Indexing for Summary Queries: Theory and Practice

KE YI, Tsinghua University and Hong Kong University of Science and Technology
LU WANG, Hong Kong University of Science and Technology
ZHEWEI WEI, MADALGO and Aarhus University

Database queries can be broadly classified into two categories: reporting queries and aggregation queries.
The former retrieves a collection of records from the database that match the query’s conditions, while the
latter returns an aggregate, such as count, sum, average, or max (min), of a particular attribute of these
records. Aggregation queries are especially useful in business intelligence and data analysis applications
where users are interested not in the actual records, but some statistics of them. They can also be executed
much more efficiently than reporting queries, by embedding properly precomputed aggregates into an index.

However, reporting and aggregation queries provide only two extremes for exploring the data. Data
analysts often need more insight into the data distribution than what those simple aggregates provide,
and yet certainly do not want the sheer volume of data returned by reporting queries. In this article, we
design indexing techniques that allow for extracting a statistical summary of all the records in the query.
The summaries we support include frequent items, quantiles, and various sketches, all of which are of
central importance in massive data analysis. Our indexes require linear space and extract a summary with
the optimal or near-optimal query cost. We illustrate the efficiency and usefulness of our designs through
extensive experiments and a system demonstration.

Categories and Subject Descriptors: E.1 [Data]: Data Structures; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory, Experimentation

Additional Key Words and Phrases: Indexing, summary queries

ACM Reference Format:

Ke Yi, Lu Wang, and Zhewei Wei. 2014. Indexing for summary queries: Theory and practice. ACM Trans.

Datab. Syst. 39, 1, Article 2 (January 2014), 39 pages.
DOILI: http://dx.doi.org/10.1145/2508702

1. INTRODUCTION

A database system’s primary function is to answer users’ queries. These queries can
be broadly classified into two categories: reporting queries and aggregation queries.
The former retrieves a collection of records from the database that match the query’s
conditions, while the latter only produces an aggregate, such as count, sum, average
or max (min), of a particular attribute of these records. With reporting queries, the
database is simply used as a data storage-retrieval tool. Many modern business intel-
ligence applications, however, require ad hoc analytical queries with a rapid execution
time. Users issuing these analytical queries are interested not in the actual records,
but some statistics of them. This has therefore led to extensive research on how to
perform aggregation queries efficiently. By augmenting a database index (very often a

K. Yi and L. Wang are partially supported by HKRGC under grant GRF-621413.

K. Yi and L. Wang; email: {yike, luwang}@cse.ust.hk; Z. Wei; email: zhewei@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

(© 2014 ACM 0362-5915/2014/01- ART2 $15.00

DOI: http://dx.doi.org/10.1145/2508702

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:2 K. Yietal

B-tree) with properly precomputed aggregates, aggregation queries can be answered
efficiently at query time without going through the actual data records.

However, reporting and aggregation queries provide only two extremes for analyzing
the data, by returning either all the records matching the query condition or one (or
a few) single-valued aggregates. These simple aggregates are not expressive enough,
and data analysts often need more insight into the data distribution. Consider the
following queries.

Q1 In a company’s database. What is the distribution of salaries of all employees aged
between 30 and 40?

Q2 In a search engine’s query logs. What are the most frequently queried keywords
between May 1 and July 1, 2010?

The analyst issuing the query is perhaps not interested in listing all the records in
the query range one by one, while probably not happy with a simple aggregate, such
as average or max, either. What would be nice is some summary on the data, which
is more complex than the simple aggregates, yet still much smaller than the raw
query results. Some useful summaries include the frequent items, the ¢-quantiles
for, say, ¢ = 0.1,0.2,...,0.9, or a sketch (e.g., the Count-Min sketch [Cormode and
Muthukrishnan 2005] or the AMS sketch [Alon et al. 1999]). All these summaries are
of central importance in massive data analysis and have been extensively studied for
offline and streaming data. Yet, to use the existing algorithms, one still has to first
issue a reporting query to retrieve all query results, and then construct the desired
summary afterward. This is time consuming and wasteful. One possible way to avoid
retrieving all results is to get a sample, typically done with block-level sampling in
database systems [Chaudhuri et al. 2004]. But such a sample has very low accuracy
compared with these summaries just mentioned, as evident by abundant work on data
summarization, as well as our own experimental study in Section 5.

In this article, we propose to add a native support for summary queries in a database
index such that a summary can be returned in time proportional to the size of the
summary itself, not the size of the raw query results. The problem we consider can
be defined more precisely as follows. Let D be a database containing N records. Each
record r € D is associated with a query attribute A,(r) and a summary attribute Ay(r),
drawing values possibly from different domains. A summary query specifies a range
constraint [q1, g2] on A, and the database returns a summary on the A; attribute of all
records whose A, attribute is within the range. For example, in the query (Q1), A, is
“age” and A, is “salary”. Note that A; and A, could be the same attribute, but it is more
useful when they are different, as the analyst is exploring the relationship between two
attributes. Our goal is to build an index on D so that a summary query can be answered
efficiently. As with any indexing problem, the primary measures are the query time
and the space the index uses. The index should work in external memory, where it is
stored in blocks of size B, and the query cost is measured in terms of the number of
blocks accessed (I/Os). Finally, we also would like the index to support updates, that is,
insertion and deletion of records.

1.1. Previous Work on Indexing for Aggregation Queries

In one dimension, most aggregates can be supported easily using a binary tree (a B-
tree in external memory). At each internal node of the binary tree, we simply store
the aggregate of all the records below the node. This way, an aggregation query can be
answered in O(log N) time (O(logg N) 1/Os in external memory).

In higher dimensions, the problem becomes more difficult and has been extensively
studied in both the computational geometry and the database communities. Solutions
are typically based on space-partitioning hierarchies, like partition trees, quadtrees

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:3

and R-trees, where an internal node stores the aggregate for its subtree. There is a
large body of work on spatial data structures; please refer to the survey by Agarwal and
Erickson [1999] and the book by Samet [2006]. When the data space forms an array, the
data cube [Gray et al. 1997] is a classical structure for answering aggregation queries.

However, all the past research, whether in computational geometry or databases,
has only considered queries that return simple aggregates like count, sum, max (min),
distinct count [Tao et al. 2004], top-k£ [Afshani et al. 2011], and median [Brodal et al.
2011; Jgrgensen and Larsen 2011]. The problem of returning complex summaries has
not been addressed.

1.2. Previous Work on (Non-Indexed) Summaries

There is also a vast literature on various summaries in both the database and algo-
rithms communities, motivated by the fact that simple aggregates cannot well capture
the data distribution. These summaries, depending on the context and community,
are also called synopses, sketches, or compressed representations. However, all past
research has focused on how to construct a summary, either offline, in a streaming
fashion, or over distributed data [Shrivastava et al. 2004; Agarwal et al. 2012], on the
entire dataset. The indexing problem has not been considered, where the focus is to
intelligently compute and store auxiliary information in the index at precomputation
time, so that a summary on a requested subset of the records in the database can be built
quickly at query time. The problem of how to maintain a summary as the underlying
data changes, namely, under insertions and deletions of records or under the sliding
window semantics [Datar et al. 2002], has also been extensively studied. But this shall
not be confused with our dynamic index problem. The former maintains a single sum-
mary for the entire dynamic dataset, while the latter aims at maintaining a dynamic
structure from which a summary for any queried subset can be extracted, which is more
general than the former. Of course for the former, there often exist small-space solu-
tions, while for the indexing problem, we cannot hope for sublinear space, as a query
range may be small enough so that the summary degenerates to the raw query results.

Next we review some of the most fundamental and most studied summaries in the
literature. Let D be a bag of items, and let fp(x) be the frequency of x in D.

Heavy Hitters. An (approximate) heavy hitters summary allows one to extract all
frequent items approximately, that is, for a user-specified 0 < ¢ < 1, it returns all
items x with fp(x) > ¢|D| and no items with fp(x) < (¢ — ¢)|D|, while an item x with
(¢ — &)|D| < fp(x) < ¢|D| may or may not be returned. A heavy hitters summary of
size O(1/¢) can be constructed in one pass over D, using the MG algorithm [Misra and
Gries 1982] or the SpaceSaving algorithm [Metwally et al. 2006].

Quantiles. The quantiles (a.k.a. the order statistics), which generalize the median,
are important statistics about the data distribution. Recall that the ¢-quantile, for
0 < ¢ < 1, of a set D of items from a totally ordered universe is the one ranked
at ¢|D| in D (for convenience, for the quantile problem it is usually assumed that
there are no duplicates in D). A quantile summary contains enough information so
that for any 0 < ¢ < 1, an e-approximate ¢-quantile can be extracted, that is, the
summary returns a ¢’-quantile, where ¢ — ¢ < ¢’ < ¢ + ¢. A quantile summary has
size O(1/¢) and can be easily computed by sorting D, and then taking the items ranked
at ¢|D|, 2¢|D|, 3¢|D), ..., |D|. In the streaming model where sorting is not possible, one
could construct a quantile summary of the optimal O(1/¢) size with O((1/¢)logeN)
working space, using the GK algorithm [Greenwald and Khanna 2001].

Sketches. Various sketches have been developed as a useful tool for summarizing
massive data. In this article, we consider the two most widely used ones: the Count-Min

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:4 K. Yietal

sketch [Cormode and Muthukrishnan 2005] and the AMS sketch [Alon et al. 1999]. They
summarize important information about D and can be used for a variety of purposes.
Most notably, they can be used to estimate the join size of two datasets, with self-join
size being a special case. Given a precision parameter 5, we can use the Count-Min
sketches (resp. AMS sketches) of two datasets D; and D to estimate |D; X Dy| within
an additive error of e F1 (D) F1(Dy) (resp. e/ Fo(D1)F5(Dy)) with probability at least 1 —§
[Cormode and Muthukrishnan 2005; Alon et al. 2002], where F}, is the kth frequency

moment of D: F,(D) = >, fg(x). Note that \/Fo(D) < Fi(D), so the error of the AMS

sketch is no larger. However, its size is O((1/¢2) log(1/8)), which is larger than the Count-
Min sketch’s size O((1/¢)log(1/8)), so they are not strictly comparable. Which one is
better will depend on the skewness of the datasets. In particular, since F1(D) = |D|, the
error of the Count-Min sketch does not depend on the skewness of the data, but Fy(D)
could range from |D| for uniform data to | D|? for highly skewed data.

All the aforementioned work studies how to construct or maintain the summary on
the given D. In our case, D is the A, attributes of all records whose A, attributes are
within the query range. Our goal is to design an index so that the desired summary on
D can be constructed efficiently without actually going through the elements of D.

Note that all these summaries are parameterized by an error parameter ¢, which
controls the trade-off between the summary size and the approximation error. As ¢
changes from large to small, the summary gradually gets larger and more accurate.
When the summary is as large as the size of the raw query results, a summary query
degenerates into a reporting query. Thus, summary queries provide a middle ground
between the two extremes of aggregation queries and reporting queries. However, in
our proposed index structures, this error parameter ¢ needs to be fixed before the index
is built and cannot be changed at query time. It remains an interesting open question
how to allow ¢ to be decided on-the-fly.

1.3. Our Results

This article mainly consists of two components. In Section 2 and 3, we ask the theo-
retical question whether optimal indexing is possible for summary queries. Recall that
the B-tree occupies linear space, supports a range aggregation query in O(logz N) I/Os,
and a range reporting query in O(logg N + K/B) I/Os, where K is the number or records
reported, both of which are optimal (in a comparison model). For summary queries, the
best obtainable query time is thus O(logg N +s./B), where s is the size of the summary
returned, which is parameterized by ¢, the error parameter. Note that for not-too-large
summaries s, = O(B), the query cost becomes just O(logz N), the same as that for a
simple aggregation query or a lookup on a B-tree. Meanwhile, we would like to achieve
this optimal query time with a linear-size index.

We first observe that the optimal query time can be easily achieved if the summary
is subtractive, that is, given the summary of a data set A and the summary of B C A, we
can get the summary of B\ A by subtracting the two summaries. All sketches that are
linear projections of the data, such as the Count-Min sketch and the AMS sketch, have
this property. We describe this simple solution in Section 2.1. However, for nonsubtrac-
tive summaries, such as heavy hitters and quantile, the problem becomes nontrivial.
To achieve optimality for these summaries, we define an exponentially decomposable
property enjoyed by these these summaries. We first show how this property leads to
an optimal internal memory index in Section 2.3, and then convert it to an external
memory index with some nontrivial data structuring techniques in Section 2.4.

In Sections 4 and 5, we turn to the practical side of the problem. Our theoretically
optimal index is unlikely to yield a practical implementation, and the hidden constants
in the big-O’s are quite large. The one for subtractive summaries is simple, but it is

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:5

inherently static. Nevertheless, some ideas in the development of the theory are still
useful in designing a simpler and practical index structure for summary queries. In
Section 4, we present a simplified, practical version of our index. In doing so, we have
to settle for a slightly worse asymptotic running time in favor of better constants and
easier implementation. In addition, the practical version of the index is fully dynamic,
that is, supporting insertion and deletion of records efficiently. In Section 5, we conduct
extensive experiments to study the practical efficiency of the indexes and showcase
their usefulness with a few example queries and a Web-based demonstration.

1.4. Other Related Work

A few other lines of work also head in the general direction of addressing the gap
between reporting all query results and returning some simple aggregates. Lin et al.
[2007] and Tao et al. [2009] propose returning only a subset of the query results, called
representatives. But the representatives do not summarize the data as we do. They also
only consider skyline queries. The line of work on online aggregation [Hellerstein et al.
1997; Jermaine et al. 2008] aims at producing a random sample of the query results
at early stages of long-running queries, in particular, joins. A random sample indeed
gives a rough approximation of the data distribution, but it is much less accurate than
the summaries we consider: For heavy hitters and quantiles, a random sample of size
©®(1/£?) is needed [Vapnik and Chervonenkis 1971] to achieve the same accuracy as
the O(1/¢)-sized summaries we mentioned earlier; for estimating join sizes, a random
sample of size Q(+/N) is required to achieve a constant approximation, which is much
worse than using the sketches [Alon et al. 2002]. Furthermore, the key difference is
that they focus on query processing techniques for joins rather than indexing issues.
Correlated aggregates [Gehrke et al. 2001] aim at exploring the relationship between
two attributes. They are computed on one attribute subject to a certain condition on
the other. However, this condition has to be specified in advance, and the goal is to
compute the aggregate in the streaming setting, thus the problem is fundamentally
different from ours. Buccafurri et al. [2008] study how to use indexing techniques to
improve the accuracy of a histogram summary, which is in some sense “dual” to the
problem considered in this article.

