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ABSTRACT
SimRank is a classic measure of vertex-pair similarity according to
the structure of graphs. Top-k and thresholding SimRank queries
are two important types of similarity search with numerous applica-
tions in web mining, social network analysis, spam detection, etc.
However, extensive studies for SimRank most focus on single-pair
and single-source queries and fail to provide any feasible solution
for the top-k and thresholding queries, e.g., with theoretical accura-
cy guarantee or acceptable empirical performance. In this paper, we
propose SimTab (SimRank queries with Tighter confidence bounds
and multi-armed bandits) to answer top-k and thresholding queries
in a unified manner. First, we integrate several techniques with ran-
dom walk sampling to tighten the confidence bound of SimRank
estimation, which enhances the query efficiency. Second, we an-
swer top-k and thresholding queries from the perspective of the
Multi-Armed Bandits (MAB) problems. The proposed algorithms
significantly improve the theoretical efficiency over state of the art,
whereas the algorithmic complexity closely matches the hardness
of the problem. We further propose a novel sampling strategy spe-
cially tailored for node similarity queries, which improves both the
theoretical and practical query efficiency of the MAB-based algo-
rithms. Our method is the first with query accuracy guarantee for
these two queries, and the sole algorithm to achieve high-quality
query results on large graphs. Moreover, all proposed algorithms
are index-free, and thus can be naturally applied to dynamic graphs.

Extensive experiments on several large graph datasets demon-
strate that our algorithms achieve much superior effectiveness with
comparable or less query time cost than all index-free and index-
based state of the art. Besides, our work proposes the first thorough
empirical evaluation of the existing SimRank algorithms over top-k
and thresholding queries.

PVLDB Reference Format:
Yu Liu, Lei Zou, Qian Ge, and Zhewei Wei. SimTab: Accuracy-Guaranteed
SimRank Queries through Tighter Confidence Bounds and Multi-Armed
Bandits. PVLDB, 13(11): 2202-2214, 2020.
DOI: https://doi.org/10.14778/3407790.3407819

1. INTRODUCTION

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407819

SimRank [16] is a widely adopted measure of the similarities of
graph nodes, with numerous applications such as web mining [18],
social network analysis [23], and spam detection [29]. The formu-
lation of SimRank is based on a recursive concept, i.e., two objects
are similar if they are linked to similar objects, while an object is
most similar to itself. Given a graph G = (V,E), the SimRank
similarity between two nodes u and v is defined as:

s(u, v) =


1, if u = v

c

|I(u)| · |I(v)|
∑
x∈I(u)

∑
y∈I(v)

s(x, y), otherwise

(1)
where I(u) denotes the set of in-neighbors of u, and c ∈ (0, 1) is
a decay factor typically set to 0.6 or 0.8 [16, 25].

A plethora of techniques has been proposed for the efficient com-
putation of SimRank. Since computing all-pair SimRank incurs
excessive time and space cost for large-sized graphs, most existing
work focuses on the single-pair and single-source queries1. The
single-pair query answers the SimRank similarity of a given node
pair (u, v), whereas the single-source query takes a query node u as
input and returns the similarity of each node w.r.t. u. Due to the re-
cursive definition of SimRank, its exact values can not be computed
in limited time. Given an error parameter ε and a failure proba-
bility δ, we say the query result achieves absolute error guaran-
tee [24,30,32], if with at least 1− δ probability, each returned esti-
mated SimRank value ŝ(u, v) satisfies that |ŝ(u, v)−s(u, v)| ≤ ε.

Motivated by the real-world application scenarios [18,23,29], in
this paper, we study the following top-k and thresholding queries.

DEFINITION 1 (TOP-k QUERY). We are given a node u inG,
a positive integer k < n, and a failure probability δ. Let vi be the
node in G whose SimRank similarity to u (denoted by s(u, vi)) is
the i-th largest, i ∈ [1, k]. A top-k SimRank query returns a set of k
nodes V ′k = {v′1, . . . , v′k}, such that with at least 1− δ probability,
for any k ∈ [1, n), it satisfies that s(u, v′i) ≥ s(u, vk) − εmin for
all i ∈ [1, k], where εmin is a very small error tolerance parameter.

DEFINITION 2 (THRESHOLDING QUERY). Given a node u
in G, a real number τ ∈ [0, 1], and a failure probability δ, de-
note by Vτ the set of nodes with SimRank similarity no smaller
than τ w.r.t. u, i.e., Vτ = {v|s(u, v) ≥ τ, v ∈ V }. A threshold-
ing SimRank query returns a set of nodes V ′τ , such that with 1 − δ
probability, for any v with s(u, v) ≥ τ + εmin, v is included in
V ′τ ; and for any v with s(u, v) < τ − εmin, v is excluded from V ′τ .
Here, εmin is a very small error tolerance parameter.
1Throughout this paper, we use the term single-pair and single-
source query to denote the computation of SimRank with up to an
additive error, due to the recursive nature of SimRank definition.
They are also referred to as the approximate single-pair and single-
source queries in [24, 30, 32].
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In this paper, we set εmin = 10−6 for the following reason-
s. First, even the exact algorithm (e.g., the Power Method) needs
εmin to guarantee its convergence, and computes an approximation
ŝ(u, v) such that |ŝ(u, v)−s(u, v)| ≤ εmin. Second, our setting of
εmin is orders of magnitude smaller than the state-of-the-art single-
source algorithms [24, 30, 32], which are the baselines that achieve
the best query performance for top-k and thresholding SimRank
queries. Finally, as shown later, the MAB algorithms [12, 19, 26]
also need such an error parameter, to the best of our knowledge.

Table 1: A toy example with query node u1 and u2, where
s(∗, ∗) (resp. ŝ(∗, ∗)) denotes the exact (resp. estimated) Sim-
Rank values (ε = 0.05)

Node s(u1, v) ŝ(u1, v)
v1 0.28 0.3
v2 0.26 0.25
v3 0.08 0.1
v4 0.06 0.05

Node s(u2, v) ŝ(u2, v)
v1 0.09 0.085
v2 0.08 0.1
v3 0.07 0.09
v4 0.065 0.06

Motivations. Although single-pair and single-source queries have
been extensively studied, very few works directly consider the top-
k or thresholding queries. The only known method is TopSim [21],
which is specially designed for top-k queries. TopSim estimates
similarity values by forward (i.e., following in-edges) and then
backward (i.e., following out-edges) traversals level by level from
the query node. A stopping rule is used to speculate if the k-th
largest estimated SimRank value is larger than the heuristic upper
bound of the k + 1-th to the |V |-th largest ones. However, the
heuristics sacrifices the query accuracy for speed, and always leads
to inferior answer quality. On the other hand, algorithms for single-
source queries [17, 24, 28, 30, 32] can naturally be extended to an-
swer top-k and thresholding queries following the return all and
postprocessing paradigm. For example, to answer top-k queries it
first computes an approximate similarity for each node, followed
by sorting all estimations and returns the nodes with top-k largest
SimRank values. Among them, the algorithms [24, 30, 32] with
absolute error guarantee achieve state-of-the-art performance.

Nonetheless, all these algorithms suffer from a few deficiencies
in answering the top-k or thresholding queries. First, most of them
[17, 28, 30, 32] are index-based, which pre-compute a fraction of
the intermediate results to accelerate query-time performance. As a
consequence, they have quite limited flexibility to answer SimRank
queries on dynamic graphs or with the user-defined error parame-
ter. Second, the absolute error guarantee of the single-source query
turns out to have little correlation with the answer quality of top-k
and thresholding queries. As an example, Table 1 demonstrates the
similarity of four nodes {v1, v2, v3, v4} w.r.t. query node u1 and
u2. Although the estimation achieves an absolute error of 0.05,
the precision of the top-2 query varies significantly (1 vs. 1

2
). To

the best of our knowledge, no single-source algorithm can achieve
acceptable answer quality with reasonable query speed, even on a
million-node graph.

