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ABSTRACT PageRank distribution of the graph. Finally, we present the

SimRank is a classic measure of the similarities of nodes in a
graph. Given a node u in graph G = (V, E), a single-source
SimRank query returns the SimRank similarities s(u, v) be-
tween node u and each node v € V. This type of queries has
numerous applications in web search and social networks
analysis, such as link prediction, web mining, and spam de-
tection. Existing methods for single-source SimRank queries,
however, incur query cost at least linear to the number of
nodes n, which renders them inapplicable for real-time and
interactive analysis.

This paper proposes PRSim, an algorithm that exploits
the structure of graphs to efficiently answer single-source
SimRank queries. PRSim uses an index of size O(m), where
m is the number of edges in the graph, and guarantees a
query time that depends on the reverse PageRank distribu-
tion of the input graph. In particular, we prove that PRSim
runs in sub-linear time if the degree distribution of the in-
put graph follows the power-law distribution, a property
possessed by many real-world graphs. Based on the theo-
retical analysis, we show that the empirical query time of
all existing SimRank algorithms also depends on the reverse
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first experimental study that evaluates the absolute errors of
various SimRank algorithms on large graphs, and we show
that PRSim outperforms the state of the art in terms of query
time, accuracy, index size, and scalability.
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1 INTRODUCTION

Measuring similarities and proximities of nodes in the graph
is a classic task in graph analytics. Several link-based simi-
larity measures have been proposed, including Personalized
PageRank [29], Simfusion [36], P-rank [47] and Panther [45].
Among them, SimRank [15], proposed by Jeh and Widom, is
regarded as one of the most influential similarity measures,
and has been adopted in numerous applications such as web
mining [17], social network analysis [23], and spam detec-
tion [31]. Given a graph G = (V, E), the SimRank similarity
of nodes u and v, denoted as s(u, v), is defined as

1, fu=v

[

T T 2 2 W)

u'el(u)v'el(v)

s(u,v) = otherwise

(1)


https://doi.org/10.1145/3299869.3319873
https://doi.org/10.1145/3299869.3319873

Research 10: Graphs 1

where I (1) denotes the set of in-neighbors of u, and ¢ € (0, 1)
is a decay factor typically set to 0.6 or 0.8 [15, 26]. This
formulation is based on two intuitive statements: (1) two
objects are similar if they are referenced by similar objects,
and (2) an object is most similar to itself. Due to its recursive
nature, SimRank computation is a non-trivial problem and
has been extensively studied for more than a decade. Existing
work mostly considers three types of SimRank queries: (1)
Single-pair queries, which ask for the SimRank similarity
between two given nodes u and v; (2) All-pair queries, which
ask for the SimRank similarity between any pair of nodes u
and v; (3) Single-source queries, which ask for the SimRank
similarity between every node and u. All-pair queries require
storing O(n?) node pairs, and thus is infeasible for large
graphs. Meanwhile, single-source queries has become the
focus of recent research [12, 16, 18, 20, 22, 22, 25, 28, 30, 32,
41], due to its connections to recommendation applications.
In this paper, we aim to answer approximate single-source
SimRank queries, defined as follows:

Definition 1.1 (Approximate Single-Source Queries). Given a
node u in a directed graph G and an absolute error threshold
¢, an approximate single-source SimRank query returns an
estimated value $(u, v) for each node v in G, such that

|$(u,v) —s(u,v)| < ¢

holds for any v with at least 1 — § probability. O

Power-law graphs. It was experimentally observed that
most real-world networks are scale-free and follow power-
law degree distribution. In particular, let P, (k) and P;(k)
denote the fraction of nodes in the graph having out-degree
and in-degree at least k, respectively. Then, on a power-
law graph, P,(k) and P;(k) satisfy that P,(k) ~ k™Y and
P;(k) ~ k™" [7], where y and y’ are the (cumulative) power-
law exponents that usually take values from 1 to 2. Recent
work has demonstrated that by exploiting this fact, we can
improve the asymptotic bounds for various graph algorithms
such as triangle counting [8], transitive closure [8], perfect
matching [8], PageRank computation [27, 35] and maximum
independent set [24].

Motivations. Since many graph algorithms can benefit
from the structure of real-world graphs, a natural question
is: Can we do the same for SimRank algorithms? On one
hand, we are interested in designing a more efficient Sim-
Rank algorithm by exploiting the structure of the graphs,
since existing work for SimRank computation [12, 16, 18,
20, 22, 22, 25, 28, 30, 32, 41] has missed this opportunity for
optimization. On the other hand, we are also interested in
analyzing how the graph structure affects the performance
of existing SimRank algorithms. More precisely, it has been
observed in previous work [46] that the performance of ex-
isting SimRank algorithms may vary dramatically on graphs
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with similar numbers of nodes and edges. A typical example
is the Twitter (TW) and IT-2004 (IT) data sets, both of which
have around 40 million nodes and 1 billion edges. However,
as shown in [46] and in our experiments, the query times of
most SimRank algorithms are significantly smaller on IT-2004
than on Twitter. Based on this phenomenon, [46] suggests
that Twitter (TW)is “locally dense” and IT-2004 (IT) is “locally
sparse”. However, it is still desirable to obtain a quantifiable
measure that describes the hardness of each graph in terms
of SimRank computation. Finally, since obtaining ground
truth for single-source SimRank queries requires n? space,
which is infeasible for large graphs, most existing work only
evaluate the accuracy of the algorithms on small graphs. The
only exception is recent work [25], which evaluates precision
for approximate top-k queries on graphs with billion edges
using the idea of pooling. However, there is no prior experi-
mental study that evaluates absolute error for single-source
queries on large graphs.

Our contributions. This paper studies the approximate
single-source SimRank queries, and makes the following
contributions.

(1) We propose PRSim, an algorithm that leverages the
graph structure to efficiently answer approximate single-
source SimRank queries. The query time complexity of PRSim
is related to the reverse PageRank of the input graph G, which
is defined as the PageRank of the graph G’ constructed
by reversing the direction of each edge in G. Let 7(w) de-
note reverse PageRank of node w, and ¥,y 7(w)? denote
the second moment of the reverse PageRanks. The aver-
age expected query cost for PRSim on worst-case graphs

is bounded by O (nlog% S vev ﬂ(W)Z). By the fact that

s .
S ey T(W)2 < (Zawey 7(w))? = 1, PRSim provides at least
the same complexity as the random walk based algorithms
(ProbeSim, TSF, and READS) do on worst-case graphs. Fur-
thermore, PRSim uses an index of size O(m), which signifi-
cantly improves the scalability of the algorithm. See Table 1
for the theoretical comparison between our algorithm and
the state of the art.

On the other hand, we show that on power-law graphs,
the second moment 3,,cy 7 (w)? is an asymptotic variable
that is close to 0, which means PRSim actually achieves sub-
linear query cost on real-world graphs. More precisely, Let y
denote the cumulative power-law exponent of the out-degree
distribution. We show that the average expected query cost
for PRSim on power-law graphs is bounded by:

&

O(z log %),
O(Z% log % - logn),

2_
) (min { o

nY1
A=), forl<y <2,

fory > 2;
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Table 1: Comparison of single-source SimRank algorithms with ¢ additive error and 1 — § success probability.

Algorithm Query Time Query Time (Power-Law Graphs) Space Overhead | Preprocessing Time
O(log%/ez) fory >2
PRSim 0] ("l‘f 5 S wev IT(W)Z) 0] (log 2. log l’l/&‘z) fory =2 O (min{n/e, m}) O (m/e)
O(min{n%/sz_%, _1/82}) fori<y<2
TSF [30] 0] (n log %/82) (n log 2/52) (n log Z/¢?
READS [16] 0] (n log %/52) (nlog 3 62) (n log & 52)
ProbeSim [25] 0] (n log §/€2) 0 0
SLING [32] O (n/e) O (n/e) 0] (m/e + nlog %/82)

for ﬁ <eg<land§ > ﬁ To understand this complex-

ity, we first note that when y > 2, our bounds depend only

on log n, which is significantly better than the corresponding

bound of any previous SimRank algorithms. For 1 <y < 2,
1

since ¢ > %, we have ’Z’L < Z. This implies that PRSim

also outperforms SLING oyn power-law graphs. To the best
of our knowledge, this is the first sublinear algorithm for
single-source SimRank queries on power-law graphs.

(2) To achieve the desired query cost in Table 1, we design
several novel techniques for computing SimRank and Per-
sonalized PageRank (PPR) . First, we propose an algorithm
that estimates the last meeting probabilities [32] (see Section
for definition) for ALL nodes in O(log 5/ £2) time. This im-
proves the O(nlog g/gz) bounds in [32] by an order of O(n)
and is the key to achieve sub-linearity. Second, we propose
an index scheme which performs the backward search [27]
algorithm only on a number j, of hub nodes. The parame-
ter jo enables us to manipulate the tradeoffs between index
size and query time, which improves the scalability of our
algorithm. Finally, we design Variance Bounded Backward
Walk, an algorithm that estimates the Personalized PageR-
ank values to a given target node w with additive error ¢ in
O(nrz(w) log %/82) time, where 7 (w) is the reverse PageR-
ank of node w. Since the average value of 7 (w) is 1/n, this
significantly improves the O(nlog % /¢) time complexity of
the Randomized Probe algorithm [25], and is the key to the
relation between the time complexity and the reverse PageR-
ank distribution. We also note that the Variance Bounded
Backward Walk algorithm actually improves the time com-
plexity of state-of-the-art PPR algorithms to target nodes for
dense graphs [33], and may be of independent interest.