This article extends the earlier work of Wei and Yi [2011], where the results are
purely theoretical. To put the result into practice, we have introduced many simplifi-
cations as well as new ideas in the original design. In addition, the practical versions
of the indexes presented in this article are fully dynamic, that is, supporting insertion
and deletion of records efficiently, whereas the external memory index structures in
Wei and Yi [2011] are static. Sections 4 and 5, which comprise half of the material in
this article, are new.

2. OPTIMAL INDEXING FOR SUMMARY QUERIES

In this section, we will describe our structures without instantiating into any particular
summary. Instead we just use “c-summary” as a placeholder for any summary with
error parameter ¢. Let S(e, D) denote an e-summary on data set D. We use s, to denote
the size of an s-summary.!

2.1. Optimal Indexing for Subtractive Sketches

We present a simple indexing that achieves optimal space usage and query cost for
subtractive summaries. The subtractive property can be formally defined as follow.
Consider multiset D; and a subset Dy C D;. For any item x € Dy, we have x € D; and

1Strictly speaking, we should write s, p. But as most e-summaries have sizes independent of D, we drop the
subscript D for brevity.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:6 K. Yietal

[p,(x) < fp,(x). Let D; \ D, denote the multiset difference of D; and D, that is, for any
item x € Dy \ Dy, the frequency of x in Dy \ Dq is fp,(x) — fp,(x).

Definition 2.1. A summary S is subtractive if for a multiset D; and its subset Dy,
given summaries S(e, Dy) and S(e, Dg), one can obtain an e-summary for Dy \ Ds.

All linear sketches, including the Count-Min sketch and the AMS sketch, are subtrac-
tive. In this section, we demonstrate the subtractive property for the Count-Min sketch
as an example; the analysis for other linear sketches is similar. A Count-Min sketch
with error parameter ¢ and precision parameter § is represented by a two-dimensional
array of counters of width w and depth d: C[1,1],...,Cld, w], where w = [%1 and

d= (%]. The counters are initialized to all zeros. The ith row of counters is associated
with a pairwise independent hash function 4; which maps the items uniformly to the
range {1,2,...w}, fori = 1,...,d. When a new update (x, ¢) comes, meaning that the
count of item x is updated by quantity ¢, we add ¢ to counter C[i, h;(x)], fori =1, ...,d.
To query the frequency of item x, we retrieve all counters C[i, h;(x)],i =1, ..., d, and use
the minimum count as an estimation. In other word, the frequency of item x is estimated
by fp(x) = mini<;<4 C[i, h;(x)]. Previous analysis shows that with probability 1 — §, the
Count-Min sketch provides additive error ¢ F1(D): fp(x) < fD(x) < fpx) + eF1(D). To
show the subtractive property for the Count-Min sketch, consider multiset D; and its
subset Dy C D;. Suppose we are given two Count-Min Sketches S(e, D;) and S(e, Ds),
and they use the same hash functions. One can simply subtract the counters of S(e, Dy)
from the corresponding counters of S(¢, D;), and the resulting summary is a Count-Min
Sketch for Dy \ Ds.

Suppose we are given a subtractive summary S, and let s, denote the size of an
e-summary. Given a dataset with IV records, we sort the N records by their A, attributes
and partition them into N/s, groups, each of size s,. Let Gy, ..., Gnys, denote the N/s,
groups. For the ith group G;, we store a summary for the A, attributed of the records
in groups Gi, ..., G;, that is, summary S(e, G1 W ... W G;). One can verify that these
summaries can supply a summary query. Given a query range R, let G; and G; be the
two groups that intersect with the end points of R. For the groups contained completely
in R, that is, groups Gj1, ..., Gj_1, the index can supply a summary by subtracting
summary S(e, G1W.. . WG;_1) and S(e, G1 W. .. WG;). For the records in G;NR and G;N R,
we treat their A attributes as updates and add them to the resulting summary. The
cost of assembling these summaries and groups is O(s,), since the index only touches
two summaries and two groups, each of size s,. The search cost is O(log N). If we apply
a binary tree on top of the /s, groups, therefore, the total query cost is O(log N + s;).
The space usage is linear, since the space to store the summaries is N/s, *s, = N.

This approach also works for the I/O model. If block size B < s,, we simply replace
the binary tree with an B-tree; otherwise, we pack B/s. groups into a single block and
build a B-tree on top of these blocks. By the properties of the B-tree and the fact that all
summaries and groups are stored consecutively, the I/O cost for a query is bounded by
O(logg N + s./B). The space usage is clearly linear. Finally, we note that this approach
is inherently static, since an update may touch all N/s, summaries, which leads to very
high update cost in both internal and external memory.

2.2. Decomposability and Exponential Decomposability

Many useful summaries, like the heavy hitters and quantiles, are not subtractive. To
deal with these summaries, we need exploit some other properties. We start with the
decomposable property that is enjoyed by almost all known summaries. This property
states that if we are given the e-summaries for ¢ datasets (bags of elements) D, ..., Dy,
then we can combine them together into an O(¢)-summary on D, W- - -W D;. This property

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:7

has been exploited in many other works on maintaining summaries in the streaming
context or on distributed data [Arasu and Manku 2004; Beyer et al. 2007; Cormode and
Muthukrishnan 2005]. We can also make use of this property for our indexing problem.
Build a binary tree 7 on the N data records in the database on the A, attribute. It
has N leaves, each corresponding to a data record. At each internal node u of 7, we
attach an e-summary on the A; attribute of all records stored in the subtree below u. It
is well known that any range query can be decomposed into O(log N) dyadic intervals,
each corresponding to a subtree in 7. Thus, to answer a summary query, we simply
retrieve the e-summaries attached to the nodes corresponding to these dyadic intervals
and then combine them together. Assuming we can combine these summaries in linear
time (for some summaries, the combine step actually takes slightly more than linear
time), the total query time would be O(s, log N).

To improve upon this solution, we observe that its main bottleneck is not the search
cost, but the fact that it needs to assemble O(log N) summaries, each of size s,. In
the absence of additional properties of the summary, it is impossible to make further
improvement. Fortunately, we identify a stronger decomposable property for many of
the Fi-based summaries that we call exponential decomposability, which allows us to
assemble summaries of exponentially decreasing sizes. This turns out to be the key to
optimal indexing for these summaries.

Definition 2.2 (Exponentially Decomposable). For 0 < a < 1, a summary S is
a-exponentially decomposable if there exists a constant ¢ > 1 (which can depend on «),
such that for any ¢ multisets Dy, ..., D; with their sizes satisfying Fy(D;) < o'~ 'F(D;)
fori =1,...,t, given S(e, Dy), S(ce, Do) ..., S(ct e, D;), the following hold:

(1) We can combine them into an O(g)-summary on Dy W --- W Dy;

(2) The total size of S(¢, Dy), ..., S(c! e, D;)is O(s,) and they can be combined in O(s,)
time; and

(3) For any multiset D, the total size of S(e, D), ..., S(c! e, D) is O(s,).

Intuitively, since an Fj-based summary S(e, D) provides an error bound of ¢|D|, the
total error from S(g, D1), S(ce, Do), ..., S(ct~1e, D,) is

e|Di| +ce|Dg| + -+ - +c'te| Dy
< &|Dy| + (ca)e|Dy| + - - - 4 (ca) " Le|Dy.

If we choose ¢ such that ca < 1, then the error is bounded by O(¢|D,]), satisfying (1).
Meanwhile, the F;-based summaries usually have size s, = ©(1/¢), so (2) and (3) can
be satisfied, too. In Section 3, we will formally prove the a-exponentially decomposable
property for all the F;-based summaries mentioned in Section 1.2.

2.3. Optimal Internal Memory Index Structure

In this section, we show how the exponentially decomposable property leads to an
optimal internal memory index structure of size O(N) and a query time of O(log N +s,).
This will serve as the first step towards an optimal index in external memory.

Let 7 be the binary tree as before. For any node u of 7, we denote by 7, the subtree
below u. We first note that if 7, contains less than s, records, there is no need to attach
any summary to u, since the summary will be just the same as all the records in 7,. So
equivalently, after sorting the N records by the A, attribute, we partition them into
N/s, groups of size s., and build 7 on top of these groups. Thus each leaf of 7 becomes
a fat leaf that stores s, records. Without loss of generality, we assume 7 is a complete
binary tree; otherwise, we can always add at most N dummy records to make N/s, a
power of 2 so that 7 is complete.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:8 K. Yietal

Fig. 1. An illustration of P(u, v), L(u, v) and R(u, v).

We introduce some more notation on 7. We use S(¢, u) to denote the e-summary on
the A, attribute of all records stored in 7,. Consider an internal node u and one of its
descendants, say v. Let P(u, v) be the set of nodes on the path from u to v, excluding w.
Define the left sibling set of P(u, v) to be

L(u,v) = {w | wis a left child and w’s right sibling node € P(u, v)},
and similarly the right sibling set of P(u, v) to be
R(u, v) = {w | w is a right child and w’s left sibling node € P(u, v)}.

Figure 1 shows an example illustrating u, v, and the corresponding P(u, v), L(u, v)
and R(u, v).

To answer a query [q1, g2], we first locate the two fat leaves a and b in 7 that contain
g1 and qq, respectively, by doing two searches on 7. Let u be the lowest common ancestor
of a and b. We call P(u, a) and P(u, b) the left and, respectively, the right query path.
We observe that the subtrees rooted at the nodes in R(u, a)U L(u, b) make up the dyadic
set for the query range [q1, g2].

Focusing on R(u, a), let w1, ..., w; be the nodes of R(u, a) and let d; < --- < d; denote
their depths in 7 (the root of 7 is said to be at depth 0). Since 7 is a balanced binary
tree, we have Fy(w;) < (1/2)%~% Fy(w;) fori =1, ..., ¢. Here we use Fi(w) to denote the
first frequency moment (i.e., size) of the dataset stored below w. Thus, if the summary
is (1/2)-exponentially decomposable, and we have S(c% %¢, w;) fori = 1,...,t at our
disposal, we can combine them and form an O(¢)-summary for all the data covered by
w1, ..., w;. We do the same for L(u, b). Finally, the two fat leaves can always supply
the exact data (it is a summary with no error) of size O(s,) in the query range. Plus
the initial O(log N) search cost for locating R(u, @) and L(u, b), the query time now
improves to the optimal O(log N + s,).

It only remains to show how to supply S(c% %, w;) for each of the w;’s. In fact, we
can afford to attach to each node u € 7 all the summaries: S(e, u), S(ce, uw), ...S(c%, u),
where ¢ is an integer such that s... = O(1). Nicely, these summaries still have total
size O(s,) by the exponentially decomposable property, thus the space required by each
node of 7 is still O(s,). Since 7 has O(N/s,) nodes, the total space is linear. A schematic
illustration of the overall structure is shown in Figure 2. The grayed nodes form the
dyadic decomposition of the query range, and the grayed summaries are those we
combine into the final summary for the queried data. In this example, we use ¢ = %

THEOREM 2.3. For any (1/2)-exponentially decomposable summary, a database D of
N records can be stored in an internal memory structure of linear size so that a summary
query can be answered in O(log N + s,) time.

Example. We present a simple example to demonstrate how our index can be used
to answer the queries in Section 1. Suppose the goal is to build an index to support
(Q1): In a company’s database: what is the distribution of salaries of all employees aged
between 30 and 40?

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:9

: g-summary
1 (5¢)-summary

se
1 ((3)%)-summary

[) |) |) |)|) |) |) |)
3 3 [I

| Query range |

Fig. 2. A schematic illustration of our internal memory structure.

First we need to choose a proper summary for this particular application. To charac-
terize a data distribution, one of the most commonly used method is the histograms. In
this example, we use the equidepth histogram, which seeks to partition the distribution
equally in terms of the cumulative distribution function. More precisely, given a data
set of N tuples, a k-bucket equidepth histogram selects & — 1 tuples from the data set
such that the number of tuples between any two consecutive tuples is approximately
N/k. The equidepth histogram can be used as an approximation to the data distribution
and is relatively easy to maintain; therefore, it is widely used in streaming and data
analytics applications. It is in general more accurate and can adapt better to skewed
data distribution than the equiwidth histogram. To adapt our indexing framework,
we note that a quantile summary can serve as an approximate equi-depth histogram:
given a quantile summary with error parameter ¢, the ¢-quantiles for ¢ = %, e, "’%
can serve as the boundaries in the equi-depth histogram with error at most ¢N. For
detailed discussion on the quantile summary, we refer the reader to Section 3.

Now we have a concrete problem that falls into our framework: given a set of N
records, each consisting of an age attribute and a salary attribute, build an index such
that given a range on the age attribute, the index can return a quantile summary for
the salary attributes of the records whose age attributes are within the query range.
Following the construction in Section 2.3, we sort the N records by the age attribute
and partition them into fat leaves of size s,. We then build the binary tree 7 on top of
the fat leaves. Recall that for each internal node u, we need to construct summaries
of various sizes for records in the subtree rooted by u. The summary of size s., is
simply constructed by selecting and storing the ¢-quantiles together with their ranks,
for ¢ =c’¢,2¢’¢,...,1 — c’/¢. These summaries are stored separately from the records
and the binary tree 7, and we store a pointer pointing from u to the first summary.
Given a query range, the index finds the internal nodes that make up for the range, and
extracts the corresponding summaries from each node. By the analysis in Section 2.3,
we can merge them into one quantile summary of size O(s,). Finally, we add the records
in the fat leaves into the resulting summary and obtain a quantile summary for all
records within the query range. The quantile summary can be used to construct an
equidepth histogram to approximate the distribution of the salaries of all employees
in the query range. Figure 3 gives an illustration of a possible query result, where
each bucket contains approximately 20% of employees in the query range. The bucket

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:10 K. Yietal

Number of employees

0 70k 120k 160k 230k 330k salary
20% 40% 60% 80% 100% quantile

Fig. 3. An illustration of the equidepth histogram. The dashed line represents the actual data.

boundaries are thus the 20%-, 40%-, 60%-, and 80%-quantiles, and the area of each
bucket (rectangle) is the same.

