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Abstract—The matching between trajectories and locations, called Trajectory-to-Location join (TL-Join), is fundamental functionality in
spatiotemporal data management. Given a set of trajectories, a set of locations, and a threshold 6, the TL-Join finds all (trajectory,
location) pairs from the two sets with spatiotemporal correlation above 6. This join targets diverse applications, including location
recommendation, event tracking, and trajectory activity analyses. We address three challenges in relation to the TL-Join: how to define
the spatiotemporal correlation between trajectories and locations, how to prune the search space effectively when computing the join,
and how to perform the computation in parallel. Specifically, we define new metrics to measure the spatiotemporal correlation between
trajectories and locations. We develop a novel parallel collaborative (PCol) search method based on a divide-and-conquer strategy. For
each location o, we retrieve the trajectories with high spatiotemporal correlation to o, and then we merge the results. An upper bound on
the spatiotemporal correlation and a heuristic scheduling strategy are developed to prune the search space. The trajectory searches
from different locations are independent and are performed in parallel, and the result merging cost is independent of the degree of
parallelism. Studies of the performance of the developed algorithms using large spatiotemporal data sets are reported.

Index Terms—Trajectory-to-location join, parallel processing, spatial networks, spatial databases

1 INTRODUCTION

ITH the continuous proliferation of GPS-enabled

mobile devices (e.g., vehicle navigation systems and
smart phones) and the rapid development of online map-
based services (e.g., Google Maps,' and MapQuest?), it is easy
to collect and share trajectories, e.g., at specialized sites such
as Bikely,”> GPS-way-points,* Share-my-routes,” and Microsoft
Geolife.® Also, more and more social networking sites, includ-
ing Twitter,” Facebook,® and Foursquare,’ are starting to sup-
port trajectory collection and sharing [1], [2]. The availability
of massive trajectory data motivates new studies in spatiotem-
poral data management. The matching between trajectories
and locations, called Trajectory-to-Location Join (TL-Join), is
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fundamental functionality. Given a set T" of trajectories, a set
O of locations, and a threshold 6, the TL-Join finds all (trajec-
tory, location) pairs from 7" and O with a spatiotemporal cor-
relation above 6.

The TL-Join may benefit diverse applications, including
location recommendation [3], event tracking [4], and trajec-
tory activity analyses [5], [6], [7]. For example, people may
want to place new facilities (e.g., shopping malls, banks,
and petrol stations) in a city according to available trajecto-
ries of the potential customers. They may use the TL-Join to
find the locations that join with the most trajectories. Such
locations have high visibility to trajectories and may be
most attractive to customers. These locations may then max-
imize the commercial value of new facilities. As another
example, when events occur (e.g., accidents or terrorist
attacks), the police may want to find eyewitnesses of the
events. The TL-Join can find such people by matching their
trajectories to the events’ locations. In addition, we can use
the TL-Join to analyze the activities of trajectories. Depend-
ing on the points of interest (e.g., restaurants, shopping
malls, and sightseeing places) that a trajectory joins with,
we can infer activities related to the trajectory (e.g., dinner,
shopping, and tourism).

To the best of our knowledge, this is the first trajectory-to-
location matching study that takes into account both the spa-
tial and temporal ranges when computing spatial and tem-
poral correlations. We use a linear method [1], [2], [8] to
combine the spatial and temporal correlations into a spatio-
temporal correlation metric. In contrast, existing studies typ-
ically perform (i) the matching solely in the spatial
domain [3], [4], [5], [6], [8] or (ii) using point-to-point match-
ing in the spatial domain or the temporal domain [2], [3], [4],
[8]. As a result, they may fail to support time-aware applica-
tions. For example, they may match a morning trajectory to
an evening activity (e.g., drinking at a bar), or they may
match a midnight trajectory to a facility open only during the

1041-4347 © 2018 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Renmin University. Downloaded on March 04,2021 at 06:06:58 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-1117-2890
https://orcid.org/0000-0002-1117-2890
https://orcid.org/0000-0002-1117-2890
https://orcid.org/0000-0002-1117-2890
https://orcid.org/0000-0002-1117-2890
https://maps.google.com/
https://www.mapquest.com/
https://www.bikely.com/
https://www.gps-waypoints.net
https://www.sharemyroutes.com/
https://research.microsoft.com/en-us/projects/geolife/
https://www.twitter.com/
https://www.Facebook.com/
https://www.Foursquare.com/
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

SHANG ET AL.: PARALLEL TRAJECTORY-TO-LOCATION JOIN

DPs
20:40 72 74
P !
Ps ®--..
14:02 11:11 ; Puo
10:56
P4
= 13:50
* - ® P13
o) 11:37
Ps '
i) - P
= 12:06
Py
21:12

@ : sample point in a trajectory * : Shopping Mall (Opening hours: 11:00-16:30)

Fig. 1. TL-join example.

day (e.g., a bank or a shopping mall). Further, the matched
pairs cannot guarantee a long-term and continuous correla-
tion between locations and trajectories in the spatial and tem-
poral domains. For example, a trajectory may have a single
sample point and a short duration matching to a location (its
other sample points are too far away from the location); but
the result caused by this matching may be of little use in
activity analyses because its matching duration is too short
to denote a significant relationship. Furthermore, the so-
called Semantic Enrichment [7] approach utilizes the stay-
time at a location to infer a traveler’s activity. This type of
matching is not attractive in our intended applications
because it is not flexible, i.e., it relies on a fixed visit position
(e.g., the intended location) when defining a matching. In
contrast, the matching in the TL-Join allows travelers to visit
multiple positions close to the intended location within a
matching duration. Such flexible matching is appropriate in
applications such as location recommendation, event track-
ing, and activity analyses. The Semantic Enrichment can be
viewed as a special case of the matching in the TL-Join.

An example of the TL-Join is shown in Fig. 1, where 7,
75, and 73 are trajectories and o is a location (a shopping
mall) with opening hours from 11:00 to 16:30. For the match-
ings that solely consider the spatial domain [3], [4], [5], [6],
[8], trajectory-location pairs (t1,0), (t2,0), and (t3,0) are
returned because all trajectories are spatially close to o.
However, the timestamps of 72 do not match the time range
(opening hours) of o, so pair (72, 0) has little meaning in this
scenario. For point-to-point matching [2] in the spatial and
temporal domains, pairs (71,0), and (73,0) are returned
because (pi2,0) and (p4,0) are matched point pairs, where
p12 € 71 and py € 73. But there is not a long-term and contin-
uous correlation between p;; and o, so this matching result
is of little use in applications such as location recommenda-
tion, event tracking, and activity analyses. The TL-Join
returns the pair (t3, 0) because it has a long-term and contin-
uous correlation in both the spatial and temporal domains
(e.g., matched point pairs (ps2,0), (p3,0), (p4,0), and (ps,0)
and a duration of around 20 minutes) and because its spa-
tiotemporal correlation exceeds threshold 6. Notice that the
Semantic Enrichment approach [7] considers the stay dura-
tion at a location, which means that multiple trajectory sam-
ple points are at the corresponding location for the stay
duration (the number of sample points depends on the tra-
jectory sampling rate and the stay duration). The TL-Join
can support this special case.
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TABLE 1
Trajectory-to-Location Matchings
Query Spatiotemporal
Studies Space Matching Data
RPNN [3] Network  Spatial only 1.6 K
(point-to-point)
ATSQ [4] euclidean Spatial only 49K
(point-to-point)
UOTS [8] Network  Spatial only 30K
(point-to-point)
PTM [2] Network  Spatial (point-to-point) 30K
and Temporal
(point-to-point)
Semantic euclidean Spatial (point-to-point) 13 K
Enrichment [7] and Temporal (range)
VID Join [5], [6] euclidean Spatial only (range) 12K
TL-Join Network  Spatial (range) and 10M

(our proposal) Temporal (range)

The TL-Join is applied in a spatial network because objects
move in a spatial network rather than in euclidean space in
many practical scenarios. In a spatial network, network dis-
tance is the relevant distance between two objects, and using
euclidean distance [4], [5], [6], [7] may lead to errors.