(3) Based on the time complexity of PRSim, we conduct
experiments to confirm that the hardness of SimRank queries
is indeed reversely related to the out-degree power-law expo-
nent y of the graph. This observation provides a quantifiable
measure for the concept of locally dense and locally sparse
networks introduced in [46]. In particular, the out-degree
distribution of IT-2004 is significantly more skewed than that
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Figure 1: Out-degree distributions of IT and TW.

of Twitter (see Figure 1), which explains the performance
discrepancy of existing SimRank algorithms on these two
datasets. We also conduct a large set of experiments that
evaluate PRSim against the state of the art on benchmark
data sets. In particular, our experiments include the first em-
pirical study on the tradeoffs between absolute error and
query cost for single-source SimRank algorithms on graphs
with billions of edges. Our empirical study shows that PRSim
outperforms the state of the art in terms of query time, accu-
racy, index size, and scalability.

2 PRELIMINARIES

Table 2 shows the notations that are frequently used in the
remainder of the paper.

Vc-walk and Reverse PageRank. We unify the definition
of SimRank and reverse PageRank under the notation of v/c-
walk. Let G = (V, E) be a directed graph with n nodes and
m edges. Given a source node u € V and a decay factor c, a
reverse \/c-discounted random walk (or \/c-walk in short) from
u is a traversal of G that starts from u and, at each step, either
(i) terminates at the current node with 1 — +/c probability,
or (ii) proceeds to a randomly selected in-neighbor of the
current node with +/c probability. We define the reverse
PageRank 7(w) of a node w to be the probability that an
y/c-walk from a uniformly chosen source node terminates
at w. It is easy to see that the reverse PageRank of a node w
in the original graph G equals to the PageRank of w in the
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Table 2: Table of notations.

Notation Description
n,m the numbers of nodes and edges in G
I (v),0(v) the set of in-neighbors and out-neighbors of

anode v

dout (v), din(v) the out-degree and in-degree of node v

s(u,v) the SimRank similarity of nodes u and v

$(u,v) an estimation of s(u, v)

c the decay factor of SimRank

£ the maximum absolute error allowed in Sim-
Rank computation

7 (w) the reverse PageRank of node w

7 (u, w), re(u, w) | the RPPR and £-hop RPPR values of w with

respect to u

i (u, w), Zp(u,w) | estimators of 7(u, w) and p(u, w)

the residue and reserve of v at level ¢ from
w in the backward search

re(v, w), Y (v, w)

reverse graph G’ constructed by reversing the direction of
each edge in G.

Given a source node u and a target node w, we further
define the reverse Personalized PageRank (RPPR) 7 (u, w) of
w with respect to u to be the probability that an v/c-walk
from u terminates at w. Again, the reverse Personalized
PageRank on the original graph G equals to the Person-
alized PageRank on the reverse graph G’. Since the RPPR
values from a given source node u form a probability dis-
tribution, we have Y., cy 7(u, w) = 1. Meanwhile, since the
reverse PageRank 7 (w) is equal to the probability that an
y/c-walk from a random source node terminates at w, we
have Y, cy m(u, w) = nm(w).
¢-Hop RPPR. In this paper, we will mainly use a variant
of Personalized PageRank called £-hop Reverse Personalized
PageRank (£-hop RPPR). Given a source node u, the £-hop
RPPR 7y (u, w) of node w respected to u is the probability
that a reverse y/c-walk from u terminates at node w with
exactly € steps. By the definition of £-hop RPPR, we have

7T£’+1(y’ w) = Z

&7y din

Ve

()

()

e(x, w).

On the other hand, it is easy to see that RPPR 7 (u, w) can be
expressed as the sum of £-hop RPPR, that is, 357 7¢(u, w) =
7(u, w). Thus, we have 377 >, v m¢(u, w) = 1, and

i Z we(u, w) = nm(w).

=0 ueV

4)
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SimRank, Vc-walk, and hitting probability. It is shown
in [32] that the SimRank similarity s(u, v) between two dif-
ferent nodes u and v can also be formulated using v/c-walks.
Given two distinct nodes u and v, we start a \/c-walk from
each node. If the two +/c-walks visit the same node after
exactly i steps, we say the two vc-walks meet at step i. [32]
shows that s(u, v) is equal to the probability that the two
yc-walks meet.

Moreover, [32] proposes SLING, an algorithm that uses
the following formula to estimate SimRank values:

s )= Y " he(u, whhe (o, w)n(w).

=0 weV

)

Here h(u, w) denote the hitting probability that an vc-walk
from node u visits w in its {-step, and n(w) is a parameter
that characterizes the last-meeting probability:

Definition 2.1 (Last-meeting probability). The last-meeting
probability 7(w) for node w is the probability that two +/c-
walk from w do not meet at i step for any i > 1.

SLING precomputes h¢(u, w) and n(w) with an additive er-
ror up to ¢, and stores them in the index. Given a query node
u, it retrieves all levels ¢ and nodes w such that hy(u, w) >
¢. For each (£, w) pair, SLING retrieves all nodes v with
he(v,w) > ¢ and n(w), and estimates s(u,v) with Equa-
tion (5).

There are two major issues with SLING. First, storing all
he(u, w) with additive error up to ¢ takes O(n/¢) space, which
can be significantly larger than the graph size for reasonable
choices of ¢. Second, approximating n(w) for each w € V
requires sampling a large number of random walks from
each node in the graph, which makes the preprocessing time
infeasible on very large graphs. Our algorithm overcomes
these two drawbacks by (1) providing an index size that is at
most the size of the graph, and (2) designing an algorithm
that estimates n(w) on-the-fly, using only O(log n/¢?) time.

3 PRSIM ALGORITHM

In this section, we present PRSim, an index-based algorithm
that exploits the graph structure to efficiently answer approx-
imate single-source SimRank queries. We first provide the
estimating formula that relates SimRank and £-hop RPPR.

3.1 SimRank and ¢-hop RPPR

The relation between SimRank and reverse Personalized
PageRank can be directly derived from equation (5). Observe
the fact that £-hop RPPR ¢ (u, w) equals to the hitting prob-
ability hg(u, w) multiplied the the termination probability
a =1—+/c, and we have

1

i 2 2 e W), )

=0 weV

s(u,v) =
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There are two reasons for using £-hop RPPR over hitting
probability. Firstly, we have }7 >, ,cv mr(u,w) = 1. As
we will show later, this is critical for estimating n(w) in
O(log %/82) time. Secondly, we have 37”3\, ey me(u, w) =
nm(w). This property relates SimRank with the reverse PageR-
ank, and thus is essential for achieving sublinear query time.

Recall that given a source node u, our goal is to estimate
SimRank values s(u, v) with additive error ¢ for any node
v € V. By Equation (6), we can decompose the query process
into three subroutines: 1) Given a source node u, compute
the ¢-hop RPPR values 7¢(u, w) for any nodes w € V; 2)
Compute last meeting probabilities n(w) for each w € V; 3)
For any node v € V, compute {-hop RPPR values 7, (v, w)
to any target node w. For the first task, we can employ a
simple Monte Carlo algorithm which generates a number
n, = O(log % /¢?) of yc-walks from u and uses the propor-
tion of vc-walks that terminate at w with exact ¢ steps to
approximate 7¢(u, w). This algorithm runs in O(log § /¢%)
time, so we will focus on the remaining two tasks.

3.2 Computing Last Meeting Probability
The first challenge is how to estimate n(w) for eachw € V
efficiently. SLING [32] generates n, = © (log 2 ) pair of /-

52
walks for each w € V, and obtains an approximation to r(w)
with error ¢ for each w € V. However, this solution leads to

log 2 . .
nz# ), and thus, is not feasible

a preprocessing time of O (

if we need small error ¢ on large graphs.

Our first key insight is that, instead of estimating the
¢-hop PPR 7¢(u, w) and last meeting probability n(w) sep-
arately, we can estimate their product n(w)m,(u, w) in the

query phase, using only n, = © (loig

samples. More pre-

cisely, we observe that n(w)ms(u, w) is the probability that
an vc-walk from u terminates at w with ¢ steps, and then,
two independent v/c-walks from w do not meet. Therefore,
we can generate an yc-walk ‘W (u) from u, and then two
yc-walks W (w) and ‘W, (w) from the node w where W (u)
terminates. If ‘W;(w) and W,(w) do not meet, we set the
estimator 7777 ,(u, w) = 1. This way we obtain an unbiased es-
timator for each n(w)m,(u,w), w € Vand £ =0,...,c0. We
also note that the summation ey 27 n(w)me(u, w) <
2iweV 2pwo e(u, w) = 1, which means we can use Chernoff
bound A.1 to estimates n(w)m¢(u, w) with additive error ¢
log %
62

forany w € V,£ > 0 with only n, = © ( ) samples.

3.3 Precomputing RPPR to Hub Nodes

Given a target node w, computing £-hop RPPR (v, w) for
any node v € V is time-consuming, especially when w is
a hub node with many out-neighbors. Therefore, we will
use index to help reduce the cost. SLING [32] proposes the
following approach: for each (source) node v, we precompute
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7¢(v, w) for any w € V and put 7,(v, w) into an inverted
list, so we can efficiently track 7;(v, w),v € V for a given
target node w. This approach, however, essentially builds an
index for every target node w € V and results in an index
of size O (%) which is usually significantly larger than the
graph size m for reasonably small e.

