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Abstract—The matching between trajectories and locations, called Trajectory-to-Location join (TL-Join), is fundamental functionality in

spatiotemporal data management. Given a set of trajectories, a set of locations, and a threshold u, the TL-Join finds all (trajectory,

location) pairs from the two sets with spatiotemporal correlation above u. This join targets diverse applications, including location

recommendation, event tracking, and trajectory activity analyses. We address three challenges in relation to the TL-Join: how to define

the spatiotemporal correlation between trajectories and locations, how to prune the search space effectively when computing the join,

and how to perform the computation in parallel. Specifically, we define new metrics to measure the spatiotemporal correlation between

trajectories and locations. We develop a novel parallel collaborative (PCol) search method based on a divide-and-conquer strategy. For

each location o, we retrieve the trajectories with high spatiotemporal correlation to o, and then we merge the results. An upper bound on

the spatiotemporal correlation and a heuristic scheduling strategy are developed to prune the search space. The trajectory searches

from different locations are independent and are performed in parallel, and the result merging cost is independent of the degree of

parallelism. Studies of the performance of the developed algorithms using large spatiotemporal data sets are reported.

Index Terms—Trajectory-to-location join, parallel processing, spatial networks, spatial databases

Ç

1 INTRODUCTION

WITH the continuous proliferation of GPS-enabled
mobile devices (e.g., vehicle navigation systems and

smart phones) and the rapid development of online map-
based services (e.g., Google Maps,1 andMapQuest2), it is easy
to collect and share trajectories, e.g., at specialized sites such
as Bikely,3 GPS-way-points,4 Share-my-routes,5 andMicrosoft
Geolife.6 Also, more andmore social networking sites, includ-
ing Twitter,7 Facebook,8 and Foursquare,9 are starting to sup-
port trajectory collection and sharing [1], [2]. The availability
ofmassive trajectory datamotivates new studies in spatiotem-
poral data management. The matching between trajectories
and locations, called Trajectory-to-Location Join (TL-Join), is

fundamental functionality. Given a set T of trajectories, a set
O of locations, and a threshold u, the TL-Join finds all (trajec-
tory, location) pairs from T and O with a spatiotemporal cor-
relation above u.

The TL-Join may benefit diverse applications, including
location recommendation [3], event tracking [4], and trajec-
tory activity analyses [5], [6], [7]. For example, people may
want to place new facilities (e.g., shopping malls, banks,
and petrol stations) in a city according to available trajecto-
ries of the potential customers. They may use the TL-Join to
find the locations that join with the most trajectories. Such
locations have high visibility to trajectories and may be
most attractive to customers. These locations may then max-
imize the commercial value of new facilities. As another
example, when events occur (e.g., accidents or terrorist
attacks), the police may want to find eyewitnesses of the
events. The TL-Join can find such people by matching their
trajectories to the events’ locations. In addition, we can use
the TL-Join to analyze the activities of trajectories. Depend-
ing on the points of interest (e.g., restaurants, shopping
malls, and sightseeing places) that a trajectory joins with,
we can infer activities related to the trajectory (e.g., dinner,
shopping, and tourism).

To the best of our knowledge, this is the first trajectory-to-
location matching study that takes into account both the spa-
tial and temporal ranges when computing spatial and tem-
poral correlations. We use a linear method [1], [2], [8] to
combine the spatial and temporal correlations into a spatio-
temporal correlation metric. In contrast, existing studies typ-
ically perform (i) the matching solely in the spatial
domain [3], [4], [5], [6], [8] or (ii) using point-to-point match-
ing in the spatial domain or the temporal domain [2], [3], [4],
[8]. As a result, they may fail to support time-aware applica-
tions. For example, they may match a morning trajectory to
an evening activity (e.g., drinking at a bar), or they may
match amidnight trajectory to a facility open only during the
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day (e.g., a bank or a shopping mall). Further, the matched
pairs cannot guarantee a long-term and continuous correla-
tion between locations and trajectories in the spatial and tem-
poral domains. For example, a trajectory may have a single
sample point and a short duration matching to a location (its
other sample points are too far away from the location); but
the result caused by this matching may be of little use in
activity analyses because its matching duration is too short
to denote a significant relationship. Furthermore, the so-
called Semantic Enrichment [7] approach utilizes the stay-
time at a location to infer a traveler’s activity. This type of
matching is not attractive in our intended applications
because it is not flexible, i.e., it relies on a fixed visit position
(e.g., the intended location) when defining a matching. In
contrast, the matching in the TL-Join allows travelers to visit
multiple positions close to the intended location within a
matching duration. Such flexible matching is appropriate in
applications such as location recommendation, event track-
ing, and activity analyses. The Semantic Enrichment can be
viewed as a special case of thematching in the TL-Join.

An example of the TL-Join is shown in Fig. 1, where t1,
t2, and t3 are trajectories and o is a location (a shopping
mall) with opening hours from 11:00 to 16:30. For the match-
ings that solely consider the spatial domain [3], [4], [5], [6],
[8], trajectory-location pairs ðt1; oÞ, ðt2; oÞ, and ðt3; oÞ are
returned because all trajectories are spatially close to o.
However, the timestamps of t2 do not match the time range
(opening hours) of o, so pair ðt2; oÞ has little meaning in this
scenario. For point-to-point matching [2] in the spatial and
temporal domains, pairs ðt1; oÞ, and ðt3; oÞ are returned
because ðp12; oÞ and ðp4; oÞ are matched point pairs, where
p12 2 t1 and p4 2 t3. But there is not a long-term and contin-
uous correlation between p12 and o, so this matching result
is of little use in applications such as location recommenda-
tion, event tracking, and activity analyses. The TL-Join
returns the pair ðt3; oÞ because it has a long-term and contin-
uous correlation in both the spatial and temporal domains
(e.g., matched point pairs ðp2; oÞ, ðp3; oÞ, ðp4; oÞ, and ðp5; oÞ
and a duration of around 20 minutes) and because its spa-
tiotemporal correlation exceeds threshold u. Notice that the
Semantic Enrichment approach [7] considers the stay dura-
tion at a location, which means that multiple trajectory sam-
ple points are at the corresponding location for the stay
duration (the number of sample points depends on the tra-
jectory sampling rate and the stay duration). The TL-Join
can support this special case.

The TL-Join is applied in a spatial network because objects
move in a spatial network rather than in euclidean space in
many practical scenarios. In a spatial network, network dis-
tance is the relevant distance between two objects, and using
euclidean distance [4], [5], [6], [7] may lead to errors.

An overview of a comparison to existing trajectory-loca-
tion matching studies is shown in Table 1. Existing meth-
ods [2], [3], [4], [5], [6], [7], [8] cannot process the TL-Join
due to four reasons. (i) Different query types: most trajec-
tory-to-location matching studies [2], [3], [4], [7], [8] are not
related to the join operation. For example, RPNN [3] con-
cerns reverse path nearest neighbor querying; ATSQ [4],
UOTS [8], and PTM [2] concern trajectory search by loca-
tions; and Semantic Enrichment [7] concerns the use of tra-
jectories to infer travelers’ activities. Their solutions cannot
be used in the TL-Join because the solutions are for different
query types. (ii) Different matching functions: existing stud-
ies are based on point-to-point matching [2], [3], [4], [8] or
spatial-only matching [3], [4], [5], [6], [8], and their solutions
are inapplicable to spatiotemporal range matching. (iii) Dif-
ferent query spaces: the VID join [5], [6] is conducted in
euclidean space, and its spatial index and accompanying
pruning techniques are not competitive in spatial networks.
(iv) Parallel processing requirement: existing centralized
trajectory-to-location joins (VID Join) cannot process large
trajectory data sets. Based on the experiments reported in
the literature [5], [6], the VID join can process at most 12 K
trajectories. In contrast, our implementation of the TL-Join
can process 10 M trajectories with a reasonable runtime (the
PCol solution can process 10 M � 0.5 M (trajectory, location)
pairs with 120 threads in 651 seconds). Table 1 offers further
details on the scale of the data considered, indicating that
we consider several orders of magnitude more data than do
previous studies.

