection and to a polyline rep-

resenting the corresponding road segment, respectively.

Function W :E → R is a function that assigns a real-

valued weight to each edge. The weight w(e) of edge

e represents the corresponding road segment’s travel

cost or some other relevant properties such as its travel

time[6], which may be obtained from instant traffic

data, and hence w(e) is a dynamic value.

In this paper, w(e) represents the travel time along

e and we define that

w(e) =
e.dist
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always selects the vertex with the minimum distance la-

bel for expansion, for a vertex pi ∈ T , we have that

sd(pi, p) + cost(p) > cost(pi).

Otherwise, we will have

sd(s, pi) + sd(pi, p) + cost(p) < sd(s, pi) + cost(pi)

⇒ sd(s, p) + cost(p) < sd(s, pi) + cost(pi),

which conflicts with p /∈ T . �

p6

p7p5
p2

p3

p4

p1

p8
p9

p

Fig.2. Expansion tree.

For example, in Fig.2, sd(p6, p)+cost(p) > cost(p6).

If the travel cost of sd(p6, p) is updated to sd′(p6, p) (no

matter sd(p6, p) > sd′(p6, p) or sd(p6, p) < sd′(p6, p)),

we have that sd(p6, p) > Edist(p6, p)/Smax. According

to the triangular inequality, we have that

Edist(p6, p)

1. DSPM Query Processing in the First

Case
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in Fig.3, where p, p1, ..., p9 are vertices, s = p1 and

d = p9, and SP (s, d) = (p1, p3, p4, p8, p9) is the pre-

planned shortest path. Vertex s = p1 is the root of

the expansion tree. A moving object o deviates from

SP (s, d) and p is its current position.

p

p6

p7p5
p2

p3

p4

p1

p8 p9

Fig.3. Deviation.

For each vertex pi in the expansion tree, we compute

a lower bound of the shortest path distance sd(pi, d).

The computation procedure is from leaf nodes to the

root. For example, in Fig.3, p6, p7 and p9 are leaf nodes.

For a leaf node pj , its distance lower bound is defined

by

sd(pj , d).lb = cost(pj) = Edist(pj , d)/Smax,

and we have that sd(pj , d).lb 6 sd(pj , d).

For a non-leaf node pk, its distance lower bound is

defined by

sd(pk, d).lb = min
∀pj(pj .pre=pk)

{sd(pj, d).lb+ sd(pk, pj)},

where pk is the parent node of pj in the expansion tree,

and it is clear that sd(pk, d).lb 6 sd(pk, d).

For each vertex in SP (s, d), we compute and record

its shortest path distance to d. To find the shortest

path from a moving object’s current position p to the

destination d, network expansion is conducted from p.

Once a vertex in SP (s, d) is scanned (e.g., vertex p3 in

Fig.3), we have an accessible path from p to d. Path

P = 〈p, p3, p4, p8, p9〉 is an accessible path, and we can

compute its length as P.dist = sd(p, p3) + sd(p3, p9).

The lengths of accessible paths can be used to define

the upper bound of shortest path distance UB .

UB = min{Pi.dist},

where Pi is an accessible path.

On the other hand, if a vertex in the expansion tree

T is scanned (e.g., vertex p2 in Fig.3), we can estimate

the shortest path distance from p to d via p2 as

sd(p, p2, d) > sd(p, p2) + sd(p2, d).lb

⇓

sd(p, p2, d).lb = sd(p, p2) + sd(p2, d).lb.

If the value of sd(p, p2, d).lb exceeds UB , there does not

exist a shortest path from p to d via p2; thus p2 can be

pruned safely.

The search process of DSPM query processing in the

second case is detailed in Algorithm 2.

1. DSPM Query Processing in the Sec

Second Case
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compare and update the value of UB (lines 13∼15).

If v is in the expansion tree T (s), we compute the

lower bound of shortest path distance sd(p, v, d).lb =

sd(p, v) + sd(v, d).lb. If sd(p, v) + sd(v, d).lb > UB ,

there does not exist a shortest path from p to d via

v, and v can be pruned safely (lines 16∼18). For

each adjacent vertex n of vertex v, we compare its dis-

tance label n.dist with sd(p, n) + w(v, n) + cost(n). If

n.dist is greater than sd(p, v) + w(v, n) + cost(n) and

sd(p, v) +w(v, n) + cost(n) is less than UB , we update

the value of n.dist and put n into Os (lines 19∼24).

