

Aalborg Universitet

Trajectory Similarity Join in Spatial Networks

Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian Søndergaard; Zheng, Kai; Kalnis,
Panos
Published in:
Proceedings of the VLDB Endowment

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Shang, S., Chen, L., Wei, Z., Jensen, C. S., Zheng, K., & Kalnis, P. (2017). Trajectory Similarity Join in Spatial
Networks. Proceedings of the VLDB Endowment, 10(11). http://www.vldb.org/pvldb/vol10/p1178-shang.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: 04, 2021

https://vbn.aau.dk/en/publications/db324ec5-94e0-4f6c-86f0-d08d8c808e7c
http://www.vldb.org/pvldb/vol10/p1178-shang.pdf

Trajectory Similarity Join in Spatial Networks

Shuo Shang
KAUST

jedi.shang@gmail.com

Lisi Chen
HKBU

chenlisi@comp.hkbu.edu.hk

Zhewei Wei
Renmin University of China

zhewei@ruc.edu.cn

Christian S. Jensen
Aalborg University

csj@cs.aau.dk

Kai Zheng
Soochow University

zhengkai@suda.edu.cn

Panos Kalnis
KAUST

panos.kalnis@kaust.edu.sa

ABSTRACT
The matching of similar pairs of objects, called similarity join, is
fundamental functionality in data management. We consider the
case of trajectory similarity join (TS-Join), where the objects are
trajectories of vehicles moving in road networks. Thus, given two
sets of trajectories and a threshold θ, the TS-Join returns all pairs
of trajectories from the two sets with similarity above θ. This
join targets applications such as trajectory near-duplicate detection,
data cleaning, ridesharing recommendation, and traffic congestion
prediction.

With these applications in mind, we provide a purposeful
definition of similarity. To enable efficient TS-Join processing
on large sets of trajectories, we develop search space pruning
techniques and take into account the parallel processing capabilities
of modern processors. Specifically, we present a two-phase divide-
and-conquer algorithm. For each trajectory, the algorithm first
finds similar trajectories. Then it merges the results to achieve
a final result. The algorithm exploits an upper bound on the
spatiotemporal similarity and a heuristic scheduling strategy for
search space pruning. The algorithm’s per-trajectory searches are
independent of each other and can be performed in parallel, and the
merging has constant cost. An empirical study with real data offers
insight in the performance of the algorithm and demonstrates that
is capable of outperforming a well-designed baseline algorithm by
an order of magnitude.

1. INTRODUCTION
The continued proliferation of GPS-equipped mobile devices

(e.g., vehicle navigation systems and smart phones) and the pro-
liferation of online map-based services (e.g., Bing Maps1, Google
Maps2, and MapQuest3) enable the collection and sharing of tra-
jectories. For example, the sites Bikely4, GPS-way-points5, Share-

1https://www.bing.com/maps/
2https://maps.google.com/
3https://www.mapquest.com
4https://www.bikely.com/
5https://www.gps-waypoints.net

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

my-routes6, and Microsoft Geolife7 enable such sharing, and more
and more social network sites, including Twitter8, Facebook9, and
Foursquare10, are starting to support trajectory sharing and search.
This development motivates new studies of the management and
analysis of massive trajectory data. In this setting, trajectory
similarity join (TS-Join) is fundamental functionality: given sets
P and Q of trajectories and a similarity threshold θ, the TS-Join
returns all pairs of trajectories from P and Q with a similarity that
exceeds θ.

The TS-Join may bring significant benefits to a range of appli-
cations, including trajectory near-duplicate detection, data clean-
ing [2, 19], ridesharing recommendation [16, 17], friend recom-
mendation [17], frequent trajectory based routing [13, 19], and
traffic congestion prediction. For example, a database may contain
several copies of a trajectory or several similar trajectories. We may
conduct a TS-Join (self join) on the database to identify duplicate
or similar trajectories, thus supporting data cleaning. For example,
having found similar trajectory pairs (τ1,τ2), (τ1,τ3), (τ1,τ4), we
may choose to retain only the representative trajectory τ1. The
identification of similar trajectories of different commuters is also
useful in ridesharing recommendation and friend recommendation.
For example, commuters may find potential ridesharing partners
that have similar trajectories, and social network in services may
identify users with similar living trajectories and use this in friend
recommendations. We may also use the TS-Join to find frequently
traveled trajectories (e.g., trajectory τ joins with m other trajecto-
ries, and the travel frequency of τ ism+1), which may be used for
route recommendation and in traffic analyses to predict congestion.

To the best of our knowledge, this is the first study of a trajectory
similarity join that takes into account both spatial and temporal
similarity in a continuous manner. A linear combination method
(e.g., [17, 18]) is adopted to combine the spatial and temporal sim-
ilarity into a spatiotemporal similarity metric. In contrast, existing
trajectory similarity joins (e.g., [2, 3, 6, 10]) use a time interval
threshold to constrain the temporal proximity of two trajectories (in
a fixed manner) and can be classified into two categories. Studies
in the first category (e.g., [3, 10]) eliminate trajectory pairs that are
temporally further apart than a threshold. We generalize this cat-
egory of studies and compute temporal similarity by summarizing
temporal proximities of sample point pairs from two trajectories in
a continuous manner, thus obviating the need for a time threshold.
Studies in the other category (e.g., [2, 6]) utilize a sliding window
for all trajectories and eliminate pairs of trajectories with times

6https://www.sharemyroutes.com/
7https://research.microsoft.com/en-us/projects/geolife/
8https://www.twitter.com/
9https://www.Facebook.com/

10https://www.Foursquare.com/

1178

p1

: sample point in a trajectory

p3

p8

p10

: start point of a trajectory : destination point of a trajectory

τ2

p2

p7

p9

p14

p6

p4

p5

p11

p12 p13

p15

τ1τ3

τ1 = < p2 , 09:37 > , < p4 , 09:40 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:57 > , < p12 , 10:02 > , < p13 , 10:05 > , < p14 , 10:07 >

τ2 = < p3 , 08:35 > ,< p4 , 08:39> < p5 , 08:46 > , < p8 , 08:49 > , < p9 , 09:01 > , < p10 , 09:04 > , < p13 , 09:06 > , < p15 , 09:07 >

τ3 = < p1 , 09:32 > , < p6 , 09:43 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:59 > , < p10 , 10:03 > , < p11 , 10:13 >

Figure 1: TS-Join Example

that fall outside the window. For the remaining pairs, only spatial
proximity is considered. However, in the applications that motivate
our study, spatial proximity is by itself insufficient to evaluate the
relationship between different trajectories. With the approach in
the second category, a ridesharing service may recommend a co-
traveler with a very different departure time to a traveler. Although
the trajectories of the travelers may be spatially close to each other,
the travelers may not be satisfied with the recommendation, as their
preferences are not fulfilled.

An example of the TS-Join is shown in Figure 1, where τ1, τ2,
and τ3 are trajectories, and P = {τ1} and Q = {τ2, τ3}. A
trajectory is a sequence of timestamped sample points of a moving
object. In the example, p1, p2, ..., p15 are timestamped sample
points. Given a time interval (8:30, 10:30), existing sliding-window
based trajectory similarity joins (e.g., [2, 6]) return trajectory pairs
(τ1, τ2), and (τ1, τ3) because they are spatially close to each other.
However, τ1 and τ2 have very different departure times, thus
rendering a result such as this of little use in ridesharing and traffic
congestion prediction. In the applications we target, it is difficult
to obtain an appropriate query time interval. The TS-Join returns
trajectory pair (τ1, τ3) without the need for a query time interval,
and the spatial and temporal domains are considered appropriately
in the matching.

Next, unlike existing trajectory similarity joins [2,3,6,10,19], the
TS-Join is applied in spatial networks because in many practical
scenarios, objects (e.g., commuters and vehicles) move in spatial
networks rather than in Euclidean space. In spatial networks, only
the network distance can reflect the real distance between two
objects, and Euclidean distance may lead to errors. We assume
that the sample points of trajectories in sets P and Q have been
map matched to the corresponding spatial network (spatial domain)
according to some map-matching algorithm (e.g., [4, 20]), and we
assume that the timestamps of all trajectory sample points are
mapped to a time axis with a 24-hour range (temporal domain) [17].