Contributions. In this paper, we improve both the query efficien-
cy and effectiveness of top-k and thresholding SimRank queries in
a unified manner. We refer to the algorithm as SimTab (SimRank
queries with Tighter confidence bounds and multi-armed bandits),
which is sampling-based and depends on the random walk interpre-
tation of SimRank. In particular, we model the top-k and threshold-
ing queries from the perspective of the Multi-Armed Bandit (MAB)
problems. The MAB problem takes a set of n arms as input, while
each sample of an arm yields a reward in [0, 1], which is generat-
ed randomly following a fixed distribution associated with the arm.
Based on this, a bunch of problems [7] have been proposed and
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Figure 1: The distribution of top-1000 largest SimRank values
for five random query nodes. For each SimRank value, the es-
timation error is below 10−6.

well studied, such as the top-k arm identification problem, which
aims to find the arms with top-k largest rewards by as few sam-
ples as possible. Since existing SimRank algorithms [10, 17, 28]
answer SimRank query by generating random walks from the cor-
responding nodes repeatedly and independently, the related Sim-
Rank queries can be naturally modeled as the corresponding MAB
problems. However, these algorithms treat each node equally, i.e.,
each node is sampled the same times. By integrating the arm sam-
pling strategies, our algorithm treats each node differently by their
SimRank values in the sampling procedure, which significantly im-
proves the sample complexity. For our proposed method, the query
complexity is dependent on the hardness of the query instance and
closely matches the theoretical sampling complexity for the corre-
sponding MAB problem. In particular, given a query node u, the
hardness of the top-k query is determined by Hk =

∑
v∈V

1
∆v2 ,

where intuitively ∆v denotes the gap between s(u, v) and the k-
th largest SimRank w.r.t. u. As for the thresholding query with
parameter τ , the hardness is described by Hτ =

∑
v∈V

1
∆τ,v2 ,

whereas ∆τ,v = |s(u, v)− τ | for each node v.
Notably, we observe that the SimRank similarities have skewed

distribution in most cases, partially due to the power-law distribu-
tion of real-world graphs2. Meanwhile, the absolute SimRank val-
ues for different query nodes also vary dramatically (shown in Fig-
ure 1). This phenomenon produces a great influence on the problem
complexity as the query parameter varies. For example, nodes with
small SimRank values are hard to be distinguished from each oth-
er since the gap between them is small. Hence, a large number
of samples are needed for top-k queries with large k, or thresh-
olding queries with small τ . To improve the practical efficiency,
we propose a novel sampling strategy specially tailored for Sim-
Rank queries, for that the MAB algorithms have severe scalability
problems on large-sized graphs. We employ several techniques to
tighten the confidence bound in SimRank estimation, including the
empirical Bernstein inequality [27], a few variance reduction trick-
s, and careful algorithm design. It turns out that the tightness of
confidence bound not only improves the accuracy of SimRank esti-
mation, but also has a major effect on the practical efficiency of the
algorithms. Our algorithms are the first to answer exact top-k and
thresholding queries, i.e., the query result can be at least as good as
the Power Method [16], which is taken as the ground truth [24,30].
Last but not least, our algorithms are index-free, which can be nat-
urally applied to dynamic graphs. Table 2 compares our proposed
algorithms with state of the art.

Finally, we conduct extensive experiments to evaluate our al-
gorithms against state-of-the-art methods on several large dataset-
s. For both top-k and thresholding queries, we provide the first
detailed analysis to demonstrate the performance of existing al-
gorithms on different query parameters (i.e. k and threshold τ ).

2We use this term to describe the skewed distribution observed in a
variety of networks.
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Table 2: Comparison of SimRank algorithms for top-k and thresholding queries. For the empirical performance, non-stable means
the evaluation metric (e.g., Precision@k for top-k queries) fluctuates when varying the query parameters (k and τ ). Note that the
complexity of the MAB algorithms for top-k and thresholding queries are O(Hk,εmin logn

δ
) and O(Hτ,εmin logn

δ
), respectively. (See

Section 2.4 for definition of Hk,εmin and Hτ,εmin .) Therefore, our proposed algorithms also improve the theoretical efficiency.

Method Query Complexity Index Cost (Space, Time) Theoretical Guarantee Empirical Performance

TopSim [21] O(d̄2l) N/A N/A Non-stable

TSF [28] O(RgRqT
2) O(Rg|V |) N/A Non-stable

SLING [30] O(nε ) orO(mlog2 1
ε ) O(nε ),O(mε + n

ε2
lognδ ) Absolute error Non-stable

ProbeSim [24] O( n
ε2

lognδ ) N/A Absolute error Non-stable

READS [17] O( n
ε2

lognδ ) O( n
ε2

lognδ ) Absolute error Non-stable

PRSim [32] O( n
ε2

lognδ ·
∑
w∈V π(w)2) O(min(nε ,m)),O(mε ) Absolute error Non-stable

SimTab-Top-k min (O( θ
εmin

2 lognδ ), O(Hk,εmin lognδ )) N/A Exact answer Good and stable

SimTab-Thres min (O( θ
εmin

2 lognδ ), O(Hτ,εmin lognδ )) N/A Exact answer Good and stable

We adopt Precision@k to evaluate the quality of top-k query re-
sults, while for thresholding queries, we measure precision, recall,
and F1-score. We also empirically demonstrate that query accu-
racy does not have a direct correlation with the absolute estima-
tion error. For all studied experiments, our algorithms significantly
outperform existing methods in terms of both practical efficiency
and effectiveness. In particular, all existing methods fail to answer
both queries with acceptable query time and result quality even on
a million-node graph, while our algorithms are able to return the
exact query result with reasonable speed on billion-edge graphs.

2. PRELIMINARIES
Table 3 shows the notations that are frequently used in the re-

mainder of the paper.

Table 3: Table of notations.
Notation Description
G(V,E) Graph G with vertex set V and edge set E
n,m Numbers of nodes and edges in G
I(v), O(v) In-neighbor/out-neighbour set of a node v in G
s(u, v) SimRank similarity between two nodes u and v in G
ŝ(u, v) Estimation of s(u, v)
W (u) A

√
c-walk from a node u

c Decay factor in the definition of SimRank
ε, δ Additive error parameter and failure probability
β(v) Confidence interval of the estimated similarity of node v,

i.e., with high probability ŝ(u, v) − β(v) ≤ s(u, v) ≤
ŝ(u, v) + β(v)

ta, to The running time of one sample-all-arms (resp. sample-
one-arm) operation

θ ta/to

2.1 SimRank with Random Walks
As indicated in [16], SimRank similarities can be interpreted

with coupled random walks. In particular, let u and v be two n-
odes inG, and I(u) (resp. I(v)) be a random walk from u (resp. v)
that follows a randomly selected incoming edge at each step. Let t
be the step that I(u) and I(v) first meet, we have

s(u, v) = E[ct−1], (2)

where c is the decay factor in the definition of SimRank (see Equa-
tion 1). Subsequent work [17, 30] demonstrate that Equation 2 can
be simplified by considering the probabilistic stop at each step. For
example, the

√
c-walk [30] is defined as follows.

DEFINITION 3 (
√
c-WALK). Given a node u inG, a

√
c-walk

from u is a random walk that follows the incoming edges of each
node and stops at each step with 1−

√
c probability. �

Consequently, two
√
c-walks W (u) = (w0 = u, . . . , wl, . . .) and

W (v) = (w′0 = v, . . . , w′l, . . .) from u and v meet if there exists
some l such that wl = w′l. According to [30],

s(u, v) = Pr [W (u) and W (v) meet] . (3)

Based on this random walk interpretation of SimRank, the Monte
Carlo approach [10, 17, 30] estimates s(u, v) as follows. The algo-
rithm generates nr coupled

√
c-walks from u and v, respective-

ly. Let nr,meet be the number of
√
c-walk pairs that meet, then

nr,meet
nr

is used as an estimation of s(u, v). The estimation error is
guaranteed by the Chernoff-Hoeffding inequality [17, 30].

LEMMA 1 (CHERNOFF-HOEFFDING INEQUALITY [14]).
Let X1, ..., Xnr be independent random variables where Xi is
strictly bounded by the interval [ai, bi] for every i ∈ [1, nr]. Let
X̄ = 1

nr

∑nr
i=1 Xi. Then

Pr[|X̄ − E[X̄]| ≥ ε] ≤ 2exp

(
− 2nr

2ε2∑nr
i=1 (bi − ai)2

)
. (4)

Since each pair of walks gives an unbiased estimation of the Sim-
Rank value, we have E[X̄] = s(u, v). Given nr and the constraint
on failure probability, i.e., Pr[|X̄ − s(u, v)| ≥ ε] ≤ δ, we have

βnr = |X̄ − s(u, v)| ≥
√

1
2nr

log 2
δ

. We refer to βnr as the confi-

dence interval, which means that with 1−δ probability s(u, v) falls
into [X̄ − βnr , X̄ + βnr ]. In particular, X̄ − βnr (resp. X̄ + βnr )
is referred to as the lower (resp. upper) confidence bound. It can
be shown that when nr ≥ 1

2ε2
log 2

δ
, with at least 1− δ probability

we have
∣∣∣nr,meetnr

− s(u, v)
∣∣∣ ≤ ε. In addition, the expected time

required to generate nr
√
c-walks is O(nr), since each

√
c-walk

has 1
1−
√
c

nodes in expectation. Therefore, the expected time com-
plexity of answering a single-pair query is O( 1

ε2
log 1

δ
).