Next, the algorithm used for computing the TS-Join [1]
cannot process the TL-Join because the query arguments are
different (two trajectory sets versus a trajectory and a loca-
tion sets) and because the matching functions are different
(point-to-point matching versus range matching). The
TL-Join needs its own specific solutions.

Fig. 1. TL-join example.

TABLE 1
Trajectory-to-Location Matchings

Studies
Query
Space

Spatiotemporal
Matching Data

RPNN [3] Network Spatial only
(point-to-point)

1.6 K

ATSQ [4] euclidean Spatial only
(point-to-point)

49 K

UOTS [8] Network Spatial only
(point-to-point)

30 K

PTM [2] Network Spatial (point-to-point)
and Temporal
(point-to-point)

30 K

Semantic
Enrichment [7]

euclidean Spatial (point-to-point)
and Temporal (range)

13 K

VID Join [5], [6] euclidean Spatial only (range) 12 K

TL-Join
(our proposal)

Network Spatial (range) and
Temporal (range)

10 M
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We propose two baseline solutions to the TL-Join, called
parallel temporal-first search (PTF) and parallel spatial-first
search (PSF). For PTF, we improve the equal-partition grid
index in the TS-Join [1], and we propose a new balanced grid
index in the temporal domain (i.e., each leaf node has similar
numbers of trajectories and locations so that the parallel com-
putation load is balanced). We define spatiotemporal corre-
lation upper and lower bounds to prune the search space,
and we perform the refinement of (trajectory, location) pairs
from the leaf nodes towards the root. The computations at
each index level occur in parallel. The main drawback of PTF
is threefold: (i) weak spatial pruning power (temporal driven
pruning), (ii) highmerging cost (havingmore leaf nodes ena-
bles more parallel processing, but also higher merging cost),
and (iii) additional computation cost to acquire network dis-
tances when computing spatial correlations.

Next, PSF is based on a divide-and-conquer strategy and
performs better than PTF. For each location o, PSF explores
the spatial domain to find trajectories with high spatial cor-
relation to o. In the temporal domain, it checks whether the
corresponding timestamps are within the time range of o
(temporal correlation). We define upper bounds on the spa-
tial correlation to prune the search space. Each trajectory
search is independent and is performed in parallel, and the
merging cost is independent of the degree of parallelism.
The network distances needed for spatial correlation com-
putations can be derived directly during trajectory searches
from locations. The limitation of PSF lies in its weak prun-
ing power in the temporal domain.

To process the TL-Join more efficiently, we propose a
novel parallel collaborative search (PCol) approach. PCol
uses the parallel mechanism of PSF. For each location o,
PCol explores the spatial and temporal domains concur-
rently to find trajectories with high spatiotemporal correla-
tion to o. We define upper bounds on the spatiotemporal
correlation and a heuristic scheduling strategy that result in
strong pruning power in the two domains.

To sum up, we make the following contributions:

� We propose a new trajectory-to-location join, called
TL-Join, targeting applications such as location rec-
ommendation, event tracking, and trajectory activity
analyses.

� The TL-Join takes both spatial and temporal range
matching into account to compute spatiotemporal cor-
relation.No other proposal provides this functionality.

� We develop two baseline algorithms for computing
the TL-Join called parallel temporal-first (PTF)
search and parallel spatial-first (PSF) search.

� We develop a parallel collaborative algorithm (PCol)
with effective pruning techniques and a heuristic
scheduling strategy in the spatial and temporal
domains.

� We conduct extensive experiments on large trajectory
data sets to study the performance of the developed
algorithms. We can handle about 3 orders of magni-
tudemore trajectories than the state-of-the-art VID join.

The rest of the paper is organized as follows. Section 2
defines the setting, including spatial networks, trajectories,
locations, and the spatiotemporal correlation metrics con-
sidered in the paper; it ends by defining the problem.

Parallel temporal-first (PTF) search and parallel spatial-first
(PSF) search are covered in Sections 3 and 4, while parallel
collaborative (PCol) search is covered in Section 5. Experi-
mental results are presented in Section 6. Related work is
covered in Section 7, and conclusions and future directions
are presented in Section 8.

2 PRELIMINARIES AND PROBLEM DEFINITION

2.1 Spatial Networks

A spatial network is modeled as a connected, undirected,
andweighted graphG ¼ ðV;E; F;WÞ, where V is a vertex set
and E � ffvi; vjgjvi; vj 2 V ^ vi 6¼ vjg is an edge set. A vertex
vi 2 V represents a road intersection or an end of a road, and
an edge ek ¼ fvi; vjg 2 E represents a road segment that ena-
bles travel between vertices vi and vj. Function F : V [E !
Geometries maps a vertex to the point location of the corre-
sponding road intersection and maps an edge to a polyline
representing the corresponding road segment. Function
W : E ! R assigns a real-valued weight W ðeÞ to an edge e
that represents the corresponding road segment’s length.

The shortest path between two vertices vi and vj is a
sequence of edges linking vi and vj such that the sum of the
edge weights is minimal. Such a path is denoted by
SP ðvi; vjÞ, and its length is denoted by sdðvi; vjÞ. euclidean-
space based spatial indices (e.g., the R-tree [9]) and accom-
panying techniques are ineffective in network environments
due to loose lower bounds.

For simplicity, we assume that the data points consid-
ered (e.g., trajectory sample points) are located at vertices. It
is straightforward to also support data points on edges.
Assume a data point p is on an edge e with given network
distances to the two end vertices ea and eb. Then, a new ver-
tex is created for p with the appropriate geometry, and edge
e is replaced by edges ðea; pÞ and ðp; ebÞwith the appropriate
weights and geometries.

2.2 Trajectories and Locations

Raw trajectory samples obtained from GPS devices are typi-
cally of the form (longitude, latitude, time), and trajectory
sample points are captured periodically at some sampling
rate. We assume that all sample points have already been
map matched onto the spatial network using a map-match-
ing algorithm (e.g., [10], [11]) and that an object always fol-
lows the shortest path when moving between two adjacent
sample points pa and pb. A trajectory is defined as follows.

Definition: Trajectory
A trajectory t of a moving object is a finite, time-ordered

sequence hv1; v2; . . . ; vni, where vi ¼ ðpi; tiÞ, i 2 ½1; n�, with pi
being a sample point (equal to some vertex in G:V ) and ti
being a timestamp.

Assuming that t:sr is the sampling rate of trajectory t, we
have that tiþ1 � ti ¼ t:sr, i 2 ½1; n� 1�.

The above modeling of spatial networks and trajectories
aligns with previous studies [1], [2].

Definition: Location
A location o contains a spatial attribute o:p and a tempo-

ral attribute o:R, where o:p is a vertex in G:V and o:R is a
time range. Time range o:R describes the valid duration of o
(e.g., opening hours of facilities, or time ranges of events).
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The values of timestamps and time ranges are set to be
within the range of 24 hours, and the date is not taken into
account because inmany practical scenarios, like urban trans-
portation, movements are often studied within the range of a
day [1], [2].

2.3 Spatiotemporal Correlation

Given a location o and a trajectory t, Kt is the set of trajec-
tory sample points in t that are spatially closest to o:p:
8v 2 Ktð8v0 2 t nKtðsdðo:p; v:pÞ � sdðo:p; v0:pÞÞÞ. The cardi-
nality ofKt is set as follows.

kt ¼ jKtj ¼ dc
t:sr

� �
þ 1: (1)

Here, dc controls the coupling duration (to describe the term
of correlations) between o and t. Its value is user-defined.
We assume that trajectories are sampled uniformly. As dif-
ferent locations may have different coupling duration dc
and different trajectories may have different sampling rates
t:sr, the value of kt may be different for different trajecto-
ries. The following algorithms support this.

The spatial correlation CSðo; tÞ and the temporal correla-
tion CTðo; tÞ between o and t are defined as follows.

CSðo; tÞ ¼
P

vi2Kt
e�sdðo:p;vi:pÞ

kt
(2)

CTðo; tÞ ¼ jfvj:tjvj 2 Kt ^ vj:t 2 o:Rgj
kt

: (3)

In the spatial domain, we count the sum of the spatial dis-
tances between location o and trajectory sample points in
Kt , while in the temporal domain, we check the validity of
the sample points in Kt by matching their timestamps to
the time range o:R.