Existing methods cannot process the TS-Join due to three rea-
sons. (i) Different query spaces (Euclidean vs. network): these
joins (e.g., [2, 3, 6, 10, 19]) are conducted in Euclidean space rather
than in a spatial network. Thus, existing spatial indices (e.g., the
R-tree [11]) and accompanying techniques are ineffective here. (ii)
Different temporal matching schemes (time interval vs. continuous
evaluation): most of the existing trajectory similarity joins are time-
interval based (e.g., [2,3,6,10]), and their solutions are inapplicable
to continuous temporal matching. They compute different results
than the TS-Join (refer to Figure 1). (iii) Parallel processing: an
experimental study [12] shows that existing centralized similarity
join techniques (that do not take parallel processing into account)
are far from efficient in processing very large data sets. Existing
centralized trajectory similarity joins (e.g., [2, 3, 6, 10, 19]) can
process at most 500 K trajectories (based on their experiments),
while the TS-Join is able to process 10 M trajectories with a

reasonable runtime (e.g., processing 10 M × 2 M trajectories for
non-self join in 255 seconds and processing 10 M trajectories for
self join in 540 seconds). A comparison between the TS-Join and
existing studies is shown in Table I.

Table I: Comparison to existing trajectory similarity joins
Studies Space Temporal matching Parallel Data
[2] Euclidean Sliding-window based No 50 K
[6] Euclidean Sliding-window based No 250 K
[3] Euclidean Time-threshold based No 150 K
[10] Euclidean Time-threshold based No 2 K
[19] Euclidean None (spatial join only) No 500 K
TS-Join Network Continuous matching Yes 10 M

We propose a relatively straightforward approach to the TS-Join
called temporal-first matching (TF-Matching). Initially, we apply
a hierarchical grid index in the temporal domain. Then we refine
the trajectory pairs in the same leaf node (trajectories in the same
node are temporally similar) by computing their spatiotemporal
similarities. By merging the results from the leaf nodes toward the
root, the join result is obtained when the root is reached. Upper and
lower bounds are defined to prune the search space in the spatial
and temporal domains. The computations at each index level occur
in parallel. TF-Matching has four technique contributions: pruning
in leaf nodes, pruning among different nodes, merging, and parallel
processing. The only similarity between TF-Matching and the
sliding-window based trajectory similarity methods [2, 6] is that
the similarity-join computation in a leaf node is equivalent to the
processing of a query issued within a temporal-matching window
(the first contribution). The optimization techniques in sliding-
window based methods cannot be used in TF-Matching because
of the different query spaces (Euclidean vs. network) and the
different temporal matching schemes (time interval vs. continuous
evaluation). TF-Matching is considered a contribution of the paper.

TF-Matching has three main limitations. First, it is driven by
the temporal domain and thus has weak spatial pruning power.
As a result, the algorithm needs to consider a large number of
pairs. Second, while having many leaf nodes enables more parallel
processing, this also increases the merging cost. Third, it is
potentially costly to acquire network distances when computing
spatial similarities.

To process the TS-Join efficiently, we propose a two-phase
algorithm based on a divide-and-conquer strategy. In the trajectory-
search phase, for each trajectory τ , the algorithm explores the
spatial and temporal domains concurrently to find trajectories that
are similar to τ . In the spatial domain, network expansion [9]
is adopted from each sample point of τ , while in the temporal
domain, we expand the search from each timestamp of τ . An
upper bound on the spatiotemporal similarity is defined to prune
the search space, and a heuristic scheduling strategy is proposed
to schedule multiple so-called query sources in order to improve
efficiency. The trajectory-search processes are independent of each
other, enabling parallel processing, and the merging cost is constant
(uncorrelated to number of threads used for parallel processing).
The network distances for similarity computation can be derived
directly during the trajectory-search process. A time complexity
analysis indicates that the two-phase algorithm is considerably
better than the temporal-first matching algorithm.

To sum up, the contributions of the paper are as follows.

• We propose a novel network-based trajectory similarity join,
called TS-Join, that takes into account both spatial and
temporal similarity in a continuous manner, thus target-
ing applications such as trajectory near-duplicate detection,
ridesharing recommendation, route planning, and traffic con-
gestion prediction.

1179

• The TS-Join uses new metrics to evaluate trajectory similar-
ity in the spatial and temporal domains.

• We develop a temporal-first baseline algorithm that enables
parallel TS-Join processing.

• We develop a two-phase algorithm with effective pruning
and scheduling techniques that enables parallel TS-Join
processing.

• We conduct extensive experiments on large trajectory sets to
study the performance of the developed algorithms.

The rest of the paper is organized as follows. Section 2
introduces the spatial network setting and the trajectory similarity
metrics used in the paper, and it defines the problem. Temporal-first
matching is covered in Section 3, while the two-phase algorithm
is covered in Section 4. The developed algorithms are extended
to support non-self joins in Section 5, which is followed by a
presentation of experimental results in Section 6. Related work
is covered in Section 7, and conclusions and future directions are
presented in Section 8.

2. PRELIMINARIES

2.1 Spatial Networks and Trajectories
A spatial network is modeled as a connected, undirected graph

G = (V,E, F,W), where V is a vertex set andE ⊆ {{vi, vj}|vi, vj
∈ V ∧ vi 6= vj} is an edge set. A vertex vi ∈ V represents a road
intersection or an end of a road, and an edge ek = {vi, vj} ∈ E
represents a road segment that enables travel between vertices vi
and vj . Function F : V ∪ E → Geometries maps a vertex to
the point location of the corresponding road intersection and maps
an edge to a polyline representing the corresponding road segment.
Function W : E → R assigns a real-valued weight W (e) to an
edge e that represents the corresponding road segment’s length.

The shortest path between two vertices vi and vj is a sequence
of edges linking vi and vj such that the sum of the edge weights is
minimal. Such a path is denoted by SP (vi, vj), and its length is
denoted by sd(vi, vj). Euclidean-space based spatial indices (e.g.,
the R-tree [11]) and accompanying techniques are ineffective in
network environments due to loose lower bounds. For simplicity,
we assume that the data points considered (e.g., trajectory sample
points) are located on vertices. It is straightforward to also support
data points on edges. Assume a data point p is on an edge e with
given network distances to the two end vertices ea and eb. Then, a
new vertex is created for p and edge e is replaced by edges (ea, p)
and (p, eb).

Raw trajectory samples obtained from GPS devices are typically
of the form of (longitude, latitude, time). We assume that all
trajectory sample points have already been map matched onto the
vertices of the spatial network using some map-matching algorithm
(e.g., [4, 20]) and that between two adjacent sample points pa
and pb, the object movement always follows the shortest path
connecting pa and pb. A trajectory is defined as follows.

Definition: Trajectory
A trajectory τ of a moving object is a finite, time-ordered sequence
〈v1, v2, ..., vn〉, where vi = (pi, ti), i ∈ [1, n], with pi being
a sample point (equal to some vertex in G.V) and ti being a
timestamp.

The value of a timestamp is set to be within the range of 24 hours,
and the date is not taken into account because in many practical
scenarios like urban transportation, most movements occur daily.

Notice that the modeling of spatial networks and trajectories
align with previous studies [14, 15, 17, 18].

2.2 Trajectory Similarity Functions
Given a sample point v and a trajectory τ , the spatial network

distance d(v.p, τ) and the temporal distance d(v.t, τ) between p
and τ are defined as follows.

d(v.p, τ) = min
vi∈τ
{sd(v.p, vi.p)} (1)

d(v.t, τ) = min
vi∈τ
{|v.t− vi.t|} (2)

Given trajectories τ1 = 〈v1, v2, ..., vm〉 and τ2 = 〈v1,
v2, ..., vn〉, the spatial and temporal similarities, SimS(τ1, τ2) and
SimT(τ1, τ2), between them are defined as follows.

SimS(τ1, τ2) =

∑
vi∈τ1 e

−d(vi.p,τ2)

|τ1|
+

∑
vj∈τ2 e

−d(vj .p,τ1)

|τ2|
(3)

SimT(τ1, τ2) =

∑
vi∈τ1 e

−d(vi.t,τ2)

|τ1|
+

∑
vj∈τ2 e

−d(vj .t,τ1)

|τ2|
(4)

Here, |τ | denotes the number of sample points in a trajectory.
We extend Euclidean based trajectory similarity [7] to make it
fit into spatial networks. We ensure that the similarity measures
are symmetrical, such that SimS(τ1, τ2) = SimS(τ2, τ1) and
SimT(τ1, τ2) = SimT(τ2, τ1). In contrast, most of existing
trajectory similarity measures (e.g., [7, 16, 17]) are asymmetrical;
thus, they cannot be used directly in the TS-Join.

Note also that spatial and temporal similarities are in the range
[0, 2]. Finally, we use a linear combination method [16–18] to
combine spatial and temporal similarities (Equations 3 and 4), and
the spatiotemporal similarity is defined as follows.

SimST(τ1, τ2) = λ · SimS(τ1, τ2) + (1− λ) · SimT(τ1, τ2) (5)

Here, parameter λ ∈ [0, 1] controls the relative importance of the
spatial and temporal similarities. We support queries with arbitrary
values of λ.