An overview of a comparison to existing trajectory-loca-
tion matching studies is shown in Table 1. Existing meth-
ods [2], [3], [4], [5], [6], [7], [8] cannot process the TL-Join
due to four reasons. (i) Different query types: most trajec-
tory-to-location matching studies [2], [3], [4], [7], [8] are not
related to the join operation. For example, RPNN [3] con-
cerns reverse path nearest neighbor querying; ATSQ [4],
UOTS [8], and PTM [2] concern trajectory search by loca-
tions; and Semantic Enrichment [7] concerns the use of tra-
jectories to infer travelers’ activities. Their solutions cannot
be used in the TL-Join because the solutions are for different
query types. (ii) Different matching functions: existing stud-
ies are based on point-to-point matching [2], [3], [4], [8] or
spatial-only matching [3], [4], [5], [6], [8], and their solutions
are inapplicable to spatiotemporal range matching. (iii) Dif-
ferent query spaces: the VID join [5], [6] is conducted in
euclidean space, and its spatial index and accompanying
pruning techniques are not competitive in spatial networks.
(iv) Parallel processing requirement: existing centralized
trajectory-to-location joins (VID Join) cannot process large
trajectory data sets. Based on the experiments reported in
the literature [5], [6], the VID join can process at most 12 K
trajectories. In contrast, our implementation of the TL-Join
can process 10 M trajectories with a reasonable runtime (the
PCol solution can process 10 M x 0.5 M (trajectory, location)
pairs with 120 threads in 651 seconds). Table 1 offers further
details on the scale of the data considered, indicating that
we consider several orders of magnitude more data than do
previous studies.

Next, the algorithm used for computing the TS-Join [1]
cannot process the TL-Join because the query arguments are
different (two trajectory sets versus a trajectory and a loca-
tion sets) and because the matching functions are different
(point-to-point matching versus range matching). The
TL-Join needs its own specific solutions.
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We propose two baseline solutions to the TL-Join, called
parallel temporal-first search (PTF) and parallel spatial-first
search (PSF). For PTF, we improve the equal-partition grid
index in the TS-Join [1], and we propose a new balanced grid
index in the temporal domain (i.e., each leaf node has similar
numbers of trajectories and locations so that the parallel com-
putation load is balanced). We define spatiotemporal corre-
lation upper and lower bounds to prune the search space,
and we perform the refinement of (trajectory, location) pairs
from the leaf nodes towards the root. The computations at
each index level occur in parallel. The main drawback of PTF
is threefold: (i) weak spatial pruning power (temporal driven
pruning), (ii) high merging cost (having more leaf nodes ena-
bles more parallel processing, but also higher merging cost),
and (iii) additional computation cost to acquire network dis-
tances when computing spatial correlations.

Next, PSF is based on a divide-and-conquer strategy and
performs better than PTF. For each location o, PSF explores
the spatial domain to find trajectories with high spatial cor-
relation to o. In the temporal domain, it checks whether the
corresponding timestamps are within the time range of o
(temporal correlation). We define upper bounds on the spa-
tial correlation to prune the search space. Each trajectory
search is independent and is performed in parallel, and the
merging cost is independent of the degree of parallelism.
The network distances needed for spatial correlation com-
putations can be derived directly during trajectory searches
from locations. The limitation of PSF lies in its weak prun-
ing power in the temporal domain.

To process the TL-Join more efficiently, we propose a
novel parallel collaborative search (PCol) approach. PCol
uses the parallel mechanism of PSF. For each location o,
PCol explores the spatial and temporal domains concur-
rently to find trajectories with high spatiotemporal correla-
tion to o. We define upper bounds on the spatiotemporal
correlation and a heuristic scheduling strategy that result in
strong pruning power in the two domains.

To sum up, we make the following contributions:

e We propose a new trajectory-to-location join, called
TL-Join, targeting applications such as location rec-
ommendation, event tracking, and trajectory activity
analyses.

e The TL-Join takes both spatial and temporal range
matching into account to compute spatiotemporal cor-
relation. No other proposal provides this functionality.

e We develop two baseline algorithms for computing
the TL-Join called parallel temporal-first (PTF)
search and parallel spatial-first (PSF) search.

e We develop a parallel collaborative algorithm (PCol)
with effective pruning techniques and a heuristic
scheduling strategy in the spatial and temporal
domains.

e We conduct extensive experiments on large trajectory
data sets to study the performance of the developed
algorithms. We can handle about 3 orders of magni-
tude more trajectories than the state-of-the-art VID join.

The rest of the paper is organized as follows. Section 2

defines the setting, including spatial networks, trajectories,
locations, and the spatiotemporal correlation metrics con-
sidered in the paper; it ends by defining the problem.
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Parallel temporal-first (PTF) search and parallel spatial-first
(PSF) search are covered in Sections 3 and 4, while parallel
collaborative (PCol) search is covered in Section 5. Experi-
mental results are presented in Section 6. Related work is
covered in Section 7, and conclusions and future directions
are presented in Section 8.

2 PRELIMINARIES AND PROBLEM DEFINITION

2.1 Spatial Networks

A spatial network is modeled as a connected, undirected,
and weighted graph G = (V, E, F, W), where V is a vertex set
and E C {{v;,v;}|vi,v; € V Av; # v;} is an edge set. A vertex
v; € V represents a road intersection or an end of a road, and
an edge e, = {v;,v;} € E represents a road segment that ena-
bles travel between vertices v; and v;. Function F': VUE —
Geometries maps a vertex to the point location of the corre-
sponding road intersection and maps an edge to a polyline
representing the corresponding road segment. Function
W : E — R assigns a real-valued weight W (e) to an edge e
that represents the corresponding road segment’s length.

The shortest path between two vertices v; and v; is a
sequence of edges linking v; and v; such that the sum of the
edge weights is minimal. Such a path is denoted by
SP(v;,v;), and its length is denoted by sd(v;, v;). euclidean-
space based spatial indices (e.g., the R-tree [9]) and accom-
panying techniques are ineffective in network environments
due to loose lower bounds.

For simplicity, we assume that the data points consid-
ered (e.g., trajectory sample points) are located at vertices. It
is straightforward to also support data points on edges.
Assume a data point p is on an edge e with given network
distances to the two end vertices ¢, and ¢;,. Then, a new ver-
tex is created for p with the appropriate geometry, and edge
e is replaced by edges (e, p) and (p, e;) with the appropriate
weights and geometries.

2.2 Trajectories and Locations

Raw trajectory samples obtained from GPS devices are typi-
cally of the form (longitude, latitude, time), and trajectory
sample points are captured periodically at some sampling
rate. We assume that all sample points have already been
map matched onto the spatial network using a map-match-
ing algorithm (e.g., [10], [11]) and that an object always fol-
lows the shortest path when moving between two adjacent
sample points p, and p;. A trajectory is defined as follows.

Definition: Trajectory

A trajectory t of a moving object is a finite, time-ordered
sequence (v, vs, ..., v,), Where v; = (p;,;), i € [1,n], with p;
being a sample point (equal to some vertex in G.V) and t;
being a timestamp.

Assuming that 7.sr is the sampling rate of trajectory t, we
have thatt;,1 — t; = t.sr, i € [1,n — 1].

The above modeling of spatial networks and trajectories
aligns with previous studies [1], [2].

Definition: Location

A location o contains a spatial attribute 0.p and a tempo-
ral attribute o.R, where o.p is a vertex in G.V and o.R is a
time range. Time range o.R describes the valid duration of o
(e.g., opening hours of facilities, or time ranges of events).

Authorized licensed use limited to: Renmin University. Downloaded on March 04,2021 at 06:06:58 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2. Spatiotemporal correlation.

The values of timestamps and time ranges are set to be
within the range of 24 hours, and the date is not taken into
account because in many practical scenarios, like urban trans-
portation, movements are often studied within the range of a
day [1], [2].