An example that illustrates these definitions is shown in
Fig. 2, where o is an object and t ¼ hv1; v2; . . . ; v12i is a trajec-
tory. The coupling duration dc is 8 minutes, and the sam-
pling rate of t is 2 minutes, so kt ¼ b8 minutes

2 minutesc þ 1 ¼ 4þ
1 ¼ 5. Points v7:p, v8:p,...,v11:p are the top-5 trajectory sample
points spatially closest to o:p, so Kt ¼ fv7:p; v8:p; . . . ; v11:pg.
The value of CSðo; tÞ is computed by substituting Kt into
Equation (2). Next, assuming that v7:t=12:50, v8:t=12:52,
v9:t=12:54, v10:t=12:56, v11:t=12:58, and o:R = [12:55, 13:00],
we have that v7:t =2 o:R, v8:t =2 o:R, v9:t =2 o:R, v10:t 2 o:R, and
v11:t 2 o:R. According to Equation (3), CTðo; tÞ ¼ jfv10:t;
v11:tgj=5 ¼ 2=5 ¼ 0:4.

The spatial and temporal correlations of t are both in the
range [0, 1]. We use a linear method [1], [2] to combine the
spatial and temporal correlations (Equations (2) and (3)),
and the spatiotemporal correlation is defined as follows.

CSTðo; tÞ ¼ � � CSðo; tÞ þ ð1� �Þ � CTðo; tÞ: (4)

Here, parameter � 2 ½0; 1� controls the relative importance of
the spatial and temporal correlations. The value of � can be
adjusted at query time.

2.4 Problem Definition

Given a set T of trajectories, a setO of locations, and a thresh-
old u, the trajectory-to-location join (TL-Join) returns the set
A of all (trajectory, location) pairs from the two sets whose
spatiotemporal correlations are at least u, i.e., 8ðti; ojÞ 2
A ðCSTðti; ojÞ 	 uÞ ^ 8ðt0i; o0jÞ 2 ððT �OÞ nAÞðCSTðt0i; o0jÞ < uÞ.

A List of Notions

Notion Description

G:V the set of vertices in graph G
G:E the set of edges in graph G
sdðpi; pjÞ shortest path distance between vertices pi and pj
t:sr sampling rate of trajectory t
o:R time range of location o
dc coupling duration
Kt the set of top-kt sample points in t that are

spatially closest to location o
CS, CT, CST spatial, temporal, and spatiotemporal correlation
� the relative importance of the spatial and

temporal correlations
UB, LB global upper and lower bounds

3 PARALLEL TEMPORAL-FIRST SEARCH

3.1 Basic Idea

Parallel temporal-first (PTF) search is a baseline approach to
TL-Join processing. We improve the equal-partition grid
index used in the TS-Join [1], and we propose a new balanced
hierarchical grid index in the temporal domain (Section 3.2).
We also define upper and lower bounds to prune the search
space in the spatial and temporal domains. PTF refines the
(trajectory, location) pairs in the same leaf node and merges
the results from the leaf nodes towards the root. The join
result is then obtained from the root. The computations at the
nodes at the same level occur in parallel (Section 3.3). The
pseudocode of PTF and its time complexity are given in
Section 3.4.

3.2 Balanced Grid Index

In the TS-Join [1], the temporal domain is partitioned into m
equal-sized time slots, each of which is assigned to a leaf
node. The drawback of this approach is that the distribu-
tions of trajectories and locations are imbalanced, and dif-
ferent leaf nodes may have quite different numbers of
trajectories (e.g., peak hours may have more, off-peak hours
may have fewer, and midnight may have none). Such imbal-
ance yields poor performance in parallel processing. To
address this issue, we propose a new balanced grid index in
the temporal domain for PTF. Here, each leaf node n has a
matching-times upper bound M 	 jntj � jnoj, where nt and
no are the sets of trajectories and locations contained in n.
The optimal value of M that achieves the highest perfor-
mance is determined through extensive experiments. Notice
that the balanced grid index is a temporal index, which
indexes the time ranges of trajectories and locations. Other
trajectory indexes (e.g., [12], [13], [14]) are spatial index, and
they are not suitable for this scenario.

The balanced grid index is constructed as follows. Given
a value of M and a slot s = [0, 24:00], we recursively parti-
tion s into two equal-sized nodes if jstj � jsoj> M, where st
and so are sets of trajectories and locations in slot s. For
example, given a trajectory t ¼ hv1; v2; . . . ; vii, its temporal

Fig. 2. Spatiotemporal correlation.
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range rangeðtÞ ¼ ½v1:t; vi:t�. If rangeðtÞ � rangeðsÞ, t is con-
tained in s. Similarly, given a location o, if o:R � rangeðsÞ, o
is contained in s. For example, given rangeðsÞ = [9:00, 12:00],
rangeðtÞ = [10:00, 11:00], and o:R = [9:30, 11:30], t and o are
contained in s.

Once the partitioning terminates, each slot corresponds
to a leaf node. We build a tree structure bottom-up. Assume
that there are m nodes at the leaf level. Then we build dm2 e
parent nodes. We do this recursively until there is one par-
ent, which is the root. The height of the tree is dlogðmÞe þ 1.
An example is shown in Fig. 3, where n1, n2,...,n8 are leaf
nodes and n15 is the root. Each trajectory t and each location
o are stored in the lowest node n that fully covers its tempo-
ral range, i.e., rangeðtÞ � rangeðnÞ and o:R � rangeðnÞ and
rangeðtÞ and o:R are not contained in the range of any child
node of n. For example, given o0:R = [9:30, 17:30], o0 is stored
in n14 (rangeðn14Þ = [9:00, 24:00]) because o0:R � rangeðn14Þ
and o0:R~rangeðn11Þ and o0:R~rangeðn12Þ (n11 and n12 are
child nodes of n14).

3.3 Filtering, Refinement, and Merging

In the example in Fig. 3, a trajectory t and a location o are
stored in node n3. As they are temporally close to each
other, we estimate the upper bound on their temporal corre-
lation CTðo; tÞ (cf. Equation (3)) as follows.

jfvjjvj 2 Kt ^ vj:t 2 o:Rgj � kt

) CTðo; tÞ:ub ¼ 1 	 CTðo; tÞ:
(5)

By substituting Equation (5) into Equation (4), we have that

CSTðo; tÞ ¼ � � CSðo; tÞ þ ð1� �Þ � CTðo; tÞ 	 u

) CSðo; tÞ 	 u � ð1� �Þ � CTðt1; t2Þ:ub
�

¼ u � 1þ �

�
:

For each “qualified” (trajectory, location) pair ðo; tÞ (i.e.,
CSTðo; tÞ 	 u), its spatial correlation exceeds the value of
u�1þ�

� . We define a global lower bound LBS of the spatial
correlation between (trajectory, location) pairs in the same
leaf node as follows.

LBS ¼ u � 1þ �

�
: (6)

We use network expansion to compute the spatial corre-
lation CSðo; tÞ (Equation (2)). The network expansion is per-
formed from location o using Dijkstra’s algorithm [15].
Dijkstra’s algorithm always selects the vertex with the mini-
mum distance label for expansion. Hence, the first kt sample
points in t scanned by the expansion are just the top-kt sam-
ple points closest to o. For example, in Fig. 3, assuming
kt ¼ 5 and v7:p; v8:p; . . . ; v11:p are top-5 first scanned sample
points in t. According to Equation (2), CSðo; tÞ ¼
1
5 ðe�dðv7:p;o:pÞ þ e�dðv8:p;o:pÞ þ . . .þ e�dðv11:p;o:pÞ. If CSðt; oÞ < LBS ,
then CSTðo; tÞ < u, and the (trajectory, location) pair ðo; tÞ
can be pruned safely. Otherwise, we compute the exact spa-
tiotemporal correlation CSTðo; tÞ (Equation (4)) and com-
pare to u to check the pair’s validity. The computations in
different leaf nodes are independent and occur in parallel.