2.3 Problem Definition
Given sets P and Q of trajectories and a threshold θ, the

trajectory similarity join (TS-Join) finds a set A of all trajectory
pairs from the two sets whose spatiotemporal similarity exceeds θ,
i.e., ∀(τi, τj) ∈ (P ×Q) \A (SimST(τi, τj) < θ).

We initially consider the self-join scenario (i.e., P = Q), and
then cover the case P 6= Q in Section 5.

3. BASELINE ALGORITHM

3.1 Basic Idea
Temporal-first matching (TF-Matching) is a straightforward

baseline approach to computing the TS-Join. Initially, we index
the temporal domain using a hierarchical grid structure. Then we
refine trajectory pairs in the same leaf node by computing their
spatiotemporal similarities (Sections 3.2 and 3.3). By merging
the results from the leaf nodes toward the root, the join result is
obtained when the root is reached (Section 3.4). A pair of upper
and lower bounds are used to prune the search space in the spatial
and temporal domains. The computations at each grid level can be
performed in parallel.

1180

τ2

τ1

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

n1 n2 n3 n4 n5 n6 n7 n8 n10 n11 n12

n23

time

n9

n13 n14 n15 n16 n17 n18

n19 n20 n21

n22

v9.p

v1.p

v2.p
v3.p v4.p v5.p

v6.p v7.p v8.p

v10.p

v11.p v12.p

v13.p v14.p

n1n1

grid index

Temporal Domain

Spatial Domain

Figure 2: An example of TF-Matching

3.2 Grid Index
The grid index structure [8] is established as follows. First, we

partition the temporal domain intom equal-sized time slots, each of
which corresponds to a leaf node. Next, we build up a tree structure
in a bottom-up manner. Assume that there are k nodes at the current
level (initially k = m). Then we build b k

2
c parent nodes. We do

this recursively until there is one parent, which is the root node.
The height of the tree is dlog(m)e + 1. An example is shown
in Figure 2, where n1, n2, ..., n23 are nodes and n23 is the root.
To find a value for m that yields high performance, we conducted
extensive experiments when establishing the grid index.

The temporal range range(τ) of a trajectory τ = 〈v1, v2, ..., vi〉
is defined by the timestamps of its start and end sample points, i.e.,
range(τ) = [v1.t, vi.t]. When we add a new trajectory τ to the
index, it is stored in the lowest node n that fully covers its temporal
range, i.e., range(τ) ⊆ range(n) and range(τ) is not contained
in the range of any child of n. If we delete a trajectory from the
index, we can simply remove it without any other changes.

Example: Consider trajectories τ1 and τ2 in Figure 2, where
range(τ1) = [6:15, 7:30] and range(τ2) = [6:20, 7:35]. We insert
them into the grid index top-down. Both τ1 and τ2 are stored
in node n4 (range(n4) = [6:00, 8:00]) because range(τ1) ⊆
range(n4), range(τ2) ⊆ range(n4), and n4 is a leaf node. Given
a trajectory τ3 and range(τ3) = [9:45, 10:30], τ3 is stored in n15

(range(n15) = [8:00, 12:00]) because range(τ3) ⊆ range(n15),
and range(τ3) * range(n5), range(τ3) * range(n6) (n5 and n6

are child nodes of n15).

3.3 Upper and Lower Bounds
In the example in Figure 2, trajectories τ1 and τ2 are stored in

leaf node n4, and they are temporally close to each other. We
estimate the upper bound of the temporal similarity SimT(τ1, τ2)
(Equation 4) as follows.∑

vi∈τ1

e−d(vi.t,τ2) ≤ |τ1| and
∑
vj∈τ2

e−d(vj .t,τ1) ≤ |τ2|

⇒ SimT(τ1, τ2).ub = 2 ≥ SimT(τ1, τ2) (6)

Here, |τ | is the number of sample points in τ .

By substituting Equation 6 into Equation 5, we have that

λ · SimS(τ1, τ2) + (1− λ) · SimT(τ1, τ2) ≥ θ

⇒ SimS(τ1, τ2) ≥
θ − (1− λ) · SimT(τ1, τ2).ub

λ
= LBS , (7)

where LBS is a global lower bound of the spatial similarity
of all “qualified" trajectory pairs in the same leaf node. If
SimS(τ1, τ2) < LBS , the spatiotemporal similarity of (τ1, τ2) is
less than θ, and (τ1, τ2) can be pruned safely.

Lemma 1. Given any two trajectories τ1 and τ2, we have that

∀v ∈ τ1(d(v.p, τ2) ≥ min
vi∈τ2

{d(vi.p, τ1)}). (8)

Proof: Assume that d(v.p, τ2) = sd(v.p, v′.p), where v′.p is
the sample point spatially closest to v.p among all sample points
in τ2. According to Equation 1, for sample point v′.p, we have
that d(v′.p, τ1) = minvi∈τ1{sd(v′.p, vi.p)} ≤ sd(v.p, v′.p) =
d(v.p, τ2). Therefore, we have that

d(v.p, τ2) ≥ d(v′.p, τ1) ≥ min
vi∈τ2

{d(vi.p, τ1)}.

By substituting Equation 8 into Equation 3, we estimate the
upper bound SimS(τ1, τ2).ub of the spatial similarity between τ1
and τ2 as follows.∑

vi∈τ1

e−d(vi.p,τ2) ≤ |τ1| · e−minvi∈τ2{d(vi.p,τ1)} ⇒

SimS(τ1, τ2).ub = e−minvi∈τ2{d(vi.p,τ1)}+

∑
vj∈τ2 e

−d(vj .p,τ1)

|τ2|
(9)

According to Equation 9, we only need to compute half of the exact
spatial similarity to get the upper bound.

For any trajectory pair (τ1, τ2) in the same leaf node, if its
spatial-similarity upper bound SimS(τ1, τ2).ub (Equation 9) is
less than the global lower bound LBS of the spatial similarity
(Equation 7), (τ1, τ2) cannot have a spatiotemporal similarity that
exceeds θ. Hence, (τ1, τ2) can be pruned safely. For the remaining
trajectory pairs, we compute their exact spatiotemporal similarities,
and maintain the qualified pairs, i.e., SimST(τ1, τ2) ≥ θ.

Notice that the computations in different leaf nodes are indepen-
dent. Thus, we can perform these computations in parallel.

3.4 Merging
Having computed the spatiotemporal similarities of the trajecto-

ry pairs in the leaf nodes, we merge the computation results from
the leaf level to the root level iteratively (bottom-up). We merge
two leaf nodes na and nb to their parent node nc (e.g., merging n3,
n4 to n14 in Figure 2). Besides the qualified trajectory pairs in na
and nb, we also need to consider the trajectory pairs (τ , τ ′) in the
following three cases:

(1) range(τ) ⊆ range(na) ∧ range(τ ′) ⊆ range(nc)

(2) range(τ) ⊆ range(nb) ∧ range(τ ′) ⊆ range(nc)

(3) range(τ) ⊆ range(na) ∧ range(τ ′) ⊆ range(nb)

In the first two cases, we use the same lower and upper bounds
(Equations 7 and 9) and pruning techniques as we use for trajectory
pairs in the same node (cf. Section 3.3). The qualified trajectory
pairs are stored in nc.

1181

To explain the third case, we assume that τ = 〈v1, v2, ..., vi〉,
τ ′ = 〈v′1, v′2, ..., v′j〉, range(na) = [t1, t2], and range(nb) = [t3,
t4]. We define the minimum temporal distance dT (τ, n) as follows.

dT (τ, n) = min{|τ.t.lb− n.t.ub|, |τ.t.ub− n.t.lb|} (10)

Here, τ.t.lb and τ.t.ub are the lower and upper bounds of trajectory
τ ’s timestamps, i.e., τ.t.lb = v1.t and τ.t.ub = vi.t, and n.t.lb and
n.t.ub are the lower and upper bounds (left and right boundaries)
of range(n). For example, range(n4) = [6:00, 8:00], and n4.t.lb
= 6:00 and n4.t.lb = 8:00.

We define the upper bound of temporal similarity SimT(τ, τ
′)

in the following manner. As
∑
vi∈τ e

−d(vi.t,τ ′) ≤ |τ | · e−dT (τ,nb)

and
∑
vj∈τ ′ e

−d(vj .t,τ) ≤ |τ ′| · e−dT (τ ′,na), we have that

Sim′T(τ, τ
′).ub = e−dT (τ,nb) + e−dT (τ ′,na). (11)

By substituting Equation 11 into Equation 7, the global lower
bound of the spatial similarity for trajectories in the third case is
defined as follows.

