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ABSTRACT
Large-scale matrix computation becomes essential for many
data data applications, and hence the problem of sketching
matrix with small space and high precision has received ex-
tensive study for the past few years. This problem is often
considered in the row-update streaming model, where the
data set is a matrix A ∈ Rn×d, and the processor receives a
row (1×d) of A at each timestamp. The goal is to maintain
a smaller matrix (termed approximation matrix, or simply
approximation) B ∈ R`×d as an approximation to A, such
that the covariance error ‖ATA−BTB‖ is small and `� n.

This paper studies continuous tracking approximations to
the matrix defined by a sliding window of most recent rows.
We consider both sequence-based and time-based window.
We show that maintaining ATA exactly requires linear space
in the sliding window model, as opposed to O(d2) space in
the streaming model. With this observation, we present
three general frameworks for matrix sketching on sliding
windows. The sampling techniques give random samples
of the rows in the window according to their squared norms.
The Logarithmic Method converts a mergeable streaming ma-
trix sketch into a matrix sketch on time-based sliding win-
dows. The Dyadic Interval framework converts arbitrary
streaming matrix sketch into a matrix sketch on sequence-
based sliding windows. In addition to proving all algorithmic
properties theoretically, we also conduct extensive empirical
study with real data sets to demonstrate the efficiency of
these algorithms.
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1. INTRODUCTION
Modern data sets, such as text documents, image data and

social graphs, are often modeled as large matrices [23–25,30].
Such data matrices are often huge in size and generated con-
tinuously, it is essential to process them in streaming fashion
and maintain an approximating summary. Matrix sketching
is a general technique for processing these matrices to reduce
the volume of data before a more refined analytic task is
performed, or to directly reveal information through Princi-
pal Component Analysis (PCA), k-means clustering, or La-
tent Semantic Indexing (LSI) [13, 17, 21, 25, 29, 35]. Most of
the matrix sketching work assume the row-update streaming
model. In this model, the algorithm receives a row of ma-
trix A ∈ Rn×d from time to time (n increases by one after
receiving a new row), and the goal is to maintain a matrix
sketch structure κ that is able to produce the approxima-
tion matrix B ∈ R`×d with only `� n rows, but guarantees
that BTB ≈ ATA for the covariance matrix ATA, i.e., B
approximates A well.

In many applications, however, streams are time-sensitive:
people are more interested in recent data than those in the
far past. The sliding window model [11] is the most promi-
nent and intuitive model to capture this essence. Inspired by
this observation, we study the problem of continuous track-
ing matrix sketch in the sliding window model. We consider
two types of sliding windows. A sequence-based window is
defined by the N most recent rows. For instance, an appli-
cation may restrict an analysis to the last million records
received by the system. On the other hand, a timestamp-
based window contains all rows that arrived within a fixed
time interval of length ∆ that covers the most recent ∆
timestamps. For instance, an application may restrict an
analysis to tweets that were posted within the last hour.

Motivations. A natural motivation for this problem, as
argued in [4, 27, 32], is based on the observation that the
sliding window model is a more appropriate model than
the unbounded streaming model in many real-world applica-
tions. It is particularly the case in the areas of data analysis
wherein matrix sketching techniques are widely used, since
in general one is not interested in gathering information from
outdated data for future predictions. For example, in a large
scale text data analysis, each row in the matrix corresponds
to a document (e.g. content of a tweet in twitter data) and
is associated with a timestamp (e.g. time that the tweet was
posted). A streaming matrix sketch is useful for analyzing
text data that starts at a particular time in history. How-
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ever, a far more interesting task would be analyzing tweets
posted for the recent time period, say last 24 hours, or ana-
lyzing most recent tweets, say last 100,000 tweets. To meet
such demands, we need a matrix sketch for a sliding window
of length 24 hours or 100,000 tweets.

A more subtle motivation is due to the hardness of track-
ing matrix exactly on a sliding window. In the unbounded
streaming model, a naive solution for the matrix sketching
problem is to maintain ATA with O(d2) space and O(d2)
time to process each update. This solution tracks ATA ex-
actly with efficiency comparable to matrix sketching, as long
as the data dimension d is not too large (e.g. less than 1000).
In the sliding window model, however, we show that it is not
possible to track ATA exactly unless we store all rows in the
matrix from the most recent sliding window. This result has
two impacts: 1. Sketching is essential for tracking approxi-
mation of matrices in the sliding window model, regardless
of the dimension of the data; 2. Matrix sketching over slid-
ing windows requires new techniques.

A concrete application: sliding window PCA. PCA
projects high dimensional data into a lower dimensional space,
and is widely used for dimensionality reduction, signal de-
noising, regression, visualization etc. One can use matrix
sketching to perform approximate PCA, by applying PCA
on the approximation B instead of the original matrix A [7].

One application of PCA is to detect changes and anoma-
lies in multidimensional data streams [31, 33]. In this con-
text, changes and anomalies are detected by comparing the
distribution of recent data with previous data. A typical
window-based solution is to extract a fixed reference win-
dow and to update a test window with newly coming data.
Changes or anomalies are detected by comparing the PCA
basis of data in the reference window to the test window.
Results in existing literature all assume that all rows in the
test window are stored in memory, and PCA is computed
via svd(singular value decomposition) over all rows in the
test window. This approach is inherently not scalable in ap-
plications where the window is too large to fit in memory,
or the rows in the stream are too fast to apply offline PCA
algorithms (or even streaming matrix sketches) on the whole
window. Sliding window matrix sketching allows us to ap-
proximate PCA on sliding windows with sub-linear space,
thereby giving us the ability to compute PCA for large test
windows in a continuous, online fashion.

Terminologies and notations. For a vector x ∈ Rn, we
let ‖x‖ =

√∑n
i=1 x

2
i denote the standard Euclidean norm

of x. For a matrix A ∈ Rn×d, we use ‖A‖ = max‖x‖=1 ‖Ax‖
denote the spectral norm of A, and ‖A‖F =

√∑n
i=1 ‖ai‖2

to denote the Frobenius norm of A, where ai is the ith
row of A. Intuitively, the squared spectral norm ‖A‖2 rep-
resents the maximum influence along any unit direction,
and the squared Frobenius norm ‖A‖2F represents the to-
tal “energy” of A. The singular value decomposition of A,
written svd(A), produces three matrices [U,Σ, V ] so that
A = UΣV T . U is a n × n orthogonal matrix that con-
sists of the left singular vectors [u1, u2, . . . , un], and V is
a d × d matrix with columns [v1, v2, ..., vd] being the right
singular vectors. Σ = diag(σ1, . . . , σd) is a n × d diagonal
matrix, where σ1 ≥, . . . ,≥ σr are the singular values of A
and r ≤ d is the rank. From the svd, we have the spectral
norm ‖A‖ = σ1, and the j-th singular value σj = ‖Avj‖.
We also let Ak be the best rank k approximation of matrix

A, specifically Ak = arg minX:rank(X)≤k‖A−X‖F . Note that

Ak can be computed by A = UkΣkV
T
k , where Σk is a diago-

nal matrix consisting of the largest k singular values, and Uk

and Vk denote the matrices consisting of the first k columns
of U and V , respectively.

We model a data stream as an infinite sequence S =
{(ai, ti) | i = 1 . . .∞}, where ai ∈ R1×d is a row of di-
mension d, and ti ∈ R denotes the timestamp of ai. For
time-based sliding windows, let ∆ be the window size ∆
and t be the current timestamp. We use the time inter-
val W = [t − ∆, t] to denote the rows in the window when
there is no confusion. We use NW and AW to denote the
number of rows and the matrix formed by all rows in win-
dow W , respectively; or simply use A to denote AW and
N to denote NW when there is no confusion. A sequence-
based window W is defined by window size N , which consists
of the most recent N rows. All-zero row is not allowed in a
sequence-based window. For reasons will become clear later,
we assume the squared norms of the rows in the window take
value from [1, R], that is, 1 ≤ ‖a‖2 ≤ R for all a ∈W .

Problem definition. Given window size ∆ for time-based
sliding windows (or N for sequence-based sliding windows)
and error parameter ε, the goal is to maintain a matrix
sketch κ such that at current time t, κ can return an approx-
imation B for A = AW , where the approximation quality is
measured by the covariance error, such that:

cova-err(A,B) = ‖ATA−BTB‖/‖A‖2F ≤ ε.
Covariance error can also be written as max‖x‖=1(‖Ax‖2−
‖Bx‖2)/‖A‖2F . Intuitively, covariance error guarantees that
‖Bx‖ preserves ‖Ax‖, the norm (or length) of A in any
direction x. For instance, when performing PCA on A, it
returns the top k orthogonal directions, measured in this
length. Thus by setting an error threshold ε, this bound
allows one to approximately retain all important directions.

Our contributions. This work aims at understanding the
sliding window matrix sketching problem and providing so-
lutions that are both theoretically sound and practically ef-
ficient. We first present two negative results to better un-
derstand the hardness of the problem. We show that:

(1) maintaining ATA exactly on a sequence-based sliding
window requires space linear to the sliding window. This
result demonstrates the fundamental difference between the
unbounded streaming model and the sliding window model.

(2) if the maximum norm of the rows in the window is
unbounded, it is not possible to maintain a sketch κ with
sub-linear space even we allow large covariance error. This
lower bound suggests that we need to limit the maximum
possible squared norm of all rows by a upper bound R in
order to derive interesting and efficient algorithms. But this
is ok in practice, since the largest squared norm for a row
of data in most matrix data in real-applications is indeed
bounded by some reasonable value of R [20, 21,25].

That said, we present three techniques for the sliding win-
dow matrix sketching problem.

• The Sampling algorithms maintain random samples of
rows with probabilities proportional to their squared
norms in the sliding windows. Our algorithms can gen-
erate randomly sampled rows both with and without
replacement, denoted as SWR and SWOR respectively.
The sampling algorithms work for both time-based and
sequence-based sliding windows.
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sketch κ update time sketch size cova-err ` window B ⊂ A? Need R?