Having computed the spatiotemporal correlations of the
(trajectory, location) pairs in the leaf nodes, we merge the
results from the leaf level to the root level (bottom-up). At
each level, when two nodes n and n0 have the same parent
n00, we merge their results and assign this to the parent (e.g.,
merge n3, n4, and n10 to obtain the result for n10 in Fig. 3). In
addition to these qualified results (CSTðo; tÞ 	 u), we also
need to consider the (trajectory, location) pairs ðo; tÞ in the
following three cases: (i) one item is stored in n or n0 and
another item is stored in n00 (e.g., rangeðtÞ � rangeðnÞ and
o:R � rangeðn00Þ); (ii) two items are stored in n00 (e.g.,
rangeðtÞ � rangeðn00Þ and o:R � rangeðn00Þ); (iii) one item is
stored in n and another item is stored in n0 (e.g.,
rangeðtÞ � rangeðnÞ and o:R � rangeðn0Þ).

For the first and the second cases, we use the same lower
and upper bounds (Equations (5) and (6)) and pruning tech-
niques as we use for the (trajectory, location) pairs in the
same node. The qualified pairs are stored in n00. For the third
case, as trajectory t and location o are stored in different
nodes, we have that CT ðt; oÞ ¼ 0. By substituting this into
Equation (4), we have that

CST ðt; oÞ 	 u, CSðt; oÞ 	 u

�
: (7)

As the value of CSðt; oÞ is in the range [0, 1], if u > �, (trajec-
tory, location) pair ðt; oÞ is pruned directly. Otherwise, we
compute the spatiotemporal correlation CST ðt; oÞ and com-
pare to u to check the pair’s validity.

The merging processes of adjacent node pairs (e.g., merge
n1 and n2 to n9, n3 and n4 to n10) at the same level of the tree
are independent. Thus they again occur in parallel. Having
merged the computation results from the leaf nodes all the
way to the root node, the join result in [0:00, 24:00] is found.

3.4 Algorithm and Time Complexity

The pseudocode of PTF is shown inAlgorithm 1. The compu-
tation is bottom-up, and h is the current level of computation.
Initially, we compute the global spatial lower bound LBS

(Equation (6)) for leaf nodes (lines 1–2). For each (trajectory,
location) pair ðt; oÞ in n (i.e., rangeðtÞ � rangeðnÞ and
o:R � rangeðnÞ), we compute its spatial correlation CSðt; oÞ
(Equation (2)), and if CSðt; oÞ is less than LBS , pair ðt; oÞ is
pruned (lines 3–7). Otherwise, we compute the exact spatio-
temporal correlation CSTðt; oÞ (Equation (4)), and if it is no
less than u, we store ðt; oÞ in Pn (lines 8–10). Having refined
all leaf nodes, we merge the results from the leaf level

Fig. 3. Example of PTF.
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towards the root. If two nodes na and nb are at the same level
and they have the same parent node nc, we merge the results
for na, nb, and nc (e.g., n1, n2, and n9 in Fig. 3) and store the
qualified (trajectory, location) pairs in Pnc (lines 11–14). If
h ¼ 1, the root node nc is reached, and all (trajectory, loca-
tion) pairs stored in Pnc are returned. Otherwise, we repeat
the procedure for the next level of the tree (line 15–17).

Algorithm 1. PTF Search

Data: a balanced grid index tree Tr, a trajectory set T , a loca-
tion set O, and a threshold u

Result: fðt; oÞjCSTðt; oÞ 	 u; 8t 2 T; 8o 2 O}
1 h Tr:hight� 1;
2 compute LBS ;
3 for each leaf node n in Tg do
4 for each (trajectory, location) pair ðt; oÞ in n do
5 compute CSðt; oÞ;
6 if CSðt; oÞ < LBS then
7 prune ðt; oÞ;
8 compute CSTðt; oÞ;
9 if CSTðt; oÞ 	 u then
10 Pn:addðt; oÞ;
11 while true do
12 if na; nb 2 level h, na:parent ¼ nb:parent ¼ nc then
13 merge na, nb, and nc;
14 compute and store qualified (trajectory, location) pairs

in Pnc ;
15 if h ¼ 1 then
16 return Pnc ;
17 h h� 1;

Let jT j and jOj denote the cardinalities of trajectory set T
and location setO. We use jV j and jEj to denote the numbers
of vertices and edges in G. Then OðjV jlog jV j þ jEjÞ is the
time complexity of computing the spatial correlation
between a trajectory and a location by using Dijkstra’s algo-
rithm. PTF follows the filter-and-refine paradigm, and the
time complexity of the filtering phase is OððjV jlog jV jþ
jEjÞjT jjOjÞ.

The time complexity to verify candidates by computing
their exact spatiotemporal correlations isOðktjCjÞ (the spatial
correlations are computed in the filtering phase, so in the
refinement phase we only need to compute the temporal cor-
relations), where jCj is the cardinality of the candidate set and
C � P �O. The total time complexity is OððjV jlog jV jþ
jEjÞjT jjOjÞ þ ktjCjÞ ¼ OððjV jlog jV j þ jEjÞjT jjOjÞ, which does
not depend on the candidate set size.

The computations for nodes at the same level of the tree
occur in parallel. If we have multiple cores and threads
(each leaf node corresponds to a thread), it is possible to
accelerate the computation at the leaf level by generating
many leaf nodes and processing them in parallel. However,
more leaf nodes also leads to more tree levels (m is the num-
ber of leaf number, and the height of the tree is
dlogðmÞe þ 1), which increases the merging cost.

4 PARALLEL SPATIAL-FIRST SEARCH

4.1 Basic Idea

PTF has three weaknesses. (i) Weak spatial pruning power:
the pruning is driven by the temporal domain so it has low
effectiveness in the spatial domain. (ii) High merging cost:

more leaf nodes (each leaf node corresponds to a thread)
lead to a higher merging costs, which decreases perfor-
mance. (iii) Additional network distance computations are
needed to compute the spatial correlations (Equation (2)),
which again yields poor performance.

Parallel spatial first (PSF) search is another baseline for
TL-Join computation. Its parallel mechanism is shown in
Fig. 4a. For each location o 2 O, we search the trajectories
with high spatiotemporal correlations to o. The trajectory-
search processes at different locations are performed in par-
allel. In the spatial domain, we use network expansion [15]
to explore the spatial network and to find trajectories spa-
tially close to o (spatial correlation). In the temporal domain,
we check whether the corresponding timestamps are within
the time range of o (temporal correlation). Upper and lower
bounds on the spatiotemporal correlations are defined to
prune the search space. By merging the search results from
each location, the solution of the TL-join is found. Com-
pared to PTF, PSF has two advantages. First, its result merg-
ing cost is independent of the degree of parallelism. We can
simply combine the trajectory-search results of all locations
to get the solution. Second, the network distances for the
spatial correlation computation can be acquired during the

Fig. 4. Examples of PSF and PCol.
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trajectory-search processes. PSF has better time complexity
than PTF.

4.2 Filtering, Refinement, and Merging

An example of PSF is given in Fig. 4b, where o is a location
and o:R is its time range; t1, t2, and t3 are trajectories; v1:p
and v2:p are the top-2 vertices in t3 spatially closest to o;
v3:p, v4:p,..., v7:p are the top-5 vertices in t1 spatially closest
to o, and v1:t,...,v7:t are the corresponding timestamps.
Assuming kt1 ¼ kt2 ¼ kt3 ¼ 5.

In the spatial domain, network expansion is performed
from o according to Dijkstra’s algorithm [15]. The explored
space is a circular region ðo; rsÞ with center o and radius rs.
As Dijsktra’s algorithm always selects the vertex with the
minimum distance label for expansion, the top-k first
scanned vertices in t are the top-k vertices spatially closest
to o. For example, in Fig. 4b, v1:p and v2:p are the top-2 first
scanned vertices in t3, and v3:p, v4:p,..., v7:p are the top-5 first
scanned vertices in t1.

Assuming a trajectory t has t:k vertices that have been
scanned by the expansion from o. If t:k 	 kt , trajectory t is
called “fully scanned” (e.g., t1 in Fig. 4b). If kt > t:k > 0, t
is called “partly scanned” (e.g., t3 in Fig. 4b). If t:k ¼ 0, t is
called “unscanned” (e.g., t2 in Fig. 4b).

