
PRSim: Sublinear Time SimRank Computation on
Large Power-Law Graphs

Zhewei Wei
∗

zhewei@ruc.edu.cn

School of Information, DEKE

MOE, Renmin University of China

Xiaodong He

hexiaodong_1993@ruc.edu.cn

4Paradigm Inc.

Beijing, China

Xiaokui Xiao

xkxiao@nus.edu.sg

School of Computing, National

University of Singapore

Sibo Wang

swang@se.cuhk.edu.hk

The Chinese University of Hong

Kong

Yu Liu

dokiliu@pku.edu.cn

Peking University

Xiaoyong Du

Ji-Rong Wen
†

{duyong,jrwen}@ruc.edu.cn

Renmin University of China

ABSTRACT
SimRank is a classic measure of the similarities of nodes in a

graph. Given a node u in graph G = (V ,E), a single-source
SimRank query returns the SimRank similarities s (u,v) be-
tween node u and each node v ∈ V . This type of queries has

numerous applications in web search and social networks

analysis, such as link prediction, web mining, and spam de-

tection. Existing methods for single-source SimRank queries,

however, incur query cost at least linear to the number of

nodes n, which renders them inapplicable for real-time and

interactive analysis.

This paper proposes PRSim, an algorithm that exploits

the structure of graphs to efficiently answer single-source

SimRank queries. PRSim uses an index of size O (m), where
m is the number of edges in the graph, and guarantees a

query time that depends on the reverse PageRank distribu-

tion of the input graph. In particular, we prove that PRSim

runs in sub-linear time if the degree distribution of the in-

put graph follows the power-law distribution, a property

possessed by many real-world graphs. Based on the theo-

retical analysis, we show that the empirical query time of

all existing SimRank algorithms also depends on the reverse

∗
Work partly done at Beijing Key Laboratory of Big Data Management and

Analysis Method, Renmin University of China.

†
Ji-Rong Wen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319873

PageRank distribution of the graph. Finally, we present the

first experimental study that evaluates the absolute errors of

various SimRank algorithms on large graphs, and we show

that PRSim outperforms the state of the art in terms of query

time, accuracy, index size, and scalability.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; •
Information systems→ Data mining;

KEYWORDS
SimRank; Power-Law Graphs; Personalized PageRank

ACM Reference Format:
Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Yu Liu, Xiaoy-

ong Du, and Ji-Rong Wen. 2019. PRSim: Sublinear Time SimRank

Computation on Large Power-Law Graphs. In 2019 International
Conference on Management of Data (SIGMOD ’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3299869.3319873

1 INTRODUCTION
Measuring similarities and proximities of nodes in the graph

is a classic task in graph analytics. Several link-based simi-

larity measures have been proposed, including Personalized

PageRank [29], Simfusion [36], P-rank [47] and Panther [45].

Among them, SimRank [15], proposed by Jeh and Widom, is

regarded as one of the most influential similarity measures,

and has been adopted in numerous applications such as web

mining [17], social network analysis [23], and spam detec-

tion [31]. Given a graph G = (V ,E), the SimRank similarity

of nodes u and v , denoted as s (u,v), is defined as

s (u,v) =




1, if u = v
c

|I (u) | · |I (v) |

∑
u′∈I (u)

∑
v ′∈I (v)

s (u ′,v ′), otherwise

(1)

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1042

https://doi.org/10.1145/3299869.3319873
https://doi.org/10.1145/3299869.3319873

whereI (u) denotes the set of in-neighbors ofu, and c ∈ (0, 1)
is a decay factor typically set to 0.6 or 0.8 [15, 26]. This

formulation is based on two intuitive statements: (1) two

objects are similar if they are referenced by similar objects,

and (2) an object is most similar to itself. Due to its recursive

nature, SimRank computation is a non-trivial problem and

has been extensively studied for more than a decade. Existing

work mostly considers three types of SimRank queries: (1)

Single-pair queries, which ask for the SimRank similarity

between two given nodes u andv ; (2) All-pair queries, which
ask for the SimRank similarity between any pair of nodes u
and v; (3) Single-source queries, which ask for the SimRank

similarity between every node andu. All-pair queries require
storing O (n2) node pairs, and thus is infeasible for large

graphs. Meanwhile, single-source queries has become the

focus of recent research [12, 16, 18, 20, 22, 22, 25, 28, 30, 32,

41], due to its connections to recommendation applications.

In this paper, we aim to answer approximate single-source
SimRank queries, defined as follows:

Definition 1.1 (Approximate Single-Source Queries). Given a
node u in a directed graphG and an absolute error threshold

ε , an approximate single-source SimRank query returns an

estimated value ŝ (u,v) for each node v in G, such that

|ŝ (u,v) − s (u,v) | ≤ ε

holds for any v with at least 1 − δ probability. □

Power-law graphs. It was experimentally observed that

most real-world networks are scale-free and follow power-

law degree distribution. In particular, let Po (k) and Pi (k)
denote the fraction of nodes in the graph having out-degree

and in-degree at least k , respectively. Then, on a power-
law graph, Po (k) and Pi (k) satisfy that Po (k) ∼ k−γ and

Pi (k) ∼ k−γ
′

[7], where γ and γ ′ are the (cumulative) power-

law exponents that usually take values from 1 to 2. Recent

work has demonstrated that by exploiting this fact, we can

improve the asymptotic bounds for various graph algorithms

such as triangle counting [8], transitive closure [8], perfect

matching [8], PageRank computation [27, 35] and maximum

independent set [24].

Motivations. Since many graph algorithms can benefit

from the structure of real-world graphs, a natural question

is: Can we do the same for SimRank algorithms? On one

hand, we are interested in designing a more efficient Sim-

Rank algorithm by exploiting the structure of the graphs,

since existing work for SimRank computation [12, 16, 18,

20, 22, 22, 25, 28, 30, 32, 41] has missed this opportunity for

optimization. On the other hand, we are also interested in

analyzing how the graph structure affects the performance

of existing SimRank algorithms. More precisely, it has been

observed in previous work [46] that the performance of ex-

isting SimRank algorithms may vary dramatically on graphs

with similar numbers of nodes and edges. A typical example

is the Twitter (TW) and IT-2004 (IT) data sets, both of which

have around 40 million nodes and 1 billion edges. However,

as shown in [46] and in our experiments, the query times of

most SimRank algorithms are significantly smaller on IT-2004
than on Twitter. Based on this phenomenon, [46] suggests

that Twitter (TW) is “locally dense” and IT-2004 (IT) is “locally
sparse”. However, it is still desirable to obtain a quantifiable

measure that describes the hardness of each graph in terms

of SimRank computation. Finally, since obtaining ground

truth for single-source SimRank queries requires n2
space,

which is infeasible for large graphs, most existing work only

evaluate the accuracy of the algorithms on small graphs. The

only exception is recent work [25], which evaluates precision

for approximate top-k queries on graphs with billion edges

using the idea of pooling. However, there is no prior experi-

mental study that evaluates absolute error for single-source

queries on large graphs.

Our contributions. This paper studies the approximate

single-source SimRank queries, and makes the following

contributions.

(1) We propose PRSim, an algorithm that leverages the

graph structure to efficiently answer approximate single-

source SimRank queries. The query time complexity of PRSim

is related to the reverse PageRank of the input graphG , which
is defined as the PageRank of the graph G ′ constructed
by reversing the direction of each edge in G. Let π (w) de-
note reverse PageRank of nodew , and

∑
w ∈V π (w)2 denote

the second moment of the reverse PageRanks. The aver-

age expected query cost for PRSim on worst-case graphs

is bounded by O
(
n log

n
δ

ε2
·
∑
w ∈V π (w)2

)
. By the fact that∑

w ∈V π (w)2 ≤ (
∑
w ∈V π (w))2 = 1, PRSim provides at least

the same complexity as the random walk based algorithms

(ProbeSim, TSF, and READS) do on worst-case graphs. Fur-

thermore, PRSim uses an index of size O (m), which signifi-

cantly improves the scalability of the algorithm. See Table 1

for the theoretical comparison between our algorithm and

the state of the art.

On the other hand, we show that on power-law graphs,

the second moment

∑
w ∈V π (w)2 is an asymptotic variable

that is close to 0, which means PRSim actually achieves sub-

linear query cost on real-world graphs. More precisely, Let γ
denote the cumulative power-law exponent of the out-degree

distribution. We show that the average expected query cost

for PRSim on power-law graphs is bounded by:

E[Cost] =




O (1

ε2
log

n
δ), for γ > 2;

O (1

ε2
log

n
δ · logn), for γ = 2;

O

(
min

{
n

1

γ

ε2− 1

γ
, n

2

γ −1

ε2

})
, for 1 < γ < 2,

(2)

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1043

Table 1: Comparison of single-source SimRank algorithms with ε additive error and 1 − δ success probability.

Algorithm Query Time Query Time (Power-Law Graphs) Space Overhead Preprocessing Time

PRSim O
(
n log

n
δ

ε2
·
∑
w ∈V π (w)2

) O
(
log

n
δ /ε

2

)
for γ > 2

O (min{n/ε,m}) O (m/ε)O
(
log

n
δ · logn/ε2

)
for γ = 2

O
(
min

{
n

1

γ /ε
2− 1

γ ,n
2

γ −1

/ε2

})
for 1 < γ < 2

TSF [30] O
(
n log

n
δ /ε

2

)
O

(
n log

n
δ /ε

2

)
O

(
n log

n
δ /ε

2

)
READS [16] O

(
n log

n
δ /ε

2

)
O

(
n log

n
δ /ε

2

)
O

(
n log

n
δ /ε

2

)
ProbeSim [25] O

(
n log

n
δ /ε

2

)
0 0

SLING [32] O (n/ε) O (n/ε) O
(
m/ε + n log

n
δ /ε

2

)
for

1

nΩ(1) < ε < 1 and δ > 1

nΩ(1) . To understand this complex-

ity, we first note that when γ ≥ 2, our bounds depend only

on logn, which is significantly better than the corresponding

bound of any previous SimRank algorithms. For 1 < γ < 2,

since ε > 1

n , we have
n

1

γ

ε2− 1

γ
≤ n

ε . This implies that PRSim

also outperforms SLING on power-law graphs. To the best

of our knowledge, this is the first sublinear algorithm for

single-source SimRank queries on power-law graphs.

(2) To achieve the desired query cost in Table 1, we design

several novel techniques for computing SimRank and Per-
sonalized PageRank (PPR) . First, we propose an algorithm

that estimates the last meeting probabilities [32] (see Section
for definition) for ALL nodes in O (log

n
δ /ε

2) time. This im-

proves the O (n log
n
δ /ε

2) bounds in [32] by an order of O (n)
and is the key to achieve sub-linearity. Second, we propose

an index scheme which performs the backward search [27]

algorithm only on a number j0 of hub nodes. The parame-

ter j0 enables us to manipulate the tradeoffs between index

size and query time, which improves the scalability of our

algorithm. Finally, we design Variance Bounded Backward
Walk, an algorithm that estimates the Personalized PageR-

ank values to a given target nodew with additive error ε in
O (nπ (w) log

n
δ /ε

2) time, where π (w) is the reverse PageR-
ank of nodew . Since the average value of π (w) is 1/n, this
significantly improves the O (n log

n
δ /ε

2) time complexity of

the Randomized Probe algorithm [25], and is the key to the

relation between the time complexity and the reverse PageR-

ank distribution. We also note that the Variance Bounded

Backward Walk algorithm actually improves the time com-

plexity of state-of-the-art PPR algorithms to target nodes for

dense graphs [33], and may be of independent interest.