Sampling (SWR) (d/ε2) log logNR (d/ε2) logNR (Expected) ≤ ε w.h.p. d/ε2 sequence & time X No
LM-FD d log εNR (1/ε2) log εNR ≤ ε 1/ε sequence & time × Yes
DI-FD (d/ε) logR/ε (R/ε) logR/ε ≤ ε 1/ε sequence × Yes

Table 1: Comparison of various sliding-window matrix sketches. “Update cost” denotes the cost for process-
ing a new row; “Sketch size” denotes the number of rows used by the sketch; “Cova-err” denotes the error
guarantee; “`” denotes the size of the final approximation B in terms of number of rows; “Window” indicates
which types of sliding windows the sketch works for; “B ⊂ A” indicates if the sketch is interpretable; “Need
R” indicates if the sketch needs to know the maximum squared norm R a prior.

• The Logarithmic Method (LM) converts a streaming
matrix sketch into a sliding window matrix sketch,
given that the streaming matrix sketch is mergeable [2].
It works for both time-based and sequence-based sliding
windows. We combine the LM framework with Fre-
quent Direction and obtain LM-FD.

• The Dyadic Interval (DI) framework converts an ar-
bitrary streaming matrix sketch into a matrix sketch
on sequence-based sliding windows. It has better error-
space tradeoff than LM methods when the maximum
squared norm in the window is small. We combine
the DI framework with Frequent Direction and obtain
a sliding window sketch DI-FD.

In the unbounded streaming model, it is possible to main-
tain B as the matrix sketch κ, e.g., the frequent direction
(FD) sketch [25]. In the sliding window model, this is diffi-
cult and our algorithms maintain a sketch κ that is queryable
and whenever κ is queried, it will be able to generate the ap-
proximation matrix B for the latest sliding window.

We analyze the behaviors of our algorithms with rigor-
ous theoretical analysis in Section 5, 6 and 7.1, and present
thorough experimental studies in Section 8 to verify the ef-
fectiveness of our methods in practice. All of our sketches
maintain a set of matrix rows that are not necessarily the
rows from A. They differ in: (1) how these rows are con-
structed, and (2) how these rows are stored and updated as
the window moves.

To describe the strength of each method, we select three
algorithms and present the theoretical results in Table 1.
The Sketch size is measured in terms of the number of rows
stored by each algorithm, and update cost is measured in
terms of the CPU cost. The sampling algorithms provide
sketches that are interpretable, which is a desirable prop-
erty in some applications [12, 14, 17]. On the other hand,
theoretical analysis and experimental studies suggest that
the LM-FD algorithm provides better approximation qual-
ity and faster processing time with the same space budget.
Finally, if we only work with sequence-based window, and
the norms of rows in the stream are bounded (e.g. all rows
are normalized and R = 1), the DI-FD algorithm is more
efficient than LM-FD and the sampling algorithms in terms
of the space usage. Note that the LM-FD and the DI-FD al-
gorithms must know the value R a prior, while the sampling
algorithms do not require the knowledge of R.

An appealing feature of our sketches is that they are in
fact very easy to implement and use in practice. However,
the analyses, including both error analysis and space com-
plexity, are nontrivial and quite involved for a general audi-
ence. Thus, we only present the main results and high-level
ideas of our constructions in the main text, while deferring
all details of the proofs and analyses to the appendix.

2. RELATED WORK
To the best of our knowledge, this is the first work on ma-

trix sketching in the sliding window model. There are two
classes of prior work that are relevant to our study: matrix
sketching algorithms in the unbounded streaming model,
and streaming algorithms in the sliding window model.

Streaming matrix sketching. Streaming matrix sketch-
ing approaches can be broadly divided into three categories.
The first approach is to find a small subset of matrix rows (or
columns) that approximate the entire matrix. This problem
is known as the column subset selection problem [12, 14, 17],
or in our model, the row subset section problem. A stream-
ing solution to the column subset selection problem is ob-
tained by iteratively sampling rows from the input matrix
with probability proportional to their squared norms. De-
spite this algorithm’s apparent simplicity, providing tight
bounds for its performance required over a decade of re-
search [15, 17]. We will refer to this algorithm as sam-
pling. The second approach is to randomly combine ma-
trix rows via random projection. Several results exist in
the literature, including random projections [34] and hash-
ing [1,8,38]. For details of these works, we refer to the survey
by Woodruff [39]. The third approach is the deterministic
matrix sketching technique [25] which adapts a well-known
streaming algorithm for approximating item frequencies, the
MG algorithm [28], to sketching a streaming matrix through
tracking frequent directions (FD). FD was extended to de-
rive streaming sketching results with bounds on relative er-
ror [20], and to monitor matrix approximation in distributed
setting [21]. We refer readers to recent work [19] for exten-
sive discussion and experimental study of various streaming
matrix sketching algorithms and their error bounds.

But as we explained earlier in Section 1, there are funda-
mental differences between streaming matrix sketching and
sliding window matrix sketching (as indicated by the huge
difference between the lower bounds of the exact algorithms
for the two problems). Hence, all these sketching techniques
cannot be directly applied to solve our problem.

Sliding window algorithms. As mentioned earlier, the
bulk of existing work on the sliding-window model has fo-
cused on algorithms for maintaining simple statistics, such
as count, sum, heavy hitters, and quantiles, in space and
time that is significantly sublinear (typically, poly-logarithmic)
in the sliding-window size. Exponential histograms [11] is a
state-of-the-art deterministic technique for maintaining ε-
approximate counts and sums over sliding windows. ECM-
sketch [32] extends exponential histograms to distributed
environment. Arasu and Manku [3] proposed an algorithm
that returns ε-approximate quantiles on sliding windows.
Various other queries were studied in the sliding window
model, including distinct elements [22], frequency count [27],
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top-k [32], skyline [37] frequent pattern mining [36]. We re-
fer interested readers to a survey by Cormode [9].

Random sampling over sliding windows is a line of work
that is more related to ours. In this problem, the goal is to
maintain a set of ` elements that is randomly drawn from the
window. Babcock, Datar and Motwani [5] were the first to
consider the problem, and they proposed an elegant solution
by combining priority sampling with the “successors list”
techniques. Since then this problem has received consider-
able attention [10,18]. Efraimidis and Spirakis [16] modified
the priority sampling algorithm to sample weighted elements
on an unbounded stream with probabilities proportional to
the weights. Longbo et. al. [26] considered the weighted
sampling problem over sliding windows. However, their sam-
pling algorithm does not provide samples with probabilities
proportional to the weights.

Finally, another independent related work is the sliding
window sbd [6], which computes the svd over a window slid-
ing through the rows of a matrix. However, it needs to store
all rows in the sliding window, hence, is not a sketch.

3. PRELIMINARIES
This section reviews matrix sketching algorithms on an

unbounded stream (i.e., streaming matrix sketching). Recall
that we adapt the row update model, in which the algorithms
receive n rows from a matrix A ∈ Rn×d one after another,
and the goal is to maintain a sketch κ that is able to produce
the approximation matrix B ∈ R`×d to approximate A with
only ` � n rows. The approximation quality is usually
characterized by the covariance error ‖ATA−BTB‖/‖A‖2F .

Row sampling. Sampling algorithms assign a probability
pi for each row ai proportional to its squared norm, and
elect ` rows from A into B. We have two ways for sampling
rows. In the sampling with replacement scheme, each row
ai is sampled with probability pi = ‖ai‖2/

∑
ak∈A

‖ak‖2 =

‖ai‖2/‖A‖2F . Intuitively, the squared norm of a row decides
its contribution to the frequent directions for the sliding win-
dow it’s in. To sample ` rows with replacement, we take `
independent copies of such random samples. Then we scale
each sampled row ai by a factor of

√
`‖A‖F /‖ai‖ to form

the matrix B. Note that there may be duplicated rows in
sampling with replacement scheme.

For sampling without replacement, we avoid sampling the
same row by excluding sampled rows from future selection.
More precisely, let Si be the set of the first i samples. The
(i+1)-th sample is selected from A\Si, and each aj ∈ A\Si

is sampled with probability ‖aj‖2/
∑

ak∈A\Si
‖ak‖2. Assum-

ing S is the set of sampled rows, we scale each sampled row

ai ∈ S by a factor of ‖A‖F /
√∑

ak∈S
‖ak‖2 to form the ma-

trix B. The row sampling schemes were analyzed in [15,21],
and it was shown that with ` = O( 1

ε2
log 1

ε
) samples, both

sample with and without replacement schemes achieve co-
variance error cova-err ≤ ε.
Priority sampling is a general technique for sampling rows
in the streaming model. For each row ai, we assign a ran-

dom priority ρi = u
1/wi
i , where ui is a number drawn from

(0, 1) uniformly at random. It was shown in [16] that row
ai takes the largest priority with probability pi = wi/w. To
sample ` rows without replacement, we simply maintain a
reservoir S that consists of the rows with top-` priorities.
Note that one can maintain top-` priorities with a priority
queue of size `. To sample ` rows with replacement, we

maintain ` independent priority samples, each consists of a
single sample.

Frequent direction. In this case, the sketch κ maintains
B directly, i.e., κ = B. To process each row ai, we first check
if there is an all zero row in Bi−1. If so, we replace the last
empty row of Bi with ai to form Bi. Otherwise, we perform
svd(Bi−1) = Ui−1Σi−1Vi−1. Let Σi−1 = diag(σ1, . . . , σd),
and λ = σ2

`/2 where σ`/2 is the `/2-largest singular value.
We set

Σi = diag

(√
σ2
1 − λ, . . . ,

√
σ2
`/2 − λ, 0, . . . , 0

)
,

and Bi = ΣiVi−1. Note that Bi has `/2 empty rows and
can accommodate `/2 future updates. Setting ` = ε/2, One
can show that FD achieves cova-err(A,B) ≤ ε using O(1/ε)
space and O(d/ε) amortized update time. An extension of
FD to derive streaming sketch results with bounds on rel-
ative error appeared in [20]. FD was also used to monitor
matrix approximation in distributed setting [21].

4. LOWER BOUNDS
In this section, we prove two lower bounds that character-

ize the sliding window matrix sketching problem. We note
that the lower bounds in this section will be described in
the number of bits used by the algorithms, while all the up-
per bound results (in the rest of the paper) are presented
in terms of number of rows used by the algorithms. This is
because for lower bound proofs, it is not reasonable to make
assumptions on how an algorithm stores its information. For
simplicity, we only present the high level ideas of the proofs,
and defer all details to the appendix.
A linear lower bound for exact sketching. We show
that maintaining ATA exactly on a sequence-based sliding
window requires Ω(Nd) space. Note that this is the space
we need to store A exactly in the sliding window. Recall
that in the unbounded streaming model, we can maintain
ATA with only d2 space, so this lower bound implies that
there is a fundamental difference between streaming model
and sliding window model for the matrix sketching problem.