2.3 Spatiotemporal Correlation
Given a location o and a trajectory t, K, is the set of trajec-
tory sample points in t that are spatially closest to o.p:
Yo e K (W € v\ K. (sd(o.p,v.p) < sd(o.p,v.p))). The cardi-
nality of K is set as follows.

k,:|KT|:VCJ+1. (1)

T.5T

Here, d. controls the coupling duration (to describe the term
of correlations) between o and t. Its value is user-defined.
We assume that trajectories are sampled uniformly. As dif-
ferent locations may have different coupling duration d.
and different trajectories may have different sampling rates
t.sr, the value of k; may be different for different trajecto-
ries. The following algorithms support this.

The spatial correlation Cg(o, 7) and the temporal correla-
tion Ct(o, ) between o and t are defined as follows.

—sd(0.p,v;.p)
Z'U,- €Ky N !

I (2)

CS (0, ‘L') =

Crlo,7) = [{v;.tlv; € K; Avj.t € 0.R}| . 3)
ke
In the spatial domain, we count the sum of the spatial dis-
tances between location o and trajectory sample points in
K., while in the temporal domain, we check the validity of
the sample points in K, by matching their timestamps to
the time range o.R.

An example that illustrates these definitions is shown in
Fig. 2, where o is an object and © = (v, v9, ..., v12) is a trajec-
tory. The coupling duration d. is 8 minutes, and the sam-
pling rate of r is 2 minutes, so k, = [Junules| 4] — 44
1 = 5. Points v7.p, vg.p,...,v11.p are the top-5 trajectory sample
points spatially closest to o.p, so K; = {v7.p,vs.p, ..., v11.p}.
The value of Cg(o, 1) is computed by substituting K, into
Equation (2). Next, assuming that v7.t=12:50, vg.t=12:52,
v9.t=12:54, v1(.t=12:56, v11.t=12:58, and o.R = [12:55, 13:00],
we have that v;.t ¢ 0.R, vs.t € 0.R, v9.t & 0.R, v19.t € 0.R, and
vyt € 0.R. According to Equation (3), Cr(o,1) = [{vi0.t,

The spatial and temporal correlations of t are both in the
range [0, 1]. We use a linear method [1], [2] to combine the
spatial and temporal correlations (Equations (2) and (3)),
and the spatiotemporal correlation is defined as follows.

Csr(o,7) = A+ Cs(o,7) + (1 = A) - Cr(o, 7). 4)

Here, parameter A € [0, 1] controls the relative importance of
the spatial and temporal correlations. The value of A can be
adjusted at query time.
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2.4 Problem Definition

Given a set 1" of trajectories, a set O of locations, and a thresh-
old 6, the trajectory-to-location join (TL-Join) returns the set
A of all (trajectory, location) pairs from the two sets whose
spatiotemporal correlations are at least 6, ie., V(t;,05) €

A (CST(‘L’{,O]') > 9) /\V(‘E;,O;) S ((T X O) \ A)(CST(tg,O;) < 9)

A List of Notions

Notion Description

GV the set of vertices in graph G

G.E the set of edges in graph G

sd(pi,p;) shortest path distance between vertices p; and p;

T.ST sampling rate of trajectory t

o.R time range of location o

d. coupling duration

K, the set of top-k, sample points in t that are
spatially closest to location o

Cs, Cr, Csr  spatial, temporal, and spatiotemporal correlation

A the relative importance of the spatial and
temporal correlations

UB, LB global upper and lower bounds

3 PARALLEL TEMPORAL-FIRST SEARCH

3.1 Basicldea

Parallel temporal-first (PTF) search is a baseline approach to
TL-Join processing. We improve the equal-partition grid
index used in the TS-Join [1], and we propose a new balanced
hierarchical grid index in the temporal domain (Section 3.2).
We also define upper and lower bounds to prune the search
space in the spatial and temporal domains. PTF refines the
(trajectory, location) pairs in the same leaf node and merges
the results from the leaf nodes towards the root. The join
result is then obtained from the root. The computations at the
nodes at the same level occur in parallel (Section 3.3). The
pseudocode of PTF and its time complexity are given in
Section 3.4.

3.2 Balanced Grid Index
In the TS-Join [1], the temporal domain is partitioned into m
equal-sized time slots, each of which is assigned to a leaf
node. The drawback of this approach is that the distribu-
tions of trajectories and locations are imbalanced, and dif-
ferent leaf nodes may have quite different numbers of
trajectories (e.g., peak hours may have more, off-peak hours
may have fewer, and midnight may have none). Such imbal-
ance yields poor performance in parallel processing. To
address this issue, we propose a new balanced grid index in
the temporal domain for PTF. Here, each leaf node n has a
matching-times upper bound M > |n,| X |n,|, where n, and
n, are the sets of trajectories and locations contained in n.
The optimal value of A that achieves the highest perfor-
mance is determined through extensive experiments. Notice
that the balanced grid index is a temporal index, which
indexes the time ranges of trajectories and locations. Other
trajectory indexes (e.g., [12], [13], [14]) are spatial index, and
they are not suitable for this scenario.

The balanced grid index is constructed as follows. Given
a value of M and a slot s = [0, 24:00], we recursively parti-
tion s into two equal-sized nodes if |s;| x |s,|> M, where s,
and s, are sets of trajectories and locations in slot s. For
example, given a trajectory v = (vy,vs,...,v;), its temporal
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range range(t) = [v;.t, v;.t]. If range(r) C range(s), t is con-
tained in s. Similarly, given a location o, if 0o.R C range(s), o
is contained in s. For example, given range(s) = [9:00, 12:00],
range(t) = [10:00, 11:00], and o.R = [9:30, 11:30], 7 and o are
contained in s.

Once the partitioning terminates, each slot corresponds
to a leaf node. We build a tree structure bottom-up. Assume
that there are m nodes at the leaf level. Then we build [%]
parent nodes. We do this recursively until there is one par-
ent, which is the root. The height of the tree is [log(m)] + 1.
An example is shown in Fig. 3, where nj, n,...,ng are leaf
nodes and n;5 is the root. Each trajectory r and each location
o are stored in the lowest node 7 that fully covers its tempo-
ral range, i.e., range(t) C range(n) and o.R C range(n) and
range(t) and o.R are not contained in the range of any child
node of n. For example, given o’.R = [9:30, 17:30], ¢’ is stored
in nyy (range(nis) = [9:00, 24:00]) because o'.R C range(ni4)
and o .R¢Zrange(ni;) and o/.RZrange(ni2) (n1; and ny, are
child nodes of n4).

3.3 Filtering, Refinement, and Merging

In the example in Fig. 3, a trajectory  and a location o are
stored in node n3. As they are temporally close to each
other, we estimate the upper bound on their temporal corre-
lation Cr (o, 7) (cf. Equation (3)) as follows.

[{vjlv; € Kz Avjt € 0.R} < ke

= Crp(o,7).ub=1> Cr(o, 7). ©)

By substituting Equation (5) into Equation (4), we have that

Cst(o,7) =X - Cg(o,7) + (1 = N) - Cr(o,7) > 6
60— (1 —)\) -CT('L'l,TQ).ub_Q— 14+ A
A o A ’

= Cgs(o,7) >

For each “qualified” (trajectory, location) pair (o,7) (.e.,
Cgr(o,7) > 6), its spatial correlation exceeds the value of
=12 We define a global lower bound LBs of the spatial
correlation between (trajectory, location) pairs in the same
leaf node as follows.