Algorithm 1: Preprocessing Algorithm

Input: Graph G, decay factor c, error parameter ¢

Output: Lists Ly(w) consisting of tuples (v, ¢ (v, w)) for each
w with top-jo reverse PageRank values and
£=0,...,00

Construct a tuple (x,y, din(y)) for each edge (x,y) € E;

[

Use counting sort to sort the (x, y, din (y)) tuples according the
ascending order of dj, (y).;
for each (x,y,din(y)) do

L Append y to the end of x’s out-adjacency list;
Calculate reverse PageRank 7 (w) for w € V;
for each node w with top-jo reverse PageRank values do
re(v,w),Ye(v,w) < 0for{ =0,...,00,0 € V;
ro(w,w) « 1,¢1 « ﬁ Fmax <
for ¢ from 0 to co do
for eachv € V withrg(v,w) > rmax do

for each z € O(v) do
L res1(z,w) — regp(z,w) ++/e - —’gffj;;;)

Ye(v.w) « Ye(v,w) + (1= Vo) - re(v,w);

re(v,w) « 0;

£.
¢’

for each v with reserve Yyp(v,w) > rmax do
L Append tuple (v, Y¢(v, w)) to Le(w);

To reduce the index size, we propose to build index only for
hub nodes. In particular, we identify j, nodes with the largest
reverse PageRanks as hub nodes, where j is a user-specified
parameter. We then perform the backward search [27] algo-
rithm on each hub node w to precompute 7z, (v, w) for any
v € V and any £ > 0. The definition of hub nodes is based
on two intuitions. First, recall that the reverse PageRank of
node w is the probability that an v/c-walk from a random
node u terminates at w. Therefore, a hub node w is more
likely to be visited in a single-source SimRank query on u.
Second, since 37" ) >\, ey 7¢(v, w) = nz(w), a hub node will
also have more (¢, w)-tuples with 7y (v, w) > ¢, which makes
it more difficult to compute 7,(v, w) on the fly. Therefore,
pre-computing 7,(v, w) for nodes w with highest reverse
PageRank reduces the query cost most efficiently. We also
note that we can choose the value of j, to balance the query
time, index size and preprocessing time. For ease of presen-
tation, we select j, such that the index size is bounded by
O(m) in this section.
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Algorithm 1 illustrates the pseudocode for the preprocess-
ing algorithm. For reasons we shall see later, for each node u
with out-neighbor set O(x) = {y, ..., yq}, we store the ad-
jacency list of x in a way such that d;, (y;) < ... < din(ya).
To sort the adjacency list of each node in total O(m) time, we
first construct a tuple (x, y, d;,(y)) for each edge (x,y) € E.
Then we employ the counting sort algorithm to sort the m tu-
ples (x,y, din(y)) according to the ascending order of d;, (y).
Since d;, (y) is an integer in range [0, n], the counting sort
algorithm runs in time O(m + n). We then scan the m sorted
tuples and, for each tuple (x, y,d;,(y)), we append y to the
end of x’s out-adjacency list. This algorithm sorts the out-
adjacency list of each node in O(m + n) time. (Lines 1-4). We
then calculate the reverse PageRanks for each node w € V,
and retrieve the jo nodes with the largest reverse PageR-
ank as the hub nodes (line 5). For each hub node w, we use
backward search [27] to compute an estimator ¢ (v, w) for
the I-hop RPPR 7,(v, w), foreach{ =0,...,c0andv € V.
More precisely, we first set residue r¢(v, w) and a reserve

Ye(v,w) = 0 to each node v and € = 0,...,c0. Then, we
2
set ro(w, w) = 1 and the residue threshold 7,4, = %

(Lines 6-8). Note that we choose the constant (1 — 4/c)? to
compensate the denominator (1 — +/c)? in equation (6), and
the constant 12 so that we can sum various errors up to at
most ¢. Starting from level 0, we traverse from w, following
the out-going edges of each node (Line 9). On visiting a node
v at level ¢, we check if ©’s residue r¢(v,t) is larger than
the threshold r,4x. If so, for each out-neighbor z of v, we
increase the residue r,,1(z, w) of z at level £+1 by +/c- r;f:i;;)
(Lines 10-12). Next, we increase ¢ (v, w), v’s backward re-
serve at level £ by vcrs(v, w) (line 13). After that, we reset
v’s backward residue ry (v, w) to 0 (line 14). After all nodes
v with residue r¢(v, w) > rpyay are processed, we append
tuples (v, Y7 (v, w)) to a list Ly(w) for each v with reserve
Ye(v, W) > rmax (line 15-17). Note that for each a node w
and a level ¢ with at least one (v, W) > rpqx, we store all
tuples (v, ¢ (v, w)) with ¢ (v, w) > ¢ in alist Ly(w), so we
can quickly retrieve them given w and ¢ in the query phase.
The following lemma can be directly derived from [27]

LEmMA 3.1 ([27]). Forany hubnodew, anyv € V and{ > 0,

Algorithm1 ensures ¢ (v, w) — m¢(v, W)| < Fmax = %

We have the following lemma that bounds the space usage
and running time of Algorithm 1 on worst-case graphs.

LEMMA 3.2. The size of the index generated by Algorithm 1
is bounded by O (% ij’:l JT(Wj)). The preprocessing time is
bounded by O (%)

We set jy so that O (% 50:1 n(wj)) = O(m) in the theoret-
ical analysis of PRSim, for ease of presentation. Note that if

the largest reverse PageRank 7 (w;) satisfies 7(w;) > em/n,
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we need to set jo = 0, in which case PRSim becomes an index-
free algorithm. However, in practice, we can manipulate j,
to get a tradeoff between the index size and query cost.

3.4 Sampling RPPR to Non-Hub Nodes

The third key component of our method is a sampling-based
algorithm that efficiently computes £-Hop PPR values to non-
hub target nodes (i.e., nodes with small reverse PPR values
and thus are not in the index). Given a node w, the goal
is to provide an unbiased estimator 7;(v, w) for zz(v, w)
for each v € V and any ¢ > 0. Once we obtain such a
sampler, we can estimate each 7, (v, w) with additive error
¢ using log % /¢* samples. [25] provides such a sampler by
employing a Randomized Probe algorithm, which runs in
O(n) time for a single sample. This time complexity, however,
is unacceptable if we want sub-linear query time.

In this section, we propose an algorithm that achieves the
following goals: 1) Given a node w, the algorithm provides an
unbiased estimator 7, (v, w) for 7¢(v, w), for each v € V and
any ¢ > 0; 2) the algorithm runs in O(nz(w)) expected time.
Note that nw(w) = 2720 Yoev 7i(v, w) is the expected out-
put size and consequently the minimum cost for generating
unbiased estimators 7; (v, w) fori = 0,...,00,v € V. (3) The
variance of 7;(v, w) is bounded, so we can use Chebyshev’s
inequality to bound the error, and the Median Trick to boost
the success probability.

Algorithm 2: Backward Walk
Input: Directed graph G = (V,E); node w € V; level £
Output: 7,(v, w) for eachv € V

1 fg(v,w) « 0for £ =0,...,00,x €V;

2 fy(w, w) «— 1 —+/c;

3 fori=0tof—1do

4 for each x € V with non-zero 7;(x, w) do
5 r « rand(0, 1);

6 for eachy € O(x) and d;, (y) < g do
7 | A1y, w) — iva(y, w) + 7i(x, w);

8 return all non-zero 7,(v, w);

Simple Backward Walk with Unbounded Variance. For
ease of exposition, we first present a simple Backward Walk
that achieves the first two goals. The pseudocode is illus-
trated by Algorithm 2. Given a node w and a level ¢, this
algorithm also gives an unbiased estimator 7,(v, w) for each
v € V. We first initialize 7g(w, w) = 1 —+/c and 7,(x,w) = 0
for other £ or x € V (Lines 1-2). Then, we iterate i from 0 to
£—1 (Line 3). Atlevel i, for each x € V with non-zero 7; (x, w),
we generate a random number r from (0, 1) (Line 4-5), and
scan the out-neighbors of x until we encounter the first node

y with d;, (y) > g Recall that in the preprocessing phase,
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we sort the out adjacency list of x so that nodes in O(x)
are ordered according to their in-degrees (see Algorithm 1).

\/’

Therefore, we only have to visit the nodes with d;, (y) < 3=,
which is a subset of O(x). For each out-neighbor y of x with
din(y) < \/TE we add 7;(x, w) to #;+1(y, w) (Lines 6-7). Fi-
nally, after level £ — 1 is processed, we return each non-zero
7¢(v, w) as the estimator for 7,(v, w) (Line 8).

We can use a simple induction to prove the unbiasedness
of Algorithm 2. For the base case, we have E[7;(w, w)] =
1 — /e = my(w, w). Assume that E[#;(x, w)] = m;(x, w) for
any x € V. For a node y at level i + 1, each 7;(x,w),x €

I (y) is added to ;11 (y, w) with probability %(Cy), and thus
E[#in1(y, w)] = Yxerw) %E[ﬁi(x, w)]. Therefore, we

have E[f11 (4 w)] = Swer(y) 7oy mi06w) = mivi (g w).
To analyze the running time, note that the cost for comput-
ing 7;(x, w) is bounded by the number of times that 7; (x, w)
is incremented. Since each increment adds at least (1 — +/c)
to 7;(x, w), this cost is bounded by ”’1(_;\/‘;) Summing over
i=0,...,00and x € V, and using equation (4), the total cost
is at most O(nz(w)).

Unfortunately, the estimator 7;(v, w) returned by Algo-
rithm 2 can be unbounded, since we may sum up all esti-
mators from level i to form an estimator of level i + 1. To
make thing worse, it is even unclear if 7,(v, w) has bounded
variance. This means that 7,(v, w) may not be sub-gaussian
or sub-exponential, and thus we are unable to apply concen-
tration inequality to bound the error.