For a partly scanned trajectory t0, we estimate an upper
bound on its spatial correlation as follows. Assuming that
vj:p 2 t0 is an unscanned vertex in the spatial domain, we
have:

rs < sdðo:p; vj:pÞ ) e�sdðo:p;vj:pÞ < e�rs:

By substitution into Equation (2), the spatial correlation
upper bound CSðt; oÞ:ub is defined as follows.

CSðt; oÞ:ub ¼
P

vi:p2Vs e
�sdðo:p;vi:pÞ þPvj:p2Vu e

�rs

kt
: (8)

Here, Vs is a set of scanned vertices in t (Vs 
 Kt), and Vu is
the set of unscanned top-kt vertices in t (Vs [ Vu ¼ Kt and
jVs [ Vuj ¼ kt). Among all partly scanned trajectories in the
spatial domain, we define a global upper bound on spatial
correlation as

UBS ¼ max
t2Tp
fCSðt; oÞ:ubg; (9)

where Tp is a set of partly scanned trajectories in the spatial
domain, and the value of UBS changes dynamically during
the query processing.

Filter-and-Refine: if UBS < u, we prune all partly scanned
and unscanned trajectories. For fully scanned trajectories, we
compute the exact spatial (Equation (2)) and temporal (Equa-
tion (3)) correlations. The spatiotemporal correlationCST ðt; oÞ
is derived by combining them (Equation (4)). For example, in
Fig. 4b, t1 is fully scanned, so we compute CSðt1; o:pÞ ¼
1
5 ðe�dðv3:p;o:pÞ þ e�dðv4:p;o:pÞ þ e�dðv5:p;o:pÞ þ e�dðv6:p;o:pÞ þ e�dðv7:p;o:pÞÞ,
CT ðt1; oÞ ¼ jfv3 :t;v4:tgj5 ¼ 2

5 ¼ 0:4, and CST ðt1; o:pÞ ¼ � � CSðt1; o:pÞþ
ð1� �Þ � CT ðt1; oÞ. If the spatiotemporal correlation CST ðt; oÞ
does not exceed u, we prune trajectory t. Otherwise, (trajec-
tory, location) pair ðt; oÞ is stored in Mo (the set of matched
(trajectory, location) pairs of o). By combiningMo of all objects
inO, the result

S
o2OMo of the TL-Join is found.

Notice that we do not maintain upper bounds on the
unscanned trajectories to reduce the computation and stor-
age cost. Given a partly scanned trajectory t and an
unscanned trajectory t0 (e.g., t2 in Fig. 4b), according to
Equations (8) and 9, we have:

CSðt0; oÞ:ub ¼
P

vj:p2Vu e
�rs

k0t
¼ e�rs < CSðt; oÞ:ub � UBS: (10)

Here, Vu ¼ Kt and jVuj ¼ k0t. If UBS < u, we have that
CSðt0; oÞ:ub < u. So the unscanned trajectories can be
pruned safely, and it is not necessary to maintain spatial
upper bounds.

4.3 Algorithm and Time Complexity

PSF adopts a divide-and-conquer strategy. For each location
o in setO, we retrieve the trajectories with high spatiotempo-
ral correlation to o. The search processes for different loca-
tions are independent so they are performed in parallel.
Unlike for PTF, PSF has a constant merging cost (its merging
cost is independent of the degree of parallelism, and we sim-
ply combine the search result of each location to achieve join
result). The pseudocode of PSF is shown in Algorithm 2.

Initially, for each location o 2 O, the set of itsmatched (tra-
jectory, location) pairsMo is set to ;. The global spatial upper
bound UBS is set to 0. For each trajectory t 2 T , the number
of its scanned vertices t:k is set to 0. We perform network
expansion from each location o to explore the spatial network
(lines 1–4). For each newly scanned vertex p, all trajectories
passing P have one more scanned vertex (lines 5–7). If the
number of scanned vertices of t is equal to kt (t is fully
scanned), we compute its spatiotemporal correlation
CST ðt; oÞ (Equation (4)). If the value of CST ðt; oÞ exceeds that
of u, we store (trajectory, location) pair ðt; oÞ inMo. Then, we
remove t from the partly scanned trajectory set Tp and
update the value of UBS (lines 8–13). If t is partly scanned
(0 < t:k < kt), we compute its spatial correlation upper
boundCSðt; oÞ:ub, andwe update the value of the global spa-
tial upper bound UBS (lines 14–17). If the value of UBS does
not exceed that of u, the expansion from o terminates (lines
18–20). Having searched all locations, we combine their
results and get the result

S
o2OMo of the TL-Join (line 21).

Let jOj denote the cardinality of location set O and let Tu

denote the scanned trajectory set for the search process from
each location, which includes the partly and fully scanned
trajectories (Tu ¼ Tp [ Tf ). According to Equations (8)
and (9), the maximum spatial expansion radiuses rs is
inversely proportional to u. Assuming the trajectories are uni-
formly distributed in the spatial domain, it follows that jTuj is
inversely proportional to u. Thus, jTuj is sensitive to the value
of threshold u and the pruning effectiveness. We use jV j and
jEj to denote the numbers of vertices and edges in G. Then
OðjV jlog jV j þ jEjÞ is the time complexity of network expan-
sion using Dijkstra’s algorithm. The time complexity of PSF
is OðjTujjOjðjV jlogjV j þ jEjÞÞ. If the value of u is sufficiently
large, the time complexity is close toOðjOjðjV jlogjV j þ jEjÞÞ.

5 PARALLEL COLLABORATIVE SEARCH

5.1 Basic Idea

The main weakness of PSF lies in its weak temporal pruning
power since its pruning is driven by the spatial domain. To
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overcome thatweakness and to process the TL-Joinmore effi-
ciently, we propose a parallel collaborative (PCol) search
algorithm that improves PSF. In contrast to PSF, PCol per-
forms trajectory search in the spatial and temporal domains
concurrently. An upper bound on the spatiotemporal corre-
lation and a heuristic search strategy are proposed to prune
the search space. PCol follows the same parallel mechanism
as PSF (cf. Fig. 4a). Compared to PSF, PCol has stronger prun-
ing power, which should translate into higher performance.

Algorithm 2. PSF Search

Data: a set O of locations, a set T of trajectories, and a
threshold u

Result:
S

o2OMo

1 8o 2 OðMo  ;Þ;
2 for each location o in O do
3 UBS  0;
4 8t 2 T ðt:k 0Þ;
5 p expand(o);
6 for each trajectory t passing p do
7 t:k t:kþ 1;
8 if t:k ¼ kt then
9 compute CST ðt; oÞ;
10 if CST ðt; oÞ 	 u then
11 Mo:addðt; oÞ;
12 Tp:removeðtÞ;
13 update UBS ;
14 if 0 < t:k < kt then
15 update CSðt; oÞ:ub;
16 if CSðt; oÞ:ub > UBS then
17 UBS  CSðt; oÞ:ub;
18 if UBS < u then
19 storeMo;
20 break;
21 return

S
o2OMo;

5.2 Upper Bound

In the spatial domain, PCol, like PSF, adopts network
expansion [15] to explore the spatial network and to find
trajectories with high spatial correlation to the query loca-
tion o. In the temporal domain, we partition time range o:R
into three parts (if jo:Rj > 2dc). An example is shown in
Fig. 4b, where jrangeðt1; t2Þj ¼ jrangeðt3; t4Þj ¼ dc and dc is
the coupling duration between t and o. Initially we search
the trajectory timestamps in rangeðt2; t3Þ, and then we
expand the search from t2 and t3 concurrently towards the
boundaries of o:R, and rt is the radius of the search space. If
jo:Rj � 2dc, we only partition o:R into two parts from the
middle point (i.e., merging t2 and t3 in Fig. 4b to the middle
point), and then we expand the search from the middle
point towards the boundaries.