LBs = —7F—. (6)
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We use network expansion to compute the spatial corre-
lation Cg(o, 7) (Equation (2)). The network expansion is per-
formed from location o using Dijkstra’s algorithm [15].
Dijkstra’s algorithm always selects the vertex with the mini-
mum distance label for expansion. Hence, the first £, sample
points in 7 scanned by the expansion are just the top-k, sam-
ple points closest to o. For example, in Fig. 3, assuming
kr =5 and v7.p, vg.p, ..., v11.p are top-5 first scanned sample
points in . According to Equation (2), Cg(o,7) =
%(e’(’("’7'1”“"’> + e dvspor) 4 4 e~dupory If Cg(t,0) < LBg,
then Cgr(o,7) < 6, and the (trajectory, location) pair (o, 7)
can be pruned safely. Otherwise, we compute the exact spa-
tiotemporal correlation Cgr(o,7) (Equation (4)) and com-
pare to 0 to check the pair’s validity. The computations in
different leaf nodes are independent and occur in parallel.

Having computed the spatiotemporal correlations of the
(trajectory, location) pairs in the leaf nodes, we merge the
results from the leaf level to the root level (bottom-up). At
each level, when two nodes n and n’ have the same parent
n”, we merge their results and assign this to the parent (e.g.,
merge ng, n4, and nyo to obtain the result for ny, in Fig. 3). In
addition to these qualified results (Csr(o,7) > 6), we also
need to consider the (trajectory, location) pairs (o, 7) in the
following three cases: (i) one item is stored in n or n’ and
another item is stored in n” (e.g., range(7) C range(n) and
0.R Crange(n”)); (i) two items are stored in n" (e.g.,
range(t) C range(n”) and o.R C range(n”)); (iii) one item is
stored in n and another item is stored in n' (e.g.,
range(t) C range(n) and o.R C range(n')).

For the first and the second cases, we use the same lower
and upper bounds (Equations (5) and (6)) and pruning tech-
niques as we use for the (trajectory, location) pairs in the
same node. The qualified pairs are stored in n". For the third
case, as trajectory t and location o are stored in different
nodes, we have that Cr(t,0) = 0. By substituting this into
Equation (4), we have that

Csr(t,0) > 0 & Cg(t,0) > —. 7

>

As the value of Cs(7, 0) is in the range [0, 1],if 6 > ), (trajec-
tory, location) pair (,0) is pruned directly. Otherwise, we
compute the spatiotemporal correlation Csr(t,0) and com-
pare to 6 to check the pair’s validity.

The merging processes of adjacent node pairs (e.g., merge
n1 and ns to ng, ns and ny to nyg) at the same level of the tree
are independent. Thus they again occur in parallel. Having
merged the computation results from the leaf nodes all the
way to the root node, the join result in [0:00, 24:00] is found.

3.4 Algorithm and Time Complexity

The pseudocode of PTF is shown in Algorithm 1. The compu-
tation is bottom-up, and h is the current level of computation.
Initially, we compute the global spatial lower bound LBg
(Equation (6)) for leaf nodes (lines 1-2). For each (trajectory,
location) pair (r,0) in n (e, range(r) C range(n) and
o.R C range(n)), we compute its spatial correlation Cg(t,0)
(Equation (2)), and if Cg(7, 0) is less than LBg, pair (t,0) is
pruned (lines 3-7). Otherwise, we compute the exact spatio-
temporal correlation Cgr(7,0) (Equation (4)), and if it is no
less than 6, we store (7,0) in P, (lines 8-10). Having refined
all leaf nodes, we merge the results from the leaf level
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towards the root. If two nodes n, and n; are at the same level
and they have the same parent node n., we merge the results
for n,, n, and n. (e.g., n1, na, and ny in Fig. 3) and store the
qualified (trajectory, location) pairs in P,. (lines 11-14). If
h =1, the root node n. is reached, and all (trajectory, loca-
tion) pairs stored in P, are returned. Otherwise, we repeat
the procedure for the next level of the tree (line 15-17).

Algorithm 1. PTF Search

Data: a balanced grid index tree 7, a trajectory set 7', a loca-
tion set O, and a threshold 0
Result: {(z,0)|Cst(7,0) > 6,VT € T,Vo € O}
1 h < T,.hight — 1;
2 compute LBg;
3 for each leaf node n in T, do
4 for each (trajectory, location) pair (t,0) in n do
5 compute Cs(7,0);
6 if Cg(t,0) < LBg then
7
8

prune (z,0);
compute Csr(7,0);
9 if Cgr(t,0) > 6 then
10 P,.add(t,0);
11 while true do
12 if n,,ny € level h, ng.parent = ny.parent = n. then

13 merge n,, 1, and n;

14 compute and store qualified (trajectory, location) pairs
in B,;

15 if h =1 then

16 return P, ;

17 h«+— h-—1,;

Let |7'] and |O| denote the cardinalities of trajectory set T’
and location set O. We use |V| and | E| to denote the numbers
of vertices and edges in G. Then O(|V|log|V|+ |E]) is the
time complexity of computing the spatial correlation
between a trajectory and a location by using Dijkstra’s algo-
rithm. PTF follows the filter-and-refine paradigm, and the
time complexity of the filtering phase is O((|V|log |V |+
(E)|T][0).

The time complexity to verify candidates by computing
their exact spatiotemporal correlations is O(k.|C) (the spatial
correlations are computed in the filtering phase, so in the
refinement phase we only need to compute the temporal cor-
relations), where |C| is the cardinality of the candidate set and
C C P xO0O. The total time complexity is O((|V|log|V|+
[EDIT]O]) + k|Cl) = O((|V [log [V] + [ E]) | T|O]), which does
not depend on the candidate set size.

The computations for nodes at the same level of the tree
occur in parallel. If we have multiple cores and threads
(each leaf node corresponds to a thread), it is possible to
accelerate the computation at the leaf level by generating
many leaf nodes and processing them in parallel. However,
more leaf nodes also leads to more tree levels (m is the num-
ber of leaf number, and the height of the tree is
[log(m)] + 1), which increases the merging cost.

4 PARALLEL SPATIAL-FIRST SEARCH

4.1 Basic ldea

PTF has three weaknesses. (i) Weak spatial pruning power:
the pruning is driven by the temporal domain so it has low
effectiveness in the spatial domain. (ii) High merging cost:
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more leaf nodes (each leaf node corresponds to a thread)
lead to a higher merging costs, which decreases perfor-
mance. (iii) Additional network distance computations are
needed to compute the spatial correlations (Equation (2)),
which again yields poor performance.

Parallel spatial first (PSF) search is another baseline for
TL-Join computation. Its paralle]l mechanism is shown in
Fig. 4a. For each location o € O, we search the trajectories
with high spatiotemporal correlations to o. The trajectory-
search processes at different locations are performed in par-
allel. In the spatial domain, we use network expansion [15]
to explore the spatial network and to find trajectories spa-
tially close to o (spatial correlation). In the temporal domain,
we check whether the corresponding timestamps are within
the time range of o (temporal correlation). Upper and lower
bounds on the spatiotemporal correlations are defined to
prune the search space. By merging the search results from
each location, the solution of the TL-join is found. Com-
pared to PTF, PSF has two advantages. First, its result merg-
ing cost is independent of the degree of parallelism. We can
simply combine the trajectory-search results of all locations
to get the solution. Second, the network distances for the
spatial correlation computation can be acquired during the
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trajectory-search processes. PSF has better time complexity
than PTF.

4.2 Filtering, Refinement, and Merging

An example of PSF is given in Fig. 4b, where o is a location
and o.R is its time range; 71, T2, and 13 are trajectories; v;.p
and vy.p are the top-2 vertices in t3 spatially closest to o;
V3., V4.p,..., v7.p are the top-5 vertices in 7; spatially closest
to o, and wv.t,...v7.t are the corresponding timestamps.
Assuming k., = k., = ky; = 5.

In the spatial domain, network expansion is performed
from o according to Dijkstra’s algorithm [15]. The explored
space is a circular region (o, rs) with center o and radius rs.
As Dijsktra’s algorithm always selects the vertex with the
minimum distance label for expansion, the top-k first
scanned vertices in t are the top-k vertices spatially closest
to o. For example, in Fig. 4b, v;.p and v,.p are the top-2 first
scanned vertices in t3, and v3.p, v4.p,..., v7.p are the top-5 first
scanned vertices in 1.