Theorem 4.1 An algorithm that returns ATA for any sequence-
based sliding window must use Ω(Nd) bits space.

The proof of Theorem 4.1 relies on a reduction from the
INDEX problem in communication complexity theory. For
the details of the proof, please refer to Section B.1.
A linear lower bound for unbounded norms. The
next lower bound concerns with the norm distribution in
the sliding window. We show that if the maximum squared
norms of rows in the matrix is unbounded, then we need lin-
ear space for the matrix sketching problem, even a constant
covariance error is allowed.

Theorem 4.2 An algorithm that returns BW such that

Pr

[
‖AT

WAW −BT
WBW ‖ ≤

1

8d
‖AW ‖2F

]
>

1

2

for any sliding window W must use Ω(Nd) bits space.

We reduce the d-Majority INDEX Problem, a variation of
the INDEX problem, to the matrix sketching problem. For
the details of the proof, please refer to Section B.2.
Remark. By Theorem 4.2, we need to constraint the norms
in the window if we aim at sub-linear space. Throughout the
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paper, we assume the squared norms of rows in the stream
takes value from [1, R], that is, 1 ≤ ‖aj‖2 ≤ R for any aj in
the window. This is a mild assumption.

5. BASELINE: SAMPLING ALGORITHMS
In this section, we describe a framework for sampling ma-

trix rows on a sliding window. Our algorithms work for both
sequence-based and time-based sliding windows. Although
it is a fairly common setting in many matrix sketching works
to treat the sampling algorithms as the “baseline solutions”,
we would like to emphasize that sampling rows according
to their norms over sliding windows is actually a non-trivial
task. More over, analyzing the space and error bounds for
such algorithms also needs novel techniques.

5.1 Algorithm Description
Row Sampling With Replacement. We first show how
to sample a single row on a sliding window. Intuitively, we
make slight modification to the uniform sampling algorithm
on sliding windows [5] to support the row sampling schemes.

For each new row aj , we assign to it a priority ρt = u
1/‖ai‖2
t ,

where ut is a random number uniformly drawn from (0, 1).
By the analysis of priority sampling, we need to maintain
the top-1 row, that is, the row with largest priority in the
window. Simply storing the top-1 row is not sufficient, since
it will expire as the window moves. The idea is to maintain a
list of candidate rows, which are defined to be the rows that
could become the top-1 row in the future. More precisely, aj
is a candidate row if and only if its priority ρj is the largest
priority between its timestamp tj and current timestamp tc.

Algorithm 5.1 Update algorithm of SWR at time t

1: Remove all (aj , tj , ρj) in Q with tj < t−∆
2: if update = (at, t) then

3: Choose ut ∈ Unif(0, 1) and set ρt ← u
1/‖at‖2
t

4: while ρ < ρt do
5: (aj , tj , ρj) = Q.back
6: if ρ < ρt then
7: Remove (aj , tj , ρj)
8: Append (at, t, ρt) to the end of Q

For the query process, we find each sampled row aj and

rescale it back by a factor of
√

`‖aj‖
‖A‖F

. One technical issue is

that we are not able to track the exact value of ‖A‖F on a
sliding window. Recall that ‖A‖2F =

∑
a∈W ‖a‖

2, so track-
ing ‖A‖F is equal to the problem of tracking sum on sliding
windows, and is discussed thoroughly in [11]. We can main-
tain an exponential histogram to approximate ‖A‖2F with
additive error ε2‖A‖2F , such that we can approximate ‖A‖F
within (1+ε) factor. As shown in [11], this requires an addi-
tion space of O( 1

ε2
logNR). As we will show in the analysis,

this will not affect the approximation quality asymptotically.
We also note that in many real world applications it is possi-
ble to maintain the exact value of ‖A‖F by storing the norm
of each row in the window, which requires much less space
than storing the original rows.
Row Sampling Without Replacement. Recall that to
sample ` items without replacement in the streaming setting,
we need to maintain top-` rows, that is, the ` rows with
highest priorities. Consider a row aj with timestamp tj and
priority ρj . A simple observation is that if at is not a top-`
row in window [tj , t], it will never become a top-` row from

Algorithm 5.2 Update algorithm for SWOR at time t

1: Remove all (aj , tj , ρj , kj) in Q with tj < t−∆
2: if update = (at, t) then

3: Choose ut ∈ Unif(0, 1) and set ρt ← u
1/‖at‖2
t

4: for (aj , tj , ρj , kj) ∈ Q do
5: if ρt > ρj then
6: kj += 1
7: if kj > l then
8: Remove (aj , tj , ρj , kj) from Q
9: Append (at, t, ρt, 1) to the end of Q

this time forward. Therefore, we only need to store row aj
if and only if it is a top-` row in window from time tj to
current time t.

Algorithm 5.2 illustrates the pseudo code of sampling `
rows without replacement. We initiate a queue Q to store
the candidate rows and their priorities. For each candidate
row aj with timestamp tj , we also store its rank kj in window
between tj and current time t. At timestamp t, we first
remove all expired tuples (line 1). If there is a new row at

coming at time t, we first assign its priority ρt = u
1/‖at‖2
t

(line 2-3). We then scan the tuples in Q and update the
rank value kj for each tuple (aj , tj , ρj , kj) (line 5-6). If the
rank kj is larger than `, then we remove the tuple from Q
(line 7). Finally, we add the tuple (at, t, ρt, 1) to Q (line 8).

For the query process, we set w to the the square root of∑
ak∈S

‖ak‖2, the summation of squared norms of all sam-
pled rows. Then we find each sampled row aj and rescale it

back by a factor of
√

`‖aj‖
‖A‖F

to make up B. Here we will also

use an (1 + ε)-approximation of ‖A‖F from an exponential
histogram if the exact value of ‖A‖F is unknown.

5.2 Analysis
Note that Algorithm 5.1 and Algorithm 5.2 follow the

same framework as the uniform priority sampling algorithms
in [5]. The only difference is the way we generate the priori-
ties. However, this modification requires non-trivial analysis
on the space-error tradeoffs. In the following, we will state
the theorem and key lemmas, and defer all proofs in the
appendix.

We first show two Lemmas on the expected number of can-
didate rows in Algorithm 5.1 and Algorithm 5.2 for sampling
` rows. We assume the maximum window size is bounded
by N , and the squared norms of rows in the stream takes
value from [1, R].

Lemma 5.1 The expected number of candidate rows for Al-
gorithm 5.1 is O(logNR). Consequently, the expected num-
ber of candidate rows for sampling ` rows in SWR is bounded
by O(` logNR).

Lemma 5.2 The expected number of candidate rows to sam-
ple ` rows in SWOR is bounded by O(` logNR).

Recall that we need to sample ` = O( d
ε2

) rows to achieve ε
covariance error for both SWR and SWOR. Combining with
Lemma 5.1 and 5.2, we have the following space-error trade-
offs for the row sampling algorithms.

Theorem 5.1 The SWR and SWOR algorithms can return
an approximation B with error cova-err(A,B) ≤ ε using
O( d

ε2
logNR) space in expectation. The expected update times
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Figure 1: Running example for the LM-FD algo-
rithm

for SWR and SWOR are O( d
ε2

log logNR) and O( d
ε2

logNR),
respectively.

6. LOGARITHMIC METHOD
In this section, we present a general framework to con-

vert streaming matrix sketches into sliding window matrix
sketches. This framework is inspired by the notion of merge-
able summaries [2] and the logarithmic level idea of the well-
known Exponential Histogram [11]. In this section, we use
the Frequent Direction sketch as an example. We will show
how the logarithmic method framework can cope with other
mergeable sketches in the appendix.

6.1 Mergeability
Given two matrices A1 and A2 and their sketches B1 =

κ(A1, ε) and B2 = κ(A2, ε), mergeability states that we can
merge two sketches into a sketch for A = [A1;A2] without
increasing the size or the error. More precisely, recall that
we have cova-err(A1, B1) ≤ ε and cova-err(A2, B2) ≤ ε.
More over, the space usage for both sketches are bounded
by `, respectively. A matrix sketch κ is mergeable if there is
a merging algorithm such that B = merge(B1, B2) satisfies:

• The space usage for B is at most `;

• The covariance error cova-err(A,B) is at most ε.

Intuitively, if we can merge two sketches without increasing
their error or size, then the sketches are mergeable. Merge-
ability is a very strong property, and is widely used in sen-
sor networks and parallel computations. [2] focuses on sum-
maries on streams of single attribute data.

Liberty [25] showed that Frequent Direction is also merge-
able. Given two sketchesB1 = FD(A1, ε) andB2 = FD(A2, ε),
we set C = [B1;B2] be the matrix that contains the two
sketches B1 and B2 vertically stacked. We then run a sin-
gular decomposition on [B1;B2] = UΣV T , and let δ be the
square of the `-largest singular value, where ` = 1/ε. We
then subtract δ from all diagonal values in Σ2, and set all
negative values to be 0. Finally, we set B = ΣV T . Liberty
shows that the final sketch B can approximate A = [A1;A2]
with covariance error ε.

6.2 Algorithm Description
High Level Ideas. Figure 1 illustrates the high level
idea for the LM framework. Suppose we have a streaming
matrix sketch that achieves covariance error ε/2 with ` rows.
For simplicity, we assume that ` ≤ R; We will show how
to remove this assumption later. We divide the window
into levels of exponentially decreasing sizes. Each level is

further divided into b = Θ(1/ε) blocks. The block in the
leftmost level will have size roughly ε‖A‖2F , such that the
expiration of some of its rows introduces a covariance error
no more ε. We maintain a streaming mergeable sketch of size
`, for each block. For a query, we merge the sketches from
each block together into an approximation B of size `. By
mergeability, B approximates the matrix A with covariance
error ε/2. Finally, mergeability also ensures that we can
merge two sketches in level i into a sketch in level i + 1
without increasing the size, which is crucial for maintaining
the logarithmic structure.