Note that MC can be straightforwardly extended to answer
single-source queries by conducting single-pair query for each n-
ode v ∈ V \{u} and the query node u. To guarantee the absolute
estimation error ε for every node v with at least 1 − δ probabil-
ity, by the union bound the complexity is O( n

ε2
logn

δ
), where n

denotes the number of vertices in G. Since each node has to gener-
ate a large number of

√
c-walks, this approach incurs considerable

query overheads for large graphs, and is practically infeasible.
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2.2 The Forward and Backward Random
Walk Scheme

To improve the practical efficiency of the Monte Carlo method
for single-source queries, a few works [17, 21, 24, 28, 30, 32] have
been recently proposed based on the random walk interpretation of
SimRank. We unify them as the forward and backward random
walk scheme, as listed in Table 4. Generally speaking, all these
methods contain two stages in the SimRank computation, i.e., the
forward stage and the backward stage, while both stages can be
implemented in a deterministic or randomized way. Specifical-
ly, the deterministic computation relies on the following equation,
which enumerates all coupled similarity paths [21] from u and v
that meet:

s(u, v) =

∞∑
t=1

∑
w∈V

pft(u, v, w) · ct. (5)

Here, we denote by pft(u, v, w) the probability of two random
walks from u and v first meet at w. On the other hand, the ran-
domized computation is based on Equation 3. In the forward stage,
the algorithm deterministically enumerates all reachable nodes w
from the query node u following in-edges, or randomly samples a
subset from them. In the backward stage, from each w, a determin-
istic or randomized traversal following out-edges is conducted to
reach a set of nodes v, and we can estimate s(u, v) accordingly. By
implementing the forward and backward stage with different strate-
gies, the efficiency and effectiveness of SimRank computation vary
significantly. We will discuss the key idea of existing solutions in
Section 5.

2.3 The Relation between SimRank and Per-
sonalized PageRank

Inspired by [30], PRSim [32] proposes a new interpretation of
SimRank, where s(u, v) is closely related to the reverse Personal-
ized PageRank of both u and v. Formally, we have the following
Equation:

s(u, v) =
1

(1−
√
c)

2

∞∑
l=0

∑
w∈V

πl(u,w)πl(v, w)d(w). (6)

Here, πl(u, v) is the l-hop Reverse Personalized PageRank (RPPR)
from u to v, i.e., the probability of an

√
c-walk from u stopping at

v with exact l steps (“reverse” means that each step of the walk
follows in-edges), while d(w) represents the probability that two√
c-walks starting from w never meet again [30]. As we will see in

Section 3 and 4, this interpretation enables us to apply a few tech-
niques to significantly tighten the confidence bound in SimRank
estimation, such as the forward push [5].

Forward push [5]. The forward push is proposed to compute the
Personalized PageRank deterministically. Specifically, let π(s, t)
denote the PPR values between the source node s and the target n-
ode t, which represents the probability of an

√
c-walk from s stop-

ping at t. To estimate π(s, t), we initialize the reserve π̂f (s, v) = 0
for each v ∈ V , which is an underestimation of π(s, v). Mean-
while, we initialize the residue rf (s, v) = 0 for v ∈ V \{s} and
rf (s, s) = 1. Intuitively, rf (s, v) denotes the probability stay-
ing at node v that has not been handled yet. The push operation
on a node v first transmits 1 −

√
c fraction of its residue to it-

s reserve, then evenly distributes the remaining residue to its out
neighbors. This process can be formulated by the following E-
quation: π̂f (s, v) ← π̂f (s, v) + (1 −

√
c)rf (s, v), rf (s, u) ←

rf (s, u) +
√
c

|O(v)|rf (s, v),∀u ∈ O(v). As more push operations

are conducted, the residues are transferred into the reserves, re-
sulting in a more accurate estimation of π(s, t). The follow-
ing Equation holds in any step of forward push, for s, t ∈ V :
π(s, t) = π̂f (s, t)+

∑
v∈V rf (s, v)π(v, t).We omit the subscripts

when the context is clear.

2.4 The Multi-Armed Bandits Problem
In this paper, we answer top-k and thresholding SimRank

queries by modeling them as the corresponding multi-armed ban-
dits (MAB) problems. We briefly describe the problem setting as
follows. The MAB problem considers an arbitrary instance of an
n-armed bandit (n ≥ 2). Each arm a is associated with a fixed but
unknown distribution with expected reward pa ∈ [0, 1], while each
sample (or “pull”) of the arm yields a reward generated random-
ly from it. The rewards for different trials of an arm or between
different arms are mutually independent.

A variety of MAB problems have been extensively studied in the
field of theoretical computer science, such as regret minimization
[6] and pure exploration [7]. For the latter, it considers finding the
best set of arms meeting some specific criteria via the minimum
number of arm pulls. In particular, the top-k arm identification
[12, 15, 19] problem finds the top-k arms with the largest rewards.

DEFINITION 4. (The top-k arm identification problem [7])
Given n arms and a failure probability δ, find k arms that have
the top-k largest rewards, by using as few samples (i.e. pull of
arms) as possible, with at least 1− δ success probability.

We will demonstrate (later in Section 3.1) how to convert Sim-
Rank computation to the MAB problems through its random walk
interpretation. In this paper, we also show that the thresholding
SimRank queries can be modeled as the following MAB problem,
which returns all arms with expected reward above some threshold.

DEFINITION 5. (The thresholding bandits problem [7, 26]) We
are given a set of n arms and a failure probability δ. Find all arms
that have estimated rewards above a given threshold τ , by using as
few samples as possible.

Sampling complexity. It has been shown [7, 19, 26] that the mini-
mum number of arm pulls (i.e., the sampling complexity) for MAB
is determined by the expected reward of each arm. Specifical-
ly, for the top-k problem, the sampling complexity is defined as
Hk =

∑n
i=1

1
∆i2

[19], where

∆i =

{
pi − pk+1, if i ≤ k;
pk − pi, if i > k.

(7)

Intuitively, ∆i characterizes the hardness to differentiate the i-th ar-
m ai from the actual top-k results. Here, for simplicity of notation,
we assume an indexing of the arms such that p1 ≥ p2 ≥ . . . ≥ pn.
Similarly, the sample complexity of the thresholding bandits prob-
lem can be defined as Hτ =

∑n
i=1

1
∆τ,i2

[7, 26], where ∆τ,i =

|pi− τ | denotes the gap between the reward of the i-th arm and the
given threshold.

We also note that all existing MAB solutions [12, 19, 26] intro-
duce a small error parameter εmin to guarantee that the sampling-
based procedure can terminate in extreme cases, e.g., several arm-
s have (nearly) identical expected reward. In this way, arm-
s with expected rewards no smaller than εmin from the actual
answer are also considered correct. Correspondingly, the sam-
pling complexity for top-k (resp. thresholding) queries is de-
fined as O(Hk,εmin) = O((

∑n
i=1

1
max (∆i,εmin)2

)) [12, 19] (resp.

O(Hτ,εmin) = O((
∑n
i=1

1
(∆τ,i+εmin)2

)) [26]).
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Table 4: Algorithms following the forward and backward random walk scheme.

Method The forward stage The backward stage
TopSim [21] similarity path enumeration similarity path enumeration
TSF [28] random walk sampling similarity path enumeration (on the indexed one-way graph)
SLING [30] similarity path enumeration (with pruning) similarity path enumeration (with pruning)
ProbeSim [24]

√
c-walk sampling deterministic or randomized path enumeration, i.e., DeterministicProbe or RandomizedProbe

READS [17] (SimRank-aware) random walk sampling (SimRank-aware) random walk sampling and indexing
PRSim [32]

√
c-walk sampling deterministic or randomized path enumeration, e.g., Variance Bounded Backward Walk

3. TOP-K QUERIES

3.1 Sampling Strategy in SimRank Computa-
tion: from the Perspective of MAB

u v
1

v
2

v
n-1

u u…

1

1 0

u v
1

v
2

w

…

…

Stage 1

Stage 2

vn-1

1 1 0

(a) sample-one-arm (b) sample-all-arms
Figure 2: The sampling strategies for SimRank: sample-one-
arm vs. sample-all-arms.

3.1.1 Modeling SimRank computation via MAB
In this section, we demonstrate how to model the top-k SimRank

query as the corresponding top-k arm identification problem from
the perspective of multi-armed bandits. Given a query node u, for
all nodes V \{u} = {v1, . . . , vn−1}, we construct n−1 arms with
expected reward s(u, v1), . . . , s(u, vn−1). Note that the expected
reward of each arm is not known to the algorithm, but can be esti-
mated via sampling according to the random walk interpretation of
SimRank. To be precise, for each vi, a “pull” of the arm is imple-
mented by sampling a pair of

√
c-walks from the query node u and

vi, respectively (Figure 2(a)). The result of each sampling is either
0 or 1, and gives an unbiased estimation of s(u, vi) [24,30]. There-
fore, designing an efficient top-k SimRank algorithm is equivalent
to finding top-k arms with the largest rewards by using as few sam-
ples as possible, i.e., the top-k arm identification problem [12, 19].
We refer to this sampling strategy as sample-one-arm, since each
arm (i.e., node pair) is sampled independently.