Algorithm 3: Variance Bounded Backward Walk
Input: Directed graph G = (V, E); node w € V; target

level ¢
Output: 7,(v, w) for eachv € V
1 7¢(v,w) « 0for£=0,...,0,x €V;

2 Ay(w, w) «— 1 —+/c;
3 fori=0tof—1do

4 for each x € V with non-zero 7;(x, w) do
5 if ry < rand() < +/c then
6 for eachy € O(x) and d;,(y) < ”’1(_;‘}:) do
7 L Rir1(y, w) < Zira(y, w) + 72::2;;);
8 r « rand(0, 1);
9 for eachy € O(x) and
7i (x, w) 7i (x, w)
W < dln(y) < m do
10 L Rir1(y, w) « Aip1(y, w) + 1= +c;

11 return all non-zero 7, (v, w);

Variance Bounded Backward Walk. To overcome the draw-
back of simple Backward Walk, we propose the Variance
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Bounded Backward Walk algorithm, which achieves bounded
variance without sacrificing the O(nz(w)) query bound or
the unbiasedness guarantee. Algorithm 3 illustrates the pseu-
docode of the Variance Bounded Backward Walk algorithm.
We set 7(w, w) = 1 — vc and 7#¢(x, w) = 0 for other £ or
x € V (Lines 1-2). Then we iterate i from 0 to £ — 1 (Line 3).
At level i, for each x € V with non-zero 7;(x, w), we first
generate a random number ry so that we can stop the pro-
cess at x with probability 1—+/c (Lines 4-5). With probability
+/c, we first scan through the out-neighbors of x until we
encounter the first node y with d;, (y) > ”‘1(7;\/1:) For each

out-neighbor y with d;, (y) < we increase 7;(y, w)

71 (x, W)

A e

by &%) (Lines 6-7). Then, we choose a random number r
din(y)

from (0, 1) (Line 8), and continue to scan the out-neighbors
7i (x, w)

r(1=ve)’
Again, we only visit a subset of O(x), as the nodes in O(x) are

ordered according to their in-degrees. For each out-neighbor

. #i(x, w)
y of x with d;,(y) < r1—vo)’

1 — +/c (Lines 9-10). After £ levels are processed, we return
all non-zero 7i,(v, w) as estimators for zz(v, w) (Line 11).

of x until we encounter the first node y with d;, (y) >

we increment 741 (y, w) by

Analysis. We prove three properties of the Variance Bounded
Backward Walk algorithm. First, the algorithm gives an un-
biased estimator 7,(v, w) for m;(v, w) for each v € V and
i < ¢. In particular, we have the following lemma.

LEmMMA 3.3. Consider a node v on a target level £, and let
7¢(v, w) be an estimator provided by Algorithm 3. We have
E[7e(v, w)] = 7e(v, w).

Next, we show that the running time of Algorithm 3 on
node w is proportional to its reverse PageRank 7 (w). In
particular, we have the following lemma.

LEMMA 3.4. The complexity of Algorithm 3 on node w, re-
gardless of the target level £, is bounded by O(nm(w)).

Note that nw(w) = X720 Yoev mi(v, w), which implies
that the minimum number of operations to return a unbi-
ased estimator 7; (v, w) for each r;(v, w) is Q(nx(w)). This
essentially means that Algorithm 3 achieves optimal sam-
pling complexity for this task.

Finally, we note that although the estimator 7,(v, w) is
unbiased, it may be unbounded on certain graphs. To see this,
consider a graph that has n + 2 nodes w, v, x1, . . ., x,,. For
each i =1,...,n, there is an edge from w to x; and an edge
from x; to v. Suppose we run Algorithm 2 on node w with
target level £ = 2. The algorithm first sets 7y(w, w) = 1 —+/c.
For eachi = 1,...,n, the algorithm sets #; (x;, w) = 1 — /¢
with probability vc. This means there are approximately
4/c fraction of x;’s with 7;(x;, w) = 1 — v/c. Finally, for each
i=1,...,nand % (x;, w) = 1—+/c, the algorithm increments
#2(v, w) by 1 — 4/c with probability % This implies that in



Research 10: Graphs 1

the worst-case, all #;(x;,w) = 1 —+/cfori =1,...,n,and
#2(v, w) can be as large as (1 — y/c)n.

Fortunately, we can bound the variance of Algorithm 3,
which enables us to use the Median Trick to boost accuracy.
The following lemma states that the variance of ¢ (v, w) is

bounded by ¢ (v, w), the actual value of the £-hop RPPR.

LEmMMA 3.5. For any level ¢ > 0 and node v € V, we have
Var [#,(v,w)] < E [frg(v, w)z] < me(v, w).

3.5 Putting Things Together

Based on the definition of hub nodes, we divide the Sim-
Rank value s(u, v) of nodes u and v into two terms s(u, v) =
si(u,v) + sp(u, v), where

o

s1(u,v) = ZZZW wj)e (0, w)n(w;), (7)
\/_) iy
and
s (1, 0) Z Z ¢ (1, wj) e (0, W) (w)). (8)

e

PRSim algorithm uses pre-computed index to generate an
estimator $;(u, v) for s;(u, v), and uses backward walks to

generate an estimator $g(u, v) for sg(u,v).

Algorithm 4 shows the pseudo-code of the query algo-
rithm for PRSim. Given a source node u on a directed graph
G = (V,E), a decay factor ¢ and an error parameter ¢, the
algorithm returns an estimator §(u, v) for each v € V. We set

£=0 j=jo+1

the constant ¢; = ﬁ the number of samples in a round
tod, = g—é the number of rounds to f, = 3log %, and the

total sample number to n, = d, f, = © loff ) (Line 1). Note

that for the constant c;, we choose (1 — 4/c)? to compensate
the denominator (1 — +/c)? in equation (6), and 12 so that we
can sum various errors up to at most e. We choose the value
of d, according to Chernoff bound A.1, and the value of f,
according to the Median Trick A.3. Then we initialize esti-
mators $(u, v) $;(u, v), Sg(u, v) and sé(u, v)tobeOforv eV
andi=1,..., f; (Line 2). We also set 7 ,(u, w), the estima-
tor for n(w) - me(u,w),tobe 0 forw e Vand € = 0,...,
(Line 3). Note that in order to achieve sublinear query time,
we can use hash maps to store only the non-zero entries in
§, §B §1, §é and T]IJ\T

For each i from 1 to f, and j from 1 to d,, we sample an /c-
walk ‘W (u) from u (Lines 4-6). If ‘W (u) terminates at node
w in € steps, we further sample a pair of vc-walks W, (w)
and ‘W (w) from w (Line 8). Recall that the probability that
the two v/c-walks do not meet is exactly n(w). If this event
happens, we increase the estimator 777, (u, w) by -~ L (Lines
9-10). If w is not stored in the index, we estimate 7, (v, w) for
each v € V with Algorithm 3, and update the i-th estimator

sB(u v) by (75;)22 for each v € V (Lines 11-13). After

(o)
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n, = d, - f, samples are processed, we return $p(u,v) =
Median; <;<f, §g(u, v) as an estimator for sg(u, v) (Lines 14-
15). Again, to ensure sublinear query time, we only compute
median for a node v if there is at least one non-zero sAg(u, V)
for some 1 < i < f,. Finally, for each (w,¢)-tuple with
0 e (u, w) > c£1 and w in the index, we retrieve 7, (v, w) for

each v € V from the index, and update $;(u, v) by ”7(71[1(‘72;’ )
(Lines 16-18). We return all non-zero $(u,v) = $§;(u,v) +

$g(u,v) as the estimator for s(u, v), for v € V (Line 19).

Algorithm 4: Query Algorithm
Input: Directed graph G = (V, E); node u; decay factor
c; error parameter ¢; Failure probability &
Output: §(u,v) foreachv e V

1 c1<—(1 \f)z’d — Z,f,eSlog(s,n,(—d - frs

2 §(u,v),sl(u,v),sB(u,v),sB( ,v) « 0 foreachv €V,
i=1,...,f;
nr,(u,w) —0forweV,£=0,...,00;

fori=1to f, do
forj=1tod, do
Sample an v/c-walk W (u) from u ;
if ‘W (u) terminates at node w with € steps then
Sample two independent +/c-walks W, (w)
and W, (w) from w;
if ‘Wi (w) and W,(w) do not meet then
nip(u, w) «— N7, (u, w) + n%;
if w ¢ Index then
Estimate 7¢(v, w) for v € V with
Algorithm 3;

$E(u,v) « $L(u,v) +

NG e W

10

11
12

e (v, w)

(1_\/E)zdr :

13

for each v with nonzero §j(u, v) for some 1 < i < f, do
L Sp(u,v) « Medianlgigfr%(u, v);
for each (w, £) with 7 ,(u, w) > i and w € Index do
for each (v, Y (v, w)) tuple in L¢y(w) in Index do

| 1w ) S v) + T,

19 return all non-zero $(u, v) « Sg(u,v) + $;(u, v);

Error Analysis. We now analyze the overall error bounds
of the PRSim algorithm. Recall that given a source node
u and a target node v, s(u,v) = s;(u,v) + sp(u,v) where
s;(u,v) and sp(u,v) are defined by equations (7) and (8),
respectively. Algorithm 4 uses index to generate an estimator
$1(u, v) for each s;(u,v), v € V, and uses backward walks to
generate an estimator $g(u, v) for each sg(u,v),v € V. We
have the following two lemmas that bound the errors of the
two approximations.
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LEMMA 3.6. Given a source node u, for anyv € V, Algo-
rithm 4 provides an estimator $1(u, v) for s;(u,v) such that:

B

2n
LEMMA 3.7. Given a source node u, for any v € V, Algo-
rithm 4 provides an estimator $g(u, v) for sg(u, v) such that:

©)

£
= si(u,v)| > -

Pr [Is}(u, V) 5

é
< —

<o (10)

Pr [|§B(u,v) —sg(u,v)| > g]

Combining Lemmas 3.6 and 3.7 follows that

1)
Pr[|$(u,v) — s(u,v)| > €] < — + 9
2n  2n

Applying union bound on n nodes follows Theorem 3.8.

)

n

THEOREM 3.8. PRSim answers single-source SimRank queries
with additive error ¢ with probability at least 1 — 6.

Query Time Analysis for Worst-Case Graphs. We first
analyze the query time of the PRSim algorithm on worst-case
graphs. Given anode u € V, let C(u) denote the query cost of
PRSim on u, and C = % > uev C(u) denote the average query
cost. We divide C(u) into three terms: C(u) = Cp(u)+Cr(u)+
Cg(u), where Cp(u) denote the cost for computing 77 ,(u, w)
from source node u, C;(u) denote the query cost for retriev-
ing reserves ¢ (v, w) from the index, and Cp(u) denote the
query cost for estimating 7,(v, w) with backward walks.
Let Cr = + Y,ev Cr(u), C1 = % Y,y Cr(u) and Cp =
% > uev Cp(u) denote the average query cost of Cp(u), Cr(u)
and Cp(u), respectively. We can express the expected average
query cost of Algorithm 4 as E[C] = E[CF] + E[C] + E[Cg].
loia )
of y/c-walks to estimate 7777, (u, w). Since each c-walk takes
constant time, we have Cr(u) = O (105—2%), and E[CFr] =

o (10g2%
&

LEMMA 3.9. Letc; =

For E[CF], recall that we generate a number n, = © (

). We have the following lemmas for E[C;] and E[Cg].