Data Structures. We divide the rows in the window into
blocks, each covering a segment of non-overlapping consec-
utive rows. Each block B is associated with an streaming
sketch of size `, as well as the start time, the end time and
the size of B. We define the size of a block B to be the sum-
mation of the squared norms of the rows covered by B, that
is, B.size =

∑
a∈B ‖a‖

2. We further group the blocks into
levels of exponentially increasing sizes. Levels are numbered
sequentially 1, . . . , L, with the rightmost (most recent) level
to be level 1, and the leftmost (furthest) level to be level L.
We maintain two invariants:

1. Each level contains b− 1 or b blocks;
2. The size of a block in level i is between 2i−1` and 2i`.

Note that since each row carries a squared norm at least 1,
the second invariant ensures a block at level i covers at most
2i` rows. We define 3 states of the block: active, inactive,
expiring. An active block is one that receives updates ; an
inactive block is one that lies completely inside the window;
an expiring block is one that contains timestamp t−∆. See
Figure 1. We note that there are exactly 1 active block in
the sketch.

Algorithm 6.1 Update algorithm for LM (at time t)

1: Remove all blocks B in L[L] with B.end < t
2: if L[L] is empty then
3: Remove L[L] and set L← L− 1
4: if update = (at, t) then
5: Insert at to B∗.sketch
6: Set B∗.end← t and B∗.size← B∗.size+ ‖at‖2
7: if B∗.size > ` then
8: Append B∗ to L[1] and initialize an empty B∗ with

B∗.start = B∗.end = t
9: for i from 1 to L and L[i].length ≥ b+ 1 do

10: Find the rightmost blocks B1 and B2 in L[i]
11: Construct a new block B with B.sketch =

Merge(B1.sketch,B2.sketch)
12: Set B.start ← B1.start, B.end ← B2.end, and

B.size← B1.size+ B2.size
13: Append B to Li+1 and remove B1 and B2 from L[i]

Update algorithm. Algorithm 6.1 illustrates the pseudo
code of updating a LM sketch. Figure 1 use a running ex-
ample to demonstrate the update process. Consider a time-
based window of size 10. We set ` = 2 and d = 4 for the LM
sketch. At timestamp 25, we assume the sketch consists of
3 blocks, two from level 1 and one from level 2. We also as-
sume the active block B∗ is empty. Note that the rightmost
block start at time 15 and end at time 18. As the window
moves to [16, 26], a new row (0.5, 0, 1, 0) is inserted to the ac-
tive block B∗ (line 5-6 of Algorithm 6.1). Next, the window
moves to [17, 27]. The sketch receives a new row (1, 0, 0.5, 0)
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and insert it to B∗. Since B∗ is full, we move it to level 1
(line 5-6) and initialize a new active block (line 8). There
are 3 blocks in level 1, so we perform the merging algorithm
to the leftmost two blocks of level 1 to form a block of level
2 (line 10-14). Finally, when the window moves to [18, 28],
the rightmost block is expired and removed (line 2-3).

Algorithm 6.2 Query algorithm for LM (at time t)

1: Initialize B = B∗
2: for i from 1 to L do
3: for Each B in L[i] do
4: B ← Merge(B,B.sketch)

Query algorithms. The query algorithm for LM is straight-
forward, and is illustrated in Algorithm 6.1. We merge all
sketches in non-expiring blocks. Note that this is feasible
since we require all sketches to have the same size `.
Remark. Finally, we remove the assumption ` ≤ R. If
a newly received row at carries a squared norm ‖at‖2 ≥
`, we will maintain it as a single block in level 1. This
row will remain untouched until its block reaches level j =
log(‖at‖2/`), which is the first level with block size larger
than ‖at‖2. After level j, this row is treated as a common
row and is allowed to participate merging process. As we
shall see in the analysis, this will not affect the space or
time bounds for the LM framework.

6.3 Analysis
We analyze the error guarantees as well as space and time

complexity for the LM framework. We first prove a general
Theorem that relates the complexity for LM algorithm and
the streaming sketch used in each block. Then we inves-
tigate how a specific sketch can be integrate into the LM
framework. In particular, assume the squared norms in the
stream take value from [1, R], and the maximum window size
is N . We have the following Theorem for the space usage
and update cost of the LM algorithm.

Theorem 6.1 Suppose a mergeable matrix sketch κ achieves
cova-err(A,B) ≤ ε/8 with ` rows and update cost u in the
streaming model. If we use κ as the sketch for each block in
the LM algorithm and set b = 8/ε, we obtain a matrix sketch
that works on time-based sliding window with error guaran-
tee cova-err(AW , B) ≤ ε for any given window W . The
algorithm uses O( `

ε
log εNR) space and process an update in

O(u log εNR) time.

Proof. We first prove the error bound. Recall that the
error consists of two parts: the error from the expiration of
the expiring block in level L, and the error from the merged
sketch for the rows in unexpired blocks. By the construc-
tion of the LM framework, there are two possibilities for the
sketch in each block B in level i: if the size of B is between
2i−1` and 2i`, we maintain a streaming sketch for the rows
covered by B with size `. Otherwise, we know B covers a sin-
gle row with squared norm larger than 2i`, and we maintain
that row exactly. It follows that the size of a block B at level
i is always lower bounded by 2i−1`, and is upper bounded by
2i` unless it only covers a single row. In particular, consider
the level L−1. There are b block in this level, each with size
at least 2L−2`. Using the simple fact that the total size in
this level cannot exceeds ‖A‖2F , we have ‖A‖2F ≥ 2L−2b · `,
and thus

L ≤ log
‖A‖2F
`b

+ 2 ≤ log
ε‖A‖2F

2`
. (1)

The last inequality uses that b ≤ 8/ε. This suggests that
a block in the leftmost level L has size upper bounded by
2L` = ε‖A‖2F /2, unless it covers a single row. Since the ex-
piring block is at level L, if its size is smaller than ε‖A‖2F /2,
then the error contributed by it is bounded by ε‖A‖2F /2,
otherwise it covers a single row and introduces no error. For
the error from the merged sketch, we note that for each
block B in level i, if the its size is between 2i−1` and 2i`,
the B.sketch uses space ` and approximate B with error
bounded by (ε/8) · 2i`. Otherwise, the block covers a single
row and its sketch returns no error. Therefore the total error
returned by the merged sketch is bounded by

L∑
i=1

(ε/8) ·2i` · b ≤ ε2L+1`b/8 ≤ ε · (ε/2)‖A‖2F ·1/ε =
ε‖A‖2F

2
.

The last inequality is due to (1). Therefore, the error con-
tributed by the merged sketch is also bounded by ε‖A‖2F /2,
and thus the total covariance error is bounded by ε.

For the space complexity, we note that each block is main-
taining a sketch with size `. There are at most Lb blocks,
thus the total space usage is bounded by

Lb` ≤ log
ε‖A‖2F

2`
·8
ε
·` = O

(
`

ε
log

εNR

s

)
= O

(
`

ε
log εNR

)
.

Finally, for the update cost, note that each newly arriv-
ing row is inserted into the the sketch of the active block
with u1/` update time. Moreover, we have to merge the
leftmost two blocks for level i if the sum of squared norms
received since last merging process exceeds 2i`, for i =
1, . . . , L. To amortize this cost, we note that each row
is merged at most L times, each merge process takes u
time per row, so the amortized update cost is bounded by

Lu = O(u log
ε‖A‖2F

`
) = O(u log εNR).

Analysis for LM-FD. Recall that this algorithm uses the
FD sketch for each block in the LM framework. Recall that
given error parameter ε/8, the FD sketch uses ` = O(1/ε)
rows and process an update with u = O(d/ε) amortized cost.
By Theorem 6.1, FM-FD achieves cova-err ≤ ε with space
O( 1

ε2
log εNR) and amortized update cost O( d

ε
log εNR).

We note that the update time can be dramatically im-
proved with a simple modification. Observe that the active
block B∗ covers at most ` rows. Therefore, instead of main-
taining a FD sketch as B∗.sketch, we simply store the newly
receiving rows in B∗.sketch until its size exceeds `. This
will not affect the space-error tradeoffs for LM FD, but will
improve the amortized update cost to O(d log εNR).

Corollary 6.1 The LM-FD algorithm achieves cova-err ≤
ε with O( 1

ε2
log εNR) space and O(d log εNR) update cost.

7. DYADIC INTERVAL FRAMEWORK
In this section, we present another framework, termed

Dyadic Interval (DI), that converts a streaming matrix sketch
into a matrix sketch that works for sequence-based sliding
windows. This framework is more efficient (space-wise) than
the LM framework when the norms are small, and is capable
of converting an arbitrary stream sketch into a sliding win-
dow matrix sketch. We use the Frequent Direction sketch to
illustrate the framework in this section. We will show how
the Dyadic Interval framework can cope with other streaming
sketches in the appendix.
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Figure 2: Illustration for Dyadic Interval method

7.1 Decomposability
DI framework is based on the decomposability of stream-

ing matrix sketches. Intuitively, decomposability states that
if we divide the rows of a matrix into submatrices and con-
struct a sketch for each submatrix, we can concatenate these
sketches back together to form a sketch for the original ma-
trix. Note that decomposability is weaker than mergeability
since it does not require that sketch size to remain the same
after the merge, and thus is a weaker property. In fact, it
is easy to show that all matrix sketches with the covariance
error measure satisfy decomposability.

Lemma 7.1 (Decomposability) Given a matrix An×d, sup-
pose we decompose A into k sub-matrices A = [A1; . . . ;Ak],
in which Aj is an nj × d matrix. Suppose we compute a
matrix sketch for each sub-matrix Ai, denoted Bi, such that
‖AT

i Ai − BT
i Bi‖ ≤ εi‖Ai‖2F . Then B = [B1; . . . ;Bk] is an

approximation for A = [A1; . . . ;Ak] with error bound

‖ATA−BTB‖ ≤
k∑

i=1

εi‖Ai‖2F .

Proof. We observe that ATA =
∑k

i=1A
T
i Ai and BTB =∑k

i=1B
T
i Bi. Therefore we have

‖ATA−BTB‖ ≤
k∑

i=1

‖AT
i Ai −BT

i Bi‖ ≤
k∑

i=1

εi‖Ai‖2F ,

and the Lemma follows.