We estimate the upper bound on the temporal correla-
tion of an unscanned trajectory t as follows.

jrangeðt1; t2 � rtÞj ¼ jrangeðt3 þ rt; t4Þj ¼ dc � rt

) CT ðt; oÞ:ub ¼
bjrangeðt1;t2�rtÞj

t:sr c þ 1

kt
¼ b

dc�rt
t:sr c þ 1

kt
:

(11)

Here, t:sr is the sampling rate of trajectory t, and
rangeðt1; t2 � rtÞ and rangeðt3 þ rt; t4Þ are the unscanned
spaces in o:R. Because trajectories are sampled continuously

and uniformly and because rangeðt2 � rt; t3 þ rtÞ has been
scanned in the current step, it is impossible for an
unscanned trajectory to appear in both rangeðt1; t2 � rtÞ and
rangeðt3 þ rt; t4Þ. Notice that for trajectories with non-uni-
form sampling rate, we simply need to count the number n
of sample points in the corresponding time range, or to use
the minimum sampling rate of t to compute the bounds.

By combining the upper bounds on the spatial (Equa-
tion (10)) and temporal (Equation (11)) correlation accord-
ing to Equation (4), we obtain an upper bound CST ðt:oÞ:ub
of the spatiotemporal correlation. The value of CST ðt:oÞ:ub
is used as a global upper bound UB for all unscanned trajec-
tories in both domains, and it changes dynamically during
query processing.

CST ðt:oÞ:ub ¼ � � CSðt:oÞ:ubþ ð1� �Þ � CT ðt:oÞ:ub

) UB ¼ CST ðt:oÞ:ub ¼ � � e�rs þ ð1� �Þ � b
dc�rt
t:sr c þ 1

kt
:

(12)

5.3 Filtering and Refinement

If the value of spatiotemporal upper bound CST ðt:oÞ:ub is less
than u, the search in the spatial and temporal domains termi-
nate and all unscanned trajectories are pruned. Then we
refine the fully and partly scanned trajectories in the two
domains. If a trajectory t is fully scanned in the spatial
domain, we compute its exact spatial, temporal, and spatio-
temporal correlations according to Equations (2), (3), and (4).
IfCST ðt; oÞ 	 u, we store (trajectory, location) pair ðt; oÞ in the
set of thematched pairs of o. Otherwise, trajectory t is pruned.

If a trajectory t0 ¼ hv1; v2; . . . ; vni is partly scanned in the
spatial domain and is unscanned in the temporal domain,
we estimate the temporal correlation upper bound
CT ðt0; oÞ:ub as follows.

CT ðt0; oÞ:ub ¼ 1

k0t

 
jrangeðv1:t; tn:tÞ \ rangeðt1:t; t2:t� rtÞj

t0:sr

� �

þ jrangeðv1:t; tn:tÞ \ rangeðt3:tþ rt; t4:tÞj
t0:sr

� �
þ 1

!
:

(13)

If a trajectory t0 is scanned in the temporal domain, its
temporal correlation upper bound is defined as follows.

CT ðt0; oÞ:ub ¼ 1

k0t

jrangeðv1:t; tn:tÞ \ o:Rj
t0:sr

� �
þ 1

� �
: (14)

By combining the spatial correlation upper bound (Equa-
tion (8)) and temporal correlation upper bound (Equa-
tions (13) and (14)) according to Equation (4), we obtain a
spatiotemporal correlation upper bound CST ðt0; oÞ:ub as fol-
lows.

CST ðt0; oÞ:ub ¼
� � CSðt0; oÞ:ub
þð1� �Þ � CT ðt0; oÞ:ub if Case 1

ð1� �Þ � CT ðt0; oÞ:ub if Case 2:

8><
>: (15)

Case 1: t0 is partly scanned in the spatial domain.
Case 2: t0 is unscanned in the spatial domain.
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If the value of CST ðt0; oÞ:ub is less than that of u, we prune
trajectory t0. Otherwise, we refine the trajectory in the spa-
tial domain until it is fully scanned. Then we compute its
exact spatiotemporal correlation and compare to u.

5.4 Heuristic Scheduling

We propose a heuristic method to schedule the two query
sources in the spatial and temporal domains (i.e., expansion
center o:p in the spatial domain, and expansion centers t2
and t3 in the temporal domain). Our target is to let more tra-
jectories be scanned in the both domains, which is helpful
to (i) reduce the number of scanned trajectories to be refined
and to (ii) improve the pruning power of Equation (16).

For example, TS is the set of scanned trajectories in the
spatial domain, and TT is the set of scanned trajectories in the
temporal domain. We refine jTS [ TT j trajectories in total. If
we are able to increase the intersection between TS and TT

(the trajectories that have been scanned in both domains), we
can reduce the total number of trajectories to be refined and
can improve the query efficiency correspondingly. More-
over, we can use the spatial and temporal correlation upper
bounds (Equation (16)) of the trajectories in TS \ TT to prune
the search space, which yields better pruning than using
only the spatial or the temporal upper bound (if trajectories
only have been scanned in one domain).

Priority labels of the query sources in the two domains
are then defined as follows. At each time, we only search
the top-ranked query source (the query source has a larger
value of its label) until a new query source takes its place.

q:l ¼ � � jðTS [ TT Þ n TSj if Case 3

ð1� �Þ � jðTS [ TT Þ n TT j if Case 4

�
: (16)

Case 3: q is in the spatial domain (q ¼ o:p).
Case 4: q is in the temporal domain (q is for t2 and t3).
Here � and ð1� �Þ control the relative importance of the

spatial and the temporal domains (Equation (4)).

5.5 Algorithm and Time Complexity

The PCol search procedure is detailed in Algorithm 3. The
query arguments include a location o, a trajectory t, and a
threshold u. The query result is returned in

S
o2OMo. Ini-

tially,UB and the priority labels are set to 0 andMo is set to ;.
If the value of 2dc is less than that of jo:Rj, we scan the time-
stamps in rangeðt2; t3Þ (cf. Fig. 4b)(lines 1–5). We select the
top-ranked query source q from heapH as the current-search
query source, and we expand the search from q. We update
the value of UB (Equation (12)). If the value of UB is less than
u, we prune all unscanned trajectories in the two domains
(lines 6–11). Then we refine all scanned trajectories in the
two domains. If a trajectory t is fully scanned in the spatial
domain, we compute its exact spatiotemporal correlation
CST ðt:oÞ (Equation (4)) and compare it to u. If CST ðt:oÞ 	 u,
(trajectory, location) pair ðt; oÞ is added in Mo. Otherwise, t
is pruned (lines 12–17). If a trajectory t0 is partly scanned, we
compute its spatiotemporal upper boundCST ðt0:oÞ:ub (Equa-
tion (16)). If CST ðt0:oÞ:ub < u, t0 is pruned. Otherwise, we
further refine trajectory t0 and compute CST ðt0:oÞ. If
CST ðt0:oÞ 	 u, ðt0; oÞ is added to Mo. Otherwise, t0 is pruned
(lines 18–27). SetMo is stored. If q is not at the top of heapH,
we update q to be the top-ranked query source (lines 28–31).

By combining the matching sets of all locations, the solutionS
o2OMo of the TL-Join is found (line 32).

Algorithm 3. PCol Search

Data: a set O of locations, a set T of trajectories, and a
threshold u

Result:
S

o2OMo

1 8o 2 OðMo  ;Þ;
2 for each location o in O do
3 UB 0; 8q 2 Hðq:l 0Þ;
4 if 2dc < jo:Rj then
5 scan timestamps in rangeðt2; t3Þ;
6 q H:top;
7 while true do
8 expand(q);
9 update UB;
10 if UB < u then
11 prune all unscanned trajectories;
12 for each spatially fully scanned trajectory t do
13 compute CST ðt:oÞ;
14 if CST ðt:oÞ 	 u then
15 Mo:addðt; oÞ;
16 else
17 prune t;
18 for each partly scanned trajectory t0 do
19 compute CST ðt0:oÞ:ub;
20 if CST ðt0:oÞ:ub < u then
21 prune t0;
22 else
23 refine t0 and compute CST ðt0:oÞ;
24 if CST ðt0:oÞ 	 u then
25 Mo:addðt0; oÞ;
26 else
27 prune t0;
28 storeMo;
29 break;
30 if q 6¼ H:top then
31 q H:top;
32 return

S
o2OMo;

Let T 0u denote the scanned trajectory set for the search pro-
cess from each location. In the spatial domain, the time com-
plexity is OðjT 0ujjOjðjV jlogjV j þ jEjÞÞ (the same as PSF), while
in the temporal domain, the time complexity is OðjTujjOjÞ.
The time complexity of PCol is OðjT 0ujjOjðjV jlogjV j þ jEjÞÞþ
OðjT 0

u0 jjOjÞ ¼ OðjT 0ujjOjðjV jlogjV j þ jEjÞÞ. If the value of u is
sufficiently large, the time complexity is close to OðjOj
ðjV jlogjV j þ jEjÞÞ. The time complexity of PCol is the same as
that of PSF, and the advantage of PCol lies in that it has a
higher pruning power and defines a smaller candidate set T 0u.