3.1.2 Sample-all-arms: another arm sampling strat-
egy for SimRank

Unfortunately, for any known top-k MAB algorithm, each arm
needs to be sampled at least once so that the confidence bound can
be computed. The cost, however, is unacceptable for the top-k Sim-
Rank queries, which contains a large amount of arms (i.e., nodes).
In fact, as our empirical analysis shows, even the state-of-the-art
MAB algorithms cannot finish in a reasonable time on a graph with
million-sized nodes. On the other hand, we notice that there exists
another sampling strategy specially tailored for SimRank queries.
Recall the forward and backward random walk scheme proposed in
Section 2.2. For the algorithms following this paradigm, a few of
them [24,32] adopt random walk sampling in the forward stage. To
be precise, they first sample a set of random walks, while for each
walk, the backward stage computes an estimation of SimRank sim-
ilarities for all nodes. If the estimation is unbiased and bounded,
we can model this forward and backward procedure as the sample-
all-arms strategy (Figure 2(b)). For real-world graphs following
power-law distribution, the distribution of SimRank scores is high-
ly skewed in practice. Hence, the sample-all-arms strategy achieves

Algorithm 1: SimTab-Top-k
Input: Directed graph G = (V,E); u ∈ V ; k ∈ [1, n); failure

probability δ
Output: Vk, the estimated top-k nodes with largest SimRank

values
1 C = Prefiltering(G, u, k, δ

2
);

2 Vk = Top-k-Identification(G, u, k, C, δ
2

);
3 return Vk;

much superior practical efficiency than applying sample-one-arm
strategy for all nodes (e.g., the MC algorithm [9]), because only
a fraction of nodes can be reached during the backward searching
stage. We will demonstrate in Section 3.3 how to design such a
procedure to meet this criterion.

3.2 Algorithm Overview
We propose SimTab-Top-k, a two-phase algorithm that takes the

advantages of both sample-one-arm and sample-all-arms strategies.
Specifically, our algorithm contains a prefiltering phase and a top-k
identification phase. In the prefiltering phase, we iteratively apply
the sample-all-arms strategy to compute the upper and lower con-
fidence bounds for each estimated SimRank value ŝ(u, v). Mean-
while, nodes with low SimRank values that make them impossible
to be top-k answers are safely pruned. We refer to the set of re-
maining nodes as the candidates. Once the size of the candidate set
is small enough so that applying the sample-one-arm strategy for
each candidate is more economical, we stop the prefiltering phase
and proceed to the top-k identification phase. Then, a MAB-based
algorithm is invoked to keep sampling the nodes independently and
following a specified strategy, until we are confident to separate the
top-k nodes from other candidates. In this way, the algorithm has
at least an identical complexity to the top-k bandits algorithm but
achieves much more efficiency in practice.

The pseudo-code is illustrated in Algorithm 1. We first invoke
the Prefiltering algorithm, which guarantees to return a candidate
set C which contains all actual top-k nodes with at most δ

2
fail-

ure probability. Next, we invoke the Top-k-Identification algorithm
which finds top-k nodes among the candidates, again with at most
δ
2

failure probability. Hence, with high probability, SimTab-Top-k
returns the true top-k results.

3.3 The Prefiltering Phase
In this section, we propose a prefiltering algorithm that can ef-

ficiently prune nodes with low SimRank similarities, which is il-
lustrated in Algorithm 2. We adopt an iterative process to contin-
uously apply the sample-all-arm strategy (Lines 3-5), of which the
implementation will be amplified later. Specifically, we invoke the
sample-all-arms operation 2i−1 times in the i-th iteration. For each
iteration, the estimated SimRank value ŝ(u, v) and confidence in-
terval β(v) of every node v are computed from all previously con-
ducted sample-all-arms operations. After that, the top-k nodes with
the largest empirical means are added to the candidate set (Line
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Algorithm 2: Prefiltering
Input: G = (V,E); u ∈ V ; k; failure probability δ;
Output: Candidate node set C

1 Initialize nr = 0, numSample = 1;
2 while true do
3 for i = 1 to numSample do
4 R = Sample-all-arms(G, u);
5 Update ŝ(u, v) and β(v) for every v ∈ V with R;
6 Let C = {v1, . . . , vk} be the nodes with top-k empirical

means;
7 Let v′ = argminv{ŝ(u, v)− β(v)}, v ∈ C;
8 for each v ∈ V \({u} ∪ C) do
9 if ŝ(u, v′)− β(v′) + εmin ≤ ŝ(u, v) + β(v) then

10 C = C ∪ {v};

11 if |C|to ≤ ta then
12 return C;
13 else if max

v∈C
β(v) ≤ εmin then

14 Sort C according to the empirical means;
15 return the first k nodes in C, and skip the top-k

identification phase;
16 Increase nr by numSample and double numSample;

Algorithm 3: Sample-all-arms
Input: G = (V,E); query node u;
Output: R = {(v, Score(u, v))}, a set of nodes with

non-zero estimated SimRank values
1 Sample an

√
c-walk W (u) = (w0 = u, . . . , wl) from u;

2 Sample two independent
√
c-walks W1(wl) and W2(wl) from

wl;
3 if W1(wl) and W2(wl) do not meet then
4 Initialize hash set Hj for j = 0, . . . , l − 1;
5 Insert wl to H0;
6 for j = 0 to l − 2 do
7 if

∑
x∈Hj |O(x)| < n then

8 U = ∪x∈HjO(x);
9 else

10 U = V \{u};
11 for each y ∈ U do
12 Uniformly sample an edge (x, y) from I(y);
13 if x ∈ Hj then
14 Insert y to Hj+1 with probability

√
c;

15 return R = {(v, 1

(1−
√
c)2

)|v ∈ Hl−1};

6). Then, we find the node v′ with the smallest lower confidence
bound, i.e., ŝ(u, v) − β(v) (Line 7). Next, we check for each
v ∈ V \({u} ∪ C) if it can be pruned from the top-k answers
(Lines 8-10). Specifically, we have the following pruning rule, of
which the correctness can be easily derived.

The pruning rule. If ŝ(u, v′) − β(v′) + εmin > ŝ(u, v) + β(v)
for some node v, it means that with at least 1 − δ′ probability
minv′∈Cs(u, v

′) + εmin > s(u, v) holds, i.e., v can not be in
top-k answer, and will be safely pruned.

For the computation of confidence interval, we use the empirical
Bernstein inequality [8]. Intuitively, it states that if the empirical
variance is small, then the confidence interval is reversely related
to the number of samples nr . This bound is significantly tighter
than that of the Chernoff-Hoeffding inequality, which is in reverse
proportional to

√
nr .

LEMMA 2 (EMPIRICAL BERNSTEIN INEQUALITY [8]). For
any set {Xi} (i ∈ [1, t]) of i.i.d. random variables with mean µ
and Xi ∈ [0, R], with 1− δ probability,

∣∣X̄t − µ∣∣ ≤ σ̂t√2 ln 3/δ

t
+

3R ln 3/δ

t
, (8)

where X̄t =
∑t
i=1 Xi/t is the empirical mean of {Xi}, and

σ̂t =
√

1
t

∑t
i=1(Xi − X̄t)2 is the empirical standard deviation

of {Xi}.

Hence, the confidence bound is set to β(v) = σ̂(v)
√

2 ln 3n/δ
nr

+
3 ln 3n/δ
nr

, where nr is the total number of sample-all-arms opera-
tion ever conducted.

The stopping condition. Now we return back to the prefiltering al-
gorithm and explain its stopping condition. In particular, we set the
stopping condition as |C|to ≤ ta (Line 11), where ta (resp. to)
denotes the expected running time of one sample-all-arms (resp.
sample-one-arm) operation. (Note that the cost of a single sample-
one-arm operation is asymptotically identical to one

√
c-walk gen-

eration.) Therefore, |C|to denotes the cost of applying sample-one-
arm strategy to each candidate node, and the prefiltering algorithm
stops when applying sample-one-arm strategy on all candidates is
more efficient.

When the stopping condition is not satisfied but the confidence
interval of every candidate is below εmin (Line 13), the algorithm
can still safely terminates. To this end, the prefiltering algorithm
computes an approximate SimRank with absolute error εmin for
every candidate node. We sort all node in C by descending order
of the estimated SimRank values, and return the top-k largest nodes
as the final answer (i.e., the top-k-identification phase is skipped).
Lastly, if the algorithm cannot finish in this round, we double the
number of sample-all-arm operations, and proceed to the next iter-
ation (Line 16).