7.2 Algorithm Descriptions
High Level Ideas. The DI framework is inspired by the
dyadic interval structure of the sliding window quantile struc-
ture in [3]. The high level idea is illustrated in Figure 2. We
construct logarithmic number (denoted L) of levels, with
each level partitions the stream into dyadic blocks. A block
at the level i+ 1 contains two blocks at level i. It is easy to
see that a sliding window can be decomposed into 2L blocks,

with each level contributing at most 2 blocks. So if we main-
tain a streaming sketch for each block, we can concatenate
the 2L sketches to form an approximation B for the rows in
the sliding window, and the error is bounded by the decom-
posability property. A constraint for this dyadic structure is
that it does not allow the window to shrink or expand, and
thus only works for sequence-based sliding windows.
Data Structure. Suppose we have a streaming matrix
sketch κ that achieves covariance error ε/4 with `ε rows.
The notations of levels and blocks are slightly different from
the ones in Section 6. We set the number of levels to be
L = logR/ε. For each level, we partition the stream into
non-overlapping blocks, with block covers several consecu-
tive rows in the stream. At the bottom level L[1], we im-
pose a constraint such that the size of each block is between
NR/2L and NR/2L−1. We assume 2L ≤ N . Each block is
associated with the following information: the start and end
time and the size. We number the block in L[1] from old
to new. For a higher level i, we make sure that each block
covers exactly 2i blocks of level 1. In particular, a block in
level i covers block j2i to (j+1)2i−1 in level 1. This implies
that a block in level i is of size Θ(NR/2L−i). Since level 1
contains at most 2L blocks.

Following the same definitions as in Section 6, there are
3 states of the block: active, inactive and expiring. See
Figure 2. We note that there are exactly 1 active block
in each level. For the active block B∗ at level i, we run a
streaming sketch with error parameter εi = 1/(2iL). Once
the active block B∗ becomes full, that is, the size of B exceeds
`, the block becomes inactive. Note that this implies that an
inactive block in level i stores a sketch with error parameter
εi = 1/(2iL). To return a matrix approximation for the
current window, we combine the sketches of some active and
inactive blocks to determine the answer.

Algorithm 7.1 Update Algorithm for DI method

1: On receiving t-th update (at, t).
2: for i ∈ [L] do
3: Remove all blocks L[i].B[j] with B[j].end < t−N
4: Insert at to L[i].B∗.sketch
5: Set L[i].B∗.end← t
6: Set L[i].B∗.size += ‖at‖2
7: if L[1].B∗.size > NR/2L then
8: Set v ← number of trailing 0’s in L[i].length+ 1
9: for i ∈ [v] do

10: Mark L[i].B∗ as inactive and append it to L[i]
11: Initialize an empty L[i].B∗ with L[i].B∗.start =

L[i].B∗.end = t

Update algorithms Algorithm 7.1 illustrates the pseudo
code of updating a DI-based sketch. Figure 2 use a run-
ning example to demonstrate the update process. We use a
sequence-based window of size 10. The sketches consists of
2 levels. For each block at level 1, we set its maximum size
to be 2. Suppose at time 26, the sketch consists of 4 blocks
from level 1 and 2 blocks from level 2. We use red color to
mark the active blocks. Note that the active block of level
1 is empty. As the window moves to [17, 27], we insert the
new coming row (0, 1, 0) to the active blocks in level 1 and
2 (line 4 in algorithm 7.1). Next, as the window moves to
[18, 28], the leftmost block of level 1 is expired and removed
from the sketch (line 3). Then we insert the new coming row
(0, 0, 1) to the two active blocks (line 4). Since the active
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block of level 1 is full (the squared Frobenius norm ≥ 2), we
need to mark some active blocks as inactive. To do so, note
that the number of blocks in level 1 is 3, and the number of
trailing 0’s of (3+1=4) is 2. Thus, we set v = 2 (line 8) and
mark the active blocks in level 1 and 2 as inactive (line 10).
Finally, we initialize an new active block for each level (line
11). The final sketch at time 28 is showed in Figure 2.

Algorithm 7.2 Query process for DI method on window
(t−N, t]
1: Initialize a empty matrix B
2: Initialize a = t and b = t−N
3: Find the highest level v with at least 1 active block
4: for i from v to 1 do
5: Find the leftmost block L[i].B[j]
6: if L[i].B[j].end ≤ a then
7: Combine B with L[i].B[j].sketch
8: Set a = L[i].B[j].start
9: Find the rightmost block L[i].B[k]

10: if k = j then
11: Set b = L[i].B[j].end
12: else if L[i].B[k].start ≥ b and k 6= j then
13: Combine B with L[i].B[k].sketch
14: Set b← L[i].B[k].end

Query algorithm. Algorithm 7.2 illustrates the pseudo
code of returning a matrix sketch for window [t−N, t] with
a DI-based sketch. We initialize an empty matrix B (line
1) and two indicating timestamp a = t and b = t − N . As
the algorithm proceeds, the intervals [t−N, a] and [b, t] in-
dicate the rows that are not covered by B. We find the
highest level with at least one active block (line 3) and let
v denote this level. Then we start the following process in
a top-down fashion: at each level i, we find the left most
block, denoted L[i].B[j] (line 5), and check if it is in in-
tervals [t − N, a] (line 6). If so, we select it to make up
the window by combining B with its sketch L[i].B[j].sketch
(line 7). Then we update a to be L[i].B[j].start, meaning
that interval [t − N,L[i].B[j].start] is uncovered. Then we
find the rightmost block L[i].B[k] (line 9) and check if it is
the same block as L[i].B[j] (line 10). If so, we simply up-
date b to be L[i].B[j].end (line 11), meaning that interval
[L[i].B[j].end, t] is uncovered. If L[i].B[k] 6= L[i].B[j], we
combine B with L[i].B[k].sketch (line 13) and update b to
be L[i].B[k].end (line 14). The query algorithm will find at
most 2L blocks that make up the window.

7.3 Analysis
Similar to Section 6, we analyze the space and time com-

plexity of the DI framework based on the parameters of the
streaming sketch used in each block. Assume the maximum
weight in the stream is R, and the window size is N . We
have the following Theorem.

Theorem 7.1 Suppose a streaming matrix sketch κ achieves
cova-err(A,B) ≤ ε/4 with `ε space and uε update cost. By
using κ as the sketch for each block in the DI framework, we
obtain a matrix sketch that works on sequence-based sliding
window and gives error guarantee cova-err(AW , B) ≤ ε for

any given window W . The sketch uses O(R
ε

∑L
i=1(`1/(2iL)/2

i))
space and process an update in O(uεL) time, where L =
dlogR/εe.

Proof. We consider the error guarantee first. Recall that
the error consists of two parts: the error from the expiring

block in level 1, and the error from merging at most 2L
sketches. By the fact that each row carries a squared norm
at least 1 in the sequence-based sliding window, we have
‖A‖2F ≥ N , and thus the size of the expiring block in level
1 is bounded by NR/2L−1 ≤ εN/2 ≤ ε‖A‖2F /2. On the
other hand, a block at level i has size at most NR/2L−i,
and maintains a sketch with error parameter 1/(2iL), so a
sketch at level i introduces error at most 1

2iL
·NR/2L−i =

NR
2LL

≤ εN
4L

. Summing up all 2L sketches follows that the
error is bounded by ε/2. Therefore, the total covariance
error is bounded by ε.

For the space usage, each block at level i maintains a
sketch of size `1/(2iL), and there are at most 2L−i = 8R

2iε
blocks in level i. It follows that the space usage for level
i is bounded by 8R`1/(2iL)/2

i, and the total space usage is

bounded by O(R
ε

∑L
i=1(`1/(2iL)/2

i)) .
For the update cost, we need to update L active sketches.

This gives us a total update cost uεL.

Note that if κ provides probabilistic bound, that is, κ
achieves cova-err(A,B) ≤ ε with probability 1 − δ, then
DI(κ) also achieves cova-err(AW , B) ≤ ε for any given win-
dow W with probability 1− δ.
DI-FD. This algorithm uses Frequent Direction sketch for
each block in the DI method. Recall that given error param-
eter ε, the FD sketch uses `ε = O(1/ε) space and process an
update with uε = O(d/ε) amortized cost. By Theorem 6.1,
we have the following corollary:

Corollary 7.1 The LM-FD algorithm use O(R
ε

log R
ε

) space

and process an update with O( d
ε

log R
ε

) amortized cost.

8. EXPERIMENT
Algorithms. We implemented and compared the following
algorithms. Note that for all sketches, our theoretical anal-
ysis only shows a loose upper bound for the sketch size in
relationship to a desirable covariance error threshold ε, and
the bad bases that actually meet those loose upper bounds
almost never happens in real data sets. Hence, in practice,
the performance of theses sketches are always much better,
i.e., to meet an error threshold ε, they use much less space
than what the theoretical bounds have indicated. That said,
instead of setting a sketch’s size based on its theoretical up-
per bound using an error threshold ε, we set the sketch size
based on its structure and construction, as explained below,
and report the actual observed error err in relationship to
the actual size of various sketches.

(1) Baseline: Sampling algorithms. We evaluated SWR
and SWOR, the row sampling with/without replacement al-
gorithms, respectively. We also implemented a variation of
SWOR, denoted as SWOR-ALL, which makes use all the can-
didate rows for approximating A. The intuition for SWOR-
ALL is that since SWOR only returns a small portion of the
candidate rows as the random samples, and it is interesting
to see if the precision can be improved by using all the can-
didate rows in the approximation. All sampling algorithms
were evaluated on both sequence-based and time-based win-
dows. The space and error bounds were controlled by a
parameter `, the number of rows to be sampled. Note that
the size of a sampling sketch is larger than `, since it needs
to generate also candidate rows in order to construct B.

(2) Logarithmic Method based algorithms. We evaluated
LM-FD on both sequence-based and time-based windows.
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(a) SYNTHETIC (b) BIBD (c) PAMAP

Figure 3: average err vs. maximum sketch size.

(a) SYNTHETIC (b) BIBD (c) PAMAP

Figure 4: maximum err vs. maximum sketch size.

(a) SYNTHETIC (b) BIBD (c) PAMAP

Figure 5: update cost vs. maximum sketch size.