Assuming a trajectory t has 1.k vertices that have been
scanned by the expansion from o. If .k > k., trajectory t is
called “fully scanned” (e.g., 7; in Fig. 4b). If k&, > .k > 0,
is called “partly scanned” (e.g., r3 in Fig. 4b). If t.k =0, t is
called “unscanned” (e.g., 72 in Fig. 4b).

For a partly scanned trajectory v/, we estimate an upper
bound on its spatial correlation as follows. Assuming that
vj.p € T is an unscanned vertex in the spatial domain, we
have:

rs < sd(o.p,vj.p) = e doPvip) oS,

By substitution into Equation (2), the spatial correlation
upper bound Cs(t,0).ub is defined as follows.

—sd(0.p,v;.p) —rs
Zvi.pEVS e ! + Z'Uj.pEVu e

C ub =
S(T,O)’U/ k‘[

)

Here, V; is a set of scanned vertices in 7 (V;, C K,), and V, is
the set of unscanned top-k. vertices in 7 (V, UV, = K; and
|Vs UV, | = k). Among all partly scanned trajectories in the
spatial domain, we define a global upper bound on spatial
correlation as

UBg = max{Cs(t,0).ub}, 9
€Ty

where T), is a set of partly scanned trajectories in the spatial
domain, and the value of UBg changes dynamically during
the query processing.

Filter-and-Refine: if UBs < 6, we prune all partly scanned
and unscanned trajectories. For fully scanned trajectories, we
compute the exact spatial (Equation (2)) and temporal (Equa-
tion (3)) correlations. The spatiotemporal correlation Cs7 (7, 0)
is derived by combining them (Equation (4)). For example, in
Fig. 4b, 7, is fully scanned, so we compute Cy(71,0.p) =
%(efd(ﬂ;;ﬂo.p) + efd(n,l.p,o,p) + efr](vl—)ﬁo.p) 4 efd(v()-.p,ap) + efd(vpno.p)),
Cr(t1,0) = % =2=04,and Csp(t1,0.p) = X+ Cs(t1,0p)+
(I =X) - Cp(11,0). If the spatiotemporal correlation Csy(7,0)
does not exceed 6, we prune trajectory . Otherwise, (trajec-
tory, location) pair (7, o) is stored in M, (the set of matched
(trajectory, location) pairs of 0). By combining M, of all objects
in O, theresult |J .M, of the TL-Join is found.
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Notice that we do not maintain upper bounds on the
unscanned trajectories to reduce the computation and stor-
age cost. Given a partly scanned trajectory t and an
unscanned trajectory 7’ (e.g., 72 in Fig. 4b), according to
Equations (8) and 9, we have:

—Ts

Z'z,vjApeVu €

Cs(7',0).ub =
ke

=e " < Cg(t,0).ub < UBg. (10)
Here, V, = K; and |V,|=k.. If UBs < 6, we have that
Cs(7',0).ub < 6. So the unscanned trajectories can be
pruned safely, and it is not necessary to maintain spatial
upper bounds.

4.3 Algorithm and Time Complexity
PSF adopts a divide-and-conquer strategy. For each location
oin set O, we retrieve the trajectories with high spatiotempo-
ral correlation to o. The search processes for different loca-
tions are independent so they are performed in parallel.
Unlike for PTF, PSF has a constant merging cost (its merging
cost is independent of the degree of parallelism, and we sim-
ply combine the search result of each location to achieve join
result). The pseudocode of PSF is shown in Algorithm 2.
Initially, for each location o € O, the set of its matched (tra-
jectory, location) pairs M, is set to (). The global spatial upper
bound UBsy is set to 0. For each trajectory r € 7', the number
of its scanned vertices 1.k is set to 0. We perform network
expansion from each location o to explore the spatial network
(lines 1-4). For each newly scanned vertex p, all trajectories
passing P have one more scanned vertex (lines 5-7). If the
number of scanned vertices of 7 is equal to k. (tr is fully
scanned), we compute its spatiotemporal correlation
Csr(t,0) (Equation (4)). If the value of Cgp(7,0) exceeds that
of 6, we store (trajectory, location) pair (z,0) in M,. Then, we
remove T from the partly scanned trajectory set 7, and
update the value of UBg (lines 8-13). If 7 is partly scanned
(0 < 1.k < k;), we compute its spatial correlation upper
bound Cg(t, 0).ub, and we update the value of the global spa-
tial upper bound UByg (lines 14-17). If the value of UBg does
not exceed that of 6, the expansion from o terminates (lines
18-20). Having searched all locations, we combine their
results and get the result |J .24, of the TL-Join (line 21).
Let |O| denote the cardinality of location set O and let Tj
denote the scanned trajectory set for the search process from
each location, which includes the partly and fully scanned
trajectories (T =1, UTYy). According to Equations (8)
and (9), the maximum spatial expansion radiuses rs is
inversely proportional to 6. Assuming the trajectories are uni-
formly distributed in the spatial domain, it follows that |7}| is
inversely proportional to 6. Thus, |Tj| is sensitive to the value
of threshold 6 and the pruning effectiveness. We use |V| and
|E| to denote the numbers of vertices and edges in G. Then
O(|V|log |V| + | E|) is the time complexity of network expan-
sion using Dijkstra’s algorithm. The time complexity of PSF
is O(|Ty||O|(|V |log|V| + | E|)). If the value of 6 is sufficiently
large, the time complexity is close to O(|O|(|V|log|V'| + | E])).

5 PARALLEL COLLABORATIVE SEARCH

5.1 Basicldea

The main weakness of PSF lies in its weak temporal pruning
power since its pruning is driven by the spatial domain. To
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overcome that weakness and to process the TL-Join more effi-
ciently, we propose a parallel collaborative (PCol) search
algorithm that improves PSF. In contrast to PSF, PCol per-
forms trajectory search in the spatial and temporal domains
concurrently. An upper bound on the spatiotemporal corre-
lation and a heuristic search strategy are proposed to prune
the search space. PCol follows the same parallel mechanism
as PSF (cf. Fig. 4a). Compared to PSF, PCol has stronger prun-
ing power, which should translate into higher performance.

Algorithm 2. PSF Search

Data: a set O of locations, a set T' of trajectories, and a
threshold 6
Result: | ,.oM,
1 Yo € O(M, — 0);
2 for each location o in O do

3 UBg+0;
4 VreT(rk<0);
5 p«—expand(o);
6  for each trajectory t passing p do
7 th—1tk+1;
8 if 7.k = k, then
9 compute Csr(7,0);
10 if Csp(t,0) > 6 then
11 M,.add(z,0);
12 T,.remove(t);
13 update UBg;
14 if 0 < t.k < k; then
15 update Cs(t,0).ub;
16 if Cg(t,0).ub > UBg then
17 UBg « Cg(t,0).ub;
18 if UBs < 6 then
19 store M,,;
20 break;

21 return |J .o M,;

5.2 Upper Bound
In the spatial domain, PCol, like PSF, adopts network
expansion [15] to explore the spatial network and to find
trajectories with high spatial correlation to the query loca-
tion o. In the temporal domain, we partition time range 0.R
into three parts (if |0.R| > 2d.). An example is shown in
Fig. 4b, where |range(t1,t2)| = |range(ts, t4)| = d. and d, is
the coupling duration between t and o. Initially we search
the trajectory timestamps in range(ls,?3), and then we
expand the search from ¢, and t3 concurrently towards the
boundaries of 0.R, and rt is the radius of the search space. If
lo.R| < 2d., we only partition o.R into two parts from the
middle point (i.e., merging ¢, and t3 in Fig. 4b to the middle
point), and then we expand the search from the middle
point towards the boundaries.

We estimate the upper bound on the temporal correla-
tion of an unscanned trajectory t as follows.

[range(t1,to — 1t)| = |range(ts + rt, t4)| = d. — rt

lngelintp=rtd) g (derty g (1D)

T.5T

k. k.