(3) Based on the time complexity of PRSim, we conduct

experiments to confirm that the hardness of SimRank queries

is indeed reversely related to the out-degree power-law expo-

nent γ of the graph. This observation provides a quantifiable

measure for the concept of locally dense and locally sparse

networks introduced in [46]. In particular, the out-degree

distribution of IT-2004 is significantly more skewed than that

100 102 104 106 108
100

102

104

106

108

It-2004 (cdf)

Twitter (cdf)

Figure 1: Out-degree distributions of IT and TW.

of Twitter (see Figure 1), which explains the performance

discrepancy of existing SimRank algorithms on these two

datasets. We also conduct a large set of experiments that

evaluate PRSim against the state of the art on benchmark

data sets. In particular, our experiments include the first em-

pirical study on the tradeoffs between absolute error and

query cost for single-source SimRank algorithms on graphs

with billions of edges. Our empirical study shows that PRSim

outperforms the state of the art in terms of query time, accu-

racy, index size, and scalability.

2 PRELIMINARIES
Table 2 shows the notations that are frequently used in the

remainder of the paper.

√
c-walk and Reverse PageRank.We unify the definition

of SimRank and reverse PageRank under the notation of

√
c-

walk. Let G = (V ,E) be a directed graph with n nodes and

m edges. Given a source node u ∈ V and a decay factor c , a
reverse

√
c-discounted random walk (or

√
c-walk in short) from

u is a traversal ofG that starts fromu and, at each step, either

(i) terminates at the current node with 1 −
√
c probability,

or (ii) proceeds to a randomly selected in-neighbor of the

current node with

√
c probability. We define the reverse

PageRank π (w) of a node w to be the probability that an
√
c-walk from a uniformly chosen source node terminates

atw . It is easy to see that the reverse PageRank of a nodew
in the original graphG equals to the PageRank ofw in the

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1044

Table 2: Table of notations.

Notation Description

n,m the numbers of nodes and edges in G

I (v),O (v) the set of in-neighbors and out-neighbors of

a node v

dout (v), din (v) the out-degree and in-degree of node v

s (u,v) the SimRank similarity of nodes u and v

ŝ (u,v) an estimation of s (u,v)

c the decay factor of SimRank

ε the maximum absolute error allowed in Sim-

Rank computation

π (w) the reverse PageRank of nodew

π (u,w),πℓ (u,w) the RPPR and ℓ-hop RPPR values ofw with

respect to u

π̂ (u,w), π̂ℓ (u,w) estimators of π (u,w) and πℓ (u,w)

rℓ (v,w),ψℓ (v,w) the residue and reserve of v at level ℓ from

w in the backward search

reverse graphG ′ constructed by reversing the direction of

each edge in G.
Given a source node u and a target node w , we further

define the reverse Personalized PageRank (RPPR) π (u,w) of
w with respect to u to be the probability that an

√
c-walk

from u terminates at w . Again, the reverse Personalized

PageRank on the original graph G equals to the Person-

alized PageRank on the reverse graph G ′. Since the RPPR
values from a given source node u form a probability dis-

tribution, we have

∑
w ∈V π (u,w) = 1. Meanwhile, since the

reverse PageRank π (w) is equal to the probability that an
√
c-walk from a random source node terminates at w , we

have

∑
u ∈V π (u,w) = nπ (w).

ℓ-Hop RPPR. In this paper, we will mainly use a variant

of Personalized PageRank called ℓ-hop Reverse Personalized
PageRank (ℓ-hop RPPR). Given a source node u, the ℓ-hop
RPPR πℓ (u,w) of node w respected to u is the probability

that a reverse

√
c-walk from u terminates at node w with

exactly ℓ steps. By the definition of ℓ-hop RPPR, we have

πℓ+1 (y,w) =
∑

x ∈I (y)

√
c

din (y)
πℓ (x ,w). (3)

On the other hand, it is easy to see that RPPR π (u,w) can be

expressed as the sum of ℓ-hop RPPR, that is,
∑∞

ℓ=0
πℓ (u,w) =

π (u,w). Thus, we have
∑∞

ℓ=0

∑
w ∈V πℓ (u,w) = 1, and

∞∑
ℓ=0

∑
u ∈V

πℓ (u,w) = nπ (w). (4)

SimRank,
√
c-walk, and hitting probability. It is shown

in [32] that the SimRank similarity s (u,v) between two dif-

ferent nodes u and v can also be formulated using

√
c-walks.

Given two distinct nodes u and v , we start a
√
c-walk from

each node. If the two

√
c-walks visit the same node after

exactly i steps, we say the two

√
c-walks meet at step i . [32]

shows that s (u,v) is equal to the probability that the two
√
c-walks meet.

Moreover, [32] proposes SLING, an algorithm that uses

the following formula to estimate SimRank values:

s (u,v) =
∞∑
ℓ=0

∑
w ∈V

hℓ (u,w)hℓ (v,w)η(w). (5)

Here hℓ (u,w) denote the hitting probability that an

√
c-walk

from node u visits w in its ℓ-step, and η(w) is a parameter

that characterizes the last-meeting probability:

Definition 2.1 (Last-meeting probability). The last-meeting

probability η(w) for nodew is the probability that two

√
c-

walk fromw do not meet at i step for any i ≥ 1.

SLING precomputeshℓ (u,w) and η(w) with an additive er-
ror up to ε , and stores them in the index. Given a query node

u, it retrieves all levels ℓ and nodesw such that hℓ (u,w) >
ε . For each (ℓ,w) pair, SLING retrieves all nodes v with

hℓ (v,w) > ε and η(w), and estimates s (u,v) with Equa-

tion (5).

There are two major issues with SLING. First, storing all

hℓ (u,w)with additive error up to ε takesO (n/ε) space, which
can be significantly larger than the graph size for reasonable

choices of ε . Second, approximating η(w) for each w ∈ V
requires sampling a large number of random walks from

each node in the graph, which makes the preprocessing time

infeasible on very large graphs. Our algorithm overcomes

these two drawbacks by (1) providing an index size that is at

most the size of the graph, and (2) designing an algorithm

that estimates η(w) on-the-fly, using only O (logn/ε2) time.

3 PRSIM ALGORITHM
In this section, we present PRSim, an index-based algorithm

that exploits the graph structure to efficiently answer approx-

imate single-source SimRank queries. We first provide the

estimating formula that relates SimRank and ℓ-hop RPPR.

3.1 SimRank and ℓ-hop RPPR
The relation between SimRank and reverse Personalized

PageRank can be directly derived from equation (5). Observe

the fact that ℓ-hop RPPR πℓ (u,w) equals to the hitting prob-

ability hℓ (u,w) multiplied the the termination probability

α = 1 −
√
c , and we have

s (u,v) =
1

(1 −
√
c)2

∞∑
ℓ=0

∑
w ∈V

πℓ (u,w)πℓ (v,w)η(w). (6)

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1045

There are two reasons for using ℓ-hop RPPR over hitting

probability. Firstly, we have

∑∞
ℓ=0

∑
w ∈V πℓ (u,w) = 1. As

we will show later, this is critical for estimating η(w) in
O (log

n
δ /ε

2) time. Secondly, we have

∑∞
ℓ=0

∑
u ∈V πℓ (u,w) =

nπ (w). This property relates SimRankwith the reverse PageR-

ank, and thus is essential for achieving sublinear query time.

Recall that given a source node u, our goal is to estimate

SimRank values s (u,v) with additive error ε for any node

v ∈ V . By Equation (6), we can decompose the query process

into three subroutines: 1) Given a source node u, compute

the ℓ-hop RPPR values πℓ (u,w) for any nodes w ∈ V ; 2)
Compute last meeting probabilities η(w) for eachw ∈ V ; 3)
For any node v ∈ V , compute ℓ-hop RPPR values πℓ (v,w)
to any target node w . For the first task, we can employ a

simple Monte Carlo algorithm which generates a number

nr = O (log
n
δ /ε

2) of
√
c-walks from u and uses the propor-

tion of

√
c-walks that terminate at w with exact ℓ steps to

approximate πℓ (u,w). This algorithm runs in O (log
n
δ /ε

2)
time, so we will focus on the remaining two tasks.

3.2 Computing Last Meeting Probability
The first challenge is how to estimate η(w) for eachw ∈ V

efficiently. SLING [32] generates nr = Θ
(

log
n
δ

ε2

)
pair of

√
c-

walks for eachw ∈ V , and obtains an approximation to η(w)
with error ε for eachw ∈ V . However, this solution leads to

a preprocessing time of O
(
n log

n
δ

ε2

)
, and thus, is not feasible

if we need small error ε on large graphs.

Our first key insight is that, instead of estimating the

ℓ-hop PPR πℓ (u,w) and last meeting probability η(w) sep-
arately, we can estimate their product η(w)πℓ (u,w) in the

query phase, using only nr = Θ
(

log
n
δ

ε2

)
samples. More pre-

cisely, we observe that η(w)πℓ (u,w) is the probability that

an

√
c-walk from u terminates at w with ℓ steps, and then,

two independent

√
c-walks fromw do not meet. Therefore,

we can generate an

√
c-walkW (u) from u, and then two

√
c-walksW1 (w) andW2 (w) from the nodew whereW (u)

terminates. IfW1 (w) andW2 (w) do not meet, we set the

estimator η̂π ℓ (u,w) = 1. This way we obtain an unbiased es-

timator for each η(w)πℓ (u,w),w ∈ V and ℓ = 0, . . . ,∞. We

also note that the summation

∑
w ∈V

∑∞
ℓ=0

η(w)πℓ (u,w) ≤∑
w ∈V

∑∞
ℓ=0

πℓ (u,w) = 1, which means we can use Chernoff

bound A.1 to estimates η(w)πℓ (u,w) with additive error ε

for anyw ∈ V , ℓ ≥ 0 with only nr = Θ
(

log
n
δ

ε2

)
samples.

3.3 Precomputing RPPR to Hub Nodes
Given a target nodew , computing ℓ-hop RPPR πℓ (v,w) for
any node v ∈ V is time-consuming, especially when w is

a hub node with many out-neighbors. Therefore, we will

use index to help reduce the cost. SLING [32] proposes the

following approach: for each (source) nodev , we precompute

πℓ (v,w) for any w ∈ V and put πℓ (v,w) into an inverted

list, so we can efficiently track πℓ (v,w),v ∈ V for a given

target nodew . This approach, however, essentially builds an

index for every target node w ∈ V and results in an index

of size O
(
n
ε

)
, which is usually significantly larger than the

graph sizem for reasonably small ε .