The space and error bounds were tuned by a parameter b =
1
ε
, the number of blocks in a level, and ` the size of the

approximation matrix B (number of rows in B). Note that
in LM-FD, each block simply stores a approximation matrix.

(3) Dyadic Interval based algorithms. We evaluated DI-
FD on sequence-based sliding windows. The space and error
bounds were set by the parameter L = log R

ε
, the maximum

number of levels in the dyadic interval structure. Note that
at the highest level, the streaming sketch has roughly `/2
rows, so that when B is constructed from all levels it has a
size of roughly ` rows.

(4) Best rank k approximation. We evaluated BEST(offline),
which is the best k-approximation for each sliding window.
Note that the error provided by the best rank k approxima-
tion is theoretical optimal if the number of rows used by the
sketch is bounded by k. It is not known how to compute
the best rank k-approximation in the streaming model, so
we compute BEST(offline) in an offline fashion.

Metrics. In the experimental study, we changed the param-
eters for each algorithm to show the the tradeoffs between
the sketch size, actual observed error err, and running time.

• Sketch size was measured in terms of the number of
rows stored for each algorithm for a sliding window.

This is the dominating part of the memory usage, and
is a common measurement for evaluating matrix sketch-
ing algorithms. Moreover, we measured the maximum
sketch size, that is, the maximum number of rows
stored over all appeared windows for an algorithm. For
the best k approximation BEST(offline), we set k with
various sizes and report its errors.

• For the approximation quality, we measured the max
error and the average error, the maximum and average
observed covariance error (err) over all appeared win-
dows, using the approximation matrix B constructed
by various algorithms.

• The update cost was measured by the average pro-
cessing time of one stream element (i.e., one matrix
row) for both sequenced based and time based win-
dows. Note that we do not report the update cost of
Best since it is an offline algorithm.

Setup. Since most of our sketches are randomized, we run
each algorithm over each data set 20 times, and took the av-
erage for each metric to report. All algorithms were imple-
mented in Python 2.7.6 using 32-bit addressing. The timing
experiments were executed on a single idle core of an Intel
Xeon E5-2620, clocked at 2.1 GHz.
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Data Set total rows n d N ratio R

SYNTHETIC 106 300 10,000 8.35
BIBD 319,770 231 10,000 1

PAMAP 198,000 35 10,000 90089

Table 2: Data Sets for sequence-based window.

8.1 Sequence-based sliding window
We first evaluate all 6 algorithms on sequence-based slid-

ing windows. We used two publicly available real data sets
and one standard synthetic data set in the experiment.

Data Sets. SYNTHETIC is the Random Noisy matrix that
has been commonly used for evaluating matrix sketching
algorithms [19, 25]. Please see section D for the generating
process. We generated a matrix with 300 columns and 1
million rows. All entries in SYNTHETIC are non-zeros.

BIBD1 is the incidence matrix of a Balanced Incomplete
Block Design from Mark Giesbrecht, University of Water-
loo. This data set is available from the University of Florida
Sparse Matrix Collection. It contains 231 columns and 319,770
rows, and 8,953,560 non-zero entries. Each entry is an 0 or
1 integer that indicates if an edge exists.

PAMAP2 is is a physical activity monitoring data set
which contains data of recorded with 8 subjects performing
14 different activities. The data set contains 45 columns, in-
cluding a timestamp, an activity ID and 43 attributes of raw
sensory data. In our experiments, we used a data of subject
1 with 198, 000 rows and 35 columns (removing timestamps,
activity IDs and columns containing missing values). We
note that the gap between two consecutive timestamps of
PAMAP is fixed to 0.5 second, so this data set can be easily
treated using a sequence-based sliding window.

Table 2 summarizes these data sets.

Results. We set window size to be N = 10, 000 for all data
sets. Figure 3 and 4 illustrate the the tradeoffs between the
max sketch size and the average error, and between the max
sketch size and the maximum error, respectively. Figure 5
shows the tradeoffs between the max sketch size and update
cost. We use the same color and line style for the same
algorithm across figures for better illustration. We make
the following observations:

(1) The performance of SWR and SWOR varies on differ-
ent data sets. A theoretical advantage of SWOR over SWR
is that it does not return duplicating rows, which is more
theoretically “representative”. Figures 3a and 3b show that
given the same space budget, SWOR provides smaller aver-
age error than SWR on SYNTHETIC and BIBD. Figures 4a
and 4b indicate the same for the maximum error. However,
we observe in Figures 3c and 4c that SWR provides smaller
error than SWOR on PAMAP.

(2) An interesting observation from Figure 4c is that the
maximum covariance error of SWOR increases with the max
sketch size on PAMAP, which is counter-intuitive. To elim-
inate the convolution effect from the sliding window struc-
tures, we located the window where the max error was achieved
(row 125,000 to row 135,000), and performed offline sam-
pling algorithms to the rows in that window. The results
is shown in Figure 6. We observe that the covariance er-
ror for SWOR indeed increases as we increase the number of
rows to be sampled. One possible reason is that SWOR is
not preferable when the distribution of the norms is skewed.
Consider an extreme case, in which the window consists of

1
http://www.cise.ufl.edu/research/sparse/matrices/JGD BIBD/bibd 22 8.html

2
http://www.pamap.org/demo.html

Figure 6: Covariance error vs. number of sampled
rows for offline SWR and SWOR on PAMAP

`− 1 rows with very large norms, and N − `+ 1 rows with
very small norms. If we were to sample ` rows, one small
row will be sampled and rescaled back according to ‖A‖2F .
This will over-emphasize the weight on this small row and
will introduce large error.

(3) Making use of all candidate rows in the SWOR algo-
rithm does not always give better error guarantee. While
Figures 3a and 4a suggest that SWOR-ALL indeed performs
better than SWR and SWOR on SYNTHETIC, the advan-
tage becomes less obvious on BIBD (Figures 3b and 4b).
Figure 3c shows that SWR or SWOR outperformed SWOR-
ALL by a large margin on PAMAP in terms of average error.
This can be explained by the fact that SYNTHETIC data
set is a random matrix, so a candidate row acts approxi-
mately as a random sample. On the other hand, BIBD and
PAMAP exhibit less randomness, so treating candidate rows
as random samples may hurt the precision of estimation.

(4) The performance of DI-FD and LM-FD depends on
the ratio between maximum squared norm and minimum
squared norms in the data set. Figures 3b and 4b show that
DI-FD achieves better error-space tradeoff than LM-FD on
BIBD, while Figures 3c and 4c show the opposite results on
PAMAP. Note that the ratio is 1 for BIBD, and is over 90,000
for PAMAP. This concurs with our theoretical analysis, that
is, DI-FD is preferable when the ratio is small, and LM-FD
is preferable when the ratio is large.

(5) Figures 3a and 4a show that for LM-FD, DI-FD and
SWOR-ALL , the error does not decrease as we increase the
space budget. Further investigation shows that by simply
returning B = 0 as an approximation, one can achieve co-
variance error 0.0338, and any further improvement over this
error may require very large space.

(6) Figure 5 shows that SWR was faster than SWOR on
all three data sets. This is due to the fact that SWOR has to
scan the queue Q to update the rank of each candidate row,
while SWR can terminate the scan process. Figure 5 also
suggests that LM-FD achieved the best performance in terms
of running time. This is as expected, since the update costs
for the LM-FD algorithm is bounded by O(d log εNR), while
the update costs for the DI-FD algorithm and the sampling
algorithms are polynomial in d/ε. We also note that unlike
the DI-FD and sampling algorithms, the running time for the
LM-FD has slightly decreased as we increase the sketch size.
This fits in the O(d log εNR), since by increasing sketch size,
we have effectively reduced the error threshold ε. Finally,
note that it takes 20+ ms to update the DI-FD sketch on
some data sets, which means it takes several hours to process
1 million rows.

8.2 Time-based sliding window
We used two real world data sets to for evaluating our

algorithms on time-based sliding windows.
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(a) RAIL (b) WIKI

Figure 7: average err vs. max sketch size.

(a) RAIL (b) WIKI

Figure 8: maximum err vs. max sketch size.

(a) RAIL (b) WIKI

Figure 9: update cost vs. sketch size.

WIKI is the text corpus built on the article dump of the
Sep 2015 version of English WIKIpedia3. We preprocessed
the data to remove the stop-words and insignificant articles.
We used words occurring at least 1000 times in the entire
corpus as features (columns), and selected articles with at
least 500 features as rows. The entry at row i and column
j is the tf-idf weighting of word j in article i. Each row is
associated with a timestamp, which is the time that this ar-
ticle is published. This matrix consists of 7047 columns and
68,319 rows. The timestamps of WIKI spans over several
years. We view one day as the time unit, set the window
size to be 578 such that on average there are approximately
10,000 rows in a window. The maximum number of rows in
a window is 62,125.

RAIL4 is the crew scheduling matrix for the Italian rail-
ways. The entry at row i and column j is the integer cost for
assigning crew i to cover trip j. This matrix contains 2586
columns and 923,269 rows, with 8,011,362 nonzero entries.
We added synthetic timestamps RAIL to create a time-based
stream that follows the Poisson arrival model, that is, the
timestamps of the updates follow Poisson distribution with
λ = 0.5. We set the window size to be 5,000 such that on
average there are approximately 10,000 rows in a window.
The maximum number of rows in a window is 10,347.

Figures 7 and 8 illustrate the the tradeoffs between the
max sketch size and the average error, and between the

3
https://en.wikipedia.org/wiki/WIKIpedia:Database download

4
http://www.cise.ufl.edu/research/sparse/matrices/Mittelmann/rail2586.html

Data Set rows n d ∆ NW ratio R
WIKI 68,319 7047 578 ≈ 10, 000 422.81
RAIL 923,269 2586 5000 ≈ 10, 000 12

Table 3: Data Sets for time-based sliding window.

sketch size and the maximum error, respectively. Figure 9
shows the tradeoffs between sketch size and update cost.
The results suggest that the performance of the sampling
and LM-FD on time-based windows is consistent with their
performance on sequence-based windows. Figures 7 and 8
show that LM-FD achieved the best error-space tradeoff, fol-
lowed by the two sampling algorithms.