2.4. Optimal External Memory Index Structure

In this section, we show how to achieve the O(logy N + s./B)-I/O query cost in ex-
ternal memory still with linear space. Here, the difficulty that we need to assemble
O(log N) summaries lingers. In internal memory, we managed to get around it by the
exponentially decomposable property so that the total size of these summaries is O(s,).
However, they still reside in O(log N) separate nodes. If we still use a standard B-tree
blocking for the binary tree 7, for s, > B we need to access Q(log N) blocks; for s, < B,
we need to access Q(log N/log(B/s.)) blocks, neither of which is optimal. We first show
how to achieve the optimal query cost by increasing the space to superlinear, then
propose a packed structure to reduce the space back to linear.

Consider an internal node u and one of its descendants v. Let the sibling sets R(u, v)
and L(u, v) be as previously defined. In the following, we only describe how to handle the
R(u, v)’s; we will do the same for the L(u, v)’s. Suppose R(u, v) contains nodes wy, ..., w;
at depths dj, ..., d;. We define the summary set for R(u, v) with error parameter ¢ to be

RS(u, v, &) = {S(e, wy), S(cdﬁ_dle, wa), ..., S(cd‘_dle, w) }.
The following two facts easily follow from the exponentially decomposable property.
Fact 2.1. The total size of the summaries in RS(u, v, €) is O(s,).

Fact 2.2. The total size of all the summary sets RS(u, v, €), RS, v, ce), ..., RS,
v, cte) is O(s,).

2.4.1. The Indexing Structure. We first build the binary tree 7 as before with a fat leaf
size of s,. Before attaching any summaries, we block 7 in a standard B-tree fashion so
that each block stores a subtree of 7 of size ©(B), except possibly the root block, which
may contain 2 to B nodes of 7. The resulting blocked tree is essentially a B-tree on top
of N/s, fat leaves, and each internal node occupies one block. Please see Figure 4 for
an example of the standard B-tree blocking.

Consider an internal block B in the B-tree. We next describe the additional structures
we attach to B. Since there are O(N/(Bs,)) internal nodes, if the additional structures
attached to each B have size O(Bs,), the total size will be linear. Let 75 be the binary
subtree of 7 stored in B and let r;5 be the root of 73. To achieve the optimal query cost,
the summaries attached to the nodes of 75 that we need to retrieve for answering any
query must be stored consecutively, or in at most O(1) consecutive chunks. Therefore,
the idea is to store all the summaries for a query path in 7z together, which is the

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:11

O(log B)

o(B)

]

[

Fat leaf size: s.

Fig. 4. The standard B-tree blocking of the binary tree 7.

l I I I]RS(TB:U%CE)
] [I | RS (rp, v2,€)

|
ooocooooooooooooocooooooooooooo
() v

l l - l | RS (u,vy,¢€)

Fig. 5. The summaries attached to an internal block 5.

reason we introduced the summary set RS(u, v, ¢). The detailed structures that we
attach to B are as follows.

(1) For each internal node u € 75 and each leaf v in u’s subtree in 73, we store all
summaries in RS(u, v, ¢) sequentially. '

(2) For each leaf v € 73, we store the summaries in RS(rz, v, ¢/¢) sequentially, for all
J =0,...,q. Recall that g is an integer such that s.., = O(1).

(3) For the root rz, we store S(c’¢,rg) for j =0, ...,q.

An illustration of the first and the second type of structures is shown in Figure 5.
The summary set RS(u, vy, ¢) forms the first type of structure for node u and its leaf vy,

and the summary sets RS(rg, vg, €), RS(rs, vg, ce), . .. form the second type of structure
for leaf vo.

The size of these additional structures can be determined as follows.

(1) For each leaf v € 73, there are at most O(log B) ancestors of v, so there are in total
O(Blog B) such pairs (u, v). For each pair we use O(s;) space, so the space usage is
O(s,Blog B).

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:12 K. Yietal

Type (1)
- RS(u,vp,¢)

u
<U()

Type (3)
Type (2

Ype () S(,“H?(:(11,47(1\5)
RE(ry, v, ¢ Ne)

S(wy, ¢tro=he
RS(TQ,’L‘Q.,C']"‘Z”MS) (wy, €)

Vs = a

Fig. 6. An illustration of the query procedure.

(2) For each leaf v € 75 we use O(s,) space, so the space usage is O(s,B).
(3) For the root rz, the space usage is O(s,).

Summing up these cases, the space for storing the summaries of any internal block
B is O(s,Blog B), namely, the type (1) structures are the bottleneck. Since there are
O(N/(Bs;)) internal blocks, thus the total space usage is O(N log B). Next, we first show
that these additional structures suffice to answer queries in the optimal O(logg N +
s¢/B) 1/Os, before trying to reduce the total size back to linear.

2.4.2. Query Procedure. Given a query range [q1, g2], let a and b be the two leaves
containing q; and qs, respectively. We focus on how to retrieve the necessary summaries
for the right sibling set R(u, a), where u is the lowest common ancestor of ¢ and b; the
left sibling set L(u, b) can be handled symmetrically. By the previous analysis, we
need exactly the summaries in RS(u, a, ¢). Recall that R(u, a) are the right siblings
of the left query path P(u, a). Let By, ..., B; be the blocks that P(u, a) intersects from
u to a. The path P(u, a) is partitioned into [+ 1 segments by these / + 1 blocks. Let
P(u, vg), P(ry, v1), ..., Pry, v; = a) be the [+ 1 segments, with r; being the root of the
binary tree 7 in block B; and v; being a leaf of 75,7 = 0, ...,l. Please see Figure 6
for an illustration. Let wy, ..., w; be the nodes in R(u, a), at depths dj, ..., d; of 7. We
claim that w; is either a node of 75, for some & € {0, ...,![}, or a right sibling of r;, for
some k € {0, ...,[}, which makes w; a root of some other block. This is because by the
definition of R(u, a), we know that w; is a right child whose left sibling is in some B;. If
w; is not in B;, it must be the root of some other block. Recall that we need to retrieve
S(c%=%g w;) fori = 1,...,t. We next show how this can be done efficiently using our
structure.

For the w;’s in the first block By, since we have stored all summaries in RS(u, vy, €)
sequentially for By (type (1)), they can be retrieved in O(1 + s./B) I/Os.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:13

For any w; being the root of some other block B’ not on the path By, ..., 3, since
we have stored the summaries S(c’¢, w;) for j = 0, ..., g for every block (type (3)), the
required summary S(c%~%eg, w;) can be retrieved in O(1 + s,4-4,,/B) I/Os. Note that the
number of such w;’s is bounded by O(logg), so the total cost for retrieving summaries
for these nodes is at most O(loggy N + s./B) 1/Os.

The rest of the w;’s are in By, ..., B;. Consider each B,k = 1,...,[. Recall that the
segment of the path P(u,a) in By, is P(ry, vz), and the w;’s in B;, are exactly R(ry, vz).
We have stored RS(ry, vi, ¢/¢) for By for all j (type (2)), so no matter at which relative
depths d; — d; the nodes in R(r:, v;) start and end, we can always find the required
summary set. Retrieving the desired summary set takes O(1 +s,s-4;,/B) I/Os, where d’
is the depth of the highest node in R(r, vz). Summing over all blocks 5y, ..., B, the total
cost is O(logg N +s./B) I/Os. Finally, we scan all the records in the fat leaves a and b to
get all the remaining records in [g1, 2] not covered by the summaries retrieved above.
This takes O(1 + s./B) I/Os, which does not affect the overall asymptotic query cost.

2.4.3. Reducing the Size to Linear. The previous structure has a superlinear size
O(Nlog B). Next we show how to reduce its size back to O(NN) while not affecting
the optimal query time.

Observe that the extra O(log B) factor comes from the type (1) structures, where we
store RS(u, v, ¢) for each internal node u and each leaf v in «’s subtree in «’s block B.
Focus on one internal block B and the binary tree 73 stored in it. Abusing notation,
we now use 7, to denote the subtree rooted at u in 75. Assume 7, has height 4 in 73
(the leaves of 75 are defined to be at height 0). Our idea is to pack the RS(u, v, &)’s
for some leaves v € 7, to reduce the space usage. Let ; and u, be the left and right
child of u, respectively. The first observation is that we only need to store RS(u, v, ¢)
for each leaf v in u;’s subtree. This is because for any leaf v in u,’s subtree, the sibling
set R(u, v) is the same as R(u,, v), so RS(u, v, ¢) = RS(u,, v, ¢), which will be stored
when considering u, in place of u. For any leaf v in 1;’s subtree, observe that the highest
node in R(u, v) is u,. This means for a node w € R(u, v) with height i in tree 7, the
summary for w in RS(u, v, ¢) is S(c"*~l¢, w). Let ' be an internal node in u,’s subtree,
and suppose v’ has k;, leaves below it. We will decide later the value of &;,, hence the
height log £, at which «’ is chosen. We do the following for each «’ at height log &, in u;’s
subtree. Instead of storing the summary set RS(u, v, ¢) for each leaf v in u”’s subtree,
we store RS(u, v, ¢), which is the common prefix of all the RS(u, v, ¢)’s, together with
a summary for each of the nodes in u”’s subtree. More precisely, for each node w in u’s
subtree, if its height is i, we store a summary S(c" ¢, w). All these summaries below
u' are stored sequentially. A schematic illustration of our packed structure is shown in
Figure 7. The grayed subtree denotes the nodes whose summaries are packed together
in order to save space.

Recall that all the type (1) summary sets are used to cover the top portion of the query
path P(u, vg) in block By, that is, RS(u, vg, £). Clearly the packed structure still serves
this purpose: we first find the «’ which has vy as one of its descendants. Then we load
RS(u, v, ¢), followed by the summaries S(¢" =1, w) required in RS(u, v,). Loading
RS(u, v, ¢) still takes O(1 + s,/ B) I/Os, but loading the remaining individual summaries
may incur many, I/Os, since they may not be stored sequentially. Nevertheless, if we
ensure that all the individual summaries below %' have total size O(s,), then loading
any subset of them does not take more than O(1 + s./B) I/Os. Note that there are %; /2"
nodes at height i in «'s subtree, the total size of all summaries below «' is

logk
S Kh by
—Sch-i-1g. (1

o
=0

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:14 K. Yietal

One summary for each
node in u”’s subtree S(c%e,ws) S(ce, wy) S(e,wy)

Fig. 7. An illustration of our packed structure.

Thus it is sufficient to choose %, such that (1) is ®(s,). Note that such a %, always exists:2
when &, = 1, (1) is s.i-1, = O(s,); when £, takes the maximum possible value &, = 21,
the last term (when i = h) in the summation of (1) is s, so (1) is at least Q(s,); and
every time k;, doubles, (1) increases by at most O(s;).

It only remains to show that by employing the packed structure, the space usage for
a block is indeed O(Bs,). For a node u at height A in 73, the number of #”’s at height
log &, under w is 2"/ ky,. For each such v/, storing RS(u, , ¢), as well as all the individual
summaries below «/, takes O(s,) space. So the space required for node u is O(2"s,/ k).
There are O(B/2") nodes u at height A. Thus the total space required is

log B log B
0> 2./ -B/2"| = O > Bs./h |
h=1 h=1

Note that the choice of %, implies that
log &y, 1 h—-1 1
s./k, =0 Z Esch—i—le =0 (Z Eschils),
i=0 i=0
so the total size of the packed structures in 5 is bounded by

log B log Bh—1

Z BSS/kh < B Z Z lischﬂqs
h=1 =0 im0 2
logBh-1 4
=B)Y_) giser
h=0 i=0

2We define %, in this implicit way for its generality. When instantiating into specific summaries, there are
often closed forms for k. For example when s, = ©(1/¢) and 1 < ¢ < 2, b, = O(c").

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:15

log B logB 1
BY se) gy
1=0 h=i
log B
2B Z Scig
i=0
— O(Bs,).

THEOREM 2.4. For any (1/2)-exponentially decomposable summary, a database D of
N records can be stored in an external memory index of linear size so that a summary
query can be answered in O(logg N +s./B) I/Os.

IA

IA

Remark. One technical subtlety is that the O(s.) combining time in internal memory
does not guarantee that we can combine the O(log N) summaries in O([s./B]) I/Os in
external memory. However, if the merging algorithm only makes linear scans on the
summaries, then this is not a problem, as we shall see in Section 3.

3. SUMMARIES

In this section, we demonstrate exponentially decomposable properties for the heavy
hitters and quantile summary. Thus, they can be used in our optimal index in Sec-
tion 2.4.

3.1. Heavy Hitters

Given a multiset D, let fp(x) be the frequency of x in D. The MG summary [Misra
and Gries 1982] is a popular counter-based summary for the frequency estimation and
the heavy hitters problem. We first recall how it works on a stream of items. For a
parameter k2, an MG summary maintains up to % items with their associated counters.
There are three cases when processing an item x in the stream: (1) If x is already
maintained in the summary, we increase its counter by 1. (2) If x is not maintained
and there are fewer than % items in the summary, we add x into the summary with
its counter set to 1. (3) If the summary maintains % items and x is not one of them,
we decrement all counters by 1 and remove all items with 0 counts. For any item x
in the counter set, the MG summary maintains an estimated count fp(x) such that
fpx) — F1(D)/(k+1) < fp(x) < fp(x); for any item x not in the counter set, it is
guaranteed that fp(x) < F1(D)/(k + 1). By setting £ = [1/¢], the MG summary has
size |1/¢], and provides an additive ¢F1(D) error: fp(x) — ¢F1(D) < fp(x) < fp(x) for
any x. The SpaceSaving summary [Metwally et al. 2006] is very similar to the MG
summary except that the SpaceSaving summary provides an fp(x) overestimating
fpx): fpx) < fpx) < fp(x) + e F1(D). Thus they solve the heavy hitters problem.