6 EXPERIMENTAL RESULTS

We report on experiments with real and synthetic spatial
data that offer insight into the properties of the developed
algorithms.

6.1 Settings

We use two spatial networks, namely the Beijing Road Net-
work (BRN) and the New York Road Network (NRN),10

10. https://publish.illinois.edu/dbwork/open-data/
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which contain 28,342 vertices and 27,690 edges, and 95,581
vertices and 260,855 edges, respectively. The graphs are
stored using adjacency lists. In BRN, we use a real taxi tra-
jectory data set collected by the T-drive project [16], while in
NRN, we use a real taxi trajectory data set from New
York10. The time range of a trajectory is 1–2 hours. We use
real location data in BRN, i.e., for POIs (e.g., restaurants and
shopping malls), we use real locations and real time ranges
(opening hours, e.g., 3–5 hours for a restaurant, 7–10 hours
for a shopping mall), and for accidents, we use real locations
and synthetic time ranges (e.g., 0.5–2 hours), and we use
synthetic location data in NRN.

In the experiments, the index structure of PTF
(cf. Section 3) and the spatial networks of PSF and PCol
(when running Dijkstra’s expansion [15], cf. Sections 4 and
5) are memory resident, as the memory occupied is 34 MB
and 44 MB for BRN and 42 MB and 55 MB for NRN. Trajec-
tories and locations are also memory resident for all algo-
rithms, and they occupy 279 MB for BRN and 2.2 GB for
NRN. All algorithms are implemented in Java and run on a
cluster with 10 data nodes. Each node is equipped with two
Intel

�
Xeon

�
Processors E5-2620 v3 (2.4GHz) and 128GB

RAM. Unless stated otherwise, experimental results are
averaged over 10 independent trials using different query
inputs. The main performance metrics are runtime and the
number of location-trajectory pair visits. The number of
location-trajectory visits is used as a metric because it
reflects the number of data accesses. In multi-threaded exe-
cutions, the total runtime is the maximum runtime among
all individual threads.

Trajectories in T are selected randomly from the real data
sets. The parameter settings are listed in Table 2. For PTF
(Section 3), the best performance is achieved when the index
contains 56 leaf nodes for BRN and 545 leaf nodes for NRN,
and when each leaf node contains at most 8,192 (trajectory,
location) pairs (M ¼ 8; 192) in BRN and at most 16,384 (tra-
jectory, location) pairs (M ¼ 16; 384) in NRN. Compared to
the equal-partition grid index [1], the performance of the
balanced grid index is improved by around 20 percent.
Because computing network distances online is time-con-
suming, we pre-compute the all-pairs shortest paths distan-
ces in the graphs (for PTF only, not for PSF and PCol). PTF,

PSF (Section 4), and PCol (Section 5) are denoted by “PTF,”
“PSF,” and “PCol” in subsequent figures. The PCol algo-
rithm without the heuristic scheduling strategy is denoted
by “PCol-w/o-h.”

6.2 Pruning Effectiveness

First, we study the pruning effectiveness of the algorithms
using the default settings. The results are shown in Table 3,
where the reported candidate and pruning ratios are
defined as follows.

Candidate ratio ¼ jCj
jT jjOj

Pruning ratio ¼ 1� Candidate ratio;

where jCj is the size of the candidate set. The pruning ratio
shows howmany trajectory-location pairs are pruned, while
the candidate ratio shows howmany trajectory-location pair
remains (to be processed in the next step). The candidate
ratio is directly proportional to the running time. We see
that the candidate ratio of PCol is only 6.1–11.5 percent of
that of PTF and 12–37.5 percent of that of PSF. Further, the
heuristic scheduling strategy reduces the candidate ratio by
14–25 percent.

6.3 Effect of Trajectory Cardinality jT j
Fig. 5 shows the effect of trajectory cardinality jT j on the per-
formance of the algorithms. Intuitively, a larger jT j causes
more (trajectory, location) pairs to be processed (cf. the com-
plexity analysis in Sections 3.4, 4.3, and 5.5), meaning that
the runtime and the number of (trajectory, location) pair vis-
its are expected to increase for all algorithms. We see that

TABLE 2
Parameter Settings

NRN BRN

Trajectory
cardinality jT j

1,000,000–10,000,000 /
default 1,000,000

50,000–200,000 /
default 100,000

Location
cardinality jOj

500,000–2,000,000 /
default 500,000

25,000–100,000 /
default 50,000

Average location
time range o:R

1–7 hours /default
1 hour

1–7 hours /default
1 hour

Coupling
duration dc

20–40 minutes /
default 25 minutes

20–40 minutes /
default 25 minutes

Threshold u 0.9–0.98/ default 0.96 0.9–0.98/ default 0.96

Preference
parameter �

0.1–0.9/ default 0.5 0.1–0.9/ default 0.5

Thread countm 24–120/ default 24 24–120/ default 24

TABLE 3
Pruning Effectiveness for TL-Join

PTF PSF PCol-w/o-h PCol

Candidate ratio (BRN) 0.98% 0.51% 0.07% 0.06%
Pruning ratio (BRN) 99.02% 99.49% 99.93% 99.94%
Candidate ratio (NRN) 0.26% 0.08% 0.04% 0.03%
Pruning ratio (NRN) 99.74% 99.92% 99.96% 99.97%

Fig. 5. Effect of trajectory cardinality jT j.
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PCol outperforms PTF by almost an order of magnitude and
that it outperforms PSF by 230–300 percent in terms of both
runtime and (trajectory, location) pair visits; and we see that
the heuristic scheduling strategy can further improve PCol
by 15–33 percent in terms of both runtime and (trajectory,
location) pair visits. PCol is able to process 1 M trajectories
(jT j = 1 M and jOj = 0.5 M) in 314 seconds and 10 M trajecto-
ries (jT j = 10 M and jOj = 0.5 M) in 1,874 seconds with the
default 24 threads (see Fig. 5b). These results demonstrate
the importance of balancing the pruning power in the spatial
and temporal domains (Section 5.2) and the benefit of the
heuristic scheduling strategy (Section 5.4).

The runtime is not fully aligned with the number of (tra-
jectory, location) pair visits because the algorithms expend
computational effort on maintaining the bounds and prior-
ity labels (for PCol) used to prune the search space. The
resulting cost may offset the benefits of the reduction in the
number of (trajectory, location) pair visits. In particular, the
filter phase of PTF computes and maintain bounds for
almost all trajectory pairs.

6.4 Effect of Location Cardinality jOj
Next, we study the effect of location cardinality jOj on the per-
formance of the algorithms. Similar to the effect of the trajec-
tory cardinality jT j, a larger jOj implies a longer runtime and
more (trajectory, location) pairs to be processed for all algo-
rithms. From Fig. 6, we see that PCol has a clear advantage
over PTF, PSF, and PCol-w/o-h. PCol is able to process 2 M
locations (jT j=1M and jOj= 2M) in 815 seconds (see Fig. 6b).

6.5 Effect of Average Location Time Range o:R

Fig. 7 shows the effect of varying location time range o:R on
efficiency. A larger o:Rmay lead to a higher temporal correla-
tion (cf. Equation (3)). So wemay havemore qualified (trajec-
tory, location) pairs to refine, meaning that the runtime and
the number of (trajectory, location) pair visits are expected to
increase for all algorithms. Moreover, for PTF, a larger o:R
leads to more locations to be stored in non-leaf nodes, which
offsets the benefit of parallel processing. For PCol, a larger
o:R may weaken its pruning power (Equation (11)). So the
runtime and the number of (trajectory, location) pair visits of

PTF and PCol increase faster than those of PSF. But PCol still
holds a clear advantage over PTF, PSF, and PCol-w/o-h.