Figure 9 shows that LM-FD outperforms the sampling al-
gorithms in terms of the update cost. This concurs with
the results for sequence-based windows. However, Figure 9b
suggests that the advantage of LM-FD is less obvious on
the WIKI data set. This is due to the fact that in English
WIKIpedia, articles are published more frequently in recent
time. Thus a fixed time interval many contain very few rows
at the beginning, and the queues in the sampling algorithms
may be relatively small and efficient to update.

8.3 Remarks
We conclude our experimental evaluations with a few re-

marks. In general, the sampling algorithms performs not
so well comparing to the DI-FD and the LM-FD algorithm.
However, the sampling algorithms provide the desirable prop-
erty that the final sketch is interpretable. Inside the family
of sampling algorithms, SWR is preferred over SWOR and
SWOR-ALL. We recommend LM-FD for other general an-
alytic task, due to its overall superior efficiency in terms
of both space and update cost, and to its applicability on
both sequence-based and time-based windows. Finally, if the
space efficiency is the main concern, the norms are strictly
bounded (e.g. normalized stream), and sequenced-based
window is used, DI-FD has the best performance.

We also note that the performance of our sketches is rel-
atively stable over time, which means the overall data set
size is not a critical factor in evaluating the performance
of our algorithms. What really matters is the ratio R be-
tween max row norm and min row norm in a sliding window.
That said, in practice, the sketch size of our design is typi-
cally much smaller than our theoretical bounds’ dependence
on R or logR (See the R value of PAMAP in Table 2). Fi-
nally, improving the update cost for the DI-FD algorithm is
an interesting open problem.

9. CONCLUSION
This paper gives the first treatment to the sliding window

sketching problem. We presented efficient algorithms for
both time-based and sequence-based windows, and explored
various constructions based on either sampling or embed-
ding streaming matrix sketches (such as frequent direction)
into a sliding-window data summary. We provided both
formal theoretical guarantees, in terms of update cost and
space–approximation error tradeoff, and extensive experi-
mental evaluations over a large collection of real and syn-
thetic data sets that have demonstrated the excellent per-
formance of our algorithms in practice. Directions for future
work include, but not limited to, deriving tighter theoreti-
cal bounds for some of our sketching algorithms, extending
them to handle distributed data, and understanding their
behaviors in different error metrics.
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APPENDIX
A. OTHER LM AND FD SKETCHES

In this section, we show how the Logarithmic Method and
Dyadic Interval frameworks can cope with other streaming
matrix sketches. In particular, we combine the random pro-
jection and Hashing algorithms with the DI framework to
obtain the DI-RP and DI-HASH algorithms, and the Hashing
algorithms with the LM framework to obtain the LM-HASH
algorithm.

Random projection. Let R be an `×n random projection
matrix such that each cell is a random value ri,j selected

from {−1/
√
`, 1/
√
`} uniformly. The approximation matrix

B is equivalent to the matrix RA. Note that B contains
the d columns of A randomly projected from dimension n to
dimension `. This is easily computed in a streaming fashion
with the following algorithm. On receiving the i-th row ai,
we construct a random vector r ∈ Rd×1 such that the j-th
entry r(j) of r is randomly selected from {−1/

√
`, 1/
√
`}.

Then we set B ← B + r · ai. By setting ` = d/ε2, RP
achieves covariance error cova-err(A,B) ≤ ε with space
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usage O(d/ε2) space and O(d2/ε2) update cost. For proofs
of correctness and space usage see [29,39]

Hashing. HASH is often used in practice by the machine
learning community and is referred to as “feature hashing”
or “hashing trick” [31] and we simply denote it as HASH.
For initiation, we choose a 2-wise independent hash func-
tion h : [n]→ [`] and a pair-wise independent hash function
g : [n] → {−1,+1}. Set S ∈ R`×n to be a random sparse
matrix with exactly 1 non-zero entry in each column. More
precisely, S satisfies sij = g(j) for i = h(j), and sij = 0
otherwise. The approximation matrix B equals SA. HASH
be be computed in a streaming fashion with the following
algorithm. On receiving row ai, we set the h(i)-th row of
B to be bh(i) ← bh(i) + g(i)ai. By setting ` = d2/ε2, HASH
achieves covariance error cova-err(A,B) ≤ ε with space us-
age d2/ε2 space and d update cost. For proofs of correctness
and space usage see [8, 39].

It is easy to see that HASH is mergeable under sliding
window model. Given two HASH sketches B1 = HASH(A1)
and B2 = HASH(A2) with the same error parameter ε and
the same hash function h and g, the merging algorithm
is merge(B1, B2) = B1 + B2. It is easy to see that C =
merge(B1, B2) is a HASH sketch for [B1, B2] with the same
error parameter and space.
LM-HASH. This algorithm uses the HASH sketch for each
block in the LM framework. Recall that given error param-
eter ε, the HASH sketch achieves cova-err ≤ ε/8 with high
probability using ` = O(d2/ε2) rows and u = O(d) update
cost. By Theorem 6.1, we have:

Corollary A.1 The LM-HASH algorithm achieves cova-err ≤
ε with high probability on any given window using O( d2

ε3
log εNR)

space and O(d log εNR) amortized update cost.

DI-RP. This algorithm uses the random projection sketch
for each block in the DI framework. Recall that given error
parameter ε, the PR sketch uses `ε = O(d/ε2) rows and
process an update with uε = O(d2/ε2) amortized cost. By
Theorem 7.1, we have the following corollary:

Corollary A.2 The DI-RP algorithm use O(Rd
ε2

log R
ε

) space

and process an update with O( d2

ε2
log R

ε
) amortized cost.

DI-HASH. This algorithm uses hash for each block in the DI
framework. Recall that given error parameter ε, the HASH
sketch achieves cova-err ≤ ε/8 with high probability using

`ε = O( d2

ε2
) rows and u = O(d) update cost. By Theo-

rem 7.1, we have the following corollary:

Corollary A.3 The DI-RP algorithm use O(Rd2

ε2
log R

ε
) space

and process an update with O(d log R
ε

) amortized cost.

B. PROOFS OF TWO NEGATIVE RESULTS

B.1 Proof of Theorem 4.1
We reduce the INDEX problem to the matrix sketching

problem. In an instance in the INDEX problem, a party Al-
ice receives an n-bit string x and another party Bob receives
an index i ∈ [n]. Alice sends some information to Bob, and
Bob computes the i-th bit of x using these information. The
communication cost of this problem is the number of bits
sent by Alice. It is easy to see that INDEX problem can be
trivially solved with O(n) communication cost by sending x

to Bob. A well-know lower bound in communication com-
plexity literature is that INDEX problem also requires Ω(n)
communication cost, which indicates that Alice essentially
has to send all bits of x to Bob. The lower bound also holds
for probabilistic protocol, that is, even if Bob is only re-
quired to compute the correct answer with probability 2/3,
the communication cost is still Ω(n).

The basic idea of the reduction is to set n = Nd, and
construct a row-update stream based on the instance in the
INDEX problem. We then show that if we have a matrix
sketch that uses o(Nd) space and maintains ATA exactly
on any window, then we can use this sketch to solve the IN-
DEX problem with o(Nd) communication cost. This would
contradict the communication lower bound of INDEX prob-
lem, which implies that we need Ω(Nd) space for the matrix
sketching problem in the sliding window model.

Proof of Theorem 4.1. Suppose there is a matrix sketch-
ing algorithm κ that tracks ATA exactly on a sliding window
with o(Nd) space. Given an instance of the INDEX problem
with bit string x and index i, Alice will construct a stream
A of size N as follow. She divides x into N chunks, such
that the j-th chunk x(j) is a bit vector of dimension d, for
j = 1, . . . , N . Then we let j-th row of A to be x(j).

Then, Alice runs the sketching algorithm κ on A, and
send the memory state κ(A) to Bob after all N rows are
processed. Given the index i, Bob will first compute k =
di/Ne and r = i−N(k−1). In other word, index i the entry
Ak,r. To compute the value of this entry, Bob will continue
running A with N new updates, with each update being
er+1 ∈ Rd is the (r + 1)-th unit vector. Let A(j,N + j − 1)
denote the matrix that is made up by row j to N + j −
1. Since κ can maintain ATA exactly, Bob can compute
‖A(j,N + j − 1)x‖2 = xTA(j,N + j − 1)TA(j,N + j − 1)x
exactly for any vector x, at the time of the j-th update.
In particular, Bob will compute yj = ‖A(j,N + j − 1)er‖2,
for j = 1, . . . , N . Since ‖A(j,N + j − 1)er‖2 is the sum
of the r-th column of A(j,N + j − 1), and the r-th column
has not been updated since Bob received it (all updates were

er+1), it follows that yj =
∑N−j+1

m=1 Amr, where Amr denotes
the entry of A at row m and column r. Therefore Bob
can recover xi by xi = Ak+1,r = yN−k − yN−k−1. This
proves that a sliding window matrix sketch that maintains
ATA exactly with o(Nd) space can be used to construct a
communication protocol to solve the INDEX problem with
sublinear space, which leads to a contradiction.

Remark. It is unclear if the Ω(Nd) lower bound holds for

ε > 1/d. In fact, for ε > 1/
√
d, there exists an O(N/ε2)

method as follows: We compute an AMS sketch Si of size
1/ε2 for each row Ai in the window. We can view Si as a
vector, such that

∣∣‖Si‖2 − ‖Ai‖2
∣∣ ≤ ε‖Ai‖2. This implies

that we can use Si to approximate Ai with additive error
ε‖Ai‖2. Hence, the total error for using S = [S1; . . . ;SN ]
to approximate the sliding window matrix A is bounded by
ε|A|2F . (due to the fact that ‖A‖2F =

∑N
i=1 ‖Ai‖2). So when

ε ≥ 1/
√
d, the lower bound in Theorem 4.2 does not hold.

It is unclear if the lower bound holds for 1/d < ε < 1/
√
d.

Proving an Ω(Nd) lower bound or coming up with a better
upper bound for this range is an interesting open problem.

B.2 Proof of Theorem 4.2
We reduce the d-Majority INDEX problem to sliding win-

dow sketching problem with unbounded norms. Setting n =
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Nd, the d-Majority INDEX problem is identical to the IN-
DEX problem with only one modification: if we divide the
bit vector x into N consecutive chunks, then each chunk
must contain at least a half of 1 bits. In other word, for
i = 1, . . . , N , at least d/2 bits in xi, xi+1, . . . , xi+d−1 are
1’s. We first show that the d-Majority INDEX Problem also
requires Ω(Nd) communication complexity to solve.