The MG summary is clearly decomposable. We next show that it is also «-
exponentially decomposable for any 0 < « < 1. The same proof also works for the
SpaceSaving summary.

Consider ¢ multisets Dy, ..., D; with Fi(D;) < «' 1Fy(D;) fori = 1,...,¢. We set
¢ =1//a > 1. Given a series of MG summaries S(e, Dy), S(ce, Dy), ..., S(c!"te, Dy), we
combine them by adding up the counters for the same item. Note that the total size of
these summaries is bounded by

t—1

t—1 1
D s = X 752 = 01/2) = O
Jj=0 0

Jj=

In order to analyze the error in the combined summary, let f;(x) denote the true fre-
quency of item x in D; and f;(x) be the estimator of fj(x) in S(c/~'e, D;). The combined

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:16 K. Yietal

log N sorted lists |:| J

Fig. 8. An illustration of the merging procedure. The cost is bounded by the size of the largest summary.

summary uses 2321 fj(x) to estimate the true frequency of x, which is 25‘21 fi(x). Note
that

i) = fij@) = fix) — ¢/ eFy(D))

for j = 1,...,t. Summing up the first inequality over all j yields Z?=1 filx) >
Z;.:l fi(x). For the second inequality, we have

t t t
Y i) = Y fi@) = > I eF(D))
j=1 j=1

v

=1
! ¢ t o j-1
SDCEDY <ﬁ> eFy(Dy)
Jj=1 Jj=1
t t
> > filw) —eFi(D) Y (Vay !

Jj=1 J=1

t
= Y _ fix) — OFy(Dy)).

=1

Therefore the error bound is O(s F1(D;)) = O(e(F1(D1 & - - - & Dy)).

To combine the summaries, we require that each summary maintains its (item,
counter) pairs in the increasing order of items (we impose an arbitrary ordering if the
items are from an unordered domain). In this case, each summary can be viewed as a
sorted list, and we can combine the ¢ sorted lists into a single list, where the counters
for the same item are added up. Note that if each summary is of size s,, then we need to
employ a #-way merging algorithm and it takes O(s,¢ log#) time in internal memory and
O(%4 logyy,pt) I/Os in external memory. However, when the sizes of the ¢ summaries
form a geometrically decreasing sequence, we can repeatedly perform two-way merges
in a bottom-up fashion with linear total cost. Figure 8 provides an illustration of the
merging procedure. The algorithm starts with an empty list. Then at step i, it merges
the current list with the summary S(e;1_;, D;11-;). Note that in this process every
counter of S(e;, D)) is merged j times, but since the size of S(¢;, D)) is -, the total

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:17

running time is bounded by

~

J__o(Y)=
=0 (8> = 0(s,).

In external memory, we can use the same algorithm and achieve the O(s./B) I/O
bound if the smallest summary S(c!~le, D;) has size ﬁ > B; otherwise, we can take
the smallest £ summaries, where k is the maximum number such that the smallest &
summaries can fit in one block, and merge them in main memory. In either case, we
can merge the ¢ summaries in O([s./B]) I/Os.

=1

THEOREM 3.1. The MG summary and the SpaceSaving summary have size s, =
O(1/¢) and are a-exponentially decomposable for any 0 < o < 1.

3.2. Quantiles

Recall that in the ¢-approximate quantile problem, we are given a set D of N items
from a totally ordered universe, and the goal is to have a summary S(e, D) from which
for any 0 < ¢ < 1, a record with rank in [(¢ — &)N, (¢ + ¢)N] can be extracted. It is easy
to obtain a quantile summary of size O(1/¢): we simply sort D and take an item every
¢N consecutive items. Given any rank r = ¢ N, there is always an element within rank
[r —eN,r +eNJ.

We now show that quantile summaries are a-exponentially decomposable. Suppose
we are given a series of such quantile summaries S(eq, Dy), S(eg, Do), ..., S(g, D;), for
datasets Dy, ..., D;. We combine them by sorting all the items in these summaries. We
claim this forms an appr0x1mate quantile summary for D = Dy U --- U D; with error
at most Z 1&;F1(D;), that is, given a rank r, we can find an 1tem in the combined
summary Whose rank isin [r — Zi 18 F1(D)), r+ Zt 1&;F1(D))] in D. For an element
x in the combined summary, let y; and z; be the two consecutive elements in S(¢;, D;)
such that y; < x < z;. We define rmm(x) to be the rank of y; in D; and rj"**(x) to be
rank of z; in D;. In other words, rjmm(x) (resp. r}nax(x)) is the minimum (resp maximum)

possible rank of x in D;. We state the following lemma that describes the properties of
Inln(x) and r***(x).

Lemma 3.2. (1) For an element x in the combined summary,

t t t
Zr}nax(x) - Zr}“in(x) < Zstl(Dj).
j=1 j=1 j=1

(2) For two consecutive elements x1 < xg in the combined summary,
t t t
D o) = >) < Y e Fu(D)).
J=1 J=1 J=1

Proor. Since r}“ax(x) and r;“i“(x) are the local ranks of two consecutive elements in
S(ej, Dj), we have ri**(x) — r;mn(x) < ¢;F1(D;). Taking summation over all j, part (1)
of the lemma follows. We also note that if x; and xs are consecutive in the combined
summary, Jmm(xl) and rmm(xg) are local ranks of either the same element or two con-
secutive elements of S(s i, Dj). In either case we have rmm(x2) mln(xl) < g;F1(Dj).
Summing over all j proves part (2) of the lemma. 0O

Now for each element x in the combined summary, we compute the global minimum

rank r™(x) = Y =1 Jmm(x) Note that all these global ranks can be computed by

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:18 K. Yietal

scanning the combined summary in sorted order. Given a query rank r, we find the
smallest element x with r™(x) > r — Z i1 €jF1(D;). We claim that the actual rank of x

in Dis in the range [r — Y'_; £, F1(D)).r + Y__; £;F1(D;)]. Indeed, we observe that the

actual rank of x in set D is in the range [Y" -1 Jmm(x) o =1 ;“ax(x)], so we only need to

prove that this range is contained by [r — ZJ:1 ejF1(Dj), r+ ZF e;jF1(D;)]. The left side
trivially follows from the choice of x. For the right side, let x’ be the largest element

in the new summary such that x’ < x. By the choice of x, we have Z? 1 ;mn(x’) <

r— ZJ 1 £;F1(D;)). By Lemma 3.2, Wehavez 1rmm(x) ZJ 1 Jmm(x)<232 e;F1(Dj)

and Y. o T) — S -1 Jmm(x) < ZE: ¢jF1(P;). Summing up these three inequalities

yields Y rP®™(x) <r + Y'_; £, F1(D;), so the claim follows.

j=1Tj)
For a-exponentially decomposability, the ¢ datasets have Fi(D;) < o~'Fi(D;) for
i =1,...,t. We choose ¢ = 1/,/a > 1. The summaries S(e1, D1), S(ez, Do), ..., S(e, Dy)
have &; = ¢il¢. Therefore we can combine them with error

t t

)3 (%)H eF\(Dy)

Y I TleFi(D)) <
j=1 j=1
t
= eF(D)) (V)™
j=1
= O(eF1(Dv))

= O(eFi (D1 U---UDy)).

To combine the ¢ summaries, we notice that we are essentially merging k& sorted lists
with geometrically decreasing sizes, so we can adapt the algorithm in Section 3.1. The
cost of merging the ¢ summaries is therefore O(s,) in internal memory and O([s,/B])
I/Os in external memory. The size of combined summary is

t

1 1
j=

TuEOREM 3.3. The quantile summary has size s, = O(1/¢) and is a-exponentially
decomposable for any 0 < o < 1.

4. PRACTICAL INDEX STRUCTURES FOR SUMMARY QUERIES

Though being a nice theoretical result, our asymptotic optimal index in Section 2 suffers
from the following problems when it comes to practice. The simple index for subtractive
summaries is inherently static. For the optimal index for nonsubtractive summaries,
(1) it is too complex to be implemented, as it uses various complex packing tricks to
reduce the size of the structure to O(N); (2) the hidden constants in the big-O’s are quite
large (the size of the index is roughly 23N and the query cost is about 2logg N + 7s./B
1/0s); and (3) the index is static, although it might be theoretically possible to make it
dynamic, as hinted in Wei and Yi [2011], with some heavy data structuring machinery,
but the procedure will be highly complex and painful.

In view of these deficiencies, in this section, we present a simplified and practical
version of the index, which addresses all of these concerns while still has some theoret-
ical guarantees on its performance, albeit weaker than the optimal. We first describe
the static structure; later we show how to make it dynamic.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:19

4.1. The Static Structure

Our practical index structure will only make use of the decomposable property of
the summaries. It is conceptually very simple. We just build the binary tree 7 as in
Section 2 and attach an ¢-summary at each node of 7. For a given query range [q1, g2],
we locate the O(log N) dyadic nodes of 7 that make up the range and combine the
attached summaries together.

There are still some technical choices we have to make when it comes to actual
implementation. First, we decide not to build the binary tree 7 directly but to attach
the required summaries to the nodes of a B-tree. The rationale is that, most likely,
there is already a B-tree on the data (on the A, attribute) to support lookup, range
reporting, and aggregation queries, so we can reuse this existing index for summary
queries. Let [be the maximum number of records that can be stored in a leaf block of
the B-tree, and b the maximum branching factor of an internal block. Note that both
[and b are on the order of ®(B) but may differ by a constant factor depending on the
actual implementation of the B-tree blocks. The N data records are stored in the leaves
of the B-tree. Each leaf block stores between [/4 and [records; each internal block of the
B-tree has fanout between b/4 and b except the root, which may have 2 to b children.

At each internal block B of the B-tree, we store an extra pointer pointing to a separate
summary pool on disk where all the necessary summaries for this block are stored. In
the summary pool, we build a binary tree 7z on the < b children of 5, with each
leaf corresponding to a child of B. We attach an s-summary to each node u of 73,
summarizing all records stored below u, except if the number of records below u is
smaller than Bs., where 8 > 1 is a constant. If s, > B, each ¢-summary will occupy at
least one disk block, so we can store the summaries in the pool separately. If s, < B,
we pack multiple summaries into one disk block using the standard B-tree blocking so
that each block stores a subtree of 73 of height log(B/s,).

Assuming that the B-tree is already available, all the summary pools can be con-
structed efficiently in a bottom-up fashion. We first build the summaries at the bottom
of the binary tree 7; once the two children of a node have their summaries built, we
merge them into a summary for the parent. Note that there is a subtle, but critical,
difference between this merge and the merge when we talk about the decomposable
property of the summary. For the latter, the merged summary is required to be an
O(g)-summary (see the beginning of Section 2), and there may be a hidden constant in
the big-O. For linear sketches like the Count-Min sketch or the AMS sketch, this hid-
den constant is 1. But for many other summaries, like the heavy hitters and quantile
summary, the merged summary is actually a 2e-summary, that is, the error doubles
after the merge (this has also been noted as early as in [Munro and Paterson 1980]). If
we insist on getting an e-summary, the size of the merged summary must be the total
size of all the summaries being merged. Getting a doubled ¢ is not a problem for the
query procedure, because the merging there is a one-time operation. One can simply
rescale ¢ down by a factor of 2 beforehand to compensate. However, in our level-by-level
construction of the index, we need to carry out these merges repeatedly, and the error
will accumulate. Thus, we need a merge operation on the summaries that preserves
both the error and the size. For linear sketches like the Count-Min sketch or the AMS
sketch, this is trivially doable; we will show in Section 4.2 how this can be done for
heavy hitters and quantile summaries, which turns out to be crucial in the dynamic
index as well. To answer a query [q1, g2], we first search the B-tree for the two leaf
blocks a and b that contains g; and g, respectively. Then for each internal block on
the search path, we find the dyadic nodes in the corresponding summary pools that
make up the query range (see Figure 6 for an illustration) and combine their associated
g-summaries together by the decomposable property. If a dyadic node does not have an

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:20 K. Yietal

associated summary, that means its subtree contains less than Bs, records. In this case,
we go down to the leaf blocks of the B-tree to retrieve the actual records and insert
them into the summary. Finally, we scan the leaf blocks a and b to retrieve the records
there that fall into the query range and insert them into the summary.

Analysis. It should be quite straightforward to analyze the size and query cost of
this index. The total size of all the s-summaries in all the summary pools is at most
2N /B = O(N), since we only attach a summary to a binary tree node u if its subtree
contains at least fs, records, and there are 2IN/(Bs,) such nodes.

For the query cost, the initial search in the B-tree takes O(logy N) I/Os. Then we
retrieve and combine O(log N) summaries that make up the query range. If s, > B/2,
these summaries are stored in O((s./B)log N) blocks. If s, < B/2, then B/s, summaries
are packed in a block, which corresponds to a subtree of height log(B/s,). So the O(log N)
summaries that make up the query range are stored in O(log N/log(B/s,)) blocks.

Note that if a dyadic node does not have an associated summary, retrieving the actual
Bs, records will be the same as if there were a summary of size s,, with a constant-factor
difference. Thus, the parameter 8 controls the trade-off between the size of the index
and the query cost.

TuEOREM 4.1. Our practical index for summary queries uses linear space, answers a
query in O((s;/B)log N) I/Os for s, > B, and O(log N/log(B/s.)) I/ Os for s, < B. Given
a B-tree on the A, attribute, the index can be constructed in O(N/B) I/Os and linear
time.

4.2. The Dynamic Structure for Linear Sketches

We first consider the easy case when the summary is a linear sketch, a sketch that
is simply a linear transformation of the data frequency vector. The Count-Min sketch
and the AMS-sketch are both linear sketches. Linear sketches are nice in that they are
self-maintainable, that is, they support insertions and deletions without accessing the
underlying data.