12

and Cy denote the average cost

(1-Ve)?
for querying the index. We have
n s n Jo
E[C/] = O[min{ - ) — )?
[C1] = 0| min | - 2. m(w)). 5 ;nw,)

LEMMA 3.10. Let Cp denote the average cost for perform-
ing Variance Bounded Backward Walks. We have E[Cg] =

O(nlog%

52
By Lemma 3.9, we have E[C[] < O( Xisjor1 ﬂ(wj)2)~

Combining with Lemma 3.10 follows Theorem 3.11.

2
o TW)?)

nlog %

2
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THEOREM 3.11. Suppose the query node u is uniformly cho-
sen from V. The expected query cost of PRSim on worst-case

graphs is bounded by
O( n(w)Z) .

Query Time Analysis for Power-Law Graphs. Recall that
on a power-law graph, the fractions P, (k) and P; (k) of nodes
with out- and in-degree at least k satisfy that P, (k) ~ k7
and P;(k) ~ k7" [7], where y and y’ are the cumulative
power-law exponents that usually take values from 1 to 3.
It is shown in [5, 27, 35] that the PageRank of a power-law
graph also follows power-law with same exponent y’ as the
in-degree distribution. Thus, the reverse PageRank follows
the same power-law distribution as the out-degree distribu-
tion. In particular, let P, (x) denote the portion of nodes with
reverse PageRank value at least x, then P, (x) ~ x7V.

Now consider the following alternating statement of the
above power-law distribution: let wy, . . ., w,, denote the nodes
in the graph sorted in descending order of their reverse
PageRank values, that is, 7(w;) > w(ws) > ... > 7(wy). We
have that the j-th largest reverse PageRank value 7 (wj) is
proportional to j#. Here f8 is the power-law exponent that
takes value from (0, 1). This assumption has been widely
adopted in the literature of PageRank computations [5, 27,
35]. To understand the relation between two exponents y and
B, note that there are j nodes with reverse PageRank value

K j’ﬁ

5\ 5.
nl-8> . ) ~ ]ﬁ v

and thus we have j ~ (nl_’ﬁ
It follows that g = i. Therefore, for power-law graphs, we

log %
n(g)zg'z

weV

E[C] (11)

at least x =

have

r(w) = PP = i,

(12)

J —
- =
-y

<}

where k is a normalization constant such that x 3}7_;

1. Combing equation (12) and Lemma 3.2, the index size is

J-of-2)

-1 -1
jv — O n_ J Y
-4 € -4
n v n v

Here we use the property of Riemann zeta function (see

n o
& &j=1

bounded by O (

s . .
n(ed)v-1, we have index size

Lemma A.4). By setting j, =
1.1 -
Y ed

is bounded by O (”y —

= O(m). Plugging m(w;) =

1

S
K- % and j, = n(ed)r-! into Lemma 3.10 and Lemma 3.9,
Y

and we have the following theorem.

THEOREM 3.12. Assume that the out-degree distribution of
the graph follows power-law distribution with exponenty > 1,

-1 -1 _
and let ¢ > log% n/(nYsz_Y), § > 1/n%D. Suppose the
query node u is uniformly chosen from V. By setting jo
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n(gd)#, the expected cost of Algorithm 4 is bounded by

O(E—lzlogg), fory > 1/2;
990 — 1/
E[C] = O(; log 5 li)g n)éi1 fory =1/2; (13)
O (min ¢ 2, 25 }), fori<y<2.
eo v

The size of the index generated by Algorithm 1 is bounded by
O(m). The preprocessing time is bounded by O (%)

Dynamic Graphs. Our algorithm is able to support dy-
namic graphs where edges may be inserted or deleted. Recall
that PRSim generates the index by performing the back-
ward search algorithm. It is shown in [44] that the results of
the backward search to a randomly selected target node w
can be maintained with cost O(k + %), where k is the total
number of insertions/deletions. Since our index stores the
results of the backward search for j, target nodes, it can
process k insertions/deletions in O(kjjo + ) time. Therefore,
the per-update-cost for processing k updates is bounded by
O(jo + %) However, a thorough investigation of this issue
is beyond the scope of our paper.

4 RELATED WORK

In what follows, we briefly review some of the state-of-the-
art solutions for SimRank computation. We exclude SLING [32],
which we have discussed in Section 2.

Monte Carlo and READS. Based on the +/c-walk interpre-
tation, we can use the following Monte Carlo algorithm [12,
32] to estimate the SimRank value s(u, v): we generate n,
pairs of vy/c-walks from u and v, and use the percentage of v/c-
walks that meet as an estimation of s(u, v). Using concentra-

log %
P

tion inequality, one can show that by setting n, = ©

>

the Monte Carlo algorithm estimates s(u, v) with an additive
error ¢ with probability at least 1 — §. For a single-source
query on node u, we can generate n, walks from each node
v € V and estimate s(u, v) with additive error ¢. The query

cost is O (nk;f 5 ), which is inefficient on large graphs.

A recent work proposes the READS algorithm [16] based
on the Monte Carlo approach. READS pre-computes the
yc-walks from each node, and compresses the v/c-walks
by merging them into trees. Given a query node u, READS
retrieves the /c-walks starting from u, finds all v/c-walks
that meet with u’s v/c-walks, and then updates the SimRank
estimator for each v related to these /c-walks. Several op-
timization techniques were adopted to improve the query
efficiency of READS. The major issue of READS is that it
requires generating and storing a large number of v/c-walks
from each node in the preprocessing phase. The query cost
also remains O(nlog /€?), which is the same as that of the
classic Monte Carlo algorithm.
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ProbeSim. ProbeSim [25] is an index-free algorithm that
computes single-source and top-k SimRank queries on large
graphs. Given a query node u, the ProbeSim algorithm sam-
ples a v/c-walk ‘W (u) from u. For a node w visited by W (u)
at the ¢-th step, the algorithm performs a Probe procedure
that computes the probability of an v/c-walk from each node
v visiting w at the {-th step. To rule out the probability that a
pair of {-walks may meet multiple times, the Probe algorithm
avoids the nodes previously visited by ‘W (u). It is shown in
[25] that the ProbeSim algorithm gives an unbiased estimator
for the SimRank values s(u, v), v € V. Therefore, by repeat-
ing the sampling procedure O(log %/¢*) times, ProbeSim
answers single-source SimRank queries with probability at
least 1 — 6.

There are two subtle problems with ProbeSim. First, to
avoid multiple meeting nodes, the Probe from node w has to
avoid the nodes on W (u), which means it is impossible to
pre-compute the Probe results to speed up the query time.
Second, as we will show later, the probability that a node w
in the graph is visited by the v/c-walk from u is proportional
to 7 (w), the reverse PageRank of w. On the other hand, the
complexity of the Probe algorithm on w is also proportional
to 7 (w). This essentially means it is likely that a hub node
with high reverse PageRank value is visited by the v/c-walk
from u, and it will incur significant cost in the Probe phase.
Finally, the algorithm also requires O(nlog % /¢*) query cost
to answer a single-source query.

TSF. TSF [30] is a two-stage random-walk sampling algo-
rithm for single-source and top-k SimRank queries on dy-
namic graphs. Given a parameter R,, TSF starts by building
Ry one-way graphs as an index structure. Each one-way graph
is constructed by uniformly sampling one in-neighbor from
each vertex’s in-coming edges. The one-way graphs are then
used to simulate random walks during query processing. To
achieve high efficiency, TSF allows two y/c-walks to meet
multiple times, and thus overestimate the actual SimRank
values. Furthermore, TSF assumes that every random walk
would not contain any cycle, which does not hold in practice.

Other Related Work. Power method [15] is the classic algo-
rithm that computes all-pair SimRank similarities for a given
graph. Let S be the SimRank matrix such that S;; = s(i, ),
and A be the transition matrix of G. Power method recur-
sively computes the SimRank Matrix S using the following
formula [18]

S=(cATSA) VI, (14)
where V is the element-wise maximum operator. Several
follow-up works [26, 40, 43] improve the efficiency or effec-
tiveness of the power method in terms of either efficiency
or accuracy. However, these methods still incur O(n?) space
overheads, as there are O(n?) pairs of nodes in the graph. A
recent work [34] reduces the cost to O(NNZ), where NNZ
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is the number of node pairs with large SimRank similarities.
However, as shown in [34], there are still a constant fraction
of O(n?) node pairs with large SimRank similarities, so the
worst case complexity remains O(n?).

Motivated by difficulty in dealing with the element-wise
maximum operator V in Equation 14, some existing work
[13, 14, 18, 21, 38, 39, 41] consider the following alternative
formula for SimRank:

S=cATSA+(1-¢)-1I (15)

However, it is shown that the similarities calculated by this
formula are different from SimRank [18].

For single-source queries, Fogaras and Racz [12] propose
a Monte Carlo algorithm that uses random walks to approx-
imate SimRank values. Maehara et al. [28] propose an in-
dex structure for top-k SimRank queries, but it relies on
heuristic assumptions about G, and hence, does not pro-
vide any worst-case error guarantee. Li et al. [22] propose
a distributed version of the Monte Carlo approach in [12],
but it achieves scalability at the cost of significant compu-
tation resources. Finally, there is existing work on variants
of SimRank [4, 11, 42, 48] and on various graph applica-
tions [6, 19, 37], but the proposed solutions are inapplicable
for top-k and single-source SimRank queries.

5 EXPERIMENTS

This section experimentally evaluates the proposed solutions
against the state of the art. All experiments are conducted
on a machine with a Xeon(R) CPU E7-4809@2.10GHz CPU
and 196GB memory.