Algorithm 1: Preprocessing Algorithm

Input: Graph G, decay factor c , error parameter ε
Output: Lists Lℓ (w) consisting of tuples (v,ψℓ (v,w)) for each

w with top-j0 reverse PageRank values and

ℓ = 0, . . . ,∞

1 Construct a tuple (x ,y,din (y)) for each edge (x ,y) ∈ E;

2 Use counting sort to sort the (x ,y,din (y)) tuples according the

ascending order of din (y).;

3 for each (x ,y,din (y)) do
4 Append y to the end of x ’s out-adjacency list;

5 Calculate reverse PageRank π (w) forw ∈ V ;

6 for each nodew with top-j0 reverse PageRank values do
7 rℓ (v,w),ψℓ (v,w) ← 0 for ℓ = 0, . . . ,∞,v ∈ V ;

8 r0 (w,w) ← 1, c1 ←
12

(1−
√
c)2

, rmax ←
ε
c1

;

9 for ℓ from 0 to∞ do
10 for each v ∈ V with rℓ (v,w) > rmax do
11 for each z ∈ O (v) do
12 rℓ+1

(z,w) ← rℓ+1
(z,w) +

√
c ·

rℓ (v,w)
din (z)

13 ψℓ (v,w) ← ψℓ (v,w) + (1 −
√
c) · rℓ (v,w);

14 rℓ (v,w) ← 0;

15 for each v with reserveψℓ (v,w) > rmax do
16 Append tuple (v,ψℓ (v,w)) to Lℓ (w);

To reduce the index size, we propose to build index only for

hub nodes. In particular, we identify j0 nodes with the largest

reverse PageRanks as hub nodes, where j0 is a user-specified
parameter. We then perform the backward search [27] algo-

rithm on each hub nodew to precompute πℓ (v,w) for any
v ∈ V and any ℓ > 0. The definition of hub nodes is based

on two intuitions. First, recall that the reverse PageRank of

node w is the probability that an

√
c-walk from a random

node u terminates at w . Therefore, a hub node w is more

likely to be visited in a single-source SimRank query on u.
Second, since

∑∞
ℓ=0

∑
v ∈V πℓ (v,w) = nπ (w), a hub node will

also have more (ℓ,w)-tuples with πℓ (v,w) > ε , which makes

it more difficult to compute πℓ (v,w) on the fly. Therefore,

pre-computing πℓ (v,w) for nodes w with highest reverse

PageRank reduces the query cost most efficiently. We also

note that we can choose the value of j0 to balance the query

time, index size and preprocessing time. For ease of presen-

tation, we select j0 such that the index size is bounded by

O (m) in this section.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1046

Algorithm 1 illustrates the pseudocode for the preprocess-

ing algorithm. For reasons we shall see later, for each nodeu
with out-neighbor set O (x) = {y1, . . . ,yd }, we store the ad-
jacency list of x in a way such that din (y1) ≤ . . . ≤ din (yd).
To sort the adjacency list of each node in totalO (m) time, we

first construct a tuple (x ,y,din (y)) for each edge (x ,y) ∈ E.
Then we employ the counting sort algorithm to sort them tu-

ples (x ,y,din (y)) according to the ascending order of din (y).
Since din (y) is an integer in range [0,n], the counting sort

algorithm runs in timeO (m + n). We then scan them sorted

tuples and, for each tuple (x ,y,din (y)), we append y to the

end of x ’s out-adjacency list. This algorithm sorts the out-

adjacency list of each node inO (m +n) time. (Lines 1-4). We

then calculate the reverse PageRanks for each nodew ∈ V ,
and retrieve the j0 nodes with the largest reverse PageR-

ank as the hub nodes (line 5). For each hub nodew , we use

backward search [27] to compute an estimatorψℓ (v,w) for
the l-hop RPPR πℓ (v,w), for each ℓ = 0, . . . ,∞ and v ∈ V .
More precisely, we first set residue rℓ (v,w) and a reserve
ψℓ (v,w) = 0 to each node v and ℓ = 0, . . . ,∞. Then, we

set r0 (w,w) = 1 and the residue threshold rmax =
(1−
√
c)2ε

12

(Lines 6-8). Note that we choose the constant (1 −
√
c)2 to

compensate the denominator (1 −
√
c)2 in equation (6), and

the constant 12 so that we can sum various errors up to at

most ε . Starting from level 0, we traverse fromw , following

the out-going edges of each node (Line 9). On visiting a node

v at level ℓ, we check if v’s residue rℓ (v, t) is larger than
the threshold rmax . If so, for each out-neighbor z of v , we

increase the residue rℓ+1 (z,w) of z at level ℓ+1 by

√
c · rℓ (v,w)

din (z)
(Lines 10-12). Next, we increase ψℓ (v,w), v’s backward re-

serve at level ℓ by
√
crℓ (v,w) (line 13). After that, we reset

v’s backward residue rℓ (v,w) to 0 (line 14). After all nodes

v with residue rℓ (v,w) > rmax are processed, we append

tuples (v,ψℓ (v,w)) to a list Lℓ (w) for each v with reserve

ψℓ (v,w) > rmax (line 15-17). Note that for each a node w
and a level ℓ with at least oneψℓ (v,w) > rmax , we store all

tuples (v,ψℓ (v,w)) withψℓ (v,w) > ε in a list Lℓ (w), so we

can quickly retrieve them givenw and ℓ in the query phase.

The following lemma can be directly derived from [27]

Lemma 3.1 ([27]). For any hub nodew , anyv ∈ V and ℓ ≥ 0,
Algorithm1 ensures |ψℓ (v,w) − πℓ (v,w) | < rmax =

(1−
√
c)2ε

12
.

We have the following lemma that bounds the space usage

and running time of Algorithm 1 on worst-case graphs.

Lemma 3.2. The size of the index generated by Algorithm 1
is bounded by O

(
n
ε
∑j0

j=1
π (w j)

)
. The preprocessing time is

bounded by O
(
m
ε

)
.

We set j0 so thatO
(
n
ε
∑j0

j=1
π (w j)

)
= O (m) in the theoret-

ical analysis of PRSim, for ease of presentation. Note that if

the largest reverse PageRank π (w1) satisfies π (w1) > εm/n,

we need to set j0 = 0, in which case PRSim becomes an index-

free algorithm. However, in practice, we can manipulate j0
to get a tradeoff between the index size and query cost.

3.4 Sampling RPPR to Non-Hub Nodes
The third key component of our method is a sampling-based

algorithm that efficiently computes ℓ-Hop PPR values to non-

hub target nodes (i.e., nodes with small reverse PPR values

and thus are not in the index). Given a node w , the goal

is to provide an unbiased estimator π̂ℓ (v,w) for πℓ (v,w)
for each v ∈ V and any ℓ ≥ 0. Once we obtain such a

sampler, we can estimate each πℓ (v,w) with additive error

ε using log
n
δ /ε

2
samples. [25] provides such a sampler by

employing a Randomized Probe algorithm, which runs in

O (n) time for a single sample. This time complexity, however,

is unacceptable if we want sub-linear query time.

In this section, we propose an algorithm that achieves the

following goals: 1) Given a nodew , the algorithm provides an

unbiased estimator π̂ℓ (v,w) for πℓ (v,w), for eachv ∈ V and

any ℓ ≥ 0; 2) the algorithm runs in O (nπ (w)) expected time.

Note that nπ (w) =
∑∞

i=0

∑
v ∈V πi (v,w) is the expected out-

put size and consequently the minimum cost for generating

unbiased estimators π̂i (v,w) for i = 0, . . . ,∞,v ∈ V . (3) The

variance of π̂i (v,w) is bounded, so we can use Chebyshev’s

inequality to bound the error, and the Median Trick to boost

the success probability.

Algorithm 2: Backward Walk

Input: Directed graph G = (V ,E); nodew ∈ V ; level ℓ
Output: π̂ℓ (v,w) for each v ∈ V

1 π̂ℓ (v,w) ← 0 for ℓ = 0, . . . ,∞, x ∈ V ;

2 π̂0 (w,w) ← 1 −
√
c;

3 for i = 0 to ℓ − 1 do
4 for each x ∈ V with non-zero π̂i (x ,w) do
5 r ← rand (0, 1);

6 for each y ∈ O (x) and din (y) ≤
√
c
r do

7 π̂i+1 (y,w) ← π̂i+1 (y,w) + π̂i (x ,w);

8 return all non-zero π̂ℓ (v,w);

Simple BackwardWalk with Unbounded Variance. For
ease of exposition, we first present a simple Backward Walk
that achieves the first two goals. The pseudocode is illus-

trated by Algorithm 2. Given a node w and a level ℓ, this
algorithm also gives an unbiased estimator π̂ℓ (v,w) for each
v ∈ V . We first initialize π̂0 (w,w) = 1−

√
c and π̂ℓ (x ,w) = 0

for other ℓ or x ∈ V (Lines 1-2). Then, we iterate i from 0 to

ℓ−1 (Line 3). At level i , for each x ∈ V with non-zero π̂i (x ,w),
we generate a random number r from (0, 1) (Line 4-5), and
scan the out-neighbors of x until we encounter the first node

y with din (y) >
√
c
r . Recall that in the preprocessing phase,

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1047

we sort the out adjacency list of x so that nodes in O (x)
are ordered according to their in-degrees (see Algorithm 1).

Therefore, we only have to visit the nodes with din (y) ≤
√
c
r ,

which is a subset of O (x). For each out-neighbor y of x with

din (y) ≤
√
c
r , we add π̂i (x ,w) to π̂i+1 (y,w) (Lines 6-7). Fi-

nally, after level ℓ − 1 is processed, we return each non-zero

π̂ℓ (v,w) as the estimator for πℓ (v,w) (Line 8).
We can use a simple induction to prove the unbiasedness

of Algorithm 2. For the base case, we have E[π̂0 (w,w)] =
1 −
√
c = π0 (w,w). Assume that E[π̂i (x ,w)] = πi (x ,w) for

any x ∈ V . For a node y at level i + 1, each π̂i (x ,w),x ∈

I (y) is added to π̂i+1 (y,w) with probability

√
c

din (y)
, and thus

E[π̂i+1 (y,w)] =
∑

x ∈I (y)

√
c

din (y)
E[π̂i (x ,w)]. Therefore, we

have E[π̂i+1 (y,w)] =
∑

x ∈I (y)

√
c

din (y)
πi (x ,w) = πi+1 (y,w).

To analyze the running time, note that the cost for comput-

ing π̂i (x ,w) is bounded by the number of times that π̂i (x ,w)
is incremented. Since each increment adds at least (1 −

√
c)

to π̂i (x ,w), this cost is bounded by
π̂i (x,w)

1−
√
c . Summing over

i = 0, . . . ,∞ and x ∈ V , and using equation (4), the total cost

is at most O (nπ (w)).
Unfortunately, the estimator π̂ℓ (v,w) returned by Algo-

rithm 2 can be unbounded, since we may sum up all esti-

mators from level i to form an estimator of level i + 1. To

make thing worse, it is even unclear if π̂ℓ (v,w) has bounded
variance. This means that π̂ℓ (v,w) may not be sub-gaussian

or sub-exponential, and thus we are unable to apply concen-

tration inequality to bound the error.

Algorithm 3: Variance Bounded Backward Walk

Input: Directed graph G = (V ,E); nodew ∈ V ; target

level ℓ
Output: π̂ℓ (v,w) for each v ∈ V

1 π̂ℓ (v,w) ← 0 for ℓ = 0, . . . ,∞, x ∈ V ;

2 π̂0 (w,w) ← 1 −
√
c;

3 for i = 0 to ℓ − 1 do
4 for each x ∈ V with non-zero π̂i (x ,w) do
5 if r0 ← rand () <

√
c then

6 for each y ∈ O (x) and din (y) ≤
π̂i (x,w)

1−
√
c do

7 π̂i+1 (y,w) ← π̂i+1 (y,w) + π̂i (x,w)
din (y)

;

8 r ← rand (0, 1);

9 for each y ∈ O (x) and
π̂i (x,w)

1−
√
c < din (y) ≤

π̂i (x,w)

r (1−
√
c) do

10 π̂i+1 (y,w) ← π̂i+1 (y,w) + 1 −
√
c;

11 return all non-zero π̂ℓ (v,w);

VarianceBoundedBackwardWalk.To overcome the draw-

back of simple Backward Walk, we propose the Variance

Bounded Backward Walk algorithm, which achieves bounded

variance without sacrificing the O (nπ (w)) query bound or

the unbiasedness guarantee. Algorithm 3 illustrates the pseu-

docode of the Variance Bounded Backward Walk algorithm.