SimS(τ, τ
′) ≥ θ − (1− λ)(Sim′T(τ, τ ′).ub)

λ
= LB ′S (12)

If LB ′S > 2, all trajectory pairs in the third case can be pruned.
Otherwise, for a trajectory pair (τ, τ ′), if its spatial-similarity
upper bound SimS(τ, τ

′).ub (Equation 9) is less than the global
lower bound LB′S of the spatial similarity (Equation 12), (τ, τ ′) is
pruned. For the remaining trajectory pairs, we compute their exact
spatiotemporal similarity and store the qualified pairs in nc. As a
result, all the qualified trajectory pairs in [nc.lb, nc.ub] are found.

When merging non-leaf nodes (e.g., merging n19 and n20 to
their parent node n22), we propose an approach that aims to further
prune the search space. Assume that τ is stored in nd, that τ ′ is
stored in ne, and that nd and ne are descendant nodes of nf and ng
(e.g., n3 and n8 are descendant nodes of n19 and n20). According
to Equations 11 and 7, the upper and lower bounds of temporal
similarity are computed respectively as follows.

Sim′T(τ, τ
′).ub = 2e−dT (nd,ne)

SimT(τ, τ
′) ≥ θ − λ · 2

(1− λ) = LBT

Sim′T(τ, τ
′).ub < LBT ⇔ dT (nd, ne) > ln(

2− 2λ

θ − 2λ
)

Thus, if the minimum distance between nd and ne exceeds
ln(2−2λ

θ−2λ
), we prune all trajectory pairs {(τ, τ ′)| range(τ) ⊆

range(nd) ∧ range(τ ′) ⊆ range(ne)}.
The merging processes of different node pairs (e.g., n3 and

n4, n5, and n6) at the same level of the tree are independent.
Thus, we can again apply parallel processing. Having merged the
computation results from the leaf nodes all the way to the root
node, the solution in [0:00, 24:00] is found. Notice that during
the merging phase, we only follow the partitioning imposed by the
index to merge the data of each node; the index structure is not
updated.

The pseudocode of TF-Matching is shown in Algorithm 1. A
set H is used to maintain the processed nodes of the current level
of the tree, and the computation is bottom-up. Initially, for each
leaf node n, we compute the global lower bound LBS of the
spatial similarity (Equation 7) for trajectory pairs in n (lines 1–3).
Then, for each trajectory pair (τ, τ ′) in n, we compute its spatial
similarity upper bound (Equation 9), and if its upper bound is less
than LBS , this pair is pruned (lines 4–7). Otherwise, we compute

Algorithm 1: TF-Matching
Data: a grid indexing tree Tg , a trajectory set P , a threshold θ
Result: {(τ, τ ′)|SimST(τ, τ

′) ≥ θ,∀τ, τ ′ ∈ P }
H ← ∅;1
for each leaf node n in Tg do2

compute LBS ;3
for each trajectory pair (τ, τ ′), range(τ) ⊆ range(n) and4
range(τ ′) ⊆ range(n) do

compute SimS(τ, τ
′).ub;5

if SimS(τ, τ
′).ub < LBS then6

prune (τ, τ ′);7

compute SimST(τ, τ
′);8

if SimST(τ, τ
′) ≥ θ then9

store (τ, τ ′) in n;10

H.add(n);11

while H 6= ∅ do12
if n, n′ ∈ H , n.parent = n′.parent, and n.child /∈ H ,13
n′.child /∈ H then

merge n, n′, and n.parent;14
compute and store qualified trajectory pairs in n.parent;15
H.add(n.parent);16
H.remove(n);17
H.remove(n′);18

if |H| = 1 then19
return all qualified trajectories;20

the exact spatiotemporal similarity of (τ, τ ′), and if it is no less than
θ, we store (τ, τ ′) in n (lines 8–10). Having refined all trajectory
pairs in n, we add n to heap H (line 11). When all leaf nodes have
been added to H , we merge the results from the leaf nodes towards
the root node. If two nodes n and n′ have the same parent node
and their child nodes are not in H , we merge the results for n, n′,
and their parent node (e.g., n3, n4, and n14 in Figure 2) and store
the qualified trajectory pairs in n.parent. Next, we add n.parent
to H , and remove n and n′ from H (lines 12–18). If H = 1, the
root node is reached, and all qualified trajectory pairs are returned
(lines 19–20).

3.5 Complexity Analysis
Let |P | denote the cardinality of trajectory set P , and |τavg|

denote the average number of samples in a trajectory in P . We
use |V | and |E| to denote the numbers of vertices and edges in G.
Then O(|V | log |V | + |E|) is the time complexity of computing
the network distance between two vertices. TF-Matching follows
the filter-and-refine paradigm, and the time complexity of the filter
phase is O((|V | log |V | +|E|)|τavg|2|P |2).

The time complexity to verify the candidates by comput-
ing their exact spatiotemporal similarities is O((|V | log |V | +
|E|)|τavg|2|C|), where |C| is the cardinality of the candidate set
and C ⊆ P × P . The total time complexity is O((|V | log |V | +
|E|)|τavg|2|P |2) +O((|V | log |V |+ |E|)|τavg|2|C|)

= O((|V | log |V |+ |E|)|τavg|2|P |2),

which does not depend on the candidate set size.
The computations for nodes at the same tree level are processed

in parallel. Initially, we process the leaf nodes and then we process
dlogme levels for merging, where m is the number of leaf nodes.
Intuitively, if we have multiple cores and threads, it is possible to
accelerate the computation at the leaf level by generating many leaf
nodes and processing them in parallel. However, more leaf nodes
also leads to more tree levels, which will increase the merging cost.

1182

4. TWO-PHASE ALGORITHM

4.1 Basic Idea
TF-Matching has three main drawbacks. First, it is driven by

the temporal domain and so has weak spatial pruning power. The
algorithm has to process a large number of trajectory pairs, which
adversely affects the performance. Second, more leaf nodes (more
threads) leads to a higher merging cost, which counts against
parallel processing. Third, it may need additional computation to
acquire network distances to compute spatial similarities (Equa-
tions 1 and 3), again decreasing performance.

To process the TS-Join more efficiently, we develop a two-phase
algorithm based on a divide-and-conquer strategy (see Figure 3(a)).
(1) In the trajectory-search phase, for each trajectory τ ∈ P ,
we explore the spatial and temporal domains concurrently and
search for trajectories close to τ . In the spatial domain, network
expansion [9] from each trajectory sample point is used to explore
the spatial network, while in the temporal domain, we expand
the search from each timestamp of τ . An upper bound on the
spatiotemporal similarity is defined to enable pruning of the search
space in the spatial and temporal domains. Moreover, a heuristic
scheduling strategy is proposed to schedule multiple so-called
query sources (sample points in the spatial domain, and timestamps
in the temporal domain) effectively, which aims to further enhance
efficiency. The search process of different trajectories are inde-
pendent, so the trajectory searches can be processed in parallel.
In addition, the network distances for the similarity computation
can be derived directly during the trajectory-search processes. (2)
In the merging phase, we combine the computation results of all
trajectories and find the solution to the TS-Join. In contrast to
TF-Matching, the merging cost is now uncorrelated to the thread
count. The two-phase algorithm has better time complexity than
the temporal-first matching algorithm.

4.2 Expansion Search
Consider the example in Figure 3(b), where τ1, τ2, τ3, and τ4

are trajectories, and we search for the trajectories close to τ1 in
the spatial and temporal domains (τ1 is the “query trajectory”).
Trajectory τ1 = 〈v1, v2, ..., v5〉, sample points {v6, v7} ∈ τ2, and
v6.p and v7.p are the samples closest to v3.p and v4.p. Sample
points {v8, v9, ..., v12} ∈ τ3, and v8.p, v9.p,...,v12.p are the
samples closest to v1.p, v2.p,...,v5.p.

In the spatial domain, network expansion is performed from
each sample point vi.p ∈ τ1 using Dijkstra’s algorithm [9]. The
explored space is a "circular" region (vi.p, rsi), where the radius
rsi is the network distance from the center vi.p to the expansion
boundary. Dijkstra’s algorithm always selects the vertex with the
minimum distance label for expansion. Hence, if v′.p ∈ τ ′ is
the first sample point scanned by the expansion from v.p, v′.p is
the sample point closest to v.p, i.e., d(v.p, τ ′) = sd(v.p, v′.p).
For example, in Figure 3(b), d(v3.p, τ2) = sd(v3.p, v6.p), and
d(v4.p, τ2) = sd(v4.p, v7.p).

In the temporal domain, we expand the search from each
timestamp vi.t ∈ τ1. The explored space is a time range [vi.t−rti,
vi.t + rti], where rti is the radius of the range. Similar to the
Dijkstra’s algorithm, if v′.t ∈ τ ′ is the first timestamp scanned by
the expansion from v.t, v′.t is the timestamp closest to v.t, i.e.,
d(v.t, τ ′) = |v.t− v′.t|.