The Sample-all-arms algorithm. The implementation of the
sample-all-arms operation is demonstrated in Algorithm 3. It gen-
erates a

√
c-walk W (u) = (w0 = u, ..., wl), and then samples

two
√
c-walks W1(wl) and W2(wl) from wl. If the walks do not

meet, we invoke a backward traversal procedure from wl (Lines 4-
14). Intuitively, the traversal guarantees that for each v ∈ V \{u},
the probability of v contained in Hl−1 equals the probability that
a
√
c-walk from v stops at wl. Note that by sampling two walks

from wl, we can get an unbiased estimation of d(wl). Hence, by
Equation 6, the Sample-all-arms algorithm computes an unbiased
estimation of s(u, v) for each v.

Algorithm correctness. We formally prove the correctness of the
prefiltering algorithm, which guarantees that all actual top-k nodes
are contained in the returned candidate set with high probability.
For space constraints, all proofs in our paper are referred to its full
version [1]. The following lemma guarantees the effectiveness of
the Sample-all-arms algorithm.

LEMMA 3. For each node v ∈ V \{u}, Sample-all-arms re-
turns an unbiased estimator of s(u, v) that falls in [0, 1].

From the above lemma and the pruning rule of the prefiltering
algorithm, we have the following theorem.

THEOREM 1. With at least 1 − δ probability, the prefiltering
algorithm guarantees that the returned candidate set C contains
all actual top-k nodes.
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3.4 The Top-k Identification Phase

3.4.1 Baseline algorithm
In the top-k identification phase, we try to select the top-k nodes

by separating them from the candidate nodes that are not likely to
be in the top-k answer. We demonstrate how to adapt the MAB
algorithms for top-k arm identification to our scenario. We use
the UGapEc-V algorithm [12] as an example. The pseudo-code is
demonstrated in Algorithm 4. Given graph G, the query node u, an
integer k, the candidate set C which contains the estimated Sim-
Rank ŝ(u, v) and the confidence interval β(v) for each candidate
v, and a failure probability δ, Top-k-Identification returns the actu-
al top-k nodes contained in C. Note that to efficiently update the
confidence bound we do not explicitly store β(v). For the Chernoff
bound, it is sufficient to record nr(v), the number of samples for
node v. If the empirical Bernstein inequality is applied, to compute
the empirical variance, we also need to store

∑nr(v)
i=1 ŝi(u, v)2,

where ŝi(u, v) denotes the estimation of s(u, v) in the i-th trial.
The algorithm first computes the upper and lower confidence bound
for each v ∈ C, denoted as UB(v) and LB(v), respectively. Then,

for eachC we computeB(v) =
k

max
w∈C\{v}

UB(w)−LB(v), where

operator
k

max
v∈S

f(v) returns the k-th largest value f(v) among all

v ∈ S. Intuitively, B(v) represents how bad is a candidate com-
pared to the one with the k-th largest similarity in the worst case.
Next, we find the k nodes with smallest B(v), denoted as Vk. Let
vk be the node with the k-th smallest B(v). If B(vk) ≤ εmin, we
are confident that Vk is the top-k nodes (with additive error εmin).
Otherwise, let vh be the node in Vk having the smallest LB(v),
and vl the node in C\Vk having the largest UB(v). They represent
the worst possible arm in Vk and the best possible arm in C\Vk,
respectively. Then, we sample the arm in {vh, vl} with the larger
confidence interval. Note that each arm sampling is implemented
by a coupled random walk from the query node u and the candidate
v. Following [12], the confidence bound is computed based on the
empirical Bernstein inequality:

β(v, nr(v)) = σ̂(v, nr(v))

√
log |C|r

3

δ

nr(v)
+

7
6
log |C|r

3

δ

nr(v)− 1
, (9)

where σ̂(v, nr(v)) denotes the empirical standard variance over
nr(v) estimations, and r the round of iteration.

Running example for Algorithm 4. We use a toy example in Fig-
ure 3(a) to illustrate the arm sampling strategy and the stopping
rule of the top-k algorithm. Suppose that for the query node u,
there exists a candidate set C of five candidate nodes {v1, . . . , v5}
after the prefiltering phase, and we aim to find the top-2 nodes with
the largest similarity. For each node vi, let µi denote the estimat-
ed SimRank score, i.e., µi = ŝ(u, vi), and βi the corresponding
confidence interval. Without loss of generality, we assume that the
candidates are numbered in descending order of the estimated simi-
larities. Note that even these candidates are sampled identical times
via the sample-all-arm strategy, their confidence intervals can be d-
ifferent when the empirical Bernstein inequality is applied.

The algorithm first computes the upper and lower confidence
bound for each candidate vi, denoted as UBi and LBi, respective-
ly. In particular, we have {(UB1 = 0.11, LB1 = 0.07), (UB2 =
0.11, LB2 = 0.05), (UB3 = 0.1, LB3 = 0.04), (UB4 =
0.09, LB4 = 0.05), (UB5 = 0.08, LB5 = 0.04)}. Second, we
compute Bi for each node vi. Note that for v1 and v2 with top-2
largest estimated score,

2
max

w∈C\{v}
UB(w) = UB3 = 0.1, where-

Algorithm 4: Top-k-Identification
Input: G = (V,E); u ∈ V ; k; candidate set

C = {v, ŝ(u, v), β(v)}; failure probability δ;
Output: Vk as the top-k results

1 while true do
2 for each v ∈ C do
3 Compute UB(v) = ŝ(u, v) + β(v),

LB(v) = ŝ(u, v)− β(v);
4 for each v ∈ C do
5 Compute B(v) =

k
max

w∈C\{v}
UB(w)− LB(v);

6 Let Vk be the set of k nodes with smallest B(v), and vk be
the node with k-th smallest B(v);

7 if B(vk) ≤ εmin then
8 return Vk;
9 else

10 Let vh ∈ Vk be the node with smallest LB;
11 Let vl ∈ C\Vk be the node with largest UB;
12 Sample node v ∈ {vh, vl} with the larger β(v);
13 Update ŝ(u, v) and β(v);

as for v3, v4 and v5,
2

max
w∈C\{v}

UB(w) = UB2 = 0.11. (Since

v1 and v2 have identical upper bound, the tie is broken randomly.)
Therefore, we have {B1 = 0.03, B2 = 0.05, B3 = 0.07, B4 =
0.06, B5 = 0.07}. We set V2 as the two nodes with the smallest
Bi, i.e., V2 = {v1, v2}. Since the second smallest Bi is B2, and
B2 = 0.05 > εmin, more sample-one-arm operations are need-
ed. We select vh = v2, the node with the smallest LB from V2,
and vl = v3, the node with the largest UB from C\V2. Since
they have the same confidence interval, we sample v2 in the next
iteration (again, the tie is broken randomly).

Assume that after several rounds of iteration, we have the config-
uration shown in Figure 3(b). Again, we compute UBi, LBi and
then Bi for each candidate vi. Now, the second smallest Bi (i.e.
B3) is below zero, and we are sure that {v1, v3} is the top-2 nodes
with the largest similarity, and the algorithm terminates.
Analysis. The efficiency of Top-k-Identification is bounded by the
following lemma.

LEMMA 4. Top-k-Identification returns the actual top-k nodes
with at least 1 − δ probability and with expected time complexity
min (O( θ

εmin2 logn
δ

), O(
∑

v∈V \{u}

1

max (
∆v+εmin

2
,εmin)

2 logn
δ

)),

where θ = ta
to

denotes the ratio between the time cost of one
sample-all-arms operation (i.e., ta) and one sample-one-arm
operation (i.e., to).
We now analyze the expected running time of SimTab-Top-k.

THEOREM 2. The SimTab-Top-k algorithm answers the top-k
SimRank queries with at least 1−δ success probability, with asymp-
totically the same time complexity of Top-k-Identification.

3.4.2 Optimizations
The Top-k-Identification algorithm uses

√
c-walk sampling to

estimate the reward of an arm (i.e. the SimRank similarity of a
pair of nodes), and always gives 0/1 estimation for each sample-
one-arm operation. As a consequence, the empirical variance of
the estimation is large, resulting in loose confidence bounds (see
Equation 8). Thus, more samples are needed until the stopping
condition is satisfied. We propose an optimization algorithm, de-
noted by Adaptive-Top-k. Firstly, we note that SimRank can be
interpreted from the perspective of reverse Personalized PageRank,
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Figure 3: An example for the top-k query.

as demonstrated in Equation 6. Instead of using Monte Carlo sam-
pling, the PPR values can also be computed in a deterministic way
by forward push [5], which generates estimators with smaller vari-
ances but with higher computation cost. Secondly, we conduct the
push operation in an adaptive way, i.e., the number of push opera-
tions for each candidate varies. Intuitively, for each candidate, we
conduct as many forward pushes as possible until the asymptotical
complexity of the push operation matches the cost of the walks that
has been sampled. Therefore, more push operations are applied to
a candidate node if it has been sampled extensively. Note that more
push operations significantly tighten the confidence bound. This
helps us to effectively distinguish the nodes with SimRank values
close to the boundary (i.e., the k-th largest SimRank value or the
given threshold), while saving the cost for most other candidates,
which guarantees the efficiency of the whole algorithm.