We set π̂0 (w,w) = 1 −
√
c and π̂ℓ (x ,w) = 0 for other ℓ or

x ∈ V (Lines 1-2). Then we iterate i from 0 to ℓ − 1 (Line 3).

At level i , for each x ∈ V with non-zero π̂i (x ,w), we first
generate a random number r0 so that we can stop the pro-

cess at x with probability 1−
√
c (Lines 4-5). With probability

√
c , we first scan through the out-neighbors of x until we

encounter the first node y with din (y) >
π̂i (x,w)

1−
√
c . For each

out-neighbor y with din (y) ≤
π̂i (x,w)

1−
√
c we increase π̂i (y,w)

by
π̂i (x,w)
din (y)

(Lines 6-7). Then, we choose a random number r

from (0, 1) (Line 8), and continue to scan the out-neighbors

of x until we encounter the first nodey withdin (y) >
π̂i (x,w)

r (1−
√
c) .

Again, we only visit a subset ofO (x), as the nodes inO (x) are
ordered according to their in-degrees. For each out-neighbor

y of x with din (y) ≤
π̂i (x,w)

r (1−
√
c) , we increment π̂i+1 (y,w) by

1 −
√
c (Lines 9-10). After ℓ levels are processed, we return

all non-zero π̂ℓ (v,w) as estimators for πℓ (v,w) (Line 11).

Analysis. Weprove three properties of the Variance Bounded

Backward Walk algorithm. First, the algorithm gives an un-

biased estimator π̂ℓ (v,w) for πi (v,w) for each v ∈ V and

i ≤ ℓ. In particular, we have the following lemma.

Lemma 3.3. Consider a node v on a target level ℓ, and let
π̂ℓ (v,w) be an estimator provided by Algorithm 3. We have
E[π̂ℓ (v,w)] = πℓ (v,w).

Next, we show that the running time of Algorithm 3 on

node w is proportional to its reverse PageRank π (w). In
particular, we have the following lemma.

Lemma 3.4. The complexity of Algorithm 3 on nodew , re-
gardless of the target level ℓ, is bounded by O (nπ (w)).

Note that nπ (w) =
∑∞

i=0

∑
v ∈V πi (v,w), which implies

that the minimum number of operations to return a unbi-

ased estimator π̂i (v,w) for each πi (v,w) is Ω(nπ (w)). This
essentially means that Algorithm 3 achieves optimal sam-

pling complexity for this task.

Finally, we note that although the estimator π̂ℓ (v,w) is
unbiased, it may be unbounded on certain graphs. To see this,

consider a graph that has n + 2 nodes w,v,x1, . . . ,xn . For
each i = 1, . . . ,n, there is an edge fromw to xi and an edge

from xi to v . Suppose we run Algorithm 2 on nodew with

target level ℓ = 2. The algorithm first sets π̂0 (w,w) = 1−
√
c .

For each i = 1, . . . ,n, the algorithm sets π̂1 (xi ,w) = 1 −
√
c

with probability

√
c . This means there are approximately

√
c fraction of xi ’s with π̂1 (xi ,w) = 1 −

√
c . Finally, for each

i = 1, . . . ,n and π̂1 (xi ,w) = 1−
√
c , the algorithm increments

π̂2 (v,w) by 1 −
√
c with probability

1

n . This implies that in

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1048

the worst-case, all π̂1 (xi ,w) = 1 −
√
c for i = 1, . . . ,n, and

π̂2 (v,w) can be as large as (1 −
√
c)n.

Fortunately, we can bound the variance of Algorithm 3,

which enables us to use the Median Trick to boost accuracy.

The following lemma states that the variance of π̂ℓ (v,w) is
bounded by πℓ (v,w), the actual value of the ℓ-hop RPPR.

Lemma 3.5. For any level ℓ ≥ 0 and node v ∈ V , we have
Var [π̂ℓ (v,w)] ≤ E

[
π̂ℓ (v,w)2

]
≤ πℓ (v,w).

3.5 Putting Things Together
Based on the definition of hub nodes, we divide the Sim-

Rank value s (u,v) of nodes u and v into two terms s (u,v) =
sI (u,v) + sB (u,v), where

sI (u,v) =
1

(1 −
√
c)2

∞∑
ℓ=0

j0∑
j=1

πℓ (u,w j)πℓ (v,w j)η(w j), (7)

and

sB (u,v) =
1

(1 −
√
c)2

∞∑
ℓ=0

n∑
j=j0+1

πℓ (u,w j)πℓ (v,w)η(w j). (8)

PRSim algorithm uses pre-computed index to generate an

estimator ŝI (u,v) for sI (u,v), and uses backward walks to

generate an estimator ŝB (u,v) for sB (u,v).
Algorithm 4 shows the pseudo-code of the query algo-

rithm for PRSim. Given a source node u on a directed graph

G = (V ,E), a decay factor c and an error parameter ε , the
algorithm returns an estimator ŝ (u,v) for eachv ∈ V . We set

the constant c1 =
12

(1−
√
c)2 , the number of samples in a round

to dr =
c1

ε2
, the number of rounds to fr = 3 log

n
δ , and the

total sample number to nr = dr fr = Θ
(

log
n
δ

ε2

)
(Line 1). Note

that for the constant c1, we choose (1 −
√
c)2 to compensate

the denominator (1−
√
c)2 in equation (6), and 12 so that we

can sum various errors up to at most ε . We choose the value

of dr according to Chernoff bound A.1, and the value of fr
according to the Median Trick A.3. Then we initialize esti-

mators ŝ (u,v) ŝI (u,v), ŝB (u,v) and s
i
B (u,v) to be 0 forv ∈ V

and i = 1, . . . , fr (Line 2). We also set η̂π ℓ (u,w), the estima-

tor for η(w) · πℓ (u,w), to be 0 for w ∈ V and ℓ = 0, . . . ,∞
(Line 3). Note that in order to achieve sublinear query time,

we can use hash maps to store only the non-zero entries in

ŝ , ŝB ŝI , ŝ
i
B and η̂π .

For each i from 1 to fr and j from 1 to dr , we sample an

√
c-

walkW (u) from u (Lines 4-6). IfW (u) terminates at node

w in ℓ steps, we further sample a pair of

√
c-walksW1 (w)

andW2 (w) fromw (Line 8). Recall that the probability that

the two

√
c-walks do not meet is exactly η(w). If this event

happens, we increase the estimator η̂π ℓ (u,w) by 1

nr
(Lines

9-10). Ifw is not stored in the index, we estimate πℓ (v,w) for
each v ∈ V with Algorithm 3, and update the i-th estimator

ŝiB (u,v) by
π̂ℓ (v,w)

(1−
√
c)2dr

for each v ∈ V (Lines 11-13). After

nr = dr · fr samples are processed, we return ŝB (u,v) =
Median1≤i≤fr ŝ

i
B (u,v) as an estimator for sB (u,v) (Lines 14-

15). Again, to ensure sublinear query time, we only compute

median for a node v if there is at least one non-zero ŝiB (u,v)
for some 1 ≤ i ≤ fr . Finally, for each (w, ℓ)-tuple with

η̂π ℓ (u,w) > ε
c1

andw in the index, we retrieve π̂ℓ (v,w) for

each v ∈ V from the index, and update ŝI (u,v) by
η̂π ℓ (v,w)

(1−
√
c)2

(Lines 16-18). We return all non-zero ŝ (u,v) = ŝI (u,v) +
ŝB (u,v) as the estimator for s (u,v), for v ∈ V (Line 19).

Algorithm 4: Query Algorithm

Input: Directed graph G = (V ,E); node u; decay factor

c; error parameter ε ; Failure probability δ
Output: ŝ (u,v) for each v ∈ V

1 c1 ←
12

(1−
√
c)2 , dr ←

c1

ε2
, fr ← 3 log

n
δ , nr ← dr · fr ;

2 ŝ (u,v), ŝI (u,v), ŝB (u,v), ŝ
i
B (u,v) ← 0 for each v ∈ V ,

i = 1, . . . , fr ;

3 η̂π ℓ (u,w) ← 0 forw ∈ V , ℓ = 0, . . . ,∞;

4 for i = 1 to fr do
5 for j = 1 to dr do
6 Sample an

√
c-walkW (u) from u ;

7 ifW (u) terminates at nodew with ℓ steps then
8 Sample two independent

√
c-walksW1 (w)

andW2 (w) fromw ;

9 ifW1 (w) andW2 (w) do not meet then
10 η̂π ℓ (u,w) ← η̂π ℓ (u,w) + 1

nr
;

11 if w < Index then
12 Estimate π̂ℓ (v,w) for v ∈ V with

Algorithm 3;

13 ŝiB (u,v) ← ŝiB (u,v) +
π̂ℓ (v,w)

(1−
√
c)2dr

;

14 for each v with nonzero ŝiB (u,v) for some 1 ≤ i ≤ fr do
15 ŝB (u,v) ← Median1≤i≤fr ŝ

i
B (u,v);

16 for each (w, ℓ) with η̂π ℓ (u,w) > ε
c1

andw ∈ Index do
17 for each (v,ψℓ (v,w)) tuple in Lℓ (w) in Index do
18 ŝI (u,v) ← ŝI (u,v) +

η̂π ℓ (u,w)ψℓ (v,w)

(1−
√
c)2 ;

19 return all non-zero ŝ (u,v) ← ŝB (u,v) + ŝI (u,v);

Error Analysis.We now analyze the overall error bounds

of the PRSim algorithm. Recall that given a source node

u and a target node v , s (u,v) = sI (u,v) + sB (u,v) where
sI (u,v) and sB (u,v) are defined by equations (7) and (8),

respectively. Algorithm 4 uses index to generate an estimator

ŝI (u,v) for each sI (u,v),v ∈ V , and uses backward walks to

generate an estimator ŝB (u,v) for each sB (u,v),v ∈ V . We

have the following two lemmas that bound the errors of the

two approximations.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1049

Lemma 3.6. Given a source node u, for any v ∈ V , Algo-
rithm 4 provides an estimator ŝI (u,v) for sI (u,v) such that:

Pr

[
|ŝI (u,v) − sI (u,v) | >

ε

2

]
≤

δ

2n
. (9)

Lemma 3.7. Given a source node u, for any v ∈ V , Algo-
rithm 4 provides an estimator ŝB (u,v) for sB (u,v) such that:

Pr

[
|ŝB (u,v) − sB (u,v) | >

ε

2

]
≤

δ

2n
. (10)

Combining Lemmas 3.6 and 3.7 follows that

Pr [|ŝ (u,v) − s (u,v) | > ε] ≤
δ

2n
+

δ

2n
=
δ

n
.

Applying union bound on n nodes follows Theorem 3.8.

Theorem 3.8. PRSim answers single-source SimRank queries
with additive error ε with probability at least 1 − δ .