= Cr(t,0).ub =

Here, t.sr is the sampling rate of trajectory 7, and
range(ty,to —rt) and range(ts + rt,t,) are the unscanned
spaces in o.R. Because trajectories are sampled continuously
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and uniformly and because range(ts — rt,t3 + rt) has been
scanned in the current step, it is impossible for an
unscanned trajectory to appear in both range(t;, 2 — rt) and
range(ts + rt,t4). Notice that for trajectories with non-uni-
form sampling rate, we simply need to count the number n
of sample points in the corresponding time range, or to use
the minimum sampling rate of v to compute the bounds.

By combining the upper bounds on the spatial (Equa-
tion (10)) and temporal (Equation (11)) correlation accord-
ing to Equation (4), we obtain an upper bound Csr(z.0).ub
of the spatiotemporal correlation. The value of Csy(7.0).ub
is used as a global upper bound UB for all unscanned trajec-
tories in both domains, and it changes dynamically during
query processing.

Csr(t.0).ub = X- Cg(r.0).ub+ (1 — X) - Cr(r.0).ub
LMJ +1 (12

= UB=Csp(to)ub=X-e "+ (1= X)- T"Wk
5.3 Filtering and Refinement
If the value of spatiotemporal upper bound Csp(7.0).ubis less
than 6, the search in the spatial and temporal domains termi-
nate and all unscanned trajectories are pruned. Then we
refine the fully and partly scanned trajectories in the two
domains. If a trajectory 7 is fully scanned in the spatial
domain, we compute its exact spatial, temporal, and spatio-
temporal correlations according to Equations (2), (3), and (4).
If Csr(t,0) > 6, we store (trajectory, location) pair (7, 0) in the
set of the matched pairs of 0. Otherwise, trajectory t is pruned.
If a trajectory 7’ = (v1,vs,...,v,) is partly scanned in the
spatial domain and is unscanned in the temporal domain,
we estimate the temporal correlation upper bound
Cr(7', 0).ub as follows.

Cr (7 0) b _1 [range(vy .t, t,.t) Nrange(ty.t, to.t — 1t)|
A .51
[range(vy.t, t,,.t) Nrange(ts.t + rt, ty.t)]
1].
+ \‘ s +

(13)

If a trajectory 7’ is scanned in the temporal domain, its
temporal correlation upper bound is defined as follows.

Cr (v 0) ub 1 <Mrange(v1.t, tn.t) N O.R\J n 1>' (14)

J !
K. T'.sr

By combining the spatial correlation upper bound (Equa-
tion (8)) and temporal correlation upper bound (Equa-
tions (13) and (14)) according to Equation (4), we obtain a
spatiotemporal correlation upper bound Csr(7’, 0).ub as fol-
lows.

A Cs(T,0).ub
Csr(t,0)ub=< +(1 = A)-Cp(t,0).ub if Case 1  (15)
(1=X)-Cp(v,0).ub if Case 2.

Case 1: 7’ is partly scanned in the spatial domain.
Case 2: 7 is unscanned in the spatial domain.
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If the value of Cgp (7', 0).ub is less than that of 6, we prune
trajectory 7’. Otherwise, we refine the trajectory in the spa-
tial domain until it is fully scanned. Then we compute its
exact spatiotemporal correlation and compare to 6.

5.4 Heuristic Scheduling

We propose a heuristic method to schedule the two query
sources in the spatial and temporal domains (i.e., expansion
center o.p in the spatial domain, and expansion centers t,
and ¢3 in the temporal domain). Our target is to let more tra-
jectories be scanned in the both domains, which is helpful
to (i) reduce the number of scanned trajectories to be refined
and to (ii) improve the pruning power of Equation (16).

For example, Ts is the set of scanned trajectories in the
spatial domain, and 77 is the set of scanned trajectories in the
temporal domain. We refine |T's U 77| trajectories in total. If
we are able to increase the intersection between Ts and T
(the trajectories that have been scanned in both domains), we
can reduce the total number of trajectories to be refined and
can improve the query efficiency correspondingly. More-
over, we can use the spatial and temporal correlation upper
bounds (Equation (16)) of the trajectories in T's N I’y to prune
the search space, which yields better pruning than using
only the spatial or the temporal upper bound (if trajectories
only have been scanned in one domain).

Priority labels of the query sources in the two domains
are then defined as follows. At each time, we only search
the top-ranked query source (the query source has a larger
value of its label) until a new query source takes its place.

if Case 3

_{/\'|(TSUTT)\TS| 16)
if Case 4°

(1=X) - [(Ts UTr) \ Tr|

Case 3: ¢ is in the spatial domain (¢ = o.p).

Case 4: gis in the temporal domain (g is for ¢, and ¢3).

Here X and (1 — \) control the relative importance of the
spatial and the temporal domains (Equation (4)).

5.5 Algorithm and Time Complexity

The PCol search procedure is detailed in Algorithm 3. The
query arguments include a location o, a trajectory 7, and a
threshold 6. The query result is returned in |J ,.,M,. Ini-
tially, UB and the priority labels are set to 0 and M, is set to ().
If the value of 2d. is less than that of |o.R|, we scan the time-
stamps in range(t, t3) (cf. Fig. 4b)(lines 1-5). We select the
top-ranked query source g from heap H as the current-search
query source, and we expand the search from ¢q. We update
the value of UB (Equation (12)). If the value of UB is less than
6, we prune all unscanned trajectories in the two domains
(lines 6-11). Then we refine all scanned trajectories in the
two domains. If a trajectory t is fully scanned in the spatial
domain, we compute its exact spatiotemporal correlation
Csr(t.0) (Equation (4)) and compare it to 6. If Csp(t.0) > 6,
(trajectory, location) pair (7, 0) is added in M,. Otherwise, t
is pruned (lines 12-17). If a trajectory 7’ is partly scanned, we
compute its spatiotemporal upper bound Csr(7'.0).ub (Equa-
tion (16)). If Csr(7'.0).ub < 6, v is pruned. Otherwise, we
further refine trajectory ¢ and compute Cgsp(7'.0). If
Csr(t'.0) > 6, (7',0) is added to M,. Otherwise, 7’ is pruned
(lines 18-27). Set M, is stored. If ¢ is not at the top of heap H,
we update ¢ to be the top-ranked query source (lines 28-31).
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By combining the matching sets of all locations, the solution
U ,eoM, of the TL-Join is found (line 32).

Algorithm 3. PCol Search

Data: a set O of locations, a set T of trajectories, and a
threshold 6
Result: |J oM,
1 Yo e O(]\/[O — @),
2 for each location o in O do
3 UB«0;Vqe H(ql—0);
4 if2d. < |o.R| then
5 scan timestamps in range(ts, t3);
6
7
8

q < H.top;
while true do
expand(q);
9 update UB;
10 if UB < 6 then

11 prune all unscanned trajectories;

12 for each spatially fully scanned trajectory T do
13 compute Csr(t.0);

14 if Csr(t.0) > 6 then

15 M,.add(z,0);

16 else

17 prune t;

18 for each partly scanned trajectory v do
19 compute Csr(7'.0).ub;

20 if Csp(7'.0).ub < 6 then

21 prune 7’;

22 else

23 refine 7’ and compute Cgp(7'.0);
24 if Cgr(7'.0) > 0 then

25 M,.add(7',0);

26 else

27 prune ’;

28 store M,;

29 break;

30 if g # H.top then
31 q < H.top;
32 return |J ,.oM,;

Let T} denote the scanned trajectory set for the search pro-
cess from each location. In the spatial domain, the time com-
plexity is O(|T||O|(|V|log|V| + | E])) (the same as PSF), while
in the temporal domain, the time complexity is O(|1y||O]).
The time complexity of PCol is O(|Ty||O|(|V|log|V| + |E|))+
O(|T,1101) = O(|T3||O[(|V |log| V| + | EI)). If the value of 6 is
sufficiently large, the time complexity is close to O(|O|
(I[V]log|V| + |E])). The time complexity of PCol is the same as
that of PSF, and the advantage of PCol lies in that it has a
higher pruning power and defines a smaller candidate set 7.