In this case, it is relatively easy to make the index structure dynamic. To insert or
delete a record, we first do a normal insertion or deletion in the B-tree. Then we update
each summary that contains the record being inserted or deleted. There are O(log N)
such summaries, and they are stored in the summary pools attached to the O(logy N)
B-tree blocks on a root-to-leaf path. For s, > B, they can be updated in O(log N) I/Os;
for s, < B, they can be updated in O(log N/ log(B/s,)) I/Os.

As the structure of the B-tree will change as updates are performed, we also use
a dynamic binary tree 7z to organize the summaries in the summary pool attached
to each internal B-tree block. For reasons that will become clearer later, we choose to
use the BB(«)-tree [Baeza-Yates and Gonnet 1991]. The BB(«)-tree has the following
a-balance property: for any internal node u, the number of leaves in its either subtree
is at least a fraction of o of the number of leaves below u. It has been suggested to

use an o between 2/11 and 1 — +/2/2 ~ 0.29, and we choose o = 1/4. The a-balance
property ensures that a BB(«a)-tree with n nodes has height O(log n).

When a B-tree block B gets split, we also split its summary pool. When 73 is im-
plemented as a BB(«x) tree, splitting it is very easy: we just split at the root, and the
a-balance property trivially still holds for both subtrees of the root. See Figure 9. Next,
we insert a new child at B’s parent block. This corresponds to inserting a new leafin the
BB(«a)-tree 75, where B’ is the parent block of 55 in the B-tree. We may need to perform
a number of rotations in 7z to restore its «-balance property, while each rotation will
affect the corresponding summaries as well. There are a total of four cases of rotations:
two of them are shown in Figure 10, while the other two cases are similar. After each

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:21

% :‘ ,:; % :‘ .::
SN ;N AN AN
/ \ 4 \ / \ 4 \,
/ N S / N ,
/ N \ / S S

Fig.9. Block splitting in a BB(«) tree. The solid node was the root of the block to be split and is to be inserted
into the parent block after splitting.

a b c d
b o}

Fig. 10. Two cases of node rotation in BB(«) trees. The other two cases are symmetric. The solid nodes
indicate summaries to be recalculated after rotation.

rotation, we need to recompute one or two summaries, as shown in the figure. We can
recompute these summaries by merging the summaries at its two children.

After inserting a new child at 55/, it may in turn overflow, and needs to be split again.
In the worst case, all the O(logg N) B-tree blocks on a leaf-to-root path may get split,
but the amortized number of block splits per insertion is merely O(1/B) [Vitter 2008].

When two B-tree sibling blocks are merged, we also need to merge the corresponding
summary pools. This means that we need to merge two BB(«)-trees. To do so, we first
check if the a-balance property is still maintained if we simply create a new root and
take these two trees as its subtrees. If so, we only need to compute the summary at
the new root. If not, we rebuild the whole BB(«)-tree for the merged B-tree block.
Similarly, a merge of two B-tree blocks may cause repeated merges all the way up, but

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:22 K. Yietal

the amortized number of block merges per deletion is O(1/B) [Vitter 2008]. With some
standard amortization arguments, we obtain the following.

THEOREM 4.2. Our practical index for linear sketches supports insertion and deletion
of records in amortized O(log N + [s./B]) I/Os for s, > B, or O(log N/log(B/s.)) I/Os
for s, < B.

From Theorem 4.1 and 4.2, we see that there is little benefit of using an s, < B: the
index size is independent of s.; the query and update costs only get slight improvements
for s, « B, which also requires a careful packing of multiple small summaries. This
packing is particularly difficult to maintain as the tree 7z dynamically changes. We feel
that any benefit introduced by using an s, < Bdoes not warrant its additional overhead,
and thus, in our implementation, we will only use s, > B. We will also assume s, > B
in the rest of this article.

4.3. The Dynamic Structure for Heavy Hitters and Quantile Summaries

Unfortunately, most heavy hitters and quantile summaries are not self-maintainable
[Misra and Gries 1982; Metwally et al. 2006; Greenwald and Khanna 2001]; they
support only insertions but not deletions. Using terms from the streaming literature,
these summaries work only in the cash register model, but not the turnstile model
[Muthukrishnan 2005]. In addition, even to just support insertions, the summary size
often increases. For example, the quantile summary of the optimal size O(1/¢) supports
neither insertions or deletions. The GK summary [Greenwald and Khanna 2001] sup-
ports insertions but the size increases to O((1/¢)log N), with a fairly complicated struc-
ture and insertion algorithms. Note that the size increase is due to the need of extra
working space; the actual summary itselfin the final output still has size O(1/¢). There
are some randomized quantile summaries in the turnstile model [Gilbert et al. 2002;
Cormode and Muthukrishnan 2005], but their sizes are quite large, and they only work
when the data items are drawn from a fixed universe (thus will not work for floating-
point numbers). Letting u be the universe size, the best quantile summary in the turn-
stile model has size (assuming a constant failure probability) O((1/¢)log® uloglogw)
[Cormode and Muthukrishnan 2005]. Although logarithmic factors are usually toler-
able in theory, but in this case they cause major problems in practice: With the data
being 32-bit integers, log® u is 1,024, leading to a huge space blowup of the index.

Fortunately, our use of summaries is different from the streaming model in the sense
that the underlying data being summarized is in fact always available (it is stored in the
leaves of the B-tree), though it may be costly to access. Whereas in the streaming model,
the data is thrown away after passing through the sketch. This allows us to use a sum-
mary that is “almost” self-maintainable, that is, we can still access the underlying data
when necessary as updates are being handled, but of course we should do so only occa-
sionally. Another crucial feature in our setting is that we are maintaining many sum-
maries that form a hierarchical structure, as opposed to a single sketch in the streaming
model. Thus, information from one summary may be useful for other summaries, and
it is possible to exploit this interdependence to update the summaries more efficiently.

It turns out that a new quantile summary recently proposed by Huang et al. [2011]
serves our purpose well. As we will see in a moment, it is a summary that is self-
maintainable for most updates; only with a small probability do we need to access
outside information in order to maintain it. It is very simple, and has the optimal size
O(1/¢) with a small hidden constant. We first briefly describe this summary, then show
how to use it in our dynamic index structure.

4.3.1. The Quantile Summary. Let D be the dataset being summarized. The summary
simply consists of a list of (item, rank) pairs. For a probability p = ©(1/(¢|D|)), we

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:23

sample each data item in D with probability p into the list. For each sampled item, we
also store its rank in D (by the A, attribute). Recall that the rank of x is the number of
items in D smaller than x. Thus the summary has (expected) size s, = p|D| = O(1/¢).
To build the summary, we first sort D, and then make a scan. During the scan, we
sample every item with probability p into the summary, while its rank is simply its
position in the sorted list.

The summary can be used to answer two types of queries: item-to-rank queries,
and rank-to-item queries (i.e., finding quantiles). Given any item x, we can find its
approximate rank in D as

r(pred(x), D) + 1/p, if pred(x)exists;
0, else.

fx, D) = { (2)

Here, r(x, D) denotes the rank of x in D, and pred(x) denotes the predecessor of x (i.e.,
the largest item smaller than or equal to x) in the summary. It is shown in Huang et al.
[2011] that #(x, D) is an unbiased estimator of 7(x, D) with variance < 1/p?. It should
be emphasized that for this guarantee to hold, the queried item x should be picked
independent of the randomization within the summary.

The quantiles of D, which are what we really care about, can be found as follows. To
return the ¢-quantile of D, we simply find the item in the summary whose rank is closest
to ¢|D|. It is shown [Huang et al. 2011] that this will be an s-approximate ¢-quantile of
D with at least constant probability, and this constant can be made arbitrarily small by
increasing p by an appropriate constant factor. To find the item with the closest rank
to ¢|D|, one can do a binary search in O(log(1/¢)) time. But often we want to return all
the quantiles for ¢ = ¢, 2¢,3¢,...,1 — ¢ so as to get an approximate distribution of D.
In this case, we can scan the summary once to compute all of them, in just O(1/¢) time.

This summary can also be used to find the heavy hitters with error ¢ using the
standard reduction: for the heavy hitters problem, there is no ordering on the items,
but we impose an arbitrary ordering and break the ties using any consistent tie breaker.
Then we find the ¢-approximate ¢-quantiles for ¢ = ¢, 2¢, 3¢, ..., 1 — ¢. For any item x,
its frequency in D, fp(x), can be estimated by counting the number of these quantiles
that are the same as x, multiplied by ¢|D|. If all the quantiles are exact, this will give
us an estimate of fp(x) with error at most 2¢|D|. But since each of these quantiles may
be off by £|D| in terms of rank, this adds another error of ¢|D|. So we can estimate fp(x)
with error 4¢|D|. Rescaling ¢ can reduce the error to ¢|D| and thus solve the heavy
hitters problem.

Finally, we note that even if the rank of an item in the summary is not its exact rank
in D, but an unbiased estimator with variance at most (ce|D|)? for some constant c,
the preceding procedures still return the approximate quantiles and heavy hitters. In
particular, this simply adds (ce|D|)? to the variance of Equation (2)3, hence introducing
an additive ce error term, which can be compensated by rescaling ¢ beforehand. For this
reason, the summary is decomposable. Specifically, given the summaries for ¢ datasets
Dy, ..., D, that have been constructed pairwise independently, we can merge them into
a summary for D = Dy U --- U D; as follows. We first decide the sampling probability
p = ©(1/(¢|D))) for the merged summary, which must be smaller than the sampling
probability p; for each individual summary of D;. Then for each sampled item in the
summary of D;, we subsample it into the merged summary with probability p/p;. If
it is sampled, we need to compute its rank in D, which is the sum of its ranks in

3There is a technical condition for this to hold, that the estimator of the rank of any item x in the summary
must be independent of the sampling of all items in D that are greater than x, while it is allowed to depend
on the sampling decisions for items smaller than x. This condition is satisfied in all our uses of the summary.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:24 K. Yietal

Dy, ..., D;. Its rank in D; is already available, while its rank in D;, j # i, is estimated
using Equation (2) in the summary of D;. Thus, the variance of the estimated rank is

1 t
Y 5 =) 0(&lD;)?) < O(*(IDy| + - + | D)?) = O | D),
1<j<t,j#i Jj=1

as desired. Note that the merging can be done in time linear to the total size of the ¢
summaries.

4.3.2. Maintaining the Summaries in the Index. We will now see that this summary is an
“almost” self-maintainable summary that suits our needs. For cases when it cannot be
self-maintained, we exploit the fact that all the summaries stored in our index form a
binary tree 7. In particular, the dataset summarized at a node u € 7 is the union of
the datasets summarized by the two children of u. We define the weight of a node u
(summary)in 7 as the number of records stored below u (summarized by the summary),
denoted by w(u). For now we will assume that 7 is weight-balanced. More precisely,
this requires that, for any node u, the weight of its either child is at least a fraction of y
of w(w), for some constant 0 < y < 1/2. Clearly, this constraint can be easily met when
we build the index; we will show later how it can be maintained dynamically.

First, for a node u € T, the sampling probability p, at u will not always change as
w(u) changes; p, just needs to kept on the order of ®(1/(sw(w))). In our implementation,
we maintain the following invariant.

Invariant 4.1. Foranyue 7, sw(u)) e L

Initially, p, is set to Sw(u)

There are two more invariants that we maintain. During the updates, we will not
maintain the ranks of the sampled items in the summaries exactly, as that will be
costly. Instead, we make sure of the following.

Invariant 4.2. The rank of every sampled item in the summary at any node v € 7
is an unbiased estimator with variance at most (cew(uw))?, where ¢ is a constant that
depends on y.

Finally, we need the summaries to be pairwise independent unless they have an
ancestor-descendant relationship. This is needed for answering a summary query when
we merge O(log N) summaries together that correspond to the dyadic nodes of 7 that
make up the query range.

Invariant 4.3. For any two nodes u, v € 7 that have no ancestor-descendant rela-
tionship, the summaries at u and v are independent.

When we insert or delete an item x, we need to insert it into or delete it from all the
O(log N) summaries that contain x. These summaries are on a root-to-leaf path of 7,
and we update them in a bottom-up fashion.

Handling Insertions. Let us first consider insertions, and let x be the new item
inserted below a node u € 7. Recall that each item is sampled into the summary with
probability p,, so x should be sampled into the summary with probability p, as well.
If it is not sampled, the summary can be easily maintained: We simply increment
the ranks of all the existing items in the summary that are greater than x. If it is
sampled, besides updating the ranks of the existing items, we also need to compute
the rank of x. This is a case where the summary is not self-maintainable. To compute
the rank of x, we look at the summaries at the two children of u, denoted v; and ve,
since the rank of x at u is simply the sum of its ranks at v; and ve. If v; (respectively

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:25

vg) does not have an associated summary, that means the number of records below is
less than Bs,. In this case, we simply retrieve the < Bs, records from the B-tree and
compute the rank of x directly. Otherwise, we estimate its rank using Equation (2),
which gives an unbiased estimator with variance at most 1/ pfl (respectively 1/ pfz).
However, Equation (2) assumes r(pred(x), D) is an accurate rank. In our case, it may
also have been estimated from summaries further down. But by Invariant 4.2, it is an
unbiased estimator with variance at most (cew(v1))? (respectively (cew(v2))?). So the
estimated rank of x at u is an unbiased estimator with variance at most

1 1
— + (cew(w))® + = + (cew(va))*. (3)

V1 V2

To meet Invariant 4.2 for u, we need Eq. (3) to be no more than (csw(u))?. As the tree
is weight-balanced, we have

yww) < w(v) < (1 - plw(w) and yw(n) < wle) < (A — plw(w).

By Invariant 4.1 on v; and vg, we have

L < (ew(u)? and — < (ew(m)?,

Thus, Eq. (3) is at most

(eww)? + (cw(w2))? + (cew(1))? + (cew(vg))?
= &%(c® + D (w1 + w(v)?)