The pseudo-code is demonstrated in Algorithm 5. For each level
l = [0,∞), we first initialize π̂l(v, w) = 0 for each v ∈ C ∪ {u}
and w ∈ V . We set r0(v, v) = 1 for each v ∈ C ∪ {u}, and
rl(v, w) = 0 for each v ∈ C ∪ {u} and w ∈ V for l ≥ 1. The
level information must be recorded to guarantee the walks meet at
the same step. Initially, no push operation is performed. For each
candidate v, once the number of samples doubled, we conduct a
few pushes based on a parameter rmax. Intuitively, rmax prevents
those push operations from nodes with small residues to get a good
tradeoff between algorithm efficiency and effectiveness. When we
are to estimate the similarity of the query node u and a candidate
v, we follow the idea of Equation 6. Combining with the property
of forward push, we rewrite the Equation as follows.

s(u, v) =
1

(1−
√
c)

2

∞∑
l=0

∑
w∈V

π̃l(u,w)π̃l(v, w)d(w), (10)

where π̃l(s, w) = π̂l(s, w) + δl(s, w), π̂l(s, w) is the reserve by
forward push, and δl(s, w) =

∑
v∈V

∑l
i=0 ri(s, v)πl−i(v, w).

First, we fetch all node w having non-zero estimated reserves from
both u and v at each level l, and aggregate them following Equation
10. Next, for both u and v we sample a

√
c-walk to derive an unbi-

ased estimation of δl(u,w) (resp. δl(v, w)). Take v as the example,
first a node y with rl2(v, y) is sampled with probability

rl2 (v,y)

rsum(v)
,

where rsum(v) =
∑
l

∑
w∈V rl(v, w) denotes the sum of all prob-

abilities not handled yet. Then we sample a
√
c-walk from y, which

terminates at node y′. Let l′2 = l2 + |W (y)|. If π̂l′2(u, y′) 6= 0,

we add π̂l′2(u, y′)rsum(v)d̂(y′) to the estimation, and vice versa
for node u. If the walk of u and v meet (i.e., x′ = y′), we add
rsum(u)rsum(v)d̂(x′) to ŝ(u, v). It can be proved that the estima-
tor is unbiased for s(u, v). For the estimation of d(w), we sample
two
√
c-walks from w, which gives a 0/1 estimation.

LEMMA 5. The time and space complexity of the Adaptive-
Top-k algorithm is asymptotically identical to those of the Top-k-
Identification algorithm.

Algorithm 5: Adaptive-Top-k Algorithm
Input: G = (V,E); u ∈ V ; k; candidate set

C = {v, ŝ(u, v), β(v)}; failure probability δ;
Output: Vk, the estimated top-k nodes with largest SimRank

values
1 nr(u) =

∑
v∈C nr(v), n′r(v) = nr(v),∀v ∈ C ∪ {u};

2 for each v ∈ C ∪ {u} and l = 0, 1, . . . do
3 if l = 0 then
4 rl(v, v) = 1, rl(v, w) = 0, ∀w 6= v;
5 else
6 π̂l(v, w) = 0, rl(v, w) = 0, ∀w ∈ V ;

7 Let Hl(v) = {w|π̂l(v, w) > 0}, Rl(v) = {w|rl(v, w) > 0};
8 Replace Line 12 of Algorithm 4 into:
9 ŝ(u, v) = 0;

10 for l = 0, 1, . . . do
11 for each w ∈ Hl(u) ∩Hl(v) do
12 Increase ŝ(u, v) by π̂l(u,w)π̂l(v, w)d̂(w);

13 Sample an item (x, rl1(u, x)) from {R0(u), R1(u), . . .};
14 Sample an

√
c-walk W (x) from x, which stops at node x′;

15 Let l′1 = l1 + |W (x)|;
16 Sample an item (y, rl2(v, y)) from {R0(v), R1(v), . . .};
17 Sample an

√
c-walk W (y) from y, which stops at node y′;

18 Let l′2 = l2 + |W (y)|;
19 Let rsum(u) =

∑
R0(u),R1(u),...

∑
x∈V rl(u, x);

20 Let rsum(v) =
∑
R0(v),R1(v),...

∑
y∈V rl(v, y);

21 if π̂l′1(v, x′) 6= 0 then
22 Increase ŝ(u, v) by rsum(u)π̂l′1(v, x′)d̂(x′);

23 if π̂l′2(u, y′) 6= 0 then
24 Increase ŝ(u, v) by π̂l′2(u, y′)rsum(v)d̂(y′);

25 if l′1 = l′2 and x′ = y′ then
26 Increase ŝ(u, v) by rsum(u)rsum(v)d̂(x′);
27 Use ŝ(u, v) as an estimation of s(u, v);
28 Insert after Line 13 of Algorithm 4:
29 Increase nr(vh) and nr(vl) by 1, respectively;
30 Increase nr(u) by 2;
31 for any v ∈ {vh, vl, u} do
32 if nr(v) = 2n′r(v) then
33 ForwardPush(G, v, 1

nr(v)
);

34 n′r(v) = nr(v);

35 ForwardPush(G, v, rmax)
36 for l = 0, 1, . . . do
37 for each item (w, rl(v, w)) ∈ Rl(v) do
38 if rl(v,w)

|I(w)| > rmax then
39 π̂l(v, w) = π̂l(v, w) + (1−

√
c) · rl(v, w);

40 Update π̂l(v, w) in Hl(v);
41 for each x ∈ I(w) do
42 rl+1(v, x) = rl+1(v, x) +

√
c

|I(w)| · rl(v, w);
43 Update rl+1(v, x) in Rl+1(v);
44 rl(v, w) = 0;

4. THRESHOLDING QUERIES
In this section, we demonstrate how to adapt our arm sampling

strategies and the techniques for confidence bound to the thresh-
olding query, which returns all nodes with SimRank values larger
than a threshold τ for a given query node u. Firstly, by tackling
the problem from the perspective of MAB, a greedy arm sampling
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strategy [26] is adopted for the sample-one-arm operations3. Sec-
ondly, to enhance practical efficiency, we also employ the sample-
all-arms strategy, which is implemented by the prefiltering algo-
rithm and with a modification of the pruning rule. Our algorith-
m, denoted as SimTab-Thres, is shown in Algorithm 6. Similar to
SimTab-Top-k, the algorithm contains a prefiltering phase followed
by a refinement phase.

Algorithm 6: SimTab-Thres
Input: Directed graph G = (V,E); u ∈ V ; threshold τ ;

failure probability δ;
Output: Vτ , the estimated node set with SimRank value no

smaller than τ
1 Vτ = ∅;
2 C = Prefiltering(G, u, τ, δ

2
);

3 Initialize minimum queue Q = ∅;
4 Let nr(v) be the number of samples of node v;
5 for each v ∈ C do
6 Add (v,

√
nr(v) · |ŝ(u, v)− τ |) to Q;

7 while Q 6= ∅ do
8 (v, p(v)) = pop(Q);
9 Sample a pair of

√
c-walks from u and v to update ŝ(u, v)

and β(v);
10 if ŝ(u, v)− β(v) ≥ τ then
11 Add v to Vτ ;
12 else if β(v) ≤ εmin and ŝ(u, v) ≥ τ then
13 Add v to Vτ ;
14 else if β(v) > εmin and ŝ(u, v) + β(v) ≥ τ then
15 Update p(v), and put (v, p(v)) back into Q;

16 return Vτ ;

The prefiltering phase. In the prefiltering phase (Line 2), we filter
out nodes that can not be in Vτ and get a candidate set C. With
probability at least 1− δ

2
, C contains all nodes in Vτ . Each item in

C is represented by a triple (v, ŝ(u, v), β(v)), where β(v) denotes
the confidence interval and can be updated later in the refinemen-
t phase according to the implementation described in Section 3.
The prefiltering algorithm is analogous to Algorithm 2 but with the
modified pruning rule as follows.

The pruning rule. For node v satisfying that ŝ(u, v) − β(v) ≥ τ ,
we directly add it to Vτ ; node v satisfying that ŝ(u, v) + β(v) < τ
will be discarded. If node v satisfies that ŝ(u, v) − β(v) < τ ≤
ŝ(u, v) + β(v), we can not decide whether v ∈ Vτ . Therefore, it is
referred to as the candidate node.

The refinement phase. In the refinement phase, we identify the
nodes with SimRank values above τ from C. Intuitively, this can
be done by applying the Monte Carlo procedure for each candi-
date node. For node v, the procedure stops as long as the confi-
dence bound β(v) falls below |s(u,v)−τ |

2
(see Figure 4(a)). More-

over, the time complexity asymptotically matches the hardness of
the thresholding bandit problem. Nonetheless, we adopt a heuristic
adaptive sampling strategy [26], which facilitates the optimization
techniques and approximate version of the query. Details are re-
ferred to the full version of our paper [1].