5.1 Experimental Settings

Methods. We compare PRSim against five SimRank algo-
rithms: READS [16], SLING [32], TSF [30], ProbeSim [25]
and TopSim [20]. As mentioned in Section 4, READS, SLING
and TSF are the state-of-the-art index-based methods, and
ProbeSim and TopSim are the state-of-the-art index-free
methods.

Ground Truth for single-pair queries. Given a pair of
nodes u and v, we use the Monte Carlo algorithm to estimate
s(u, v) with high precisions, and then use the result as the
ground truth for s(u, v). In particular, we set the parameters
of the Monte Carlo algorithm such that it incurs an error
less than 0.00001 with confidence over 99.999%.

Pooling. We extend the pooling idea [25] to evaluate the
effectiveness of the single-source algorithms on large graphs.
Given a source node u, we run each single-source algorithm,
order the nodes according to their estimated SimRank values,
and retrieve the top-k nodes. We merge the top-k nodes
returned by each algorithm, remove the duplicates, and put
them into a pool. As such, if we were to evaluate ¢ algorithms,
then the pool size is between k and £k. For each node v in the
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Table 3: Data Sets.

Data Set Type n m
DBLP-Author (DB) | undirected 5,425,963 17,298,033
LiveJournal (LJ) directed 4,847,571 68,993,773
1t-2004 (IT) directed 41,291,594 | 1,150,725,436
Twitter (TW) directed 41,652,230 | 1,468,365,182
UK-Union (UK) directed 133,633,040 | 5,507,679,822

pool, we obtain the ground truth of s(u, v) using the Monte
Carlo algorithm, and retrieve Vi = {vy, ..., vk}, namely, the
k nodes with the highest SimRank values from the pool.

Metrics. To evaluate the absolute error of single-source
SimRank algorithms, we calculate the average absolute er-
rors for approximating s(u, v;) for each v; in the pool. More
precisely, for each v; € Vi returned by the pool, let §(u, v;)
be the estimator for s(u, v;) returned by the algorithm to be
evaluated. We set

AvgError@k = ! Z [$(u, v;) — s(u,v;)l.
k &
1<i<k

To evaluate the algorithms’ abilities to return the top-k
results, we use Vi = {vy,...,vr} as the ground truth for
the top-k nodes. Note that these nodes are the best possible
results that can be returned by any of the algorithms to
be evaluated. Let V/ = {v],...,v;} denote the top-k node
set returned by the algorithm to be evaluated. Note that
Precision@k evaluates how many correct (or best possible)
nodes are included in V.

5.2 Experiments on Real-World Graphs

We evaluate the tradeoffs between accuracy and complexity
for each algorithm on real world graphs. We use 5 data sets,
as shown in Table 3. All data sets are obtained from public
sources [1, 2].

Parameters. SLING [32] has a parameter ¢,, the upper bound
on the absolute error. We vary ¢, in {0.5, 0.1, 0.05, 0.01, 0.005},
where ¢, = 0.05 is the default value in [32]. TSF has two
parameters R, and R,, where Ry is the number of one-way
graphs stored in the index, and Ry is the number of times each
one-way graph is reused in the query stage. We vary (Ry, Ry)
in {(10, 2), (100, 20), (200, 30), (300, 40), (600, 80)}, where [30]
sets (Ry, Ry) = (300, 40) by default. TopSim has four inter-
nal parameters T, h, n and H, where T is the depth of the
random walks, 1/h is the minimal degree threshold used to
identify a high degree node, 1 is the similarity threshold
for trimming a random walk, and H is the number of ran-
dom walks to be expanded at each level. We fix H and 7
to their default values 100 and 0.001, and vary (T, 1/h) in
{(1,10), (3, 100), (3, 1000), (3, 10000), (4, 10000)}. Note that
[20] sets (T,1/h) = (3,100) by default. The READS pa-
per [16] proposed three algorithms: READS, READS-D, and
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Figure 5: AvgError@50 v.s. Preprocessing time

READS-Rq. We only include the static version of READS in
our experiments, as it is the fastest among the three [16].
READS has two parameters r and ¢, where r is the number
of y/c-walks generated for each node in the preprocessing
stage and t is the maximum depth of the /c-walks. We vary
(r, t)in {(10,2), (50, 5), (100, 10), (500, 10), (1000, 20)}, where
(r,t)

= (100, 10) is the default setting in [16]. For ProbeSim [25],
we vary the error parameter &, in {0.5,0.1,0.05,0.01, 0.005},
where ¢, = 0.1 is the default setting in [25]. For PRSim, we
vary ¢ in {0.5,0.1,0.05,0.01,0.005}. We also set j, to v/n so
that the index size of PRSim increases with 1/¢. We fix the
failure probability § = 0.0001 unless otherwise specified. We
set the decay factor ¢ of SimRank to 0.6, following previous
work [26, 28, 39, 41, 42].
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Experimental results. On each data set, we issue 100 single-
source queries and 100 top-50 queries for each algorithm and
each parameter set, and record the averages of the query
time, index sizes, preprocessing time, AvgError@50 and Pre-
cision@50. For each algorithm and each dataset, we omit a
parameter set if it runs out of 196GB memory or takes over
10 hours to finish queries or preprocessing on that data set.

Figures 2, 3 show the tradeoffs between AvgError@50 and
the query time and the tradeoffs between Precision@50 and
the query time. The overall observation is that PRSim outper-
forms all competitors by achieving lower errors and higher
precisions with less query time on all datasets. Most notably,
on the TW dataset, PRSim achieves a Precision@50 of 92%
using a query time of 5 seconds, while the closest competi-
tor, ProbeSim, achieves a precision around 75% using over
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Figure 7: Results on non-power-law graphs.

50 seconds. Furthermore, on the 5-billion-edge UK data set,
PRSim is the only two index-based algorithms that are able
to finish preprocessing and queries, which demonstrates the
scalability of our algorithms. We also note that the query
time of SLING and READS are not sensitive to the choices of
parameters. This is as expected, since the majority of their
query cost is spent on reading the index, which is a cache-
friendly task. After observing the skewed trend of READS on
DB in Figure 2, we decide to evaluate an extra parameter set
(r,t) = (5000, 20) to see if READS can outperform PRSim in
terms of query-time-error tradeoff, given significantly more
indexing space. The result shows that PRSim still achieves
better accuracy with less query time.

Figure 4, and 5 show the tradeoffs between AvgError@50
and the index size and the tradeoffs between AvgError@50
and the preprocessing time, respectively. Again, our algo-
rithm manages to outperform all index-based algorithms
(SLING, TSF, READS) by achieving a lower error with less
index size and preprocessing time. In particular, on the DB
dataset, our algorithm is able to achieve an average error of
1073 using an index of size 200M B, while the closest com-
petitor READS needs 100GB.

5.3 Experiments on Synthetic Data Sets

We now evaluate PRSim and the competitors with fixed pa-
rameters on synthetic datasets with varying network struc-
ture and sizes. We set ¢, = 0.25 for SLING, R, = 300 and
Ry =40 for TSF, T = 3, 1/h = 100, n = 0.001, and H = 100
for TopSim, ¢, = 0.25 for ProbeSim, r = 100 and ¢ = 10 for
READS, and ¢ = 0.25 for PRSim. We fix the failure probabil-
ity § = 0.001 unless otherwise specified. On each data set,
we issue 100 single-source queries with each algorithm to
be evaluated, and report the corresponding measures.
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Hardness of SimRank computation and degree distri-
butions. We first investigate the relation between the hard-
ness of SimRank computation and degree distributions. We
generate a set of undirected power-law graphs with various
power-law exponents using the hyperbolic graph genera-
tor [3]. In particular, we fix the number of nodes n to be
100, 000 and the average degree d to be 10, and vary the de-
gree power-law exponent y from 1 to 9. Figure 6(a) reports
the average query time of each algorithm. Recall that the
theoretical analysis of PRSim suggests that its query time
increases with 1/y. Figure 6(a) concurs with this analysis. In
fact, we observe that the query time of all algorithms follows
a similar distribution as the function y = 1/y on the log-log
plot: the query time decreases as we increase y from 1 to
4, and becomes stable after y > 4. Based on this observa-
tion and on the theoretical analysis for PRSim, we make the
following conjuncture:

CoNJUNCTURE 1. The hardness of SimRank computation is
correlated to the reciprocal of the power-law exponent y of the
out-degree distribution.

Scalability analysis. To evaluate the scalability of our al-
gorithm, we generate synthetic power-law graphs by fixing
the exponent y = 3 and average degree d = 10, and vary the
graph size n from 10* to 10’. Figure 6(b) shows the running
time of PRSim on these graphs. The results show that the
running time of PRSim forms a concave curve in a log-log
plot, which proves the sub-linearity of PRSim.

Experiments on non-power-law Graphs. We generate
random graphs using the Erds and Rényi (ER) model, where
we assign an edge to each node pair with a user-specified
probability p. We fix the number of nodes to n = 10, 000 and
set the value of p so that the average degree d of each graph
varies from 5 to 10, 000. Figure 7 shows the query time of
each algorithm on these synthetic graphs. We observe that
the query performance of ProbeSim degrades dramatically
as we increase d. On the other hand, PRSim is able to answer
queries on very dense graphs efficiently. We attribute this
quality to the fact that the Randomized Probe algorithm in
ProbeSim always goes through all out-neighbors of a target
node, while our Variance Bounded Backward Walk algorithm
only needs to visit a fraction of the out-neighbors.

6 CONCLUSIONS

This paper presents PRSim, an algorithm for single-source
SimRank queries. PRSim connects the time complexity of
SimRank computation with the distribution of the reverse
PageRank, and achieves sublinear query time on power-law
graphs with small index size. Our experiments show that the
algorithm significantly outperforms the existing methods in
terms of query time, accuracy, index size and scalability.
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A INEQUALITIES
A.1 Chernoff Bound

LEMMA A.1 (CHERNOFF BoUND [10]). For a set {x;} (i €
[1,n,]) of i.i.d. random variables with mean p and x; € [0, 1],

P o < n, - €
EZi:lxi—ﬂ)—f]—exp —§€+2/1 ‘

A.2 Chebyshev’s Inequality
LEMMA A.2 (CHEBYSHEV’S INEQUALITY). Let X be a random
variable, then Pr[|X — E[X]| > €] < V%[ZX]

(47

—

[48

—

o]

A.3 Median Trick

Lemma A3 ([9]). Let Xy, ..., Xy bek > 3log § ii.d. ran-
dom variables, such that Pr[|X; — E[X;]| = ¢] < % Let X =
Median, <; <k X;, thenPr[|X — E[X]| = €] < 6.