< &2 + D((yww)? + (1 — y)w@w)?) (maximized when most unbalanced)
= e2(c? + 1)1 — 2y + 2y D (w(w)™

So, it suffices to have (c? + 1)(1 — 2y + 2y2) =c2,ie.,c = ,/%ﬁi’;z.
Finally, after a number of insertions, w(x) may increase to a point such that p, > ﬁ(u),
violating Invariant 4.1. When this happens, we set p, < p,/2 and simply subsample

each item in the current summary with probability 1/2. Also, if # did not have a
summary, but w(u) has become fs,, we build a new summary at u.

Handling Deletions. Deletions are handled using similar ideas, though the detailed
procedures are different. When an item x below « is deleted, we also delete it from the
summary at u. If x is currently one of the sampled items in the summary, we delete it
from the summary. Then we decrement the ranks of the other items in the summary
that are greater than x.

After a number of deletions, w(u) may decrease to a point such that p; < m When
this happens, we will build a new summary for u from the summaries at v; and ve. The
new summary has p, = min{ﬁ(u), Duy» Du,}, Where v1 and v are the two children of w.

Since the tree is weight-balanced, w(vy) < (1 — y)w(w), which means that

1

ew(vy)
1 1

Z A ew@

Py = (by Invariant 4.1)

The same holds for p,,, so the new p, must satisfy Invariant 4.1 for u. Then we
subsample each item in the summary at v; into the new summary at u with probability
DPu/Pv,- If v1 does not have a summary, we scan the < s, records below u and sample

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:26 K. Yietal

each one with probability p,. For each subsampled item x, we estimate its rank in the
summary of ve using Equation (2). Then we add it to the rank of x in v; to become the
rank of x at u. We then perform the same subsampling for items in the summary of ve
and estimate their ranks in v;. Finally, when w(u) < s, after a deletion, we delete the
summary at u.

It remains to show that the newly constructed summary for u meets Invariant 4.2.
We will only consider an item x subsampled from v;; the same analysis works for items
from vy. The variance of the rank of x at u consists of three components: its original
variance at vy, which is at most (cew(v1))?, the estimation error from Equation (2),
which is 1/ pfz, and the variance of the rank of x’s predecessor at vy, which is (cew(ve))?.
Thus, the total variance is

(cewD)? + — + (cew(va)?,
V2
which is less than Eq. (3), so must be smaller than (cew(u))?, as desired.

Also note that this algorithm for building a new summary at u from those at v; and vy
is exactly the error-preserving merge operation needed for the bottom-up construction
of the whole index, as required in Section 4.1.

Finally, as we only consult the children of u when updating the summary at u,
Invariant 4.3 is automatically preserved.

4.3.3. Maintaining Weight Balance. Now, the only remaining task is to maintain the
weight balance of the binary tree 7 that organizes all our summaries. Recall that
we use a BB(«)-tree for 75 of each B-tree block, which is already weight balanced, so
we only need to make the B-tree itself weight balanced.

Weight-Balanced B-Tree. A weight-balanced B-tree is structurally the same as a
B-tree and differs only in the merge/split rules of the tree blocks. We define the weight
of a B-tree block B to be the number of records stored in the subtree below B. We store
and maintain the weight of each block B at B’s parent block. Thus we need to store
three fields for each child of an internal B-tree block: the routing key, a pointer, and
the weight.

To maintain the weight balance, we require a B-tree block at level i (the leaves are
at level 0), except the root, to have weight between 1/(36)" and I(3b)’; the weight of
the root is only subject to the upper bound but not the lower bound. We impose the
usual constraint that each internal block should have at most b children so that they
fit in one disk block. We no longer impose a lower bound on the fanout, but the weight
1017y
é(b% = %b lower bound. Note that the weight constraint
increases by a factor of %b every level, so the average fanout is %b. Such a B-tree is
called a weight-balanced B-tree. It was first proposed by Arge and Vitter [2003], but
to the best of our knowledge, it has not been implemented in practice yet, probably
due to a lack of application. Interestingly, it turns out this weight balance is crucial
for our purpose, as we have seen earlier. Our description of the weight-balanced B-tree
here is slightly different from Arge and Vitter [2003], with improved constants (e.g.,
the average fanout is ib in Arge and Vitter [2003]).

The leaf blocks of a weight-balanced B-tree are maintained in exactly the same way
as in a normal B-tree. Specifically, when a leaf block gets overflowed, it is splits into
two, each of weight %l (or %l + 1). When a leaf block underflows, we first try to merge
with one of its two siblings, if the merged block is not full; otherwise, we merge it with
a sibling, followed by an immediate split. In the latter case, each block from the split
must have weight between %l and gl .

constraint implicitly sets a

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:27

The internal blocks of a weight-balanced B-tree are maintained similarly. More pre-
cisely, there are the following four cases.

(1) When the weight of a block at level i is above the upper bound l(%b)i, we do a
iveilghi':-split of the block into two, so that each resulting block has weight at least
z1(5b).

(2) \3Nh2en the fanout of a block is more than b but its weight is within the limits,
we do a fanout-split of the block so that each resulting block has fanout %b. Note
that the weight of each resulting block is at least 11(2b)~1. 1b = 1I(3b), so it
satisfies the weight constraint.

(3.1) When an internal block has weight below A—i(%b)i, we first try to merge it with
one of two siblings, if the merged block has weight no more than l(%b)i.

(3.2) Otherwise, we merge it with a sibling, followed by an immediate weight-split. In
this case, each resulting block must have weight between %l(%b)i and gl(%b)i.

(More precisely, the weight must be between 3I(3b)' — (3b)~! and 2I(3b) +
I(1b)~1, since a child may have weight /(b)'~! and we cannot split a child.)

After an insertion/deletion in the B-tree, we perform these splits/merges of blocks in a
bottom-up fashion, for all blocks that either violate the weight or the fanout constraint.
After a split, we add one more child in the parent block; after a merge, we delete a child
in the parent block. When the root of the B-tree splits, we create a new root node, and
the B-tree height increases by one; when the root block has just one child, it is deleted,
and the B-tree height decreases by one.

Maintaining the Weight Balance of Tz. Recall that for each B-tree block B, we organize
its summary pool by a binary tree 73; all these small binary trees make up the entire
7. To make sure the 7 is weight-balanced, we also need each individual 75 to be
weight-balanced. Recall that each 75 is implemented as a a BB(«)-tree [Baeza-Yates
and Gonnet 1991], with the a-balance property that for any internal node u, the number
of leaves in its either subtree is at least a fraction of o of the number of leaves below
u. As we choose o = 1/4, this is equivalent to saying that the sizes of any two sibling
subtrees (in terms of the number of leaves in 73) differ by at most a factor of 3. Each
leaf of 75 corresponds to a child of B, while the weights of the children of B differ by
at most a factor of 4 by the weight-balanced B-tree, therefore the weights of any two
sibling nodes in 7z differ by at most a factor of 3 x 4 = 12.

When we insert or delete a child of 5, we also need to insert or delete a leafin 73, which
may result in the tree getting out of balance. Then we perform the necessary rotations
to restore the «-balance as in Figure 10, and recompute the affected summaries as
before, using the same merging algorithm in Section 4.3.2. Note that although the
two children of the new summary were not siblings in the tree before the rotation,
their weight still only differs by a constant factor as they share a common ancestor
within three hops. Thus the merging algorithm still works correctly, though it requires
a smaller y.

Whenever an internal B-tree block 5 splits into 5’ and B”, under cases (1) and (3.2),
we also need to split 73. We first check if splitting at the root of 75 satisfies the required
weight constraint. If so, we can split 75 easily. Otherwise, we rebuild two new trees
T and 7p+, from the children of 5’ and B”. During the rebuilding, we always try to
keep the subtrees as balanced as possible. When the tree is built, we compute all the
summaries in a bottom-up fashion. Similarly, when two B-tree blocks B’ and B” merge
under case (2) and (3.1), we also merge 7z and 75-. We first check if their sizes meet
the BB(«) tree constraint, if they are to become siblings. If so, we simply create a new

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:28 K. Yietal

root and put 7z and 7p as its two subtrees. Otherwise, we build a new tree from all
the children of the merged block.

Putting Everything Together. Now, everything has been in place for a dynamic index
for heavy hitters and quantile summaries. Here we give a brief review of the update
procedure and analyze its I/O cost.

(1) We first search down the B-tree and insert or delete it in one of the leaf blocks of
the B-tree. Along the way, we also increment or decrement the weights of all blocks
above (and including) this leaf block. This takes O(logg V) I/Os.

(2) In a bottom-up fashion, we update the O(log N) summaries that contain the newly
inserted or deleted item. These summaries are on a leaf-to-root path on the binary
tree 7. Updating each summary takes O(s./B) I/Os.

(8) Starting from the leaf block, we split or merge the B-tree blocks in a bottom-up
fashion to maintain the weight and fanout constraints as necessary. After each
split or merge of a B-tree block, we also split or merge the associated summary
pools. As there are O(B) summaries in a summary pool, and in the some cases, we
may need to rebuild them all, so it takes O(Bs./B) = O(s;) I/Os. However, one can
check that, for a B-tree block, its weight has to change by a constant factor before
another weight split/merge, so the amortized number of weight splits/merges per

update for a level i block is O(la)%f)' Summing over all levels, it is just O(1/B).
Also, the amortized number of fanout splits is still O(1/B), the same as in a normal
B-tree. Thus, the amortized cost for splitting or merging the summary pools is
O(s./B) I/Os.

(4) After a split/merge of the B-tree block, we insert/delete a child in its parent block.
This corresponds to inserting/deleting a leaf in the BB(«) tree in the parent block.
This insertion/deletion may lead to O(log B) rotations in the tree. Each rotation
requires recomputing one or two summaries, which takes O(s,/B) 1/Os.

Summing over all costs, we can conclude.

TuEOREM 4.3. Our practical index for heavy hitters and quantile summaries supports
insertion and deletion of records in amortized O(s,/B-log N) I/Os for s, > B.

5. EXPERIMENTS

We have implemented the index structure described in the previous section in C++.
The summaries we support include the Count-Min sketch, AMS sketch, heavy hit-
ters, and quantiles (the latter two are supported by the same summary described in
Section 4.3.1). Our index is fully dynamic, supporting both insertion and deletion
of records. We have also built a Web interface at http://i4dsq-demo.appspot.com to
demonstrate a subset of the functions supported by our index. In this section, we report
our experimental findings on the effectiveness and efficiency of our index structure.

5.1. Datasets
We used two real datasets for our experimental study.

The first dataset is the WorldCup98 dataset. It consists of 1.3 billion requests made
to the 1998 World Cup website. Each request consists of several attributes. We took the
time stamps of the request as the key (i.e., the A, attribute) for our index, and built the
summaries on the requested URLs (the A; attribute). There are about 90,000 distinct
URLs in total. They have been anonymized to distinct integers, which are called the
objectID. Each time stamp and objectID can be fit into a 32-bit integer. We used the

‘http://ita.ee.lbl.gov/html/contrib/worldcup.html.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:29

Table I. Parameters Used in the Experiments

B {1,2,4}
& 0.01 for Count-Min, 0.1 for AMS, 0.005 for quantile
Block size | 4096 bytes

Table Il. Stats about the Indexes

Data set WorldCup MPCAT-OBS
B 1 2 4 1 2 4
records 1,352,804,107 87,688,123
Block size (bytes) 4,096
leaf blocks 3,789,367 245,625
index blocks 56,558 3,666
summary blocks | 3,789,366 | 2,006,134 [891,615 | 245,624 [130,040 | 57,791

time stamp as the key and built heavy hitters, AMS and Count-Min sketch summaries,
respectively, on objectID.

The second dataset we used is the MPCAT-OBS dataset.’ It contains observation
records of minor planets submitted to the Minor Planet Center from Jan 26, 1802 until
Apr 27, 2012. We only used the optical observation records, and there are 87 million of
them. Each record includes attributes, such as time stamp, observatory, right ascension
(RA), and declination (Decl) of the planet.® We used the timestamp as the key, and built
summaries on the other three attributes, respectively. The observatories have been
mapped to 32-bit integers, upon which we built the heavy hitters, AMS, and Count-Min
sketch summaries. RA and Decl are stored as double precision floating-point numbers,
and we built quantile summaries on them.

5.2. Experiment Setup

The experiments were performed on a PC with 2G memory and a 3GHz CPU. The block
size was set to 4,096 bytes. We set the accuracy parameters appropriately (see Table I)
for various summaries so that a single summary fits in a block.

We also tested the index with different values of 8. Recall that 8 controls the trade-off
between the size of the index and its query efficiency: the larger 8, the smaller the index
becomes, but queries also take longer time. Table II lists some statistics about the size
of the indexes over the two datasets. Recall that our index is built on top of a B-tree. So
we first built a B-tree on these records (with time stamp as the key) with a load factor
of 70%. Then we constructed the all necessary summary pools and attach them to the
internal blocks of the B-tree. The total size of all the summaries is controlled by the
parameter f: it is roughly 1/8 of the B-tree size.

5.3. Use Cases

We first showcase a few example queries supported by our index on how they convey
much richer information about the records in the query range than simple aggregates
like count or average.

We built the index on the MPCAT-OBS dataset with the time stamp as the key.
Summaries were built on the observatory and right ascension attributes, respectively.
We tested four query ranges, as shown in Table III, where query length is the number of

Shttp://www.minorplanetcenter.net/iau/ecs/mpcat-obs/mpcat-obs.html.