If a trajectory τ is scanned by the expansions from all sample
points in τ1, we compute the spatial similarity of (τ, τ1) according
to Equation 3; this type of trajectory is called “spatially fully
scanned,” e.g., τ3. If a trajectory is scanned by the expansions
from a part of sample points in τ1, it is called “spatially partly

Trajectories

… … ...

Search for close
trajectories

Merging Join results

(a) Parallel mechanism

τ3

τ1

Spatial Domain

0 x

2rt1

y

τ4

Temporal Domain

0

time

v1.t

v2.t 2rt2

v3.t

v4.t

v5.t

2rt3

2rt4

2rt5

v5.p

rs5v4.p

rs4

rs3
v3.p

v2.prs2
v1.prs1

v8.p

v9.p

v10.p
v11.p v12.p

τ2

v6.p v7.p

(b) Trajectory search

Figure 3: An example of the two-phase algorithm

scanned,” e.g., τ2. If a trajectory is unscanned by the expansions
from any sample points in τ1, it is called “spatially unscanned,”
e.g., τ4. Similarly, in the temporal domain, such trajectories are
called “temporally fully scanned,” “temporally partly scanned,” and
“temporally unscanned.”

4.2.1 Upper Bound Computation
If a trajectory is spatially partly scanned (e.g., τ2 in Figure 3(b))

or spatially unscanned (e.g., τ4), for a sample point vi.p ∈ τ1, the
lower bound of network distance between vi.p and τ2 is defined as
follows.

d(vi.p, τ2) ≥ d(vi.p, τ2).lb =
{
sd(vi.p, v

′
i.p) if Case 1

rsi if Case 2
(13)

Case 1: τ2 has been scanned by the expansion from vi.p, and
v′i.p ∈ τ2 is the closest point to vi.p.
Case 2: τ2 has not been scanned by the expansion from vi.p.

By substituting Equation 13 into Equation 8, for any sample
point v′i.p ∈ τ2, we have that

d(v′i.p, τ2) ≥ min
vi∈τ1

{d(vi.p, τ2).lb}. (14)

Then we merge Equations 13 and 14 into Equation 3, and the spatial
similarity upper bound SimS(τ1, τ2).ub is derived.∑

vi∈τ1

e−d(vi.p,τ2) ≤
∑
vi∈τ1

e−d(vi.p,τ2).lb

∑
v′i∈τ2

e−d(v
′
i.p,τ1) ≤ |τ2| · min

vi∈τ1
{d(vi.p, τ2).lb}

⇒ SimS(τ1, τ2).ub

=

∑
vi∈τ1 e

−d(vi.p,τ2).lb

|τ1|
+ e−minvi∈τ1{d(vi.p,τ2).lb}

(15)

1183

Similarly, in the temporal domain, if a trajectory τ2 is temporally
partly scanned or temporally unscanned, for a timestamp vi.t ∈ τ1,
the lower bound of the distance between vi.t and τ2 is defined as:

d(vi.t, τ2) ≥ d(vi.t, τ2).lb =
{
|vi.t− v′i.t| if Case 3
rti if Case 4

(16)

Case 3: τ2 has been scanned by the expansion from vi.t, and
v′i.t ∈ τ2 is the point closest to vi.t.
Case 4: τ2 has not been scanned by the expansion from vi.t.

We then extend Lemma 1 (Equation 8) to apply to the temporal
domain. Specifically, by substituting Equation 16 into Equation 8,
for any sample point v′i.t ∈ τ2, we have that

d(v′i.t, τ2) ≥ min
vi∈τ1

{d(vi.t, τ2).lb}. (17)

Then, we merge Equations 16 and 17 into Equation 4, and the
temporal similarity upper bound SimT(τ1, τ2).ub is derived.∑

vi∈τ1

e−d(vi.t,τ2) ≤
∑
vi∈τ1

e−d(vi.t,τ2).lb

∑
v′i∈τ2

e−d(v
′
i.t,τ1) ≤ |τ2| · min

vi∈τ1
{d(vi.t, τ2).lb}

⇒ SimT(τ1, τ2).ub

=

∑
vi∈τ1 e

−d(vi.t,τ2).lb

|τ1|
+ e−minvi∈τ1{d(vi.t,τ2).lb}

(18)

Next, we combine the spatial and temporal similarity upper
bounds (Equations 15 and 18). Thus, if a trajectory τ2 is not
both spatially and temporally fully scanned, we compute the upper
bound of the spatiotemporal similarity SimT(τ1, τ2).ub as follows.

SimST(τ1, τ2).ub = λ·SimS(τ1, τ2).ub+(1−λ)·SimT(τ1, τ2).ub
(19)

For all partly scanned trajectories, we define a global upper
bound UB as follows.

UB = max
τ2∈Pps

{SimST(τ1, τ2).ub}, (20)

where Pps ⊆ P is the current set of partly scanned trajectories.
The value of UB changes during query processing.

If a trajectory is unscanned in both the spatial and temporal
domains, we do not maintain its spatiotemporal similarity upper
bound to reduce the computation and storage costs. Assume that
trajectory τ1 is the query trajectory, τ2 is partly scanned, and
τ4 is unscanned in both domains. According to Equations 13
and 16, we have that ∀vi ∈ τ1(d(vi.p, τ2).lb ≤ d(vi.p, τ4).lb)
and ∀vi ∈ τ1(d(vi.t, τ2).lb ≤ d(vi.t, τ4).lb).

Referring to Equations 15, 18, and 19, we have SimST(τ1, τ2).ub
≥ SimST(τ1, τ4).ub. Therefore, SimST(τ1, τ4).ub cannot be the
global upper bound UB , and it is not necessary to maintain the
spatiotemporal similarity upper bound of τ4.

4.2.2 Scheduling Strategy
We propose a heuristic strategy to scheduling the expansions

from different sample points and timestamps (so-called “query
sources") in the spatial and temporal domains in order to make the
search focus on trajectories that are most likely to be in the result.

Assume τ = 〈v1, v2, ..., vm〉 is the query trajectory. We give
each query source q ∈ {v1.p, v2.p, ..., vm.p}∪{v1.t, v2.t, ..., vm.t}
a priority label q.label and maintain a heap H of descending order
on the value of q.label on the query sources. The values of priority

labels change during the search in the two domains. We search the
top-ranked query source until a new query source takes its place.
The priority label is defined as follows.

q.label =
∑

τ ′∈Pps\q.s

{SimST(τ, τ
′).ub} (21)

Here, Pps ⊆ P is the set of spatially and temporally partly scanned
trajectories, and q.s is the set of trajectories that have been scanned
from query source q. For example, in Figure 3(b), τ1 is a query
trajectory and v1.p, v2.p, ..., v5.p are query sources in the spatial
domain. We have that v1.p.s = {τ2}, v2.p.s = {τ2}, v3.p.s =
∅, v4.p.s = ∅, and v5.p.s = ∅. Trajectory τ2 is spatially partly
scanned, τ3 is spatially fully scanned, and τ4 is temporally partly
scanned. Thus, Pps = {τ2, τ3, τ4}. For query source v1.p.s, Pps \
v1.p.s = {τ2, τ3, τ4} \ {τ3} = {τ2, τ4}, and for query source
v3.p.s, Pps \ v3.p.s = {τ2, τ3, τ4} \ {τ2, τ3} = {τ4}.

The priority label represents the significance of a query source
during search. The main goal of the scheduling strategy is to
transform trajectories from “partly scanned" to “fully scanned" as
soon as possible [16, 17]. Thus, the priority q.s of a query source
should be proportional to its “margin," i.e., the size of Pps\q.s. For
example, in Figure 3(b), Pps \ v1.p.s = {τ2, τ4}; thus, the margin
of v1.p is 2. Moreover, a trajectory with a higher spatiotemporal-
similarity upper bound (Equation 19) is more likely to be the
solution. So, ∀τ ∈ Pps \ q.s, the value of SimST(τ1, τ).ub is
proportional to the priority of query source q.

4.3 Filter, Refine, and Merging
If the global upper bound UB of the partly scanned trajectories

is smaller than the value of threshold θ, the expansion in the spatial
and temporal domains terminates, and all trajectories that are not
fully scanned in the two domains can be pruned safely. For each
fully scanned trajectory τ , we have the exact values of d(vi.p, τ)
and d(vi.t, τ) for all sample points vi in τ1; thus, we can further
refine the spatial, temporal, and spatiotemporal upper bounds (refer
to Equations 15, 18, and 19).

We place all fully scanned trajectories in a candidate set C(τ1)
for trajectory τ1. For each trajectory τ ∈ C(τ1), (τ, τ1) is
a potential qualified trajectory pair. For (τ1, τ), we maintain a
parameter defined as follows.

V (τ1, τ) =

∑
vi∈τ1 e

−d(vi.p,τ)

|τ1|
+

∑
vi∈τ1 e

−d(vi.t,τ)

|τ1|

Notice that the value of V (τ1, τ) can be derived from Equations 15
and 18 directly.