3More precisely, in [26] the proposed method solves the threshold-
ing bandit problem under the fixed budget setting, which minimizes
the error of estimation given the number of samples. On the other
hand, our problem belongs to the fixed confidence setting, i.e., min-
imizing the number of samples for a predefined failure probability.

The sampling strategy. At every step, we sample the node v ∈ C
with the minimum weight p(v) =

√
nr(v) · |ŝ(u, v)− τ |.

Once we are sure that v ∈ Vτ (Lines 10-11) or the estimation
is as accurate as of the ground truth (Lines 12-13), v is moved to
Vτ or discarded based on the estimation value. Here, we use a
very small error parameter εmin (e.g. 10−6) to handle nodes with
s(u, v) = τ . Otherwise, the sampling-based algorithm will not
stop for these nodes. The setting of εmin guarantees that our result
is at least as good as the ground truth used in [24, 32].
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Figure 4: An example for the thresholding query.

Runinng example for Algorithm 6. Consider the toy example
in Figure 4(b), where we have four candidates {v1, v2, v3, v4}
for the thresholding query with τ = 0.01. According to the
sampling strategy, we compute p(v1) =

√
5 · 0.09 ≈ 0.201,

p(v2) =
√

10 · 0.01 ≈ 0.032, p(v3) =
√

50 · 0.005 ≈ 0.035,
and p(v4) =

√
20 · 0.009 ≈ 0.040. Therefore, v2 will be chosen

since it has the minimum weight. Note that the sampling strate-
gy implies that a candidate v which is sampled few times whereas
having a small gap between the estimated value and the threshold
should be re-considered. Intuitively, since the gap between v1, v4

and τ is sufficiently large, no more sample is needed; meanwhile, a
large number of samples have already given an accurate estimation
for v3.

We theoretically prove the correctness and complexity of the
SimTab-Thres algorithm.

THEOREM 3. With at least 1 − δ probability, SimTab-Thres
returns the true Vτ , i.e. the node set with SimRank value
no smaller than the threshold τ , with expected time complexity
min (O( θ

εmin2 logn
δ

), O(
∑

v∈V \{u}

1
(∆τ,v+εmin)2

logn
δ

)) .

Optimizations. Recall that during the top-k identification phase of
SimTab-Top-k, we employ an adaptive forward push to tighten the
confidence bounds without additional cost. This technique can be
integrated into the refinement phase of SimTab-Thres, since both
queries apply the sample-one-arm strategy in which arms are sam-
pled independently and repeatedly.

5. RELATED WORK
To the best of our knowledge, very few methods are directly de-

veloped for the top-k and thresholding SimRank queries. There-
fore, we classify the related work into (1) algorithms for top-k
queries [21], and (2) the single-source algorithms with the state-
of-the-art empirical performance on these queries. We also include
a brief discussion of other related work.

5.1 Algorithms for Top-k Queries
TopSim [21] is the only known method that exactly solves the

top-k SimRank query. Given the query node u, TopSim firstly finds
allw reachable from u with exact l steps following in-edges, where
l starts from 1 and increases by 1 once all such w are found. For
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each w, it finds all v reachable from w in exact l steps following
out-edges. Moreover, v must not be any node in path w  u.
Then the probability of w  u,w  v is aggregated into ŝ(u, v),
an estimation of s(u, v). The algorithm stops when the gap be-
tween k-th and (k+ 1)-th largest score exceeds the heuristic upper
bound of the score any node can gain with more than l steps, in
fact, ( c

d̄
)l+1, where c is the decay factor and d̄ is the average de-

gree of the graph. The authors also propose several optimization
algorithms to improve the speed, some with trade of accuracy.

5.2 State-of-the-art Single-Source Queries
The recently proposed single-source algorithms [24,32] are state

of the art for both top-k and thresholding queries. They all employ
the return all and postprocessing paradigm, i.e., they first derive
an approximate estimation for each node in the graph, followed by
returning the set of nodes satisfying the query constraint.

5.2.1 The index-free algorithm
ProbeSim [24] is the state-of-the-art index-free algorithm that

is able to compute single-source SimRank queries on large graph-
s. Given a query node u, ProbeSim samples nr

√
c-walks from u

following in-edges in the forward stage. For each walk W (u) =
(w0 = u,w1, . . .), let wl be the node at the l-th step. The algorith-
m then performs a probe procedure from each wl(l = 1, . . .) in the
backward stage, where the meeting probabilities for different wi
are aggregated to derive an unbiased estimation of s(u, v). They
provide both a deterministic and a randomized version of the probe
procedure, which is essentially based on deterministic or random-
ized similar path enumeration.

5.2.2 Index-based algorithms
Most single-source algorithms [17, 28, 30, 32] use index to im-

prove the query performance. In general, they pre-compute a frac-
tion of the results of similarity path enumeration or a large num-
ber of random walks during index construction, while the index
can be reused in the query phase. TSF [28] constructs a set of
one-way graphs as index via random in-neighbor sampling, and an-
swers single-source queries by online random walk sampling and
traversal on one-way graphs. On the contrary, SLING [30] im-
plements the forward and backward stage as similarity path enu-
meration. It computes the hitting probabilities from each node
v, which denotes the probability of an

√
c-walk from v passing

w. Only non-negligible probabilities are indexed to reduce space
costs. READS [17] proposes an indexing scheme along with the
SimRank-aware random walk to enhance both theoretical and prac-
tical query efficiency of MC. As the state-of-the-art index-based ap-
proach, PRSim [32] improves the efficiency of the backward stage
via a probability-guided search of similarity paths. To limit the in-
dex space, it only conducts backward search [4] from nodes with
high reverse PageRank scores (i.e., PageRank following in-edges).
In the query phase, given a

√
c-walk generated in the forward stage,

if it stops at a hub node, the indexed estimation values are directly
retrieved; otherwise a randomized searching procedure is invoked
to estimate the SimRank values, which only incurs sub-linear cost
on power-law graphs.

Although pre-computing partial intermediate results as the index
benefits the query time performance, it also has several fatal draw-
backs. Firstly, all known methods except [17, 28] construct static
index, which means the index can not be updated once the graph
changes. Secondly, for every index-based method, the preprocess-
ing phase (e.g., the size of the index) is determined by the error
parameter ε, which is user-defined during the query phase. There-
fore, these algorithms suffer from low flexibility.

5.3 Other Related Work
The algorithms for SimRank can be broadly divided into the

iterative methods and the random walk based methods. [16] pro-
poses the Power Method, an iterative method to compute the all-
pair SimRank matrix S. It is based on the matrix formulation
of SimRank [20]: S = (cP>SP ) ∨ I, where I is the identi-
ty matrix of compatible size, P is a transition matrix defined by
the edges in G, and ∨ is the element-wise maximum operator. A
bunch of follow-up work [25, 31, 35, 37] improves its efficiency or
accuracy; however, as all methods incur O(n2) space overhead-
s, the cost is prohibitive for large-sized graphs. We also note a
line of research [11, 13, 20, 22, 33, 34, 36] has been proposed with
a modified definition of SimRank that makes it easier to compute:
S = cP>SP + (1− c) · I. However, [20, 30] prove that this defi-
nition is rather different from the original SimRank.

6. EXPERIMENTS
This section experimentally evaluates our proposed algorithm-

s against the state-of-the-art methods for top-k and thresholding
SimRank queries.

Table 5: Datasets.
Dataset Type n m
DBLP (DB) undirected 5,425,963 17,298,033
LiveJournal (LJ) directed 4,847,571 68,993,773
IT-2004 (IT) directed 41,291,594 1,150,725,436
Friendster (FD) directed 68,349,466 2,586,147,869

6.1 Experimental Setup
Datasets. We use four large graph datasets [2,3] with edge numbers
varying from tens of millions to billions, as shown in Table 5.

Query generation. We consider two different strategies for query
node generation. 1) Uniformly at random. Following all previ-
ous studies [17, 24, 28, 30, 32], for each dataset, we randomly gen-
erate 1,000 query nodes for top-k and thresholding queries, re-
spectively. 2) Stratified sampling. Due to the definition of Sim-
Rank, a query node with higher in-degree tends to have more n-
odes with smaller similarities. We split the in-degrees into interval-
s [1, 10), [10, 102), [102, 103), [103, 104) and [104,∞), and gen-
erate 100 random queries for each interval. For space constraints,
we only report the empirical results under the uniformly-at-random
setting, for that the conclusions of two different settings are similar.