Query Time Analysis for Worst-Case Graphs. We first

analyze the query time of the PRSim algorithm on worst-case

graphs. Given a nodeu ∈ V , letC (u) denote the query cost of
PRSim on u, andC = 1

n
∑
u ∈V C (u) denote the average query

cost. We divideC (u) into three terms:C (u) = CF (u)+CI (u)+
CB (u),whereCF (u) denote the cost for computing η̂π ℓ (u,w)
from source node u, CI (u) denote the query cost for retriev-

ing reservesψℓ (v,w) from the index, and CB (u) denote the
query cost for estimating π̂ℓ (v,w) with backward walks.

Let CF =
1

n
∑
u ∈V CF (u), CI =

1

n
∑
u ∈V CI (u) and CB =

1

n
∑
u ∈V CB (u) denote the average query cost ofCF (u),CI (u)

andCB (u), respectively.We can express the expected average

query cost of Algorithm 4 as E[C] = E[CF] + E[CI] + E[CB].

For E[CF], recall that we generate a numbernr = Θ
(

log
n
δ

ε2

)
of

√
c-walks to estimate η̂π ℓ (u,w). Since each

√
c-walk takes

constant time, we have CF (u) = O
(

log
n
δ

ε2

)
, and E[CF] =

O
(

log
n
δ

ε2

)
.We have the following lemmas for E[CI] and E[CB].

Lemma 3.9. Let c1 =
12

(1−
√
c)2 andCI denote the average cost

for querying the index. We have

E[CI] = O
*..
,
min




n

ε

c
1

ε∑
j=1

π (w j),
n

ε2

j0∑
j=1

π (w j)
2




+//
-
.

Lemma 3.10. Let CB denote the average cost for perform-
ing Variance Bounded Backward Walks. We have E[CB] =

O
(
n log

n
δ

ε2

∑n
j=j0+1

π (w j)
2

)
.

By Lemma 3.9, we have E[CI] ≤ O
(
n log

n
δ

ε2

∑n
j=j0+1

π (w j)
2

)
.

Combining with Lemma 3.10 follows Theorem 3.11.

Theorem 3.11. Suppose the query node u is uniformly cho-
sen from V . The expected query cost of PRSim on worst-case
graphs is bounded by

E[C] = O *
,

n log
n
δ

ε2
·
∑
w ∈V

π (w)2+
-
. (11)

QueryTimeAnalysis for Power-LawGraphs.Recall that
on a power-law graph, the fractions Po (k) and Pi (k) of nodes
with out- and in-degree at least k satisfy that Po (k) ∼ k−γ

and Pi (k) ∼ k−γ
′

[7], where γ and γ ′ are the cumulative

power-law exponents that usually take values from 1 to 3.

It is shown in [5, 27, 35] that the PageRank of a power-law

graph also follows power-law with same exponent γ ′ as the
in-degree distribution. Thus, the reverse PageRank follows

the same power-law distribution as the out-degree distribu-

tion. In particular, let Pπ (x) denote the portion of nodes with

reverse PageRank value at least x , then Pπ (x) ∼ x−γ .
Now consider the following alternating statement of the

above power-law distribution: letw1, . . . ,wn denote the nodes

in the graph sorted in descending order of their reverse

PageRank values, that is, π (w1) ≥ π (w2) ≥ . . . ≥ π (wn). We

have that the j-th largest reverse PageRank value π (w j) is

proportional to j−β . Here β is the power-law exponent that

takes value from (0, 1). This assumption has been widely

adopted in the literature of PageRank computations [5, 27,

35]. To understand the relation between two exponentsγ and

β , note that there are j nodes with reverse PageRank value

at least x = κj−β

n1−β , and thus we have j ∼
(
j−β

n1−β

)−γ
∼ jβ ·γ .

It follows that β = 1

γ . Therefore, for power-law graphs, we

have

π (w j) = κ · j
−β/n1−β = κ · j−

1

γ /n1− 1

γ , (12)

where κ is a normalization constant such that κ
∑n

j=1

j−
1

γ

n1− 1

γ
=

1. Combing equation (12) and Lemma 3.2, the index size is

bounded byO

(
n
ε
∑j0

j=1

j−
1

γ

n1− 1

γ

)
= O

(
n
ε ·

j1− 1

γ

n1− 1

γ

)
= O *

,
n

1

γ j
1− 1

γ
0

ε
+
-
.

Here we use the property of Riemann zeta function (see

Lemma A.4). By setting j0 = n(ε ¯d)
γ
γ −1

, we have index size

is bounded by O

(
n

1

γ n1− 1

γ ε ¯d
ε

)
= O (m). Plugging π (w j) =

κ · j−
1

γ

n1− 1

γ
and j0 = n(ε ¯d)

γ
γ −1

into Lemma 3.10 and Lemma 3.9,

and we have the following theorem.

Theorem 3.12. Assume that the out-degree distribution of
the graph follows power-law distribution with exponent γ ≥ 1,

and let ε ≥ log

γ −1

2−γ n/(n
γ −1

γ ¯d2−γ), δ > 1/nΩ(1) . Suppose the
query node u is uniformly chosen from V . By setting j0 =

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1050

n(ε ¯d)
γ
γ −1 , the expected cost of Algorithm 4 is bounded by

E[C] =




O (1

ε2
log

n
δ), for γ > 1/2;

O (1

ε2
log

n
δ logn), for γ = 1/2;

O

(
min

{
n

1

γ

ε2− 1

γ
, n

2

γ −1

ε2

})
, for 1 < γ < 2.

(13)

The size of the index generated by Algorithm 1 is bounded by
O (m). The preprocessing time is bounded by O

(
m
ε

)
.

Dynamic Graphs. Our algorithm is able to support dy-

namic graphs where edges may be inserted or deleted. Recall

that PRSim generates the index by performing the back-

ward search algorithm. It is shown in [44] that the results of

the backward search to a randomly selected target nodew

can be maintained with cost O (k +
¯d
ε), where k is the total

number of insertions/deletions. Since our index stores the

results of the backward search for j0 target nodes, it can

process k insertions/deletions inO (kj0 +
m
ε) time. Therefore,

the per-update-cost for processing k updates is bounded by

O (j0 +
m
εk). However, a thorough investigation of this issue

is beyond the scope of our paper.

4 RELATEDWORK
In what follows, we briefly review some of the state-of-the-

art solutions for SimRank computation.We exclude SLING [32],

which we have discussed in Section 2.

Monte Carlo and READS. Based on the

√
c-walk interpre-

tation, we can use the following Monte Carlo algorithm [12,

32] to estimate the SimRank value s (u,v): we generate nr
pairs of

√
c-walks fromu andv , and use the percentage of

√
c-

walks that meet as an estimation of s (u,v). Using concentra-

tion inequality, one can show that by setting nr = Θ
(

log
n
δ

ε2

)
,

the Monte Carlo algorithm estimates s (u,v) with an additive

error ε with probability at least 1 − δ . For a single-source
query on node u, we can generate nr walks from each node

v ∈ V and estimate s (u,v) with additive error ε . The query

cost is O
(
n log

n
δ

ε2

)
, which is inefficient on large graphs.

A recent work proposes the READS algorithm [16] based

on the Monte Carlo approach. READS pre-computes the
√
c-walks from each node, and compresses the

√
c-walks

by merging them into trees. Given a query node u, READS
retrieves the

√
c-walks starting from u, finds all

√
c-walks

that meet with u’s
√
c-walks, and then updates the SimRank

estimator for each v related to these

√
c-walks. Several op-

timization techniques were adopted to improve the query

efficiency of READS. The major issue of READS is that it

requires generating and storing a large number of

√
c-walks

from each node in the preprocessing phase. The query cost

also remains O (n log
n
δ /ε

2), which is the same as that of the

classic Monte Carlo algorithm.

ProbeSim. ProbeSim [25] is an index-free algorithm that

computes single-source and top-k SimRank queries on large

graphs. Given a query node u, the ProbeSim algorithm sam-

ples a

√
c-walkW (u) from u. For a nodew visited byW (u)

at the ℓ-th step, the algorithm performs a Probe procedure
that computes the probability of an

√
c-walk from each node

v visitingw at the ℓ-th step. To rule out the probability that a

pair of ℓ-walks maymeet multiple times, the Probe algorithm

avoids the nodes previously visited byW (u). It is shown in

[25] that the ProbeSim algorithm gives an unbiased estimator

for the SimRank values s (u,v),v ∈ V . Therefore, by repeat-

ing the sampling procedure O (log
n
δ /ε

2) times, ProbeSim

answers single-source SimRank queries with probability at

least 1 − δ .
There are two subtle problems with ProbeSim. First, to

avoid multiple meeting nodes, the Probe from nodew has to

avoid the nodes onW (u), which means it is impossible to

pre-compute the Probe results to speed up the query time.

Second, as we will show later, the probability that a nodew
in the graph is visited by the

√
c-walk from u is proportional

to π (w), the reverse PageRank ofw . On the other hand, the

complexity of the Probe algorithm onw is also proportional

to π (w). This essentially means it is likely that a hub node
with high reverse PageRank value is visited by the

√
c-walk

from u, and it will incur significant cost in the Probe phase.

Finally, the algorithm also requires O (n log
n
δ /ε

2) query cost

to answer a single-source query.

TSF. TSF [30] is a two-stage random-walk sampling algo-

rithm for single-source and top-k SimRank queries on dy-

namic graphs. Given a parameter Rд , TSF starts by building

Rд one-way graphs as an index structure. Each one-way graph
is constructed by uniformly sampling one in-neighbor from
each vertex’s in-coming edges. The one-way graphs are then

used to simulate random walks during query processing. To

achieve high efficiency, TSF allows two

√
c-walks to meet

multiple times, and thus overestimate the actual SimRank

values. Furthermore, TSF assumes that every random walk

would not contain any cycle, which does not hold in practice.

Other RelatedWork. Power method [15] is the classic algo-
rithm that computes all-pair SimRank similarities for a given

graph. Let S be the SimRank matrix such that Si j = s (i, j),
and A be the transition matrix of G. Power method recur-

sively computes the SimRank Matrix S using the following

formula [18]

S = (cA⊤SA) ∨ I , (14)

where ∨ is the element-wise maximum operator. Several

follow-up works [26, 40, 43] improve the efficiency or effec-

tiveness of the power method in terms of either efficiency

or accuracy. However, these methods still incur O (n2) space
overheads, as there are O (n2) pairs of nodes in the graph. A

recent work [34] reduces the cost to O (NNZ), where NNZ

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1051

is the number of node pairs with large SimRank similarities.

However, as shown in [34], there are still a constant fraction

of O (n2) node pairs with large SimRank similarities, so the

worst case complexity remains O (n2).
Motivated by difficulty in dealing with the element-wise

maximum operator ∨ in Equation 14, some existing work

[13, 14, 18, 21, 38, 39, 41] consider the following alternative

formula for SimRank:

S = cA⊤SA + (1 − c) · I . (15)

However, it is shown that the similarities calculated by this

formula are different from SimRank [18].

For single-source queries, Fogaras and Rácz [12] propose

a Monte Carlo algorithm that uses random walks to approx-

imate SimRank values. Maehara et al. [28] propose an in-

dex structure for top-k SimRank queries, but it relies on

heuristic assumptions about G, and hence, does not pro-

vide any worst-case error guarantee. Li et al. [22] propose

a distributed version of the Monte Carlo approach in [12],

but it achieves scalability at the cost of significant compu-

tation resources. Finally, there is existing work on variants

of SimRank [4, 11, 42, 48] and on various graph applica-

tions [6, 19, 37], but the proposed solutions are inapplicable

for top-k and single-source SimRank queries.