Lemma B.1 A one-way communication protocol that solves
the d-majority index problem must use Ω(Nd) communica-
tion cost, for d sufficiently large.

Proof. We reduce the d-majority index problem to index
problem. Assume that we have a communication protocol P
that solves the d-majority index problem with o(Nd) com-
munication cost, we will use it to solve the index problem
with sublinear communication cost. Given an instance of
the index problem, we can construct an instance of the d-
majority problem as follow. We set d sufficiently large and
divide x into n/d chucks, each of size d. Let x(j) denote
the bit vector corresponding to the j-th chuck. We notice
that the number of 1’s in x(j) is either larger than d/2 or at
most d/2. Alice will generate a new bit vector x′(j) such that

x′(j) = 1−x(j) if the number of 1’s in x(j) is more than d/2 ,

and x′(j) = x(j) otherwise. Alice will also generate a bit vec-

tor z such that zj = 1 if x′(j) = 1−x(j) and zj = 0 otherwise.

Finally, Alice will concatenate all x′(j) to generate a bit vec-

tor x′, and send P(x′) and z to Bob. Since x′ is an instance
of the d-Majority INDEX problem, Bob is able to figure out
the i-th component x′i of x′ using P(x′). Then Bob will re-
turn xi = x′i if zdi/de = 0 and xi = 1− x′i if zdi/de = 1. This
protocol correctly solves the INDEX problem using commu-
nication cost C(P) +O(n/d) = o(n/d ∗ d) +O(n/d) = o(n).
This contradicts with the Ω(n) communication complexity
lower bound for the INDEX problem.

Proof of Theorem 4.2. Assume that κ is a sliding win-
dow matrix sketch that uses o(Nd) space. Then for any
window W , κ cannot produce a matrix BW such that

Pr

[
‖AT

WAW −BT
WBW ‖ ≤

1

4d
‖A‖2F

]
>

2

3
.

We will show how to use κ to construct a communication
protocol that solves d-Majority INDEX efficiently.

Assume that x is an instance of the d-Majority INDEX
problem. Recall that x is a bit vector of size Nd divided
into N chucks, such that the i-th chuck x(i) is a bit vector of
size d, and consists of at least d/2 1’s. Alice will construct a
matrix A with N rows, such that the i-th row A(i) = x(i)/8

i,
where x(i) is the i-th chuck of x. Recall that x(i) is a bit
vector of size d, with at least d/2 1’s. Alice will run κ on A
and send the memory content κ(A) to Bob.

Given the index i, Bob will compute k = di/Ne and r =
i−N(k − 1) such that xi = 8kAk,r. To compute this entry,
Bob will continue running κ with N new updates, with the
(N + j) − th update being er+1/8

N+j , for j = 1, . . . , N .
We let Ak denote the matrix that is made up by row k to
N + k − 1. Since κ can provide an approximation B for Ak

with error guarantee

Pr

[
‖AT

kAk −BTB‖ ≤ 1

8d
‖Ak‖2F

]
>

2

3
,

it follows that for any fixed y ∈ Rd,

Pr

[
|‖Aky‖2 − ‖By‖2| ≤

1

8d
‖Ak‖2F

]
>

2

3
.

In particular, Bob will set y = er so that he can use ‖Ber‖2
to approximate ‖Aker‖2 with additive error at most 1

8d
‖Ak‖2F ,

with probability 2/3. Observe that

∣∣‖Aker‖2 −Ak,r

∣∣ =

∣∣∣∣∣∣
N∑

j=k

Aj,r −Ak,r

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

j=k+1

Aj,r

∣∣∣∣∣∣ .
Since each |Aj,r| is bounded by 8−j , we have

∣∣‖Aker‖2 −Ak,r

∣∣ ≤ N∑
j=k+1

8−j ≤ 8−k

7
.

This implies that ‖Aker‖2 can approximate Ak,r with addi-
tive error at most 8−k/7. On the other hand, ‖Ber‖2 can
approximate ‖Aker‖2 with probability 2/3 and additive er-
ror

1

8d
‖Ak‖2F ≤

1

8d

∞∑
j=k

d/8j =
8−k

7
.

It follows that with probability 2/3, ‖Ber‖2 is able to ap-
proximate Ak,r with additive error (2/7)8−k. Since Ak,r =
xi/8

k is either 0 or 8−k, Bob is able to recover Ak,r with
probability 2/3. This contradicts to the probabilistic lower
bound for d-Majority INDEX problem, and thus the Theo-
rem follows.

C. PROOF FOR SAMPLING ALGORITHMS
Consider a window W with row a1, . . . , aN in it. Let

w1 = ‖a1‖2, . . . , wN = ‖aN‖2 denote the squared norms
in the window, with their order sorted according the receiv-
ing time. We have 1 ≤ wi ≤ R for i ∈ [N ]. Let w`(j) denote
the summation of the top -(N − j − `+ 1) smallest weights
from {wj+1, . . . , wN}, that is, wj(`) is the summation of
wj+1, . . . , wN , excluding the top-(`− 1) weights. We define

w(j) = w1(j) =
∑N

k=j+1 wk. We first present a technical
Lemma.

Lemma C.1 Suppose wi ≤ R for i = 1, . . . , N , then the
following inequality holds

N−`+1∑
i=1

wi

wi + w`(i)
= O(` logNR).

Proof. We first claim that that once ` is fixed, w`(i) is
strictly monotonically decreasing with i for 1 ≤ i ≤ N−`+1.
For a proof consider w`(i)−w`(i+1). If wi+1 is not one of the
top-(`−1) weights in wj+1, . . . , wN , then w`(i)−w`(i+1) =
wj+1 > 0. Otherwise, there is a weight wt < wj+1 that is in
top-(`−1) for wj+2, . . . , wN , and w`(i)−w`(i+1) = wt > 0.
Either way we have w`(i) − w`(i + 1) > 0, and w`(i) is
monotonically decreasing with i.

By the monotonicity of w`(i), we define ik to be largest
index such that w`(ik) ≥ 2k, and let L be the number of
different k’s. Since w`(0) ≤ NR, we have L ≤ logNR + 1.
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Therefore

N−`+1∑
i=1

wi

wi + w`(i)
≤

L∑
k=0

ik−1∑
i=ik+1

wi

wi + w`(i)

≤
L∑

k=0

ik−1∑
i=ik+1

wi

wi + 2k−1
.

The last inequality uses the fact that w`(i) ≥ 2k−1 for i
between ik + 1 and ik−1. We have

N−`+1∑
i=1

wi

wi + w`(i)
≤

L∑
k=1

∑ik−1

i=ik+1 wi

2k−1

≤ log `R+

L∑
k=log `R+1

∑N
i=ik+1 wi

2k−1
.

Finally, note that w`(i) ≤ 2k for i ≥ ik, and
∑N

i=ik+1 wi ≤
w`(i) + `R, it follows that

N−`+1∑
i=1

wi

wi + w`(i)
≤ log `R+

L∑
k=log `R+1

2k+1 + `R

2k

≤ log `R+ L+ 1 = O(logNR),

and the Lemma follows.

Lemma C.2 The probability that ρj is among the top-` largest

priorities in {ρj , . . . , ρN} is at most
`wj

wj+wj(`)

Proof. Consider the sampling without replacement pro-
cess on {j, . . . , N}. At each round before j is sampled, let
S be the set of indices that gets sampled. Since wj(`) is
the summation of wj+1, . . . , wN excluding the top-(` − 1)
weights, the probability that j gets sampled in this round is

wj∑N
s=j ws −

∑
s∈S ws

≤ wj

wj + wj(`)
.

Therefore, the probability that j does not get sampled is
lower bounded by(

1− wj

wj + wj(`)

)k

≥ 1− kwj

wj + wj(`)
,

which implies that the probability the j gets sampled is up-

per bounded by
kwj

wj+wj(`)
.

C.1 Proof of Lemma 5.1

Proof. For sampling with replacement, we only need
to prove that the expected number of rows in a sampler
is O(logNR). Recall that ai is in Q if and only if wi is
the largest weight among wi, . . . , wN . By Lemma C.2, the
probability that wi is the largest weight among wi, . . . , wN

is pi = wi/
∑N

j=i wj . Therefore the expected number of rows
in the priority queue Q is

N∑
i=1

pi =

N∑
i=1

wi∑N
j=i wj

≤ O(logNR). (2)

The last inequality is by setting ` = 1 in Lemma C.1.

C.2 Proof of Lemma 5.2
Proof. By Lemma C.2, the probability that a row aj is

a candidate row is at most
`wj

wj+wj(`)
. Thus the expected

number of candidate rows is at most

`+

N−`+1∑
j=1

`wj

wj + wj(`)
= O(` logNR).

The last inequality is by Lemma C.1.

C.3 Proof of Theorem 5.1
Proof. Assuming the algorithms know the value of ‖A‖2F ,

the bounds of the space and update bounds directly fol-
low from Lemma 5.1 and Lemma 5.2. Now suppose we
use the approximation of ‖A‖2F from an Exponential His-
togram with relative error ε. Let B be the matrix that uses
‖A‖2F for rescaling parameter, and B′ be the matrix that
uses the approximation of EH for rescaling parameter. It is
easy to see that B′ = (1 + α)B, where α ∈ (−ε, ε). Since
‖BTB −ATA‖ ≤ ε‖A‖2F and ‖B‖2F = ‖A‖2F , it follows that

‖B′TB′−ATA‖ ≤ ‖B′TB′−BTB‖+‖BTB−ATA‖ ≤ 3ε‖A‖2F ,

and the Theorem follows.

D. GENERATION OF SYNTHETIC
The matrix of SYNTHETIC was generated by formula

A = SDU + N/ζ. S is a n × d signal co-efficients matrix
with each entry drawn from standard normal distribution.
D is a diagonal matrix with Di,i = 1−(i−1)/d. U is a signal
row space matrix that satisfies UUT = Id. The matrix N
contributes additive Gaussian noise with Ni,j drawn from
N(0, 1). We set ζ = 10 so that the signal SDU is recoverable.
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