6 EXPERIMENTAL RESULTS

We report on experiments with real and synthetic spatial
data that offer insight into the properties of the developed
algorithms.

6.1 Settings

We use two spatial networks, namely the Beijing Road Net-
work (BRN) and the New York Road Network (NRN),!°

10. https:/ /publish.illinois.edu/dbwork/open-data/
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TABLE 3
Pruning Effectiveness for TL-Join

NRN BRN PTF PSF PCol-w/o-h  PCol

Trajectory 1,000,000-10,000,000 / 50,000-200,000 / Candidate ratio (BRN) 0.98% 0.51% 0.07% 0.06%
cardinality |T| default 1,000,000 default 100,000 Pruning ratio (BRN) 99.02% 99.49% 99.93% 99.94%

- Candidate ratio (NRN) 0.26% 0.08% 0.04% 0.03%
Location 500,000-2,000,000 / 25,000-100,000 / . .
cardinality || default 500,000 default 50,000 Pruning ratio (NRN)  99.74% 99.92% 99.96% 99.97%
Average location 1-7 hours /default 1-7 hours /default
time range 0.R 1 hour 1 hour PSF (Section 4), and PCol (Section 5) are denoted by “PTFE,”

Coupling 20-40 minutes / 20-40 minutes /
duration d, default 25 minutes default 25 minutes
Threshold 6 0.9-0.98/ default 0.96 0.9-0.98/ default 0.96
Preference 0.1-0.9/ default 0.5 0.1-0.9/ default 0.5

parameter A

Thread count m 24-120/ default 24 24-120/ default 24

which contain 28,342 vertices and 27,690 edges, and 95,581
vertices and 260,855 edges, respectively. The graphs are
stored using adjacency lists. In BRN, we use a real taxi tra-
jectory data set collected by the T-drive project [16], while in
NRN, we use a real taxi trajectory data set from New
York'’. The time range of a trajectory is 1-2 hours. We use
real location data in BRN, i.e., for POIs (e.g., restaurants and
shopping malls), we use real locations and real time ranges
(opening hours, e.g., 3-5 hours for a restaurant, 7-10 hours
for a shopping mall), and for accidents, we use real locations
and synthetic time ranges (e.g., 0.5-2 hours), and we use
synthetic location data in NRN.

In the experiments, the index structure of PTF
(cf. Section 3) and the spatial networks of PSF and PCol
(when running Dijkstra’s expansion [15], cf. Sections 4 and
5) are memory resident, as the memory occupied is 34 MB
and 44 MB for BRN and 42 MB and 55 MB for NRN. Trajec-
tories and locations are also memory resident for all algo-
rithms, and they occupy 279 MB for BRN and 2.2 GB for
NRN. All algorithms are implemented in Java and run on a
cluster with 10 data nodes. Each node is equipped with two
Intel” Xeon® Processors E5-2620 v3 (2.4GHz) and 128GB
RAM. Unless stated otherwise, experimental results are
averaged over 10 independent trials using different query
inputs. The main performance metrics are runtime and the
number of location-trajectory pair visits. The number of
location-trajectory visits is used as a metric because it
reflects the number of data accesses. In multi-threaded exe-
cutions, the total runtime is the maximum runtime among
all individual threads.

Trajectories in 7" are selected randomly from the real data
sets. The parameter settings are listed in Table 2. For PTF
(Section 3), the best performance is achieved when the index
contains 56 leaf nodes for BRN and 545 leaf nodes for NRN,
and when each leaf node contains at most 8,192 (trajectory,
location) pairs (M = §8,192) in BRN and at most 16,384 (tra-
jectory, location) pairs (M = 16, 384) in NRN. Compared to
the equal-partition grid index [1], the performance of the
balanced grid index is improved by around 20 percent.
Because computing network distances online is time-con-
suming, we pre-compute the all-pairs shortest paths distan-
ces in the graphs (for PTF only, not for PSF and PCol). PTF,

“PSF,” and “PCol” in subsequent figures. The PCol algo-
rithm without the heuristic scheduling strategy is denoted
by “PCol-w/o-h.”

6.2 Pruning Effectiveness

First, we study the pruning effectiveness of the algorithms
using the default settings. The results are shown in Table 3,
where the reported candidate and pruning ratios are
defined as follows.

Cl
0]

Pruning ratio = 1 — Candidate ratio,

Candidate ratio =

where |C| is the size of the candidate set. The pruning ratio
shows how many trajectory-location pairs are pruned, while
the candidate ratio shows how many trajectory-location pair
remains (to be processed in the next step). The candidate
ratio is directly proportional to the running time. We see
that the candidate ratio of PCol is only 6.1-11.5 percent of
that of PTF and 12-37.5 percent of that of PSF. Further, the
heuristic scheduling strategy reduces the candidate ratio by
14-25 percent.

6.3 Effect of Trajectory Cardinality |7T|

Fig. 5 shows the effect of trajectory cardinality || on the per-
formance of the algorithms. Intuitively, a larger |T| causes
more (trajectory, location) pairs to be processed (cf. the com-
plexity analysis in Sections 3.4, 4.3, and 5.5), meaning that
the runtime and the number of (trajectory, location) pair vis-
its are expected to increase for all algorithms. We see that
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f :
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£ 100 . < i 3000
e
= .
g% & g
g 60 - 3 .
% e g 2000 .
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Fig. 5. Effect of trajectory cardinality |T'.
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Fig. 6. Effect of location cardinality |O|.

PCol outperforms PTF by almost an order of magnitude and
that it outperforms PSF by 230-300 percent in terms of both
runtime and (trajectory, location) pair visits; and we see that
the heuristic scheduling strategy can further improve PCol
by 15-33 percent in terms of both runtime and (trajectory,
location) pair visits. PCol is able to process 1 M trajectories
(IT)=1Mand |0 =0.5M) in 314 seconds and 10 M trajecto-
ries (/7] = 10 M and |O| = 0.5 M) in 1,874 seconds with the
default 24 threads (see Fig. 5b). These results demonstrate
the importance of balancing the pruning power in the spatial
and temporal domains (Section 5.2) and the benefit of the
heuristic scheduling strategy (Section 5.4).

The runtime is not fully aligned with the number of (tra-
jectory, location) pair visits because the algorithms expend
computational effort on maintaining the bounds and prior-
ity labels (for PCol) used to prune the search space. The
resulting cost may offset the benefits of the reduction in the
number of (trajectory, location) pair visits. In particular, the
filter phase of PTF computes and maintain bounds for
almost all trajectory pairs.

6.4 Effect of Location Cardinality |O|

Next, we study the effect of location cardinality |O| on the per-
formance of the algorithms. Similar to the effect of the trajec-
tory cardinality |T'|, a larger |O| implies a longer runtime and
more (trajectory, location) pairs to be processed for all algo-
rithms. From Fig. 6, we see that PCol has a clear advantage
over PTF, PSF, and PCol-w/o-h. PCol is able to process 2 M
locations (|7'|=1 M and |O|=2 M) in 815 seconds (see Fig. 6b).

6.5 Effect of Average Location Time Range o.R

Fig. 7 shows the effect of varying location time range o.R on
efficiency. A larger 0. R may lead to a higher temporal correla-
tion (cf. Equation (3)). So we may have more qualified (trajec-
tory, location) pairs to refine, meaning that the runtime and
the number of (trajectory, location) pair visits are expected to
increase for all algorithms. Moreover, for PTF, a larger o.R
leads to more locations to be stored in non-leaf nodes, which
offsets the benefit of parallel processing. For PCol, a larger
o.R may weaken its pruning power (Equation (11)). So the
runtime and the number of (trajectory, location) pair visits of
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Fig. 7. Effect of average time range o.R.

PTF and PCol increase faster than those of PSF. But PCol still
holds a clear advantage over PTF, PSF, and PCol-w/o-h.