5 EXPERIMENTS
This section experimentally evaluates the proposed solutions

against the state of the art. All experiments are conducted

on a machine with a Xeon(R) CPU E7-4809@2.10GHz CPU

and 196GB memory.

5.1 Experimental Settings
Methods. We compare PRSim against five SimRank algo-

rithms: READS [16], SLING [32], TSF [30], ProbeSim [25]

and TopSim [20]. As mentioned in Section 4, READS, SLING

and TSF are the state-of-the-art index-based methods, and

ProbeSim and TopSim are the state-of-the-art index-free

methods.

Ground Truth for single-pair queries. Given a pair of

nodesu andv , we use the Monte Carlo algorithm to estimate

s (u,v) with high precisions, and then use the result as the

ground truth for s (u,v). In particular, we set the parameters

of the Monte Carlo algorithm such that it incurs an error

less than 0.00001 with confidence over 99.999%.

Pooling. We extend the pooling idea [25] to evaluate the

effectiveness of the single-source algorithms on large graphs.

Given a source node u, we run each single-source algorithm,

order the nodes according to their estimated SimRank values,

and retrieve the top-k nodes. We merge the top-k nodes

returned by each algorithm, remove the duplicates, and put

them into a pool. As such, if we were to evaluate ℓ algorithms,

then the pool size is between k and ℓk . For each nodev in the

Table 3: Data Sets.

Data Set Type n m
DBLP-Author (DB) undirected 5,425,963 17,298,033

LiveJournal (LJ) directed 4,847,571 68,993,773

It-2004 (IT) directed 41,291,594 1,150,725,436

Twitter (TW) directed 41,652,230 1,468,365,182

UK-Union (UK) directed 133,633,040 5,507,679,822

pool, we obtain the ground truth of s (u,v) using the Monte

Carlo algorithm, and retrieve Vk = {v1, . . . ,vk }, namely, the

k nodes with the highest SimRank values from the pool.

Metrics. To evaluate the absolute error of single-source

SimRank algorithms, we calculate the average absolute er-

rors for approximating s (u,vi) for each vi in the pool. More

precisely, for each vi ∈ Vk returned by the pool, let ŝ (u,vi)
be the estimator for s (u,vi) returned by the algorithm to be

evaluated. We set

AvдError@k =
1

k

∑
1≤i≤k

|ŝ (u,vi) − s (u,vi) |.

To evaluate the algorithms’ abilities to return the top-k
results, we use Vk = {v1, . . . ,vk } as the ground truth for

the top-k nodes. Note that these nodes are the best possible

results that can be returned by any of the algorithms to

be evaluated. Let V ′k = {v
′
1
, . . . ,v ′k } denote the top-k node

set returned by the algorithm to be evaluated. Note that

Precision@k evaluates how many correct (or best possible)

nodes are included in V ′k .

5.2 Experiments on Real-World Graphs
We evaluate the tradeoffs between accuracy and complexity

for each algorithm on real world graphs. We use 5 data sets,

as shown in Table 3. All data sets are obtained from public

sources [1, 2].

Parameters. SLING [32] has a parameter εa , the upper bound
on the absolute error.We vary εa in {0.5, 0.1, 0.05, 0.01, 0.005},

where εa = 0.05 is the default value in [32]. TSF has two

parameters Rд and Rq , where Rд is the number of one-way

graphs stored in the index, andRq is the number of times each

one-way graph is reused in the query stage. We vary (Rд ,Rq)
in {(10, 2), (100, 20), (200, 30), (300, 40), (600, 80)}, where [30]
sets (Rд ,Rq) = (300, 40) by default. TopSim has four inter-

nal parameters T , h, η and H , where T is the depth of the

random walks, 1/h is the minimal degree threshold used to

identify a high degree node, η is the similarity threshold

for trimming a random walk, and H is the number of ran-

dom walks to be expanded at each level. We fix H and η
to their default values 100 and 0.001, and vary (T , 1/h) in
{(1, 10), (3, 100), (3, 1000), (3, 10000), (4, 10000)}. Note that

[20] sets (T , 1/h) = (3, 100) by default. The READS pa-

per [16] proposed three algorithms: READS, READS-D, and

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1052

10 -4 10 -3 10 -2 10 -1 10 0

query time(s) - DB

10 -4

10 -3

10 -2

10 -1 AvgError@50 - DB

TOPSIM
TSF
READS
SLING
ProbeSim
PRSim

10 -3 10 -1 10 1 10 3

query time(s) - LJ

10 -4

10 -3

10 -2

AvgError@50 - LJ

TOPSIM
TSF
READS
SLING
ProbeSim
PRSim

10 -2 10 -1 10 0 10 1

query time(s) - IT

10 -4

10 -3

10 -2

10 -1 AvgError@50 - IT
TOPSIM
TSF
READS
SLING
ProbeSim
PRSim

10 -1 10 0 10 1 10 2

query time(s) - TW

10 -4

10 -3

10 -2 AvgError@50 - TW
TSF
READS
SLING
ProbeSim
PRSim

10 -3 10 -2 10 -1 10 0 10 1 10 2

query time(s) - UK

10 -3

10 -2

AvgError@50 - UK

ProbeSim
PRSim

Figure 2: AvgError@50 v.s. Query time

10 -4 10 -3 10 -2 10 -1 10 0

query time(s) - DB

0

0.5

1
Precision@50 - DB

TOPSIM
TSF
READS
SLING
ProbeSim
PRSim

10 -3 10 -1 10 1 10 3

query time(s) - LJ

0

0.5

1
Precision@50 - LJ

TOPSIM
TSF
READS
SLING
ProbeSim
PRSim

10 -2 10 -1 10 0 10 1

query time(s) - IT

0.6

0.7

0.8

0.9

1
Precision@50 - IT

TOPSIM
TSF
READS
SLING
ProbeSim
PRSim

10 -1 10 0 10 1 10 2

query time(s) - TW

0

0.5

1
Precision@50 - TW

TSF
READS
SLING
ProbeSim
PRSim

10 -3 10 -2 10 -1 10 0 10 1 10 2

query time(s) - UK

0

0.5

1
Precision@50 - UK

ProbeSim
PRSim

Figure 3: Precision@50 v.s. Query time

10 -2 10 -1 10 0 10 1 10 2

index size(GB) - DB

10 -4

10 -3

10 -2

10 -1 average error - DB

TSF
READS
SLING
PRSim

10 -2 10 -1 10 0 10 1 10 2

index size(GB) - LJ

10 -4

10 -3

10 -2

average error - LJ

TSF
READS
SLING
PRSim

10 0 10 1 10 2

index size(GB) - IT

10 -4

10 -3

10 -2

10 -1 average error - IT

TSF
READS
SLING
PRSim

10 0 10 1 10 2

index size(GB) - TW

10 -4

10 -3

10 -2 average error - TW
TSF
READS
SLING
PRSim

10 1 10 2

index size(GB) - UK

10 -3

10 -2

average error - UK

PRSim

Figure 4: AvgError@50 v.s. Index size

10 0 10 1 10 2 10 3 10 4 10 5

preprocessing time(s) - DB

10 -4

10 -3

10 -2

10 -1average error - DB

TSF
READS
SLING
PRSim

10 1 10 2 10 3 10 4 10 5

preprocessing time(s) - LJ

10 -4

10 -3

10 -2

average error - LJ

TSF
READS
SLING
PRSim

10 3 10 4

preprocessing time(s) - IT

10 -4

10 -3

10 -2

10 -1 average error - IT
TSF
READS
SLING
PRSim

10 2 10 3 10 4

preprocessing time(s) - TW

10 -4

10 -3

10 -2 average error - TW
TSF
READS
SLING
PRSim

3000 5000 7000 9000

preprocessing time(s) - UK

10 -3

10 -2

average error - UK

PRSim

Figure 5: AvgError@50 v.s. Preprocessing time

READS-Rq. We only include the static version of READS in

our experiments, as it is the fastest among the three [16].

READS has two parameters r and t , where r is the number

of

√
c-walks generated for each node in the preprocessing

stage and t is the maximum depth of the

√
c-walks. We vary

(r , t) in {(10, 2), (50, 5), (100, 10), (500, 10), (1000, 20)}, where
(r , t)
= (100, 10) is the default setting in [16]. For ProbeSim [25],

we vary the error parameter εa in {0.5, 0.1, 0.05, 0.01, 0.005},

where εa = 0.1 is the default setting in [25]. For PRSim, we

vary ε in {0.5, 0.1, 0.05, 0.01, 0.005}. We also set j0 to
√
n so

that the index size of PRSim increases with 1/ε . We fix the

failure probability δ = 0.0001 unless otherwise specified. We

set the decay factor c of SimRank to 0.6, following previous

work [26, 28, 39, 41, 42].

Experimental results.On each data set, we issue 100 single-
source queries and 100 top-50 queries for each algorithm and

each parameter set, and record the averages of the query

time, index sizes, preprocessing time, AvgError@50 and Pre-
cision@50. For each algorithm and each dataset, we omit a

parameter set if it runs out of 196GB memory or takes over

10 hours to finish queries or preprocessing on that data set.

Figures 2, 3 show the tradeoffs between AvgError@50 and
the query time and the tradeoffs between Precision@50 and
the query time. The overall observation is that PRSim outper-

forms all competitors by achieving lower errors and higher

precisions with less query time on all datasets. Most notably,

on the TW dataset, PRSim achieves a Precision@50 of 92%

using a query time of 5 seconds, while the closest competi-

tor, ProbeSim, achieves a precision around 75% using over

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1053

2 4 6 8

gamma

10 -4

10 -2

10 0

q
u

e
ry

 t
im

e
(s

)

TOPSIM
TSF
READS

SLING
ProbeSim
PRSim

10 4 10 5 10 6 10 7

node size

10 -3

10 -2

10 -1

10 0

10 1

10 2

q
u
e
ry

 t
im

e
(s

)

TOPSIM
TSF
READS

SLING
ProbeSim
PRSim

(a) Query time v.s. γ . (b) Query time v.s. n.

Figure 6: Results on power-law graphs.

10 1 10 2 10 3 10 4

average degree

10 -4

10 -2

10 0

10 2

q
u

e
ry

 t
im

e
(s

)

TOPSIM
TSF
READS

SLING
ProbeSim
PRSim

10 1 10 2 10 3 10 4

average degree

10 -4

10 -2

10 0

10 2

in
d

e
x

si
ze

(G
B

)

TSF
READS

SLING
PRSim

(a) Query time v.s.
¯d . (b) Index Size v.s. ¯d .

Figure 7: Results on non-power-law graphs.

50 seconds. Furthermore, on the 5-billion-edge UK data set,

PRSim is the only two index-based algorithms that are able

to finish preprocessing and queries, which demonstrates the

scalability of our algorithms. We also note that the query

time of SLING and READS are not sensitive to the choices of

parameters. This is as expected, since the majority of their

query cost is spent on reading the index, which is a cache-

friendly task. After observing the skewed trend of READS on

DB in Figure 2, we decide to evaluate an extra parameter set

(r , t) = (5000, 20) to see if READS can outperform PRSim in

terms of query-time-error tradeoff, given significantly more

indexing space. The result shows that PRSim still achieves

better accuracy with less query time.