4 Experiments

We conducted extensive experiments on real spa-

tial datasets to demonstrate the performance of the

proposed dynamic shortest path monitoring (DSPM)

query. The two datasets used in our experiments were

Beijing Road Network (BRN) and North America Road

Network (NRN), which contain 28 342 vertexes and

175812 vertexes respectively, stored in adjacency lists.

In the experiments, the graphs were memory resi-

dent when running A* algorithm[3], as the memory oc-

cupied by BRN or NRN was less than 20 MB. All algo-

rithms were implemented in Java and run on a Windows

7 platform with an Intel i7-4770k processor (3.50 GHz)

and 16 GB memory. Unless stated otherwise, experi-

mental results are averaged over 20 independent trails

with different query inputs. The main performance

metrics are CPU time and the number of visited ver-

tices. The number of visited vertices is used as a metric

since it describes the number of data accesses.

The parameter settings are detailed in Table 1. In

both BRN and NRN, the shortest path length (the

number of vertices in the shortest path) varies from

20 to 100, and 60 is the default value. In the first case

(travel cost change), by default, 3% of all edges change

their travel costs. In the second case (deviation), the

deviation distance varies from 1 to 5, and 3 is the de-

fault value. The deviation distance is defined by the

shortest path distance from the moving object’s cur-

rent position to the deviation point.

Table 1. Parameter Settings
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Fig.4. Performance of the DSPM algorithm in the first case (DSPM-1). (a) CPU-time with respect to the shortest path length of
BRN. (b) Number of visited vertices with respect to the shortest path length of BRN. (c) CPU-time with respect to the shortest path
length of NRN. (d) Number of visited vertices with respect to the shortest path length of NRN. (e) CPU-time with respect to travel
cost change of BRN. (f) Number of visited vertices with respect to travel cost change of BRN. (g) CPU-time with respect to travel
cost change of NRN. (h) Number of visited vertices with respect to travel cost change of NRN.
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Fig.5. Performance of the DSPM algorithm in the second case (DSPM-2). (a) CPU-time with respect to the shortest path length of
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distance of NRN. (h) Number of visited vertices with respect to deviation distance of NRN.
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the DSPM algorithms of both cases still have a high

query performance, and outperform the baseline algo-

rithm by a factor of 2 in terms of both CPU time and

visited vertices. It is worth to note that the CPU time

is not fully aligned with the number of visited vertices.

To prune the search space, the DSPM algorithm needs

more computational effort to maintain its bounds. In

some cases, the increased computation cost may offset

the benefits of the reduction in the number of visited

vertices.

5 Related Work

5.1 Path Planning Queries

Network-based path planning[7] is pervasive. Gene-

rally, path planning queries can be classified into two

categories: path planning in static spatial networks,

and path planning in dynamic spatial networks. In

static spatial networks, Dijkstra’s algorithm[2] and A*

algorithm[3] are two general methods based on network

expansion to compute the shortest path from a single

source to a destination. In Dijkstra’s algorithm, a net-

work expansion is expanded from a source s. A priority

heap H is adopted to maintain the unscanned vertexes.

At each time, a vertex v with the minimum distance

label is selected. It is removed from H and labeled as

“scanned” vertex. Then, all unscanned neighbor ver-

tices of v are put into H , until the destination d is

reached and the shortest path from s to d is found. In

the A* algorithm, the value of sd(s, v)+dE(v, d), where

dE(v, d) is the Euclidean distance between v and d, is

used as the distance label of vertex v, to estimate the

network distance from s to d via v. The A* algorithm

is a heuristic search method, and its performance is

greater than that of Dijkstra’s algorithm in general.

Group nearest neighbor[8], aggregate nearest

neighbor[9], and collective travel planning[7] queries

have multiple sources and a single destination. Group

nearest neighbor and aggregate nearest neighbor

queries assume that each traveler goes to the destina-

tion directly, and the collective travel planning query

assumes that travelers go to the destination via k meet-

ing points. They may go to the meeting point individ-

ually, and then go together to the destination by col-

lective travel. The collective travel planning problem is

Max-SNP hard.