6Right ascension (RA) and declination (Decl) are astronomical terms of coordinates, which are used in the
dataset to mark the location of the observed planets. RA ranges from 0 to 24 hours and Decl ranges from
—90 to 90 degrees.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:30 K. Yietal

Table lll. Queries

Start Date | End Date Length
Q1 | 1800.01.01 | 1900.01.01 | 9,993

Q2 | 1900.01.01 | 2000.01.01 | 4,827,585
Q3 | 2000.01.01 | 2100.01.01 | 82,850,545
Q4 | 1800.01.01 | 2100.01.01 | 87,688,123

Table IV. Top Observatories in Q1

Est. Est. True True
Observatory rank occurrences % | rank occurences % | Error
Leipzig (since 1861) 1 6.68 1 6.81 0.13
Vienna (since 1879) 2 6.18 2 6.34 0.16
U.S. Naval Obs., Washington (before 1893) 3 5.16 4 5.36 0.20
Arcetri Obs., Florence 4 5.11 5 5.15 0.04
Geocentric 5 4.93 3 5.36 0.43
Berlin (1835-1913) 6 4.70 6 4.83 0.13
Leiden 7 4.50 7 4.42 0.08
Marseilles 8 3.64 8 3.74 0.10
Kremsmunster 9 3.47 10 3.26 0.21
Hamburg (before 1909) 10 3.46 9 3.47 0.01

Table V. Top Observatories in Q2

Est. Est. True True
Observatory rank occurrences % rank occurences % Error
Lincoln Laboratory ETS, New Mexico 1 36.36 1 36.69 0.33
Steward Obs., Kitt Peak-Spacewatch 2 16.99 2 17.21 0.22
Lowell Obs.-LONEOS 3 7.18 3 7.32 0.14
European Southern Obs., La Silla 4 4.43 4 4.52 0.09
Palomar Mountain 5 4.08 5 4.14 0.06
Catalina Sky Survey 6 3.12 6 3.32 0.20
Haleakala-NEAT/GEODSS 7 1.88 7 1.75 0.13
Klet Obs., Ceske Budejovice 8 1.67 11 1.13 0.54
Caussols-ODAS 9 1.37 12 0.88 0.49
Peking Obs., Xinglong Station 10 1.35 10 1.22 0.13

records in the range. For each query range, the heavy hitters summary were extracted
on the observatory attribute, while the quantile summary were extracted on the right
ascension attribute. Note that the first three query ranges are disjoint, while Q4 is
the union of the first three queries, which is in fact the entire dataset. The lengths of
the four queries are significantly different (much more observations have been made
in this century), so as to see how they affect the accuracy of the returned summaries
(they should not).

Tables IV-VII reports the heavy hitters summaries for (Q1)—(Q4) on the observatory
attribute, namely, the observatories with the highest number of records. In the tables,
we give both estimated numbers of occurrences extracted from the summary, as well
as the true numbers, which we computed from the data directly. Recall that we are
actually using the quantile summary to estimate the occurrences, so an ¢ error in
the quantiles translates to an 4¢ error in terms of occurrences (see Section 4.3.1). In
practice, we see from the tables that the errors are well below the 4¢ = 3.2% guarantee.
Note that these errors are absolute errors; the relative errors could be high when the

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:31

Table VI. Top Observatories in Q3

Est. Est. True True
Observatory rank occurrences % rank occurences % Error
Lincoln Laboratory ETS, New Mexico 1 36.30 1 36.35 0.05
Mt. Lemmon Survey 2 12.96 2 13.68 0.72
Catalina Sky Survey 3 12.82 3 12.94 0.12
Steward Obs., Kitt Peak-Spacewatch 4 9.93 4 10.14 0.21
Lowell Obs.-LONEOS 5 6.23 5 6.05 0.19
Palomar Mountain/NEAT 6 5.06 6 4.70 0.37
Pan-STARRS 1, Haleakala 7 3.62 7 3.17 0.45
Siding Spring Survey 8 2.22 8 2.13 0.09
Loomberah 9 1.49 212 0.00 1.49
OAM Obs., La Sagra 10 1.28 10 1.40 0.11

Table VII. Top Observatories in Q4

Est. Est. True True
Observatory rank occurrences % rank occurences % Error
Lincoln Laboratory ETS, New Mexico 1 36.08 1 36.37 0.29
Mt. Lemmon Survey 2 12.77 2 12.93 0.16
Catalina Sky Survey 3 12.62 3 12.41 0.22
Steward Obs., Kitt Peak-Spacewatch 4 10.30 4 10.53 0.23
Lowell Obs.-LONEOS 5 6.48 5 6.12 0.37
Palomar Mountain/NEAT 6 4.44 6 4.44 0.00
Pan-STARRS 1, Haleakala 7 3.06 7 3.00 0.07
Purple Mountain Obs., XuYi Station 8 1.65 12 0.73 0.92
Haleakala-AMOS 9 1.49 9 1.46 0.02
Siding Spring Survey 10 1.42 8 2.01 0.59

true occurrences are low, for which no guarantee is provided. Also, we observe from the
tables that the query length does not have any impact on the accuracy of the extracted
summaries, noting that the percentages reported are all with respect to the length of
the query range.

Next, we extracted the quantile summaries on the RA attribute for these queries. In
Figure 11, we plot both the quantiles in summary and true value-rank curve (i.e., the
cdf of the data distribution). We can see that the quantiles in the summary fit the real
data really well with almost negligible differences.

The reader is invited to check out our Web demo to play with more queries and see
how the system responds.

We will not demonstrate the effectiveness of the Count-Min and the AMS sketch.
Since they are linear sketches, the sketch returned by our index is exactly the same as
if the sketch would have been computed from the underlying data directly. They can
thus be used in exactly the same way as how they would have been used otherwise.
But these summaries will be included in our efficiency study of the index structure.

5.4. Baseline Solutions

Summary queries, such as those previously showcased, can also be answered by the
following two baseline solutions, which we also implemented for comparison.

Standard B-Tree. We simply build a B-Tree on the dataset to support range-
reporting queries. To obtain a summary, we retrieve all elements in the given range
and feed them into a streaming algorithm. For heavy hitters, we used the classical

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:32 K. Yietal

Real data
Returned quantiles

RA (h)

Query 1 Query 2

RA (h)

0 20 10 60 80 100 0 20 40 60 80 100
Rank (%) Rank (%)

Fig. 11. Quantiles of RA.

MG algorithm [Misra and Gries 1982], which has been shown to be one of the best
performers [Cormode and Hadjieleftheriou 2008]; for quantiles, we used the GK
algorithm [Greenwald and Khanna 2001]; the AMS sketch and the Count-Min sketch
are easily constructed in a streaming fashion. The error parameter ¢ used in these
streaming algorithms is set as in Table I.

Random Sampling. A random sample can be considered as a general-purpose sum-
mary that can be used for any estimation problem. For heavy hitters, we simply find
the heavy hitters in the sample (also using a streaming algorithm) and compute their
frequencies, which are unbiased estimators for their true frequencies in the whole
dataset. The same is done for quantiles. Note that, however, the Fy (self-join size) of
the sample is not an unbiased estimator of the Fy in the whole population; a more
careful formula needs to be used [McGregor et al. 2012; Bar-Yossef 2002].

For data stored in external memory, block-level sampling is always used to make full
use of a block access [Chaudhuri et al. 1998, 2004], namely, when we sample a block,
we put all elements in the block into the sample. To sample one block, one way is to
start from the root of the B-tree and follow the pointers downward until we reach a leaf
block. At each internal node, among all pointers within the query range, we randomly
pick one to follow. In our experiments, we used a more efficient implementation, where
all leaf blocks are stored consecutively on disk (which may not be true in reality due to
fragmentation). This way, we just need to do two root-to-leaf traversals in the B-tree to
identify the first and the last block of the query range. Then, for a desired sample size,
we randomly decide the locations of the blocks to be sampled, and then directly seek
these blocks in the location order. This not only saves multiple root-to-leaf traversals but
also improves access locality when the sampled blocks are consecutively stored on disk.

As we read the sampled blocks, we feed the records into a streaming algorithm to con-
struct the desired summary as in the standard B-tree method. However, since both the
sampling and the streaming algorithm will contribute errors, the error parameter ¢ for
the streaming algorithm used here is set to half of the values in Table I. So the sampling
method uses more memory at query time than the standard B-tree and our index.

The last but most crucial issue with the sampling method is how much we should
sample. This problem is easier if the sample is uniformly random but much more
difficult when block-level sampling is used. A naive approach is to just randomly pick

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:33

5000 400

" BTree mmmmm
Summary =2

" BTrec mmmmm

4000 Summary

300

3000
200
2000

1000 100

"TQA QA QA QA QA Qa
4=1 4 1 4

=2 8= 3 =2 15
WorldCup MPCAT-OBS

Fig. 12. Construction time (sec) for different summaries and different 8’s. Q and A stand for Quantile and
AMS, respectively.

one record from every sampled block, which gives out a uniformly random sample, but
this is obviously a big waste. In fact, the problem of determining the “quality” of all the
records in a sampled block so as to decide the right sample size for block-level sampling
is highly nontrivial and has received much attention in the literature. Prior work
has looked at the problems of histogram construction and distinct count estimation
[Chaudhuri et al. 2004, 1998], but not for the problems we are dealing with here (heavy
hitters, quantiles, and F»). To avoid using a suboptimal sample size determination
algorithm invented by us, we used in our experiments an ideal calibration process
that determines the right sample size for achieving a desired accuracy. More precisely,
we first answer the query using our index, measure how accurate it is, and then
gradually increase the sample size until the sampling method achieves (roughly) the
same accuracy. Since the accuracy of the sample is measured by comparing with the
full query results, this calibration process is idealistic and expensive, but it obviously
does a better job than any realistic method that determines whether the sample is
already enough by looking at only the sampled records, as done in Chaudhuri et al.
[2004, 1998]. In reporting the query cost, we exclude this calibration process and only
measure the actual sampling cost after the ideal sample size has been determined. The
rationale is that this will expose the limit of the sampling method itself, assuming that
its prerequisite, the sample size determination problem, can be solved perfectly at no
cost.

It remains to describe how we measure the accuracy for various summaries in the
calibration process. For Fs, accuracy is measured simply by the (relative) difference
between the true F» and the estimated one. For heavy hitters, we find the true frequency
(as a fraction of the total query result size) of every distinct element and compute the
difference from its estimated frequency. Note that the estimated frequency could be 0,
when this element is not included in the summary at all. Then, over all elements, we
take the one with largest error. For quantiles, we extract the 1%-quantile, 2%-quantile,
..., 99%-quantile from the returned summary and see how far their true ranks in the
underlying dataset deviate from the required ones. From these 99 quantiles, we take
the one with the maximum error (i.e., largest deviation).

5.5. Construction Time

Figure 12 shows the times for constructing the indexes. Recall that our indexes are
built on top of a B-tree, and we recorded the time spent on building the B-tree and on
building the summary blocks separately. From the figure, we see that the extra time
spent on building the summary blocks is not much compared with building the B-tree
itself, which is needed for the two baseline solutions as well. The value of 8 affects the
construction time similarly as it affects the summary index size: the larger 8 is, the less
summaries need to be built, and hence the faster the construction process becomes.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:34 K. Yietal

Heavy hitters x Quantiles X F2 B
10° e e o
. - i —
@ 104 X L - O S S Lo
SR % Jo Qe ° AT 2 _mT
=} 103 5-:—.—" " [
=
102
10 I} s & a o a g 1a) =] a) = a8 o a
10~ 10° 10 10? 107 10° 10 10? 107! 10° 10! 10%
Range Length(10°)
10! T T T T T T T T T T T
Heavy hitters X Quantiles X F2 8
10° o T e
- - -
P _ - B @-mmree °© -
Z 107! x ° g e
2 anin TR B AR © [e
E 10 ¥ &
)
—3
10 o - & & al o =) a a 8
10 4 o al
107! 10° 10! 102 107! 10° 10! 102 107! 10° 10! 10?
Range Length(10°)
our method e e AU p—— sampling ---o.--

Fig. 13. Comparison of different methods in terms of query performance.

5.6. Query Performance

5.6.1. Comparison with Baseline Methods. We compare the query efficiency of our index
with the baseline solutions for achieving the same accuracy. We used the MPCAT-OBS
dataset for this set of experiments. The query ranges are on the time-stamp attribute
of different lengths. For the summary attribute, we used the observatory attribute to
compute the heavy hitters and Fy (using the AMS sketch), and the RA attribute to
compute the quantiles. For our method, we used the index with 8 = 2.

Figure 13 shows the performance of the three methods in terms of either I/O cost
or wall-clock time, as the query range varies from containing 0.2 million records to 87
million, which is the full dataset. Each point in the figure is the average of 30 queries of
the same length. We did not try ranges that are too small, since the primary application
domain of summary queries is data analytics on the scale; for small ranges, full results
can be retrieved and analyzed easily. We did not clear the cache (i.e., warm cache)
between consecutive queries, so as to simulate a real environment. Note that this only
affects the wall-clock time but not the number of I/Os performed by the algorithms.

Figure 13 left shows the results for heavy hitters. The standard B-tree obviously
incurs a high I/O cost, which is linear in the query range. The sampling method also
does poorly. For small ranges, it almost has to sample all the records in order to achieve
the same accuracy as our method. For large ranges, the proportion of data that needs
to be sampled reduces to about 1% of all the data in the range, which is still a fairly
large sample size. This is mainly due to the high correlation among the records within
a block, which is the case for most real datasets, so the sample obtained by block-level
sampling is far from a truly uniform sample. Compared with the sampling method,
our method is about 100 times more efficient, and the cost is quite flat across different
query ranges. In terms of wall-clock time, the gap is slightly smaller, since the two
baseline methods simply feed all data into a streaming algorithm (MG in this case),
which is very simple and efficient, while we need to merge the retrieved summaries
together.

Figure 13 middle shows the results for quantiles, which exhibits similar behavior
for all three methods, except that the sampling method performs even worse than for
heavy hitters. This is because the dataset is skewed, with a few heavy hitters of high
frequency. As long as the sampling method gets their estimations right, the error will
be low. On the other hand, for the quantile problem, we in some sense need a more

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:35

106

: Heavy hitters X Quantiles X F2)
10 s o T
UL o S o &
o] R S U e
o 10? *x X -
=
102 PR P PR S ° @ O O @ o
10t o & ¥e! a a o i) & & a o 2 a & a
1071 10° 10 10% 107! 10° 10 10? 107! 10° 10* 10%
Range Length(10°)
10" pr - - - - - - - T T T T
Heavy hitters X Quantiles X F2 B
10° X o e
PN X B —
g w'p e X B
] * X o
a2 10 -
@ mrmiee @ rm e e ere @ erme i kel
1073 NP e a © o o
o & 8 & & 8 B
10 4 e . £
10! 100 10" 102 107! 100 10" 102 107! 10° 10! 102
Range Length(10°)
our method @ B-tree ---x---- sampling ---o--

Fig. 14. Comparison on the randomly shuffled dataset.

uniformly good estimation for all quantiles, which is more difficult for the sampling
method.