Figure 4, and 5 show the tradeoffs betweenAvgError@50
and the index size and the tradeoffs between AvgError@50
and the preprocessing time, respectively. Again, our algo-

rithm manages to outperform all index-based algorithms

(SLING, TSF, READS) by achieving a lower error with less

index size and preprocessing time. In particular, on the DB

dataset, our algorithm is able to achieve an average error of

10
−3

using an index of size 200MB, while the closest com-

petitor READS needs 100GB.

5.3 Experiments on Synthetic Data Sets
We now evaluate PRSim and the competitors with fixed pa-

rameters on synthetic datasets with varying network struc-

ture and sizes. We set εa = 0.25 for SLING, Rд = 300 and

Rq = 40 for TSF, T = 3, 1/h = 100, η = 0.001, and H = 100

for TopSim, εa = 0.25 for ProbeSim, r = 100 and t = 10 for

READS, and ε = 0.25 for PRSim. We fix the failure probabil-

ity δ = 0.001 unless otherwise specified. On each data set,

we issue 100 single-source queries with each algorithm to

be evaluated, and report the corresponding measures.

Hardness of SimRank computation and degree distri-
butions. We first investigate the relation between the hard-

ness of SimRank computation and degree distributions. We

generate a set of undirected power-law graphs with various

power-law exponents using the hyperbolic graph genera-

tor [3]. In particular, we fix the number of nodes n to be

100, 000 and the average degree
¯d to be 10, and vary the de-

gree power-law exponent γ from 1 to 9. Figure 6(a) reports

the average query time of each algorithm. Recall that the

theoretical analysis of PRSim suggests that its query time

increases with 1/γ . Figure 6(a) concurs with this analysis. In

fact, we observe that the query time of all algorithms follows

a similar distribution as the function y = 1/γ on the log-log

plot: the query time decreases as we increase γ from 1 to

4, and becomes stable after γ > 4. Based on this observa-

tion and on the theoretical analysis for PRSim, we make the

following conjuncture:

Conjuncture 1. The hardness of SimRank computation is
correlated to the reciprocal of the power-law exponent γ of the
out-degree distribution.

Scalability analysis. To evaluate the scalability of our al-

gorithm, we generate synthetic power-law graphs by fixing

the exponent γ = 3 and average degree
¯d = 10, and vary the

graph size n from 10
4
to 10

7
. Figure 6(b) shows the running

time of PRSim on these graphs. The results show that the

running time of PRSim forms a concave curve in a log-log

plot, which proves the sub-linearity of PRSim.

Experiments on non-power-law Graphs. We generate

random graphs using the Erős and Rényi (ER) model, where

we assign an edge to each node pair with a user-specified

probability p. We fix the number of nodes to n = 10, 000 and

set the value of p so that the average degree
¯d of each graph

varies from 5 to 10, 000. Figure 7 shows the query time of

each algorithm on these synthetic graphs. We observe that

the query performance of ProbeSim degrades dramatically

as we increase
¯d . On the other hand, PRSim is able to answer

queries on very dense graphs efficiently. We attribute this

quality to the fact that the Randomized Probe algorithm in

ProbeSim always goes through all out-neighbors of a target

node, while our Variance Bounded BackwardWalk algorithm

only needs to visit a fraction of the out-neighbors.

6 CONCLUSIONS
This paper presents PRSim, an algorithm for single-source

SimRank queries. PRSim connects the time complexity of

SimRank computation with the distribution of the reverse

PageRank, and achieves sublinear query time on power-law

graphs with small index size. Our experiments show that the

algorithm significantly outperforms the existing methods in

terms of query time, accuracy, index size and scalability.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1054

7 ACKNOWLEDGEMENTS
This research was supported in part by National Natural Sci-

ence Foundation of China (No. 61832017 and No. 61732014),

by MOE, Singapore under grant MOE2015-T2-2-069, and by

NUS, Singapore under an SUG. Sibo Wang was supported

by CUHK Direct Grant No. 4055114. He was also supported

by the CUHK University Startup Grant No. 4930911 and No.

5501570.

REFERENCES
[1] http://snap.stanford.edu/data/index.html.

[2] http://law.di.unimi.it/datasets.php.

[3] Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. Hyperbolic

graph generator. Computer Physics Communications, 196:492–496,
2015.

[4] Ioannis Antonellis, Hector Garcia Molina, and Chi Chao Chang. Sim-

rank++: query rewriting through link analysis of the click graph.

PVLDB, 1(1):408–421, 2008.
[5] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incre-

mental and personalized pagerank. VLDB, 4(3):173–184, 2010.
[6] Mansurul Bhuiyan and Mohammad Al Hasan. Representing graphs

as bag of vertices and partitions for graph classification. Data Science
and Engineering, 3(2):150–165, 2018.

[7] Béla Bollobás, Christian Borgs, Jennifer T. Chayes, and Oliver Riordan.

Directed scale-free graphs. In SODA, pages 132–139, 2003.
[8] Pawel Brach, Marek Cygan, Jakub Lkacki, and Piotr Sankowski. Algo-

rithmic complexity of power law networks. In SODA, pages 1306–1325.
Society for Industrial and Applied Mathematics, 2016.

[9] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding

frequent items in data streams. In ICALP, pages 693–703. Springer,
2002.

[10] Fan R. K. Chung and Lincoln Lu. Concentration inequalities and

martingale inequalities: A survey. Internet Mathematics, 3(1):79–127,
2006.

[11] Dániel Fogaras and Balázs Rácz. Scaling link-based similarity search.

In WWW, pages 641–650, 2005.

[12] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. To-

wards scaling fully personalized pagerank: Algorithms, lower bounds,

and experiments. Internet Mathematics, 2(3):333–358, 2005.
[13] Yuichiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, and Makoto

Onizuka. Efficient search algorithm for simrank. In ICDE, pages
589–600, 2013.

[14] Guoming He, Haijun Feng, Cuiping Li, and Hong Chen. Parallel

simrank computation on large graphs with iterative aggregation. In

KDD, pages 543–552, 2010.
[15] Glen Jeh and JenniferWidom. Simrank: ameasure of structural-context

similarity. In SIGKDD, pages 538–543, 2002.
[16] Minhao Jiang, AdaWai-Chee Fu, and RaymondChi-WingWong. Reads:

a random walk approach for efficient and accurate dynamic simrank.

PPVLDB, 10(9):937–948, 2017.
[17] Ruoming Jin, Victor E Lee, and Hui Hong. Axiomatic ranking of

network role similarity. In KDD, pages 922–930, 2011.
[18] Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi Kawarabayashi.

Scalable similarity search for simrank. In SIGMOD, pages 325–336,
2014.

[19] JooYoung Lee and Rustam Tukhvatov. Evaluations of similarity mea-

sures on vk for link prediction. Data Science and Engineering, 3(3):277–
289, 2018.

[20] Pei Lee, Laks V. S. Lakshmanan, and Jeffrey Xu Yu. On top-k structural

similarity search. In ICDE, pages 774–785, 2012.

[21] Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu,

and Tianyi Wu. Fast computation of simrank for static and dynamic

information networks. In EDBT, pages 465–476, 2010.
[22] Zhenguo Li, Yixiang Fang, Qin Liu, Jiefeng Cheng, Reynold Cheng,

and John Lui. Walking in the cloud: Parallel simrank at scale. PVLDB,
9(1):24–35, 2015.

[23] David Liben-Nowell and JonM. Kleinberg. The link-prediction problem

for social networks. JASIST, 58(7):1019–1031, 2007.
[24] Yu Liu, Jiaheng Lu, Hua Yang, Xiaokui Xiao, and Zhewei Wei. Towards

maximum independent sets onmassive graphs. VLDB, 8(13):2122–2133,
2015.

[25] Yu Liu, Bolong Zheng, Xiaodong He, Zhewei Wei, Xiaokui Xiao, Kai

Zheng, and Jiaheng Lu. Probesim: scalable single-source and top-k

simrank computations on dynamic graphs. PVLDB, 11(1):14–26, 2017.
[26] Dmitry Lizorkin, Pavel Velikhov, Maxim N. Grinev, and Denis Tur-

dakov. Accuracy estimate and optimization techniques for simrank

computation. VLDB J., 19(1):45–66, 2010.
[27] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Personalized

pagerank estimation and search: A bidirectional approach. In WSDM,

pages 163–172, 2016.

[28] Takanori Maehara, Mitsuru Kusumoto, and Ken-ichi Kawarabayashi.

Efficient simrank computation via linearization. CoRR, abs/1411.7228,
2014.

[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: bringing order to the web. 1999.

[30] Yingxia Shao, Bin Cui, Lei Chen, Mingming Liu, and Xing Xie. An

efficient similarity search framework for simrank over large dynamic

graphs. PVLDB, 8(8):838–849, 2015.
[31] Nikita Spirin and Jiawei Han. Survey onweb spam detection: principles

and algorithms. SIGKDD Explorations, 13(2):50–64, 2011.
[32] Boyu Tian and Xiaokui Xiao. SLING: A near-optimal index structure

for simrank. In SIGMOD, pages 1859–1874, 2016.
[33] Sibo Wang and Yufei Tao. Efficient algorithms for finding approximate

heavy hitters in personalized pageranks. In SIGMOD, pages 1113–1127.
ACM, 2018.

[34] Yue Wang, Xiang Lian, and Lei Chen. Efficient simrank tracking in

dynamic graphs. In ICDE, pages 545–556. IEEE, 2018.
[35] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang,

and Ji-Rong Wen. Topppr: top-k personalized pagerank queries with

precision guarantees on large graphs. In SIGMOD, pages 441–456.
ACM, 2018.

[36] Wensi Xi, Edward A Fox, Weiguo Fan, Benyu Zhang, Zheng Chen, Jun

Yan, and Dong Zhuang. Simfusion: measuring similarity using unified

relationship matrix. In SIGIR, pages 130–137. ACM, 2005.

[37] Qi Ye, Changlei Zhu, Gang Li, Zhimin Liu, and Feng Wang. Using

node identifiers and community prior for graph-based classification.

Data Science and Engineering, 3(1):68–83, 2018.
[38] Weiren Yu, Xuemin Lin, and Wenjie Zhang. Fast incremental simrank

on link-evolving graphs. In ICDE, pages 304–315, 2014.
[39] Weiren Yu, Xuemin Lin,Wenjie Zhang, Lijun Chang, and Jian Pei. More

is simpler: Effectively and efficiently assessing node-pair similarities

based on hyperlinks. PVLDB, 7(1):13–24, 2013.
[40] Weiren Yu and Julie McCann. Gauging correct relative rankings for

similarity search. In CIKM, pages 1791–1794, 2015.

[41] Weiren Yu and Julie A. McCann. Efficient partial-pairs simrank search

for large networks. PVLDB, 8(5):569–580, 2015.
[42] Weiren Yu and Julie Ann McCann. High quality graph-based similarity

search. In SIGIR, pages 83–92, 2015.
[43] Weiren Yu, Wenjie Zhang, Xuemin Lin, Qing Zhang, and Jiajin Le. A

space and time efficient algorithm for simrank computation. World
Wide Web, 15(3):327–353, 2012.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1055

http://snap.stanford.edu/data/index.html
http://law.di.unimi.it/datasets.php

[44] Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate

personalized pagerank on dynamic graphs. In KDD, pages 1315–1324,
2016.