A.4 Partial sum of Riemann zeta function
LEMMA A.4. The partial sum of Riemann zeta function sat-
isfies the following property:

j o(ji=%), fora < 1;
k¢ =4 O(logj—logi), fora=1, (16)
k=i+1 o) (il’“) , fora > 1.
B PROOFS

B.1 Proof of Lemma 3.2
Proor. Let wy, ..., w, be the nodes of the graph sorted
in descending order of the reverse PageRank value 7(w;).

Let size(w;) denote index size for node w;. Then, size
Jo

i1 size(wj) is the total size of the index. For each w;, re-
call that Algorithm 1 uses backward search to find node
x and level ¢ with £-hop RPPR zy(x,w) > ¢, and record
the tuple (x, £, m¢(x, w)). Hence, the space usage size(w;) is
bounded by the total number of pairs (x, £) with £-hop RPPR
me(x,w) 2 € ie, size(w;) < Yy Dxev I(me(x, w) > e),
where I(7¢(x,w) > ¢) is an indicating function such that
I(me(x,w) > €) = 1if mp(x,w) > e and I(mp(x,w) > ¢€) =0
otherwise. We observe that I(7,(x,w) > ¢) < M

thus size(w;) < 270 Yxev M _ nniwj-).

, and

]
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B.2 Proof of Lemma 3.3

Notations. We begin by defining two types of random vari-
ables. Consider a node y at level i + 1 and a node x € 7 (y).
For ease of presentation, we let A denote the set of x € 7 (y)
such that 7 (x, w) > d;,(y)(1 — v/c) and B denote the set of
x € I (y) such that #(x, w) < din(y)(1 — ). We use R;(x)
to denote the random variable indicating that the random
number ry < +/c. For each x € B, we define random vari-
able Z;(x,y) = 1 if random number r < %,
Zi(x,y) = 0 otherwise. Recall that for a node x € A, we
w) by L W> if and only if R; (x) = 1; for

anode x € B, we increment 7T,+1(y, w) by 1 — v/c if and only
if Ri(x) = 1and Z;(x,y) = 1. We can express Zi+1(y, w) as

ZR( )T w) "(W +ZR<x>Z<x y)(1- o).
(17)

Proor oF LEMMA 3.3. We prove the lemma by induction.
For the base case, we have #y(w, w) = 1 — /¢ = mo(w, w).
Assume that E[7;(x, w)] = m;(x, w) for any x € V. For an
node y € V, we will show that E[#;+1(y, w)] = mis1(y, w).
Conditioning on 7;(x, w) in equation (17) follows that

E[#i+1(y, w) | Zi(x, w), x € V]

—ZER()”l(xW + 3 E[Ri(

and

increment 7,41 (y, w

Ziv1(y, w

)Zi(x, y)1(1 = Vo).

x€A ( YeB
We have E[R;(x)] = Pr[r, < vc] = v/c and
E[Z;i(x,y)] = Pr[r < i (x, ) _ i (x, w)

din(y)(1=VO)"  din(y)(1 - Vo)

Since R;(x) and Z;(x, y) are independent random variables,
Veiti(x, w)
we have E[R;(x)Z;(x,y)] = Dm0 (1) It follows that
E i1 (y, w) | #i(x, w),x € V]
:Z Verti(x, w) Z Veiti(x, w)(1 = ) _
x€A in(y x€B (y) 1 - \/_)
By the induction hypothesis, we have E[7;(x, w)] = 7;(x, w)
for x € I (y), and thus E[#;41(y, w)] %();)W)
7i+1(y, w), which proves the lemma.

Vedti(x, w)
din (y) '

xel(y)

= Yxel(y)
O

B.3 Proof of Lemma 3.4

Proor. Let costi+1(y) denote the number of times that
7;+1(y, w) gets incremented at level i + 1. Note that the total
cost is bounded by Zf:o Y xev costi(x). A key observation
is that each increment performed by Algorithm 3 adds at
least 1 — 4/c to #;41(y, w). To see this, note that Algorithm 3

w) by IZ;(:(’;;) only if d;, (y) < ”’1(_;\/‘;)
i (x, w)

> 1 +/c. Therefore the number of times

that 7,41 (y, w) gets incremented is bounded by %
thus the total cost is bounded by

increments 71 (y, , or
equivalently

,and
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E Z Z costi(x)} Z Z = O(nx(w)).
i=0 xeV
This proves the lemma. O

B.4 Proof of Lemma 3.5

Proor. We will prove E[7(x, w)?] < 7T(>(x w) by induc-
tion. For the base case, we have E[#(w, w)?] —4/c)? <
7o (w, w). Assume that E[7; (x, w)?] < m;(x, w) for anyx € V.
For an node y € V, we will show that E[#;41(y, w)?] <
7i+1(y, w). Conditioning on 7; (x, w) forallx € V

E [ w) | A w).x e V] =

(ZR()

xX€A

i (x, )

2
i D Ri(0)Zi(x,y) (1 - vz)) } :

x€B

(18)

We expand equation (18) into 5 terms:
E [#i41(y, w)? | i(x, W), x € V] =X1+Xp+ X3+ X3+ X5

_ZE[R() ﬂ-l(XW) ZE Z(xy]l_\/_)Z
xX€A YeB
E[R;(x1)R; 7i (o1, W) i (x1, W)
’ x1¢;EA [ (XI) (XZ)] din(y)z
* Z E [Ri(x1)Zi(x1, y)Ri (x2) Zi (x2,y)] - (1 — Ve)?
xX1#£x2€B
+ 0, EIRiGa)Ri(0)Zi(xz,y)] ”’(Xl(’ ) (1 - Vo).
x1€A,x,€B m y)

We use X1, X, X3, X, and X5 to denote these 5 terms, and cal-

culate them individually. Since E [R-(x)z] = E[R;(x)] =+,
\f i (x W)

erA

we have X, . Using the induction hypoth-

esis, we have E[7; (x, w) ] < ﬂ(x w)?, and thus

E[X,] < e (x, w) Z Ve (x, w) _ _Sa

a xeA din(y)z m(y ln(y) din(y)’

(19)
_ Vemi(x,w)  q. S _
where Sy = Yica P Since E[%;(x,w)] = mi(x,w),
andE[ i(x)2Z;(x, 1) 2] = %,we have
Ve (x, w
B = (1-v0) YT YO _ (s, )
24" ()

Here we define Sg = Y, cp ‘/EdL(xy)w) Note that S4 + Sg =
2ixel(y) %(xy)w) = T (y, w).

By the independence of R;(x1), Z;(x1,y), Ri(x2), Zi (x2, y)
et (1, W) Ai (o2, W) Xy =

for x; # xp, we have X3 = X1 ux,ca dn(0)?

c7i (1, W) Zi (x2, W)

ZxﬁtszB din(y)? , X5 = leeA,xgeB %W
Therefore, X5 + X4 + X5 can be expressed as
c N R
X3+ X4+ X5 = ()’ < 7t (%1, W) 7T (%2, ).
X1#X EI(y) mn y
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Using the inequality that 7; (x1, w)7Z; (x2, w) < %fr,- (o1, w)% +
%ﬁ i(x1, w)?,

C
X3 + X4 + X5 < PRV (
x1#£x2€1 (y) Zdin(y)

Z ¢ (din(y) — 1)
xe1ly) din(y)?

and we have

71 (o1, w)° + 1 (2, w)°)

7i(x, w)2.

The last equation is due to the fact that each 7;(x, w)? ap-
pears exactly di,(y) — 1 times in the summation. By the
induction hypothesis that E[#;(x, w)?] < m;(x, w), we have

< \/E(l— \/Eﬂi(X,W)

E[X3 + X4 +X5] 4 (y)

din(y) xel(y)

= \/E(l - ﬁ(y)) (Sa + Sp).

Combining Equations (19)-(21), it follows that

(1)
N —1 _ \/— ‘/_
E (g w)°] < (\/E+ dm(y))SA ( dm(y))SB
+ (1 "

-0 gl -2

< Sa + S = miri(y, w).

And the lemma follows. O
B.5 Proof of Lemma 3.6
ProoF. Recall that for s;(u, v),we have the estimator
1 o Jo _,
S1(u,v) = ————— N7 e(u, wj) e (v, wj),
(1 _ \/E)Z ; ; € J J
where 777, ) =07 ) if g7 ) > Uoyere
nie(u, wj) = 07 ,(u, wj) if nr,(u, w;) > ~—5— and

n7;(u, w;) = 0 if otherwise. 77 ,(u, w;) is an estimator for
n(wj)me(u, w;) computed by Monte Carlo approach, and
Ve (v, wj) is the reserve computed by £-hop backward search.
To bound the error of §;(u, v), we further define

o Jo

Z Z 07 o (u, wi) e (v, wy),

=0 j=1

) = =

and

2 ZZU’E (u, wj)me (v, wj).

4

o Jjo
Si(u,v) =
=0 j=1
First, we claim that $;(u, v) and §} (u, v) differ by at most £.
More precisely, observe that 7777 (u, w) and 7777 ,(u, w) differ
by at most %, and thus
o o (7 (W)= ¢ (W) | e (0, wy)
s a1
$1(u, v)=$; (u,v)| =
1w 0)sj @) = 3 ) TEGE

=0 j=1
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For the last inequality, we use the fact that the reserve i, (v, w;)
is at most 7z (v, wj), and thus 377 Zj'.’:l Ye(v, wy)
<3S, (v, W) = 1.