Having processed the nearest neighbor searches for all trajec-
tories in P , we merge the results. For each trajectory τ ∈ P , we
maintain a candidate setC(τ). For a trajectory pair (τ1, τ2), if τ1 ∈
C(τ2) and τ2 ∈ C(τ1), we compute their exact spatiotemporal
similarity:

SimST(τ1, τ2) = V (τ1, τ2) + V (τ2, τ1) (22)

=

∑
vi∈τ1 e

−d(vi.p,τ2)

|τ1|
+

∑
vi∈τ1 e

−d(vi.t,τ2)

|τ1|

+

∑
vj∈τ2 e

−d(vj .p,τ1)

|τ2|
+

∑
vj∈τ2 e

−d(vj .t,τ1)

|τ2|
Then we compare SimST(τ1, τ2) to threshold θ. If SimST(τ1, τ2)
≥ θ, (τ1, τ2) is a qualified pair. Otherwise, we prune it. For
other cases, i.e., τ1 /∈ C(τ2) or τ2 /∈ C(τ1), (τ1, τ2) cannot be
a qualified trajectory, and it is pruned.

1184

The two-phase algorithm is based on a divide-and-conquer strat-
egy. First, for each trajectory τ in P , we retrieve the trajectories
spatiotemporally close to τ . The trajectory-search phase is detailed
in Algorithm 2. Since the search processes for different trajectories
are independent, we can process the searches in parallel. Second,
we merge the results of the individual searches, i.e., candidate sets,
to obtain the final result. Unlike for TF-Matching, the merging cost
of the two-phase algorithm is uncorrelated to the thread count. The
merging process is detailed in Algorithm 3.

Algorithm 2: Trajectory Search Algorithm
Data: a trajectory τ and a threshold θ
Result: candidate set C(τ)
H ← {v1.p, v2.p, ..., v|τ |.p} ∪ {v1.t, v2.t, ..., v|τ |.t};1
∀q ∈ H (q.label← 0), UB ← 0;2
q ← H.top;3
while true do4

search(q);5
for each newly scanned trajectory τ ′ do6

q.s.add(τ ′);7
if τ ′ /∈ Pps then8

Pps.add(τ ′);9

update SimST(τ, τ
′).ub;10

if τ ′ is not fully scanned then11
if SimST(τ, τ

′).ub > UB then12
UB ← SimST(τ, τ

′).ub;13

if τ ′ is fully scanned then14
Pps.remove(τ);15
update UB ;16
if SimST(τ, τ

′).ub ≥ θ then17
C(τ).add(τ ′)18

if UB < θ then19
return C(τ);20

if q 6= H.top then21
q ← H.top;22

In Algorithm 2, the query arguments are a trajectory τ and a
threshold θ, and the query result is a candidate set for τ . Initially,
we select the top-ranked item q from heap H as the current-search
query source. Then we search using q. Each newly scanned
trajectory τ ′ (τ ′ has not been scanned by the expansion from q)
is added to a scanned trajectory set q.s. If τ ′ is unscanned, we also
add it to the partly scanned trajectory set Pps (lines 1–9). Next, we
update the spatiotemporal similarity upper bound SimST(τ, τ

′).ub
(refer to Equation 19). If τ ′ is not fully scanned in the two domains,
then if SimST(τ, τ

′).ub > UB , we update the value of UB to that
of SimST(τ, τ

′).ub (lines 10–13). If τ ′ is fully scanned, we remove
it from Pps. If SimST(τ, τ

′).ub was used as UB before, we also
update the value of UB . If SimST(τ, τ

′).ub ≥ θ, we add τ ′ to the
candidate set for τ (lines 14–18). If UB < θ, the query returns the
candidate set C(τ) (lines 19–20). If q is not the top-ranked query
source in H , we update it so that this is the case (lines 21–22).

Algorithm 3 merges the candidate sets iteratively. For each
trajectory τ ′ in C(τ), we check whether τ belongs to C(τ ′). If
so, we compute the exact spatiotemporal similarity SimST(τ, τ

′)
(refer to Equation 22), and then we remove τ from C(τ ′). If
SimST(τ, τ

′) ≥ θ, we add the pair (τ, τ ′) to result set A. Finally,
result set A is returned.

4.4 Complexity Analysis
Let Pθ denote the scanned trajectory set for each trajectory

search, which includes the partly and fully scanned trajectories.

Algorithm 3: Merging Algorithm
Data: {C(τ)|∀τ ∈ P}, θ
Result: A = {(τ, τ ′)|SimST(τ, τ

′) ≥ θ, ∀τ, τ ′ ∈ P }
for each trajectory τ in P do1

for each τ ′ in C(τ) do2
if τ ∈ C(τ ′) then3

compute SimST(τ, τ
′);4

C(τ ′).remove(τ);5
if SimST(τ, τ

′) ≥ θ then6
A.add(τ, τ ′);7

else8
break;9

return A;10

According to Equations 15, 18, and 19, the maximum spatial and
temporal expansion radiuses rs and rt are inversely proportional to
threshold θ. Assuming the trajectories are uniformly distributed in
the spatial and temporal domains, it follows that |Pθ| is inversely
proportional to threshold θ. Thus, |Pθ| is sensitive to the value of
threshold θ and the pruning effectiveness.

The time complexity of the trajectory search phase isO(|P ||Pθ|).
The time complexity for the merging phase is O(|P ||C|), where
|C| is the cardinality of candidate set for each trajectory. Since
C ⊆ Pθ ⊆ P , the time complexity of the two-phase algorithm is
O(|P ||Pθ|) + O(|P ||C|) = O(|P ||Pθ|). If θ is sufficiently large,
the time complexity is close to O(|P |).

5. EXTENSION
We proceed to explain how to extend the proposed algorithms to

support the case where P 6= Q. First, TF-Matching can support
P 6= Q directly. When computing the spatiotemporal similarity
in leaf nodes and merging trajectories in different nodes, we only
need to select trajectory pairs from P and Q. Let |τavg| and |τ ′avg|
denote the average numbers of samples in trajectories in P and Q,
respectively. Then, the time complexity of TF-Matching is

O

 ∑
τ∈P,τ ′∈Q

|τ ||τ ′|(|V | log |V |+ |E|)


= O(|P ||Q||τavg||τ ′avg|(|V | log |V |+ |E|)),

which is not sensitive to the pruning effectiveness.
Second, the two-phase algorithm conducts trajectory searches

for all trajectories in P and Q and maintains candidate sets for
all of them. The time complexity of the trajectory-search phase is
O(|P ||Pθ|+ |Q||Qθ|). For the merging phase, the time complexity
is still O(|P ||Cp|) (or O(|Q||Cq|)), Cp ⊆ Qs ⊆ Q, and Cq ⊆
Ps ⊆ P . The time complexity of the two-phase algorithm is then
O(|P ||Pθ|+ |Q||Qθ|+ |P ||Cp|) = O(|P ||Pθ|+ |Q||Qθ|), which
is sensitive to the pruning effectiveness.

6. EXPERIMENTAL RESULTS
We report on extensive experiments with real trajectory data that

offer insight into the properties of the developed algorithms.

6.1 Settings
We use two spatial networks, namely the Beijing Road Network

(BRN) and the New York Road Network (NRN)11. They contain
28,342 vertices and 27,690 edges, and 95,581 vertices and 260,855

11https://publish.illinois.edu/dbwork/open-data/

1185

edges, respectively. The graphs are stored using adjacency lists.
In BRN, we use a real taxi trajectory data set collected by the T-
drive project12, while in NRN, we use a real taxi trajectory data
set from New York11. Each trajectory in NRN denotes a taxi trip,
and their average length (number of vertices) is ∼80. The original
trajectories in BRN are very long, often lasting days. We divide
these trajectories into hour-long sub-trajectories, giving them an
average length of ∼72. The intent is to create trips with a realistic
length and duration.

In the experiments, the indexing structure of the baseline algo-
rithm (cf. Section 3) and the spatial networks of the two-phase
algorithm (when running Dijkstra’s expansion [9], cf. Section 4)
are memory resident, as the memory occupied are 42 MB and 57
MB for BRN and 51 MB and 68 MB for NRN. Trajectories are also
memory resident for both algorithms, and they occupy 506 MB
for BRN and 3.9 GB for NRN. All algorithms are implemented
in Java and run on a cluster with 10 data nodes. Each node is
equipped with two Intelr Xeonr Processors E5-2620 v3 (2.4GHz)
and 128GB RAM. To account for the case where the trajectory
data does not fit in main memory, we also consider a disk-resident
approach and test its performance in Figure 5 (Figures 4, and 6–
9 are for memory-based algorithms). For the baseline algorithm,
for each node we store the ids (entries) of the trajectories that
overlap the timespan indicated by the node. For the two-phase
algorithm, for each vertex in the network we store the ids (entries)
of the trajectories that contains the vertex. The ids in each node
are stored in ascending order in an ArrayList. We use a B+-tree
to index trajectories on their ids. When we visit a node/vertex, we
first traverse the corresponding ArrayList and retrieve the ids of
trajectories stored in the node/vertex. Next, we traverse the B+-tree
and load all of the pages that contains the trajectories stored in the
node/vertex. To improve the loading efficiency, we use a 1GB LRU
buffer to store the retrieved pages.