Time-dependent road network[4,10-11] and proba-

bilistic road network[5] are two representative dynamic

spatial networks. A time-dependent road network can

be established according to speed patterns from his-

torical traffic information, which motivates the time-

dependent shortest path query[4]. Time-dependent

shortest path query is a variant of dynamic shortest

path problem, which is designed to find the best de-

parture time for users, to minimize the global travel-

ing time from a source to a destination over a large

road network, where the traffic conditions are dynami-

cally changing from time to time. The challenge of this

problem lies in the dynamic edge delay. In probabilistic

road networks, each edge is assigned a set of probabilis-

tic data to describe the traveling cost along this edge,

and probabilistic shortest path queries[5] ask for 1) the

fastest path constrained by a probability threshold, and

2) the path with the highest probability constrained by

a travel time threshold. There also exist other dynamic

spatial networks. For example, Shang et al.[10-12] used

trajectory data to establish traffic-aware spatial net-

works, and then they planned the fastest paths based

on a probabilistic threshold.

Despite the bulk of literatures on shortest path

queries[2-5,10-11], none of existing work can address the

proposed DSPM query due to two reasons: Dijkstra’s

algorithm and A* algorithm are based on static spa-

tial networks, and time-dependent and probabilistic

shortest[5,12] path queries are based on different traf-

fic models from ours (their models are mainly based

on pre-computation, historical traffic information, and

fixed traffic models, and instant traffic information is

not taken into account; instant traffic information, e.g.,

traffic accidents, is not predictable).

5.2 Trajectory-Based Travel Planning

The trajectory-based travel planning queries can

be further divided into trajectory-to-object search and

trajectory-to-trajectory search. In the trajectory-to-

object search, queries aim to find objects spatially close

to a query path according to some distance metrics. For

example, the path nearest neighbor (PNN) query[13-14]

maintains an up-to-date path nearest neighbor result as

the user is moving along a predefined route. Moreover,

the path nearby cluster query[15] further extends the

PNN query to find the POI clusters spatially close to a

given path. In trajectory-to-trajectory search, queries

retrieve the trajectories that have similar curve and are

spatially close to a query trajectory. Travelers can use

the travel history of other travelers to guide their own

trips. Zheng et al. studied this problem in Euclidean

space[16], and Shang et al. studied the problem in spa-

tial networks[17-18].



646 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

20

40

60

80

100

20 40 60 80 100

R
u
n
ti
m

e
 (

m
s)

Shortest Path Length

A*

DSPM

500

1000

1500

2000

2500

20 40 60 80 100

N
u
m

b
e
r 

o
f 
V

is
it
e
d
 V

e
rt

ic
e
s

Shortest Path Length

20

40

60

80

100

20 40 60 80 100

R
u
n
ti
m

e
 (

m
s)

Shortest Path Length

1000

2000

3000

4000

5000

20 40 60 80 100

N
u
m

b
e
r 

o
f 
V

is
it
e
d
 V

e
rt

ic
e
s

Shortest Path Length

A*

DSPM

A*

DSPM

A*

DSPM

(a) (b)

(c) (d)

Fig.6. Performance for the DSPM algorithm (combined). (a) BRN (CPU-time). (b) BRN (visited vertices). (c) NRN (CPU-time). (d)
NRN (visited vertices).

There also exist several interesting directions on

path planning[19-20], spatial-social information process-

ing[21-26], and network information processing[27-31],

which may be considered in our future studies.

6 Conclusions

In this paper, we proposed and investigated a novel

problem of planning shortest paths in dynamic spatial

networks, and the change of some edges’ travel cost

and the deviation of moving objects are taken into ac-

count. Our target is to accelerate the shortest path

computing in dynamic spatial networks, and we believe

that this study may be useful in many mobile applica-

tions, such as route planning and recommendation, car

navigation and tracking, and location-based services in

general. We developed two efficient algorithms based on

filter-and-refinement paradigm, and we devised a series

of pruning techniques to prune the search space effec-

tively. The performance of the developed methods was

studied in extensive experiments based on real spatial

data.
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