Next, we show that $; Y(u,v) and sA? (u,v) differ by at most £.
To see this, note that by the property of backward search, we

(lwf)f

have |7Z[ v, w;) = Ye(v, wj)| < 2fmax = for a node

wj in the index. It follows that

nz . (u, w))lﬁg(vw) ﬂ[(UW)|
‘sl(u v) sluv| %2 4 J (1_\/5;2 §

0 j ’sz(uW]) C (= \f)f e © n
<3y T = S S ) 5

£=0 j=1
(23)

For the last inequality, recall that Algorithm 4 increments

n7 at most n, times, and each increment is nl
r

Finally, we show that §? (u, v) approximates sy(u, v) with
error § with target probability. Following the definition of
n7 . (u, w), we use a slightly different approach to construct

$%(u, v). For the i-th iteration, we sample a node w and a level
7 (v, wj) It
(1—Vo)? °
i Z'.l_’l X;. For each X,

¢ with probability n(w)7m,(u, w), and set X; to be
can be verify that §% (u,v) =

Jo

ZZU(WJ)”K u WJ)W(U’ )
=0 j=1 (1- \/E)Z

{ (i(ifw)’z)} < ey Sincen, = ©log §/¢7).

= S[(u, U)a

and X; < maxg, ,

by Chernoff bound,
. £ é
Pr [Isf(u,v) - si(u,v)| > g] < Pt (24)
Combining Equations (22)-(24), we prove the lemma. O

B.6 Proof of Lemma 3.7

Proor. Consider a single yc-walk from u. Recall that Al-
gorithm 4 first samples a node-level pair (wj, £) with prob-
ability ¢ (u, w;)n(w;). If j > jo, it performs backward walk
to generate an unbiased estimator 7,(v, w) for eachv € V,

and set the estimator $g(u, v) to be Ti(zi/‘f;jz) It follows that
7'[[ v,
E [$p(u,v)] Z Z e (u, WJ)I](WJ) ( idl =sp(u, v).

2
£=0 j=jo+1 \/_)

We can bound the variance Var [$g(u,v)] < E [§B(u, v)z] by

[7[[(’0 wj) ]

Z Z me(wnw) - — o

=0 j=jo+1

EsBuv

Lemma 3.5 implies that E [ﬁg(v, wj)z] < me(v, wj), and

Var [5(uw, 0)]< Y| > e (u, win(w;)

=0 j=jo+1

me(v, wi)  sp(u,v)
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Recall that for a fixed i with 1 < i < f,, Algorithm 4 re-
peats above sampling process d, time and use the mean over

d, = = \f)z > samples, denoted §]’§ (u,v), as an estimator for
sg(u,v). It follows that
2
Var [sB(u v)] s8(t,0) =& sp(t,0) <£
d-(1- \/_)2 12 12

By Chebyshev’s inequality, we have
, 4Var (§% (u, v) 1
Pr [l%(u, v) —sg(u,v)| > g] < % 3
Finally, Algorithm 4 use $g(u,v) = Median; ;<S5 | (u,v)
as the estimator for §g(u, v). By setting f, = 310g 5 and
applying the Median Trick (see Lemma A.3), we have
é
Pr [|§B(u, v) —sp(u,v)| > i] < —, (25)
2 2n
and the lemma follows. ]

IA

B.7 Proof of Lemma 3.9

Proor. Fix the source node u and consider a node w; and
a level ¢. Recall that we retrieve all nodes v with (v, w;)
from the index if and only if 1) w; is in the index, that is,

—_— —_ 2 .
J < Jjo, and 2) pi,(u, wy) > % = Cil Let sizes(wj) =

] (M‘;T(W’)) denote the upper bound for the index size of

wj at level £, and size,(w;) = X7 sizeg(w;) = © @
denote the upper bound for the index size of w;. We further
define n7(u, w;) = Y7, 17, (u, w;). Note that 77 (u, w;) is an
unbiased estimator for 3357 | n(w;) 7z, (u, wj) = n(w;)m(u, wj).
We can bound the C;(u) as

0 o

Cr(u) < ZI

— £ .
(nn(;(u, wj) > —) sizee(w;),
=0 j=1 @

where I (r’y}?g(u, wj) > é) equals 1 if 77 (u, w;) > Cil and
equals 0 if otherwise. Since 1777 ,(u, w;) < ij7(u, wj), we have
I(r]ﬂf(u wj) > —) < I(ryﬂ(u wj) > ) and thus

o

Cr(u) < ZI

(ﬁi\r(u, wj) > —) sizeg(w;)
=0 =1 a

Ji

:Z[
=

We now use two different approaches to bound Cy(u).
First, observe that for a given u, we have Z’O L7 (u, wj) <

=

(UAﬂ(u’ W]) > i) Size(wj).
€1

1, which implies that there are at most < node w; with

nr(u, wi) > c% Since size(w;) > ... > size(wj,), we can

choose w(u,w;) > &,...71(u,wer) > ¢ to maximize the
.

o

query cost Cy(u). It follows that Cr(u) < P | size(wj) <

a :
0] (Z i1 Miwf ) ) hence proves the first part of the lemma.



Research 10: Graphs 1

For the second part, note that (ﬁi\r(u, wj) > C—i) isbounded
by T )y follows that

el
Jo
E[Ciw)] < et ).

Jj=1

—E[fﬁ(u’ )l size(w;)
c j

(u, wj)

Jo Jo
n(wj)z(u, wj) .
=c y —L 107 ) < ).
1 Z . size(wj) < ¢ Z size(wj)
Jj=1 Jj=1
Here we use the fact that 7777 (u, w;) is an unbiased estimator
for n(wj)m(u, w;) and that n(w;) < 1. Taking average over
all nodes u € V, we have

SEEDTEE I

uev ueV j=

u, wj)

size(w;)

-

),we have C; = O (S—"Z Z;"zl n(wj)z) ,
[m}

%Zuev (u, wj) w(w))

£

size(w;) size(wj).

n(wj)

By size(w;)

=o(

and the lemma follows.

B.8 Proof of Lemma 3.10

Proo¥. Next, we bound Cp = 2 ¥,y Cp(u), the average
query cost for estimating the 7,(v, w) for each node w that
is not in the Index. Given a source node u, for each node
wj with j > jo, recall that we perform ¢ (u, wj)n, backward
walk on w; to estimate 77/(v, w),v € V. By Lemma 3.4, the
cost of a single backward walk on wj, regardless of the level
¢, can be bounded by O(nxr(w;)). Ignoring the big-Oh,
Jo Jo

00

E[(w)] = Z Z 7e(u, w)n, - n(wj) = nyn Z 7 (u, w)mw(w;).

£=0 j=1 j=1

Taking average over all nodes u € V, we have

ZECB(U <—Z

ZO 7 (u, w)(wj)

uEV uevV Jj=1
Jo nlogn Jo
= nrnZ (wj) (Z n(u, w)) =0 Ezg Z zr(wj)2 .
j=1 uev Jj=1

The last equation is due to ), cy 7(u, w) = nm(w). O

B.9 Proof of Theorem 3.11
Proor. We use f = 1/y to simplify the proof. Ignor-
ing the big-Oh notation in Lemma 3.9, we have E[C[] <

n Z] . (w])andE[CI] <z ]° n(wj)? Plugging m(w;) =

-p
Kl — into % Z] " (wj), and we have

<1

)

Jj=1

o
n 'jfﬁ _ nﬁ ! Zjiljiﬁ
n-Pe

Hmﬁgiﬂwﬁ
j=1

&
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nﬂ

o7

Plugging m(w;) =

nﬁ

SR (26)

nﬁ
2B )"

:o(

i
L n
ey Into 3

o

j‘): 7r(wj)2 follows that

K”Zﬁ ' Z]—zﬁ

Jo

Jo
=25

j=1 Jj=1

For B < 1/2, we have Zf‘;lj‘zﬁ = O(]é 2/3) = O(n1 28y, and
thus E[C;] = O( o nl’zﬂ) =0 <€_12) For B = 1/2, we
have Zj" TP = O(logjo) Since log jo < logn and n?/~! =
1, we have E[C;] = O( log]o) = O( ) For g >
1/2, we have ZJO J ~2f = O(1) and consequently E[C;] =

Kj B
n2-2p

n
E[C/] < =

£

logn

0] (”fz ) Combining Equation (26) and above analysis, we
have the following equation:
O(?), for f < 1/2;
E[Ci] =4 O( ofzn), for f=1/2; 27)
(0] (min { "zf;, g’;—_ﬁﬂ}) , for p>1/2.
By Lemma 3.10 and the assumption 7 (w;) = 1:1]1_:2 we

have E[C] = O (Clnﬂg& Z” 1) ﬁ) .Forj < 1/2, we
have Z”_Joﬂj = O(n'?#). Thus
n?fllogn _ logn
E[Cs] = O (—62 L 2ﬁ) -0 (_ggz ) _
For j = 1/2, we have Z;l:joﬂj*m = O(logn), and thus

log nlog 2
E[Cg]l =0 (%). For j > 1/2, we have Y7 ., j™°

1
O(j},fzﬁ). Plugging jo < n (EJ) “F follows that
2p-1 1 1-28
E[Cs] = O (_g (nted)™ ) )
£

=0 (_Ingn . (goi)ll_sz) = O(—Ingn
£ 1 _2f-1
e-Bd1-B

)

1-8 28
By ¢ > log? ' n/n'Pd 7 T and 6 > —am» it follows that
1 -2p-1 26-1 1 -2 B
log §/e™Fd 7 < "—— and logn/slfﬁdlfﬁ < 4%, and
thus E[Cg] is bounded by O (min{ ;; 1, ';ﬁﬁ }) for f > 1/2.
In summary, we have
(log‘s) for p < 1/2;
E[Cg] = O(%), for f =1/2; (28)
O(min{”zgl,g'z’—,ﬁﬁ}), for B > 1/2.

Combing Cr, Cr, Cp and B = 1/y, the theorem follows. O
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