Unless stated otherwise, experimental results are averaged over
10 independent trails using different query inputs. The main
performance metrics are CPU time and the number of visited
trajectories. The number of visited trajectories is used as a metric
since it reflects the number of data accesses. In multi-threaded
execution, the total runtime is the maximum runtime among all
individual threads.

We study the performance of the non-self joins, i.e., P 6= Q, in
Sections 6.3–6.5 and of self joins in Section 6.7. Trajectories in P
andQ are selected randomly from the real data sets. The parameter
settings are listed in Table II. Because computing network distances
online is time-consuming, we pre-computed the all-pair shortest
path distances in the graph (for TF-Matching only, not for the
two-phase algorithm) and denote the accelerated TF-Matching
(Section 3) by "TF-A" in subsequent figures. The two-phase
algorithm (Section 4) is denoted by "two-phase," and the two-phase
algorithm without the heuristic scheduling strategy is denoted by
"two-phase-w/o-h."

By default, TF-Matching uses a uniform leaf-node partitioning
scheme. We conduct experiments to find the optimal partitioning.
When a leaf node is set to 1 hour in BRN and to 15 minutes in
NRN, and each node (including leaf and non-leaf nodes) contains
at most 6,560 trajectories in BRN and at most 15,265 trajectories
in NRN, the index achieves the highest performance. We also
consider a balanced partitioning scheme where each leaf node
contains the same/similar numbers of trajectories. When the index
contains 32 leaf nodes in BRN and 196 leaf nodes in NRN,
and each leaf node contains 1,032 trajectories in BRN and 3,875

12https://www.microsoft.com/en-us/research/publication/t-drive-
trajectory-data-sample/

Table II: Parameter Settings
NRN BRN

Trajectory cardinali-
ty |P |

1,000,000–10,000,000
/default 1,000,000

50,000–200,000 /de-
fault 100,000

Trajectory cardinali-
ty |Q|

500,000–2,000,000
/default 500,000

25,000–100,000 /de-
fault 50,000

Threshold θ 1.8–1.95/default 1.9 1.8–1.95/default 1.9
Preference parame-
ter λ

0.1–0.9/default 0.5 0.1–0.9/default 0.5

Thread count m 24–120/default 24 24–120/default 24

trajectories in NRN on average, the index achieves the highest
performance. The balanced partitioning method is denoted by "TF-
A-balance." According to the experimental results in Figures 4–9,
the performance of TF-Matching is improved by around 20% when
using balanced partitioning.

6.2 Pruning Effectiveness
First, we study the pruning effectiveness of the algorithms using

the default settings. The experimental results are shown in Tables
III (non-self join) and IV (self join), with the reported candidate
and pruning ratios defined as follows.

Candidate ratio =

{
2|C|
|P |2 if self join
|C|
|P ||Q| if non-self join

Pruning ratio = 1− Candidate ratio,

whereC is the candidate set. Comparing the pruning and candidate
ratios of TF-Matching to those of the two-phase algorithm, we see
that the candidate ratio of the two-phase algorithm is only 1/2 –
1/3 of that of TF-Matching and that, with the help of the heuristic
scheduling strategy, the candidate ratio is improved by a factor of
around 1.5.

Table III: Pruning Effectiveness for Non-Self Join
TF two-phase two-phase-w/o-h

Candidate ratio (BRN) 0.17 0.10 0.14
Pruning ratio (BRN) 0.83 0.90 0.86
Candidate ratio (NRN) 0.12 0.04 0.06
Pruning ratio (NRN) 0.88 0.96 0.94

Table IV: Pruning Effectiveness for Self Join
TF two-phase two-phase-w/o-h

Candidate ratio (BRN) 0.11 0.06 0.09
Pruning ratio (BRN) 0.89 0.94 0.91
Candidate ratio (NRN) 0.08 0.03 0.04
Pruning ratio (NRN) 0.92 0.97 0.96

6.3 Effect of Trajectory Cardinalities
Figure 4 shows the effect of trajectory cardinalities |P | and |Q|

on the performance of the algorithms. Intuitively, a larger |P |
(or |Q|) causes more trajectory pairs to be processed (refer to the
complexity analysis in Sections 3.5 and 4.4), meaning that the
CPU time and the number of visited trajectories are expected to
be higher for all algorithms. We see that the two-phase algorithm
outperforms TF-Matching (TF-A and TF-A-balance) by almost an
order of magnitude; and we see that the heuristic strategy can
further improve the two-phase algorithm by almost a factor of 1.5
in terms of both CPU time and the number of visited trajectories.
The two-phase algorithm is able to process 1 M trajectories (|P | =
1 M and |Q| = 0.5 M) in 38 seconds and 10 M trajectories (|P | =
10 M and |Q| = 0.5 M) in 252 seconds on default 24 threads (see
Figure 4(b)).

1186

5

10

15

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

200

400

600

800

1000

1200

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

100

200

300

50K 100K 150K 200K

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

2000

4000

6000

8000

10000

1M 4M 7M 10M

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

5

10

15

20

25K 50K 75K 100K

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(e) BRN

200

400

600

800

0.5M 1.0M 1.5M 2.0M

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(f) NRN

100

200

300

25K 50K 75K 100K

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(g) BRN

1000

2000

3000

4000

0.5M 1.0M 1.5M 2.0M

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(h) NRN

Figure 4: Effect of trajectory cardinalities |P | and |Q|

5

10

15

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

200
400
600
800

1000
1200

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

5

10

15

20

25K 50K 75K 100K

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

200

400

600

800

1000

0.5M 1.0M 1.5M 2.0M

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

Figure 5: Effect of disk-based approach

20

40

60

80

1.80 1.85 1.90 1.95

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

200

400

600

1.80 1.85 1.90 1.95

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

50

100

150

200

1.80 1.85 1.90 1.95

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

1000

2000

3000

4000

1.80 1.85 1.90 1.95

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

Figure 6: Effect of threshold θ

20

40

60

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

50

100

150

200

250

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

50

100

150

200

0.1 0.3 0.5 0.7 0.9

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

500

1000

1500

2000

0.1 0.3 0.5 0.7 0.9
N

u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-balance

(d) NRN

Figure 7: Effect of λ

1000

2000

3000

4000

5000

6000

48 72 96 120

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) Non-self join

1

10

100

1000

10000

48 72 96 120

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) Self join

Figure 8: Effect of thread count m

The CPU time is not fully aligned with the number of visited
trajectories because the algorithms expend computational effort
on maintaining the bounds used to prune the search space. The
resulting cost may offset the benefits of the reduction in the number
of visited trajectories. In particular, the filter phase of TF-Matching
computes and maintain bounds for almost all trajectory pairs.

Figure 5 shows the performance of the disk-based algorithms.
Their performance patterns are similar to that of memory-based
algorithms (Figure 4). Disk-based algorithms may need more CPU

1187

10

20

30

40

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

400

800

1200

1600

2000

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

100k

200k

300k

50K 100K 150K 200K

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

1000

2000

3000

4000

5000

1M 4M 7M 10M

C
o
u
n
t

o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

10

20

30

1.80 1.85 1.90 1.95

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(e) BRN

200

400

600

800

1.80 1.85 1.90 1.95

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(f) NRN

30k

60k

90k

120k

1.80 1.85 1.90 1.95

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(g) BRN

400k

800k

1200k

1600k

1.80 1.85 1.90 1.95

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(h) NRN

5

10

15

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(i) BRN

100

200

300

400

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(j) NRN

30k

60k

90k

120k

0.1 0.3 0.5 0.7 0.9

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(k) BRN

500k

1000k

1500k

0.1 0.3 0.5 0.7 0.9

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(l) NRN

Figure 9: Performance for self join

times because of disk I/O, but the query can still be processed in
reasonable runtime (e.g., processing 10 M × 0.5 M trajectories in
300 seconds, see Figure 5(b)). Notice that the number of visited
trajectories is independent of where the data is stored.