Figure 13 right shows the results for estimating the Fy of the data in the query
range. Here we see that the sampling method almost has to sample all the data in the
range in order to give an accurate estimation. This agrees with the earlier result in
the non-indexing setting that sampling is not an effective way for Fy estimation [Alon
et al. 2002].

In these experiments, the sampling method performs poorly due to the high corre-
lation between the time stamp and the observatory attribute (for computing heavy
hitters), and also between the time stamp and the RA attribute (for computing quan-
tiles) in the MPCAT-OBS dataset. To explore the limit of the sampling method, we
generated another dataset by changing the time-stamp attribute to random numbers.
This effectively gives us a dataset with no correlation at all, so block-level sampling will
actually give us a truly uniformly random sample. This dataset is thus the best-case
input for the sampling method. Note that such a randomly shuffled dataset is not so
meaningful in reality, since the data distribution is essentially the same for any query
range. Anyway, the idea here is to see how sampling can do in its best case.

The results on the randomly shuffled data set are shown in Figure 14. We can indeed
see a substantial improvement of the sampling method, especially in terms of I/O cost,
which is essentially flat across all query ranges. This is consistent with the theoretical
analysis that a (truly uniformly) random sample of size O(; L log 1) suffices to estimate
the heavy hitters and quantiles with ¢ error, and this is 1ndependent of the underlying
data size. But still, even on this best-case data, the sampling method is outperformed by
our method. Finally, sampling still cannot estimate the Fy effectively on this randomly
shuffled dataset.

5.6.2. Query Scalability. To investigate the query performance of our index to the scale,
we conducted experiments on the WorldCup98 dataset, which consists of 1.6 billion
records. We issued 50,000 random queries and measured the I/O cost and wall-clock
time of answering these queries. For each query, the two endpoints of the query range
were randomly chosen from the dataset. Here, instead of just showing the average, we
plot the full results in the query length-cost space in Figure 15, in order to also see the
variation in performance. We did not test the baseline methods since they are too slow
on this large dataset.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:36 K. Yietal

60
50 F
40
30 F
20 F
10 |

1/0 Cost

100

80 x g=1 4 x ; g=2 4 B=4
60
40

Time(ms)

20

Query range length (10%)

Fig. 15. Query scalability.

From the results, we see that the query cost of our index is not significantly affected
by the query range. This agrees with the theoretical analysis that it depends only
logarithmically on the query range. Meanwhile, for a fixed query length /, depending
on the exact position of the query range boundaries, the query I/O cost may vary from
log (N/s:) +log (l/s.) to 2log (N/s.). This is why we see a band of different costs for the
same query length. As 8 increases, the query cost also increases, since with a larger 8,
we do not store summaries for shorter dyadic intervals. Thus, the query algorithm will
have to retrieve the raw data in these intervals. The situation of query time is similar.

5.7. Update Performance

To see how well our update algorithms work, we carried out the following update
operations. We used the WorldCup98 dataset for this set of experiments.

—Sequential Insertion. For a fixed random key, insert it 50,000 times to the index. Due
to the default tie-breaking rule, this results in 50,000 records inserted sequentially.

—Random Insertion. Insert 5,000 random keys to the data structure.

—Sequential Deletion. Randomly choose 50,000 consecutive keys in the index, delete
them one by one.

—Random Deletion. Delete 5,000 random keys from the index.

—Mixed Updates. Randomly choose 5,000 keys from the index. For each key, either
insert another copy or delete it, each with probability 1/2.

For each of the five batches of update operations, we repeated it three times, starting
from the same initial index, and report the average I/O cost and wall-clock time of all
the operations in Table VIII. In the table, we have separated the cost of updating the
B-tree and updating the attached summaries.

Recall that we use a weight-balanced B-tree, which adopts slightly different rules in
splitting/merging the nodes than the standard B-tree. In the experiments, we see little
effect of the new splitting/merging rules, since the cost is dominated by the root-to-leaf
traversal. For random insertions and deletions, the I/O cost is exactly 5, which is
equal to the height of the B-tree, meaning that no merging/split has ever happened
(recall that we used a load factor of 70% when we built the B-tree initially). Sequential
insertions/deletions are concentrated in one region of the B-tree, so merges/splits
did happen, but the additional I/O cost is insignificant. In fact, sequential inser-
tions/deletions incur less wall-clock time than random insertions/deletions, due to
much better access locality.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:37

Table VIII. Insertion and Deletion Performance on the Summaries and the B-Tree

#Block accessed Time (ms)

B=1|p=2 | p=4 | B=1| =2 | B=4
AMS Seq Ins 27.00 | 25.27 | 23.08 2.61 2.72 2.13
RndIns | 22.03 | 21.09 | 19.91 | 42.63 | 29.86 | 20.40
Quantile Seq Ins 28.83 | 26.66 | 25.34 2.37 2.70 2.19
Rnd Ins | 22.97 | 22.04 | 20.82 | 38.50 | 38.01 | 19.51

Seq Ins 5.02 0.76

B-Tree g dTns 5.00 12.63
AMS Seq Del 19.79 | 19.33 | 18.84 1.61 1.55 1.47
Rnd Del | 22.04 | 21.07 | 19.91 | 43.52 | 30.06 | 20.00
Quantile Seq Del | 20.04 | 20.00 | 18.78 1.83 1.48 1.38
Rnd Del | 22.03 | 21.08 | 19.91 | 37.85 | 37.67 | 21.56

Seq Del 5.03 0.82

B-Tree | gd Del 5.00 12.49
AMS Mixed 22.02 | 21.08 | 19.90 | 42.78 | 30.24 | 19.52
Quantile Mixed 22.51 | 21.56 | 20.39 | 38.48 | 35.39 | 21.24

B-Tree Mixed 5.00 12.56

The cost of updating the summaries is in general about four times the cost of updat-
ing the B-tree. This is because the summaries are organized in a binary tree, whose
height is about four times that of the B-tree. The I/O cost for sequential insertions is
slightly higher than that of random insertions, as splitting is more likely to happen
in the former case. On the other hand, the I/O cost for sequential deletions is slightly
lower than for random deletions. This is due to the fact, although the height of the
B-tree remains constant, the height of the binary trees 7z that organize the summaries
on a root-to-leaf path decreases as more sequential deletions are performed, which
means that less summaries need to be updated. In terms of wall-clock time, sequential
insertions/deletions are much faster than random ones due to access locality. We do
not observe any significant difference between the two summary types. Finally, as j
increases, the update cost decreases, as we have fewer summaries to update.

From these results, we indeed see a higher update cost of our index compared with
the baseline solutions, which only use a B-tree. However, considering the huge im-
provement over the standard B-tree and the (idealized) sampling method, our method
is still clearly the better choice for answering summary queries, especially for large
query ranges and when there are not too many updates to the dataset.

6. CONCLUSION

In this article, we presented both theoretical and practical indexing structures for
supporting summary queries efficiently. We have demonstrated that summary queries
contain much richer information about the query results than simple aggregates, and
believe that they will become a useful tool for large-scale data analytics. There are
many interesting directions to explore.

(1) One interesting theoretical question is if optimal indexing is also possible for
F5-based sketches like the AMS sketch. In fact, we can partition the data in terms of
F; so that the Fy-based summaries are also exponentially decomposable (in terms
of F3), but we meet some technical difficulties, since the resulting tree 7 is not
balanced.

(2) We have only considered the case where there is only one query attribute. In
general, there could be more than one query attribute and the query range could
be any spatial constraint. For example, one could ask the following queries.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

2:38 K. Yietal

(Q3) Return a summary on the salaries of all employees aged between 20 and 30
with ranks below VP.

(Q4) Return a summary on the household income distribution for the area within
50 miles from Washington, DC.

In the most general and challenging case, one could consider any SELECT-FROM-
WHERE aggregate SQL query and replace the aggregate operator with a summary
operator.

(3) Likewise, the summary could also involve more than one attribute. When the user
is interested in the joint distribution of two or more attributes, or the spatial dis-
tribution of the query results, a multidimensional summary would be very useful.
An example is as follows.

(Q5) What is the geographical distribution of households with annual income below
$50,000?

Note how this query serves the complementing purpose of (Q4). To summarize
multidimensional data, one could consider using multidimensional quantiles or
histograms, as well as geometric summaries, such as s-approximations and various
clusterings.

REFERENCES
P. Afshani, G. S. Brodal, and N. Zeh. 2011. Ordered and unordered top-k range reporting in large data sets.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.

P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi. 2012. Mergeable summaries. In
Proceedings of the ACM Symposium on Principles of Database Systems.

P. K. Agarwal and J. Erickson. 1999. Geometric range searching and its relatives. In Advances in Discrete
and Computational Geometry. American Mathematical Society, 1-56.

N. Alon , P. B. Gibbons, Y. Matias , and M. Szegedy. 2002. Tracking join and self-join sizes in limited storage.
J. Comput. Syst. Sci. 64, 3, 719-7417.

N. Alon, Y. Matias, and M. Szegedy. 1999. The space complexity of approximating the frequency moments.
J. Comput. Syst. Sci. 58, 1, 137-1417.

A. Arasu and G. Manku. 2004. Approximate counts and quantiles over sliding windows. In Proceedings of
the ACM Symposium on Principles of Database Systems.

L. Arge and J. S. Vitter. 2003. Optimal external memory interval management. SIAM J. Comput. 32, 6,
1488-1508.

R. A. Baeza-Yates and G. H. Gonnet. 1991. Handbook of Algorithms and Data Structures. Addison-Wesley.

Z. Bar-Yossef. 2002. The complexity of massive data set computations. Ph.D. Dissertation, University of
California at Berkeley.

K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. 2007. On synopses for distinct-value es-
timation under multiset operations. In Proceedings of the ACM SIGMOD International Conference on
Management of Data.

G. S. Brodal, B. Gfeller, A. G. Jgrgensen, and P. Sanders. 2011. Towards optimal range medians. Theor.
Comput. Sci. 412, 1, 2588-2601.

F. Buccafurri, G. Lax, D. Sacca, L. Pontieri, and D. Rosaci. 2008. Enhancing histograms by tree-like bucket
indices. VLDB J. 17, 5, 1041-1061.

S. Chaudhuri, G. Das, and U. Srivastava. 2004. Effective use of block-level sampling in statistics estimation.
In Proceedings of the ACM SIGMOD International Conference on Management of Data.

S. Chaudhuri, R. Motwani, and V. Narasayya. 1998. Random sampling for histogram construction: How
much is enough? In Proceedings of the ACM SIGMOD International Conference on Management of Data.

G. Cormode and M. Hadjieleftheriou. 2008. Finding frequent items in data streams. In Proceedings of the
International Conference on Very Large Data Bases.

G. Cormode and S. Muthukrishnan. 2005. An improved data stream summary: The count-min sketch and
its applications. JJ. Algorithms 55, 1, 58-75.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. 2002. Maintaining stream statistics over sliding windows. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

Indexing for Summary Queries: Theory and Practice 2:39

dJ. Gehrke, F. Korn, and D. Srivastava. 2001. On computing correlated aggregates over continual data streams.
In Proceedings of the ACM SIGMOD International Conference on Management of Data.

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. 2002. How to summarize the universe:
Dynamic maintenance of quantiles. In Proceedings of the International Conference on Very Large Data
Bases.

dJ. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
1997. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data Mining Knowl. Discov. 1, 1, 29-53.

M. Greenwald and S. Khanna. 2001. Space-efficient online computation of quantile summaries. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data.

J. Hellerstein, P. Haas, and H. Wang. 1997. Online aggregation. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data.

Z. Huang, L. Wang, K. Yi, and Y. Liu. 2011. Sampling based algorithms for quantile computation in sensor
networks. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. 2008. Scalable approximate query processing with the dbo
engine. ACM Trans. Datab. Syst. 33, 4.

A. Jgrgensen and K. Larsen. 2011. Range selection and median: Tight cell probe lower bounds and adaptive
data structures. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. 2007. Selecting stars: The k most representative skyline operator.
In Proceedings of the IEEE International Conference on Data Engineering.

A. McGregor, A. Pavan, S. Tirthapura, and D. P. Woodruff. 2012. Space-efficient estimation of statistics over
sub-sampled streams. In Proceedings of the ACM Symposium on Principles of Database Systems.

A. Metwally, D. Agrawal, and A. Abbadi. 2006. An integrated efficient solution for computing frequent and
top-k elements in data streams. ACM Trans. Datab. Syst. 31, 3, 1095-1133.

dJ. Misra and D. Gries. 1982. Finding repeated elements. Sci. Comput. Program. 2, 2, 143-152.

J. I. Munro and M. S. Paterson. 1980. Selection and sorting with limited storage. Theor. Comput. Sci. 12, 3,
315-323.

S. Muthukrishnan. 2005. Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical
Computer Science. Now Publishers.

H. Samet. 2006. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann.

N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. 2004. Medians and beyond: New aggregation tech-
niques for sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys’04). ACM.

Y. Tao, L. Ding, X. Lin, and J. Pei. 2009. Distance-based representative skyline. In Proceedings of the IEEE
International Conference on Data Engineering.

Y. Tao, G. Kollios, J. Considine, F. Li, and Papadias. 2004. Spatio-temporal aggregation using sketches. In
Proceedings of the IEEE International Conference on Data Engineering.

V. N. Vapnik and A. Y. Chervonenkis. 1971. On the uniform convergence of relative frequencies of events to
their probabilities. Theory Probab. Appl. 16, 2, 264—-280.

dJ. S. Vitter. 2008. Algorithms and Data Structures for External Memory. Now Publishers.

Z. Wei and K. Yi. 2011. Beyond simple aggregates: Indexing for summary queries. In Proceedings of the ACM
Symposium on Principles of Database Systems.

Received July 2012; revised March, July 2013; accepted July 2013

ACM Transactions on Database Systems, Vol. 39, No. 1, Article 2, Publication date: January 2014.