Methods. We evaluate our top-k and thresholding algorithm with
ProbeSim [24], the state-of-the-art index-free algorithm, and the
state-of-the-art index-based algorithms, including PRSim [32] and
READS [17]. We include TopSim [21] and TSF [28] as baselines.
Since PRSim can be easily modified into an index-free algorithm
by setting the number of indexed hubs as 0, we also take it into
consideration, and denote it as PRSim-IF (for index-free). We also
compare our methods to Opt-LP, the state-of-the-art all-pair Sim-
Rank algorithm [31]. We obtain the code of ProbeSim, READS,
PRSim, and Opt-LP from the authors, and implement all other al-
gorithms in C++ and compile the codes with the -O3 option. All
experiments are conducted on a machine with a 2.6GHz CPU and
128GB memory. Following previous works [24, 30, 32], we set
c = 0.6 through all experiments.

Parameters. For each method, we choose two parameter settings:
the typical parameter setting following the original paper, and a
precise parameter setting to achieve the most accurate estimation,
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Figure 5: Precision@k for top-k queries, varying k ∈ {1, 5, 10, 50, 100, 500, 1000}
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Figure 6: Query time for top-k queries, varying k ∈ {1, 5, 10, 50, 100, 500, 1000}

on condition that the method is not out-of-time4. ProbeSim, PRSim,
and PRSim-IF all use an absolute error parameter ε for single-
source queries. We set ε ∈ {0.1, 0.05, 0.01, 0.005, ...}, where ε =
0.1 is the typical setting for ProbeSim as in [24], and ε = 0.01 is
the typical setting for PRSim and PRSim-IF. For TopSim, since the
baseline algorithm is extremely slow and has inferior answer qual-
ity, we use Prio-TopSim, the optimized algorithm for evaluation.
We vary T , the depth of the traversal from 3 to 6 with default val-
ue as 3, and H , the size of priority pool from 1, 000 to 4, 000 with
default value as 1, 000. TSF has two parameters Rg and Rq , which
denotes the number of indexed one-way graphs and the number of
times each one-way graph is reused in the query stage, respectively.
We set (Rg, Rq) ∈ {(100, 20), (300, 40), (600, 80), (900, 120)},
where (100, 20) is the default value. When the size of the index
exceeds the memory capacity, we use its external memory version,
i.e., EXT-TSF, which may incur longer query time for disk I/O.
For READS, we vary parameter r, the number of indexes (i.e. SA
forests) constructed during preprocessing, and rq, the number of
random walks generated for each index at query time. Specifical-
ly, we set (r, rq) ∈ {(100, 10), (500, 10), (500, 20), (1000, 20)}
while by default (r, rq) = (100, 10). For our algorithms, we set
εmin = 10−6. The failure probability is set to 0.0001 for al-
l sampling-based algorithms. Since all baselines under the typi-
cal parameter settings give significantly inferior performance com-
pared to their precise parameter settings, we omit them in Figure 5-
8. More details can be referred to the full version of the paper [1].

We adopt the idea of pooling [24] to evaluate the relative effec-
tiveness of different algorithms. We take MC as the ground truth for
each candidate in the pool and guarantee that the estimation error
is below 10−6 with confidence over 99.999%.

6.2 Evaluation of Top-k Queries
Metrics. We use Precision@k to evaluate the accuracy of top-
k queries. Given a query node u, denote by Vk the set of

4We say an algorithm is out-of-time if the query time for some
node is over one hour or the index construction time is beyond
10,000 seconds. This indicates that the algorithm is not suitable
for dynamic graphs.

top-k nodes with the largest SimRank values, and V ′k the esti-
mated node set of a specific algorithm. The metric is defined
as Precision@k =

|Vk∩V ′
k|

k
. In the evaluation, we vary k in

{1, 5, 10, 50, 100, 500, 1000}. Intuitively, as k increases, the prob-
lem incurs higher computational cost because the top-k answers are
harder to be distinguished from other nodes.

Our query results are illustrated in Figure 5 & 6. Generally s-
peaking, all baselines achieve better performance for the medium
values of k, while the precision decreases as k goes towards 1 or
1, 000. In particular, the two algorithms that adopt random walk
sampling in both the forward and backward stage, i.e., TSF and
READS, achieve the highest query speed with the help of index, but
give significantly inferior query accuracy compared to other base-
lines. This is attributed to that the number of indices constructed
are determined heuristically, partially because of the tremendous
time and space overhead. Hence, the estimation error can not be
guaranteed in practice. Methods with graph-traversal based search-
ing strategies, including TopSim, ProbeSim, PRSim, and PRSim-IF,
incur much higher query cost but achieve relatively satisfying ac-
curacy. TopSim acquires surprisingly good performance in terms of
Precision@k, since intuitively the most similar nodes locate close
to the query node. Overall, PRSim-IF and PRSim are the two best
baseline algorithms with a good tradeoff between query accura-
cy, computational cost, and index size (for PRSim). In compari-
son, the precision of SimTab-Top-k is always 1 in our experiments.
This is achieved by our multi-armed bandit modeling of the prob-
lem, which enables us to treat the nodes adaptively in the sampling
process. Meanwhile, our algorithm is orders of magnitude faster
than those baselines with acceptable query accuracy, e.g, PRSim-
IF. Note that the precision of these algorithms still have a gap from
1, and remain non-stable for different datasets and k. On the oth-
er hand, the answer quality can hardly be improved, because these
algorithms cannot efficiently query with smaller parameters for the
tremendous time and index cost. Lastly, the query time of SimTab-
Top-k varies with k, which implies that our algorithm is adaptive to
the hardness of the queries.

To demonstrate the uniqueness and hardness of the top-k query,
we also compare with Opt-LP, the state-of-the-art all-pair SimRank
algorithm, which is also the most scalable one for large graphs.
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Figure 7: F1-score for thresholding queries, varying τ ∈ {10−1, 10−2, 10−3, 10−4}
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Figure 8: Query time for thresholding queries, varying τ ∈ {10−1, 10−2, 10−3, 10−4}

Following [31], we set the absolute error parameter ε to 0.01. Un-
fortunately, even under such a loose parameter setting, Opt-LP can
only compute the SimRank similarities on DB, the smallest dataset,
and fails on three other datasets due to out of memory. Besides, the
query accuracy in terms of Precision@k is inferior to all compared
single-source algorithms. This indicates that the top-k SimRank
query cannot be easily answered via direct SimRank computation
and should be specially considered.

6.3 Evaluation of Thresholding Queries
Metrics. For the thresholding query, we vary τ ∈
{10−1, 10−2, 10−3, 10−4}. We use precision, recall and F1-score
as the evaluation metrics. Specifically, let S be the set of ex-
act answers for thresholding queries, and S′ the node set re-
turned by some specific algorithm. We define Precision =
|S∩S′|
|S′| , Recall = |S∩S′|

|S| , and F1−score = 2 · Precision·Recall
Precision+Recall

.

The query results are demonstrated in Figure 7 & 8. For space
constraints, we only show F1-Score in Figure 7. The following
conclusions are easily derived. First, the query is harder for s-
maller τ . Since most nodes have low SimRank values w.r.t. the
query node, more nodes need to be estimated precisely for small-
er τ . Consequently, the F1-score of baseline algorithms decreases
as τ shrinks. Second, at the cost of longer query time, PRSim-
IF achieves the best performance among all index-free baselines
with F1-score close to 1, while PRSim is the best index-based algo-
rithm. As Figure 7 shows, TopSim is not suitable for thresholding
queries especially for small τ , because a large fraction of the an-
swer is missed due to the truncated search and the heuristic prun-
ing rule. Similar to the top-k query, the answer quality of TSF
and READS is significantly inferior to those algorithms with graph-
traversal based strategies, such as PRSim-IF and PRSim. Therefore,
they should not be recommended to answer these queries. Again,
our SimTab-Thres algorithm enables to answer all queries exactly,
with query efficiency significantly outperforming any baseline that
achieves acceptable answer quality.

7. CONCLUSIONS
In this paper, we propose algorithms to improve both the effi-

ciency and the effectiveness of the state-of-the-art methods over
top-k and thresholding SimRank queries. Specifically, we integrate
several techniques to tighten the confidence bounds of SimRank
estimation, including the empirical Bernstein inequality, variance
reduction tricks, and careful algorithm design. Moreover, we mod-
el the top-k and thresholding SimRank queries as the multi-armed
bandits problems, so that the algorithmic complexity is determined
by the hardness of the query instance. By proposing novel arm
sampling strategies, we are able to significantly enhance the practi-
cal efficiency of the algorithms. We conduct extensive experiments
for top-k and thresholding queries on large-scale graphs, and the
results indicate that our algorithms are the only acceptable method-
s to achieve stable and satisfying performance in terms of answer
quality and with reasonable query efficiency.
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[9] D. Fogaras and B. Rácz. Scaling link-based similarity search.
In WWW, pages 641–650, 2005.
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