6.6 Effect of Coupling Duration dc
The next study concerns the effect of coupling duration dc
on the efficiency of the algorithms. As can be seen in Fig. 8,
a larger dc leads to a larger kt and may lead to a smaller tem-
poral correlation (cf. Equation (3)). So we may have fewer
qualified (trajectory, location) pairs to refine, meaning that
the runtime and number of (trajectory, location) pair visits
are expected to decrease for all algorithms. In addition, a
larger dc may enhance the pruning power of PCol (cf. Equa-
tions (11) and (12)).

6.7 Effect of Threshold u

We show results when varying threshold u in Fig. 9. A
larger u leads to higher pruning effectiveness (cf. Sections
3.3, 4.2, and 5.3). Thus, the larger u becomes, the smaller the
search space becomes. Therefore, the runtime and number
of (trajectory, location) pair visits are expected to decrease
correspondingly for all algorithms. In addition, in PTF, a

Fig. 6. Effect of location cardinality jOj. Fig. 7. Effect of average time range o:R.

Fig. 8. Effect of coupling duration dc.
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larger u is useful in reducing the similarity computation (see
Equation (6)), which further enhances the efficiency. In
Fig. 9b, we see that when u ¼ 0:98, PCol is able to process 1
M trajectories (jT j = 1 M and jOj = 0.5 M) in 174 seconds.

We also test that when u ¼ 0:5 in BRN and NRN, PCol is
able to process 100 K and 1 M trajectories under 240 threads
in 33 seconds and 2440 seconds.

6.8 Effect of Preference Parameter �

Fig. 10 shows the effect of varying preference parameter �.
Parameter � enables adjusting the relative preference of spa-
tial and temporal similarity (see Equation (4)). When � = 1,
the TL-Join is in the spatial domain only, and when � = 0,
only temporal similarity is considered. Fig. 10 shows that
the spatial domain needs more search effort than the tempo-
ral domain. When � increases, the pruning power of PTF is
weakened because its pruning is driven by the temporal
domain (cf. Section 3.3). On the other hand, the pruning
power of PSF is enhanced as it uses spatial upper bound to
prune the search space (cf. Section 4.2). When � is close to 1,
the efficiency of PSF is very close to that of PCol.

6.9 Effect of Thread Countm

We study the effect of thread countm on the efficiency of the
algorithms using large trajectory data sets (jT j = 200 K and
jOj = 100 K for BRN and jP j = 10M and jOj = 0.5M for NRN).
The results are shown in Fig. 11. We see that PCol outper-
forms PTF by almost an order of magnitude in term of run-
time and outperforms PSF by almost 300 percent in term of
runtime. In BRN, PCol is able to process 200 K � 100 K (tra-
jectory, location) pairs with 120 threads in 8.3 seconds, while
in NRN, the PCol is able to process 10 M � 0.5 M (trajectory,
location) pairs with 120 threads in 651 seconds.

We increase the thread count from 48 to 120 (2.5 times).
This improves the runtimes of PSF and PCol by a factor of
around 2.1, while the runtime of PTF is improved by a factor
of around 1.8. The main reason for the smaller improvement
of PTF is that more threads (more leaf nodes) leads to a
higher merging cost (see Section 3).

7 RELATED WORK

7.1 Trajectory-to-Location Matching

Existing trajectory-to-location matching studies typically
consider (i) matching solely in the spatial domain [3], [4],
[5], [6], [8], [17], [18] or (ii) use point-to-point matching [2],
[3], [4], [8] in the spatial or temporal domain. For the first
case, the matching results do not support time-aware appli-
cations, while for the second case, the matched (trajectory,
location) pairs are unable to capture the continuous correla-
tions between trajectories and locations in the spatial and
temporal domains. The so-called Semantic Enrichment
approach [7] utilizes the stay time at a location to infer a
traveler’s activity. It uses point-to-point matching in the
spatial domain and range matching in the temporal domain.
This matching scheme is not feasible for location recommen-
dation because it relies on a constraint on the stay time (e.g.,
30 minutes) of travelers at a location. For example, if a trav-
eler stay at some points of interest (e.g., restaurants, shop-
ping malls, and sightseeing places) for more than 30
minutes, we can infer the trajectory accompanied activities
(e.g., dinner, shopping, and tourist).

Trajectory-to-location matching may bring significant
benefits to diverse applications. RPNN (reverse path nearest
neighbor query [3]) targets the application of location rank-
ing and recommendation. For example, when setting a new
facility, RPNN uses the number of matched trajectories to
define the influence factors of location candidates, and then
finds the most influential location for the new facility to
maximize its commercial value. ATSQ [4], UOTS [8], and
PTM [2] are location-based trajectory search queries and
they are useful in travel planning and carpooling

Fig. 11. Effect of thread countm.

Fig. 9. Effect of threshold u.

Fig. 10. Effect of preference parameter �.
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recommendation (e.g., using historic trajectories for travel
planning, or recommending travelers with similar travel
trajectories for carpooling). The Semantic Enrichment [7]
uses trajectories to analyze traveler’s activities.

Most existing centralized trajectory-to-location join algo-
rithms (e.g., VID Joins [5], [6]) operate in euclidean space
and cannot process large trajectory data sets. From the
experiments reported in the literature [5], [6], the VID joins
can process at most 12 K trajectories. In contrast, the TL-Join
is performed in a spatial network and can process 10 M tra-
jectories with a reasonable runtime, some three orders of
magnitude more trajectories than for the VID joins.

7.2 Trajectory Similarity Join

Trajectory similarity joins [1], [13], [19], [20], [21], [22], [23]
target applications such as trajectory near-duplicate detec-
tion, data cleaning, ridesharing recommendation, and traffic
congestion prediction. Developing such joins typically
involves a definition step and a query processing step. First,
a similarity function, e.g., Sim, is defined to evaluate the
spatial and temporal similarities between two trajectories,
e.g., t and t0. Second, an efficient algorithm is developed to
retrieve the spatiotemporally similar trajectory pairs. The
trajectory similarity function should be symmetrical, i.e.,
Simðt; t0Þ ¼ Simðt0; tÞ. Most existing trajectory similarity
joins (e.g., [13], [19], [20], [21], [22], [23]) use a time interval
threshold to constrain the temporal proximity of two trajec-
tories. In contrast, the TS-Join [1] defines trajectory similar-
ity in a continuous manner. The best connected trajectory
(BCT) [24] and its variants [2], [4], [8] cannot be used in the
trajectory similarity joins due to being asymmetric. Several
similarity functions for time-series data also exist, including
Dynamic Time Warping [25], Longest Common Subse-
quence [26], and Edit Distance on Real sequence [27].

The TS-Join [1], [28] is based on a divide-and-conquer
strategy. For each trajectory t, the algorithm retrieves trajec-
tories that are similar to t. The trajectory-search processes
are independent of each other and are performed in parallel.
The TS-Join algorithm cannot process the TL-Join due to
their different query arguments (trajectories versus trajecto-
ries and locations), and their different matching functions
(point-to-point matching versus range-based matching).
The TL-Join needs its own specific solutions.

8 CONCLUSION AND FUTURE WORK

We studied the efficient processing of a novel Trajectory-to-
Location join (TL-Join) operation in spatial networks, which
may benefit diverse applications such as location recom-
mendation, and trajectory activity analysis. We developed
three parallel algorithms: parallel temporal-first search
(PTF), parallel spatial-first search (PSF), and parallel collab-
orative search (PCol). We also defined upper and lower
bounds and a heuristic scheduling strategy to enable effec-
tive search space pruning. The performance of the devel-
oped algorithms were studied empirically in extensive
experiments on large spatial data sets.

Two future research directions exist. First, it is of interest
to take the visiting sequence of trajectory sample points into
account when matching trajectories and locations. To do
this, new upper and lower bounds on the spatiotemporal

correlation and a new heuristic scheduling strategy are
needed. Second, it is of interest to extend existing techniques
to support a top-k TL-Join without a matching threshold u.
This calls for updated pruning techniques, including adding
pruning to the same thread and updating the corresponding
upper and lower bounds (without a given threshold).
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