6.6 Effect of Coupling Duration d.

The next study concerns the effect of coupling duration d.
on the efficiency of the algorithms. As can be seen in Fig. §,
alarger d. leads to a larger k; and may lead to a smaller tem-
poral correlation (cf. Equation (3)). So we may have fewer
qualified (trajectory, location) pairs to refine, meaning that
the runtime and number of (trajectory, location) pair visits
are expected to decrease for all algorithms. In addition, a
larger d. may enhance the pruning power of PCol (cf. Equa-
tions (11) and (12)).

6.7 Effect of Threshold ¢

We show results when varying threshold 6 in Fig. 9. A
larger 6 leads to higher pruning effectiveness (cf. Sections
3.3,4.2, and 5.3). Thus, the larger 6 becomes, the smaller the
search space becomes. Therefore, the runtime and number
of (trajectory, location) pair visits are expected to decrease
correspondingly for all algorithms. In addition, in PTF, a
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Coupling duration (mins)
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Fig. 8. Effect of coupling duration d..
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larger 6 is useful in reducing the similarity computation (see
Equation (6)), which further enhances the efficiency. In
Fig. 9b, we see that when 6 = 0.98, PCol is able to process 1
M trajectories (|| =1 M and |O] = 0.5 M) in 174 seconds.

We also test that when 6 = 0.5 in BRN and NRN, PCol is
able to process 100 K and 1 M trajectories under 240 threads
in 33 seconds and 2440 seconds.

6.8 Effect of Preference Parameter )

Fig. 10 shows the effect of varying preference parameter \.
Parameter A enables adjusting the relative preference of spa-
tial and temporal similarity (see Equation (4)). When A =1,
the TL-Join is in the spatial domain only, and when A = 0,
only temporal similarity is considered. Fig. 10 shows that
the spatial domain needs more search effort than the tempo-
ral domain. When A increases, the pruning power of PTF is
weakened because its pruning is driven by the temporal
domain (cf. Section 3.3). On the other hand, the pruning
power of PSF is enhanced as it uses spatial upper bound to
prune the search space (cf. Section 4.2). When A is close to 1,
the efficiency of PSF is very close to that of PCol.
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Fig. 10. Effect of preference parameter \
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Fig. 11. Effect of thread count m.

6.9 Effect of Thread Count m

We study the effect of thread count m on the efficiency of the
algorithms using large trajectory data sets (/7| = 200 K and
|O| =100 K for BRN and |P| =10M and |O| = 0.5 M for NRN).
The results are shown in Fig. 11. We see that PCol outper-
forms PTF by almost an order of magnitude in term of run-
time and outperforms PSF by almost 300 percent in term of
runtime. In BRN, PCol is able to process 200 K x 100 K (tra-
jectory, location) pairs with 120 threads in 8.3 seconds, while
in NRN, the PCol is able to process 10 M x 0.5 M (trajectory,
location) pairs with 120 threads in 651 seconds.

We increase the thread count from 48 to 120 (2.5 times).
This improves the runtimes of PSF and PCol by a factor of
around 2.1, while the runtime of PTF is improved by a factor
of around 1.8. The main reason for the smaller improvement
of PTF is that more threads (more leaf nodes) leads to a
higher merging cost (see Section 3).

7 RELATED WORK

7.1 Trajectory-to-Location Matching

Existing trajectory-to-location matching studies typically
consider (i) matching solely in the spatial domain [3], [4],
[5], [6], [8], [17], [18] or (ii) use point-to-point matching [2],
[3], [4], [8] in the spatial or temporal domain. For the first
case, the matching results do not support time-aware appli-
cations, while for the second case, the matched (trajectory,
location) pairs are unable to capture the continuous correla-
tions between trajectories and locations in the spatial and
temporal domains. The so-called Semantic Enrichment
approach [7] utilizes the stay time at a location to infer a
traveler’s activity. It uses point-to-point matching in the
spatial domain and range matching in the temporal domain.
This matching scheme is not feasible for location recommen-
dation because it relies on a constraint on the stay time (e.g.,
30 minutes) of travelers at a location. For example, if a trav-
eler stay at some points of interest (e.g., restaurants, shop-
ping malls, and sightseeing places) for more than 30
minutes, we can infer the trajectory accompanied activities
(e.g., dinner, shopping, and tourist).

Trajectory-to-location matching may bring significant
benefits to diverse applications. RPNN (reverse path nearest
neighbor query [3]) targets the application of location rank-
ing and recommendation. For example, when setting a new
facility, RPNN uses the number of matched trajectories to
define the influence factors of location candidates, and then
finds the most influential location for the new facility to
maximize its commercial value. ATSQ [4], UOTS [8], and
PTM [2] are location-based trajectory search queries and
they are useful in travel planning and carpooling
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recommendation (e.g., using historic trajectories for travel
planning, or recommending travelers with similar travel
trajectories for carpooling). The Semantic Enrichment [7]
uses trajectories to analyze traveler’s activities.

Most existing centralized trajectory-to-location join algo-
rithms (e.g., VID Joins [5], [6]) operate in euclidean space
and cannot process large trajectory data sets. From the
experiments reported in the literature [5], [6], the VID joins
can process at most 12 K trajectories. In contrast, the TL-Join
is performed in a spatial network and can process 10 M tra-
jectories with a reasonable runtime, some three orders of
magnitude more trajectories than for the VID joins.

7.2 Trajectory Similarity Join

Trajectory similarity joins [1], [13], [19], [20], [21], [22], [23]
target applications such as trajectory near-duplicate detec-
tion, data cleaning, ridesharing recommendation, and traffic
congestion prediction. Developing such joins typically
involves a definition step and a query processing step. First,
a similarity function, e.g., Sim, is defined to evaluate the
spatial and temporal similarities between two trajectories,
e.g., T and 7. Second, an efficient algorithm is developed to
retrieve the spatiotemporally similar trajectory pairs. The
trajectory similarity function should be symmetrical, i.e.,
Sim(z, ") = Sim(7, 7). Most existing trajectory similarity
joins (e.g., [13], [19], [20], [21], [22], [23]) use a time interval
threshold to constrain the temporal proximity of two trajec-
tories. In contrast, the TS-Join [1] defines trajectory similar-
ity in a continuous manner. The best connected trajectory
(BCT) [24] and its variants [2], [4], [8] cannot be used in the
trajectory similarity joins due to being asymmetric. Several
similarity functions for time-series data also exist, including
Dynamic Time Warping [25], Longest Common Subse-
quence [26], and Edit Distance on Real sequence [27].

The TS-Join [1], [28] is based on a divide-and-conquer
strategy. For each trajectory t, the algorithm retrieves trajec-
tories that are similar to 7. The trajectory-search processes
are independent of each other and are performed in parallel.
The TS-Join algorithm cannot process the TL-Join due to
their different query arguments (trajectories versus trajecto-
ries and locations), and their different matching functions
(point-to-point matching versus range-based matching).
The TL-Join needs its own specific solutions.

8 CONCLUSION AND FUTURE WORK

We studied the efficient processing of a novel Trajectory-to-
Location join (TL-Join) operation in spatial networks, which
may benefit diverse applications such as location recom-
mendation, and trajectory activity analysis. We developed
three parallel algorithms: parallel temporal-first search
(PTF), parallel spatial-first search (PSF), and parallel collab-
orative search (PCol). We also defined upper and lower
bounds and a heuristic scheduling strategy to enable effec-
tive search space pruning. The performance of the devel-
oped algorithms were studied empirically in extensive
experiments on large spatial data sets.

Two future research directions exist. First, it is of interest
to take the visiting sequence of trajectory sample points into
account when matching trajectories and locations. To do
this, new upper and lower bounds on the spatiotemporal
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correlation and a new heuristic scheduling strategy are
needed. Second, it is of interest to extend existing techniques
to support a top-k TL-Join without a matching threshold 6.
This calls for updated pruning techniques, including adding
pruning to the same thread and updating the corresponding
upper and lower bounds (without a given threshold).
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