6.4 Effect of Threshold θ

Next, we vary the threshold θ in Figure 6. For the two-phase
algorithm, a larger θ leads to higher pruning effectiveness (refer
to Equation 4.4). Thus, the larger θ becomes, the smaller the
search space becomes, and the required CPU time and the number
of visited trajectories are expected to decrease correspondingly.
When θ = 1.95, the two-phase algorithm is able to process 1M
trajectories (|P | = 1 M and |Q| = 0.5 M) in 28 seconds. In TF-
Matching, a larger θ does not help pruning the search space (refer
to Equation 3.5), and only slightly fewer trajectories are visited
when θ increases. In contrast, a larger θ is useful in reducing the
similarity computation (see Equation 7). Thus, the CPU times of
TF-A, and TF-A-balance decrease when θ increases.

6.5 Effect of λ
Figure 7 shows the effect of varying the preference parameter λ

on efficiency. Parameter λ enables adjusting the relative preference
of spatial and temporal similarity (see Equation 5). When λ = 1,
the TS-Join is in the spatial domain only, and when λ = 0, only
temporal similarity is considered. Figure 7 shows that the spatial
domain needs more search effort than the temporal domain.

6.6 Effect of Thread Count m
We study the effect of thread count m on the efficiency of the

algorithms using large trajectory data sets in NRN (|P | = 10 M and
|Q| = 2 M for non-self join and |P | = 10 M for self join).

From the results shown in Figure 8, we see that the two-
phase algorithm outperforms TF-Matching by almost an order of
magnitude in term of CPU time. For the non-self join, the two-
phase algorithm is able to process 10 M × 2 M trajectories with
120 threads in 255 seconds, while for the self join, the two-phase
algorithm is able to process 10 M × 10 M trajectories with 120
threads in 540 seconds.

In Figure 8, we increase the thread count m from 48 to 120 (2.5
times). This improves the CPU time of the two-phase algorithm by
a factor of 1.9–2.2, while the CPU time of TF-Matching (TF-A and
TF-A-balance) is improved by a factor of around 1.6. The main
reason for the smaller improvement is that more threads (more leaf
nodes) leads to a higher merging cost (cf. Section 3.6).

6.7 Performance for Self Join
Figure 9 shows the runtime and number of visited trajectories for

the self joins when varying the trajectory cardinality, the similarity
threshold, and the preference parameter. The trends of the figures
are similar to those of the non-self join. The two-phase algorithm
outperforms TF-Matching (TF-A and TF-A-balance) by almost an
order of magnitude in terms of both CPU time and the number of
visited trajectories, and the heuristic search strategy improves the
efficiency by almost a factor of 1.5.

7. RELATED WORK

7.1 Trajectory Similarity Search
Trajectory similarity search [7, 16, 17, 22] typically involves a

definition step and a query processing step. First, a similarity
function is defined to evaluate the spatial and temporal similarities

1188

between two trajectories, typically taking into account spatial
proximity and curve similarity. Second, an efficient algorithm is
developed to retrieve trajectories spatiotemporally close to a query
trajectory. Several trajectory similarity functions are proposed for
different applications. For example, BCT [7] considers trajectory
search in Euclidean space, and UOTS [16] and ATSQ [22] extend
these to spatial and textual domains, while PTM [17] extends
them into spatial and temporal domains. Next, several similarity
functions exist for trajectory or time-series data, including Dynam-
ic Time Warping [21], Longest Common Subsequence [1], and
Edit Distance on Real sequence [5]. The definition of BCT [7]
is most similar to the one we use. Both studies target routing and
ridesharing/carpooling. We extend the Euclidean-based BCT to
spatial networks, and we also offer a symmetrical definition. In
contrast, most existing trajectory similarity functions [7,16,17] are
asymmetrical; thus, they cannot be used directly in the TS-Join.

7.2 Trajectory Similarity Join
Most existing studies on trajectory similarity join (e.g., [2, 3, 6,

10]) use a time interval threshold to constrain the temporal prox-
imity of two trajectories and can be classified into two categories.
Studies in the first category (e.g., [3, 10]) eliminate trajectory
pairs with sample point pairs with time intervals that exceed the
threshold. Our study generalizes studies in this category in that
we eliminate the time-interval threshold. Studies in the other
category (e.g., [2, 6]) apply a sliding window to all trajectories.
Here, pairs of trajectories must fall into a sliding window to be
candidate join results. In contrast, the TS-Join uses spatiotemporal
similarity, taking into account both spatial and temporal proximities
in a continuous manner. Thus, the existing time-interval based
solutions are not suitable for the TS-Join (e.g., the temporal-first
matching, cf. Section 3). Moreover, in contrast to most existing
trajectory join studies (e.g., [2, 3, 6, 10, 19]), the TS-Join is applied
in spatial networks because in many practical scenarios, objects
(e.g., commuters and vehicles) move in spatial networks (e.g., road
networks) rather than in a Euclidean space. Thus, spatial indices
(e.g., the R-tree [11]) and corresponding optimizations are not
effective in our setting. In addition, existing trajectory similarity
join studies (e.g., [2, 3, 6, 10, 19]) are not taking steps to exploit the
parallelism in modern processors. According to an experimental
study [12], most existing similarity join algorithms cannot achieve
high performance for really large data sets, making it relevant to
pursue parallel algorithms for very large data sets. To address this
issue, we introduce parallelism to the temporal-first matching and
the two-phase algorithm to process the TS-Join efficiently on very
large trajectory data sets.

8. CONCLUSION AND FUTURE WORK
We studied a novel trajectory similarity join (TS-Join) in spatial

networks, which targets many applications such as trajectory du-
plicate detection, data cleaning, ridesharing/carpooling recommen-
dation, and traffic congestion prediction. To process the TS-Join
efficiently, a two-phase algorithm was developed based on a divide-
and-conquer strategy. The algorithm enables parallel processing.
We also proposed an upper bound and a heuristic scheduling
strategy to prune the search space effectively. The performance
of the TS-Join was investigated through extensive experiments on
very large trajectory data.

Three interesting directions for future research exist. First, it
is of interest to extend the existing algorithms to support a top-
k TS-Join without a threshold θ. Challenges include how to
design the parallelism and how to communicate between different
threads. Second, it is of interest to take the visiting sequence

of sample points into account when matching trajectories. When
doing this, the upper bound and heuristic scheduling strategy need
to be reworked. Third, it is of interest to study more systems-level
optimizations in the TS-Join.

9. ACKNOWLEDGEMENT
This work is partially supported by KAUST, the National Natural

Science Foundation of China (61402532, 61532018), Beijing Nova
Program (xx2016078), and by the DiCyPS center, funded by
Innovation Fund Denmark.

10. REFERENCES
[1] R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim. Fast similarity

search in the presence of noise, scaling, and translation in time-series
databases. In VLDB, pages 490–501, 1995.

[2] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras.
Efficient trajectory joins using symbolic representations. In MDM,
pages 86–93, 2005.

[3] P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory
joins. In GSN, pages 109–128, 2006.

[4] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching
vehicle tracking data. In VLDB, pages 853–864, 2005.

[5] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD, pages 491–502, 2005.

[6] Y. Chen and J. M. Patel. Design and evaluation of trajectory join
algorithms. In ACM-GIS, pages 266–275, 2009.

[7] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching
trajectories by locations: an efficiency study. In SIGMOD, pages
255–266, 2010.

[8] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications. Springer,
2008.

[9] E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Math, 1:269–271, 1959.

[10] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join
of large sets of moving object trajectories. In TIME, pages 79–87,
2008.

[11] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[12] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

[13] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based
most frequent path in big trajectory data. In SIGMOD, pages
713–724, 2013.

[14] S. Shang, L. Chen, C. S. Jensen, J.-R. Wen, and P. Kalnis. Searching
trajectories by regions of interest. IEEE Trans. Knowl. Data Eng.,
online first:1–14, 2017.

[15] S. Shang, L. Chen, Z. Wei, C. S. Jensen, J. Wen, and P. Kalnis.
Collective travel planning in spatial networks. IEEE Trans. Knowl.
Data Eng., 28(5):1132–1146, 2016.

[16] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis. User
oriented trajectory search for trip recommendation. In EDBT, pages
156–167, 2012.

[17] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou.
Personalized trajectory matching in spatial networks. VLDB J.,
23(3):449–468, 2014.

[18] S. Shang, K. Zheng, C. S. Jensen, B. Yang, P. Kalnis, G. Li, and
J. Wen. Discovery of path nearby clusters in spatial networks. IEEE
Trans. Knowl. Data Eng., 27(6):1505–1518, 2015.

[19] N. Ta, G. Li, and J. Feng. Signature-based trajectory similarity join.
IEEE Trans. Knowl. Data Eng., online first:1–14, 2017.

[20] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for
map-matching speed: Localizing globalb curve-matching algorithms.
In SSDBM, pages 379–388, 2006.

[21] B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar
time sequences under time warping. In ICDE, pages 201–208, 1998.

[22] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient
search for activity trajectories. In ICDE, pages 230–241, 2013.

1189