[45] Jing Zhang, Jie Tang, Cong Ma, Hanghang Tong, Yu Jing, and Juanzi Li.

Panther: Fast top-k similarity search on large networks. In SIGKDD,
pages 1445–1454. ACM, 2015.

[46] Zhipeng Zhang, Yingxia Shao, Bin Cui, and Ce Zhang. An experimental

evaluation of simrank-based similarity search algorithms. PVLDB,
10(5):601–612, 2017.

[47] Peixiang Zhao, Jiawei Han, and Yizhou Sun. P-rank: a comprehensive

structural similarity measure over information networks. In CIKM,

pages 553–562. ACM, 2009.

[48] Peixiang Zhao, Jiawei Han, and Yizhou Sun. P-rank: a comprehensive

structural similarity measure over information networks. In CIKM,

pages 553–562, 2009.

A INEQUALITIES
A.1 Chernoff Bound
Lemma A.1 (Chernoff Bound [10]). For a set {xi } (i ∈

[1,nr]) of i.i.d. random variables with mean µ and xi ∈ [0, 1],

Pr

[���
1

nr

∑nx
i=1

xi − µ
��� ≥ ε

]
≤ exp

*
,
−

nr · ε
2

2

3
ε + 2µ

+
-
.

A.2 Chebyshev’s Inequality
LemmaA.2 (Chebyshev’s ineqality). LetX be a random

variable, then Pr [|X − E[X]| ≥ ε] ≤ Var[X]

ε2
.

A.3 Median Trick
Lemma A.3 ([9]). Let X1, . . . ,Xk be k ≥ 3 log

1

δ i.i.d. ran-
dom variables, such that Pr [|Xi − E[Xi]| ≥ ε] ≤

1

3
. Let X =

Median1≤i≤kXi , then Pr [|X − E[X]| ≥ ε] ≤ δ .

A.4 Partial sum of Riemann zeta function
Lemma A.4. The partial sum of Riemann zeta function sat-

isfies the following property:
j∑

k=i+1

k−α =




O (j1−α), for α < 1;

O (log j − log i), for α = 1;

O
(
i1−α

)
, for α > 1.

(16)

B PROOFS
B.1 Proof of Lemma 3.2

Proof. Let w1, . . . ,wn be the nodes of the graph sorted

in descending order of the reverse PageRank value π (w j).
Let size (w j) denote index size for node w j . Then, size =∑j0

j=1
size (w j) is the total size of the index. For each w j , re-

call that Algorithm 1 uses backward search to find node

x and level ℓ with ℓ-hop RPPR πℓ (x ,w) ≥ ε , and record

the tuple (x , ℓ,πℓ (x ,w)). Hence, the space usage size (w j) is
bounded by the total number of pairs (x , ℓ) with ℓ-hop RPPR
πℓ (x ,w) ≥ ε , i.e., size (w j) ≤

∑∞
ℓ=0

∑
x ∈V I (πℓ (x ,w) ≥ ε),

where I (πℓ (x ,w) ≥ ε) is an indicating function such that

I (πℓ (x ,w) ≥ ε) = 1 if πℓ (x ,w) ≥ ε and I (πℓ (x ,w) ≥ ε) = 0

otherwise. We observe that I (πℓ (x ,w) ≥ ε) ≤ πℓ (x,w)
ε , and

thus size (w j) ≤
∑∞

ℓ=0

∑
x ∈V

πℓ (x,w)
ε =

nπ (w j)
ε . □

B.2 Proof of Lemma 3.3

Notations. We begin by defining two types of random vari-

ables. Consider a node y at level i + 1 and a node x ∈ I (y).
For ease of presentation, we let A denote the set of x ∈ I (y)
such that π̂ (x ,w) > din (y) (1 −

√
c) and B denote the set of

x ∈ I (y) such that π̂ (x ,w) ≤ din (y) (1 −
√
c). We use Ri (x)

to denote the random variable indicating that the random

number r0 <
√
c . For each x ∈ B, we define random vari-

able Zi (x ,y) = 1 if random number r ≤ π̂i (x,w)

din (y) (1−
√
c) , and

Zi (x ,y) = 0 otherwise. Recall that for a node x ∈ A, we

increment π̂i+1 (y,w) by π̂i (x,w)
din (y)

if and only if Ri (x) = 1; for

a node x ∈ B, we increment π̂i+1 (y,w) by 1 −
√
c if and only

if Ri (x) = 1 and Zi (x ,y) = 1. We can express π̂i+1 (y,w) as

π̂i+1 (y,w) =
∑
x ∈A

Ri (x)
π̂i (x ,w)

din (y)
+

∑
x ∈B

Ri (x)Zi (x ,y) (1 −
√
c).

(17)

Proof of Lemma 3.3. We prove the lemma by induction.

For the base case, we have π̂0 (w,w) = 1 −
√
c = π0 (w,w).

Assume that E[π̂i (x ,w)] = πi (x ,w) for any x ∈ V . For an
node y ∈ V , we will show that E[π̂i+1 (y,w)] = πi+1 (y,w).
Conditioning on π̂i (x ,w) in equation (17) follows that

E [π̂i+1 (y,w) | π̂i (x ,w),x ∈ V]

=
∑
x ∈A

E[Ri (x)]
π̂i (x ,w)

din (y)
+

∑
x ∈B

E[Ri (x)Zi (x ,y)](1 −
√
c).

We have E[Ri (x)] = Pr[r0 ≤
√
c] =

√
c and

E[Zi (x ,y)] = Pr[r <
π̂i (x ,w)

din (y) (1 −
√
c)

] =
π̂i (x ,w)

din (y) (1 −
√
c)
.

Since Ri (x) and Zi (x ,y) are independent random variables,

we have E[Ri (x)Zi (x ,y)] =
√
c π̂i (x,w)

din (y) (1−
√
c) . It follows that

E [π̂i+1 (y,w) | π̂i (x ,w),x ∈ V]

=
∑
x ∈A

√
cπ̂i (x ,w)

din (y)
+
∑
x ∈B

√
cπ̂i (x ,w) (1 −

√
c)

din (y) (1 −
√
c)

=
∑

x ∈I (y)

√
cπ̂i (x ,w)

din (y)
.

By the induction hypothesis, we have E[π̂i (x ,w)] = πi (x ,w)

for x ∈ I (y), and thus E[π̂i+1 (y,w)] =
∑

x ∈I (y)

√
cπi (x,w)
din (y)

=

πi+1 (y,w), which proves the lemma. □

B.3 Proof of Lemma 3.4
Proof. Let costi+1 (y) denote the number of times that

π̂i+1 (y,w) gets incremented at level i + 1. Note that the total

cost is bounded by

∑ℓ
i=0

∑
x ∈V costi (x). A key observation

is that each increment performed by Algorithm 3 adds at

least 1 −
√
c to π̂i+1 (y,w). To see this, note that Algorithm 3

increments π̂i+1 (y,w) by π̂i (x,w)
din (y)

only if din (y) <
π̂i (x,w)

1−
√
c , or

equivalently
π̂i (x,w)
din (y)

> 1−
√
c . Therefore the number of times

that π̂i+1 (y,w) gets incremented is bounded by
πi+1 (y,w)

(1−
√
c) , and

thus the total cost is bounded by

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1056

E


∞∑
i=0

∑
x ∈V

costi (x)

=

1

1 −
√
c

∞∑
i=0

∑
x ∈V

πi (x ,w)) = O (nπ (w)).

This proves the lemma. □

B.4 Proof of Lemma 3.5
Proof. We will prove E[π̂ℓ (x ,w)2] ≤ πℓ (x ,w) by induc-

tion. For the base case, we have E[π̂0 (w,w)2] = (1 −
√
c)2 ≤

π0 (w,w).Assume that E[π̂i (x ,w)2] ≤ πi (x ,w) for any x ∈ V .

For an node y ∈ V , we will show that E[π̂i+1 (y,w)2] ≤

πi+1 (y,w). Conditioning on π̂i (x ,w) for all x ∈ V
E
[
π̂i+1 (y,w)2 | π̂i (x ,w),x ∈ V

]
=

E

*
,

∑
x ∈A

Ri (x)
π̂i (x ,w)

din (y)
+

∑
x ∈B

Ri (x)Zi (x ,y) (1 −
√
c)+
-

2
.

(18)

We expand equation (18) into 5 terms:

E
[
π̂i+1 (y,w)2 | π̂i (x ,w),x ∈ V

]
=X1+X2+X3+X4+X5

=
∑
x ∈A

E
[
Ri (x)

2

] π̂i (x ,w)2

din (y)2
+
∑
x ∈B

E
[
Ri (x)

2Zi (x ,y)
2

]
(1 −
√
c)2

+
∑

x1,x2∈A

E [Ri (x1)Ri (x2)]
π̂i (x1,w)π̂i (x1,w)

din (y)2

+
∑

x1,x2∈B

E [Ri (x1)Zi (x1,y)Ri (x2)Zi (x2,y)] · (1 −
√
c)2

+
∑

x1∈A,x2∈B

E [Ri (x1)Ri (x2)Zi (x2,y)]
π̂i (x1,w)

din (y)
· (1 −

√
c).

We useX1,X2,X3,X4 andX5 to denote these 5 terms, and cal-

culate them individually. Since E
[
Ri (x)

2

]
= E [Ri (x)] =

√
c ,

we have X1 =
∑

x ∈A

√
c π̂i (x,w)2

din (y)2
. Using the induction hypoth-

esis, we have E[π̂i (x ,w)2] ≤ π (x ,w)2, and thus

E[X1] ≤
∑
x ∈A

√
cπi (x ,w)

din (y)2
=

1

din (y)

∑
x ∈A

√
cπi (x ,w)

din (y)
=

SA
din (y)

,

(19)

where SA =
∑

x ∈A

√
cπi (x,w)
din (y)

. Since E[π̂i (x ,w)] = πi (x ,w),

and E
[
Ri (x)

2Zi (x ,y)
2

]
=

√
c π̂i (x,w)

din (y) (1−
√
c) , we have

E[X2] = (1 −
√
c)

∑
x ∈B

√
cπi (x ,w)

din (y)
= (1 −

√
c)SB . (20)

Here we define SB =
∑

x ∈B

√
cπi (x,w)
din (y)

. Note that SA + SB =∑
x ∈I (y)

√
cπi (x,w)
din (y)

= πi+1 (y,w).

By the independence of Ri (x1),Zi (x1,y),Ri (x2),Zi (x2,y)

for x1 , x2, we have X3 =
∑

x1,x2∈A
cπ̂i (x1,w)π̂i (x2,w)

din (y)2
, X4 =∑

x1,x2∈B
cπ̂i (x1,w)π̂i (x2,w)

din (y)2
, X5 =

∑
x1∈A,x2∈B

cπ̂i (x1,w)π̂i (x2,w)
din (y)2

.

Therefore, X3 + X4 + X5 can be expressed as

X3 + X4 + X5 =
∑

x1,x2∈I (y)

c

din (y)2
· π̂i (x1,w)π̂i (x2,w).

Using the inequality that π̂i (x1,w)π̂i (x2,w) ≤ 1

2
π̂i (x1,w)2 +

1

2
π̂i (x1,w)2, and we have

X3 + X4 + X5 ≤
∑

x1,x2∈I (y)

c

2din (y)2

(
π̂i (x1,w)2 + π̂i (x2,w)2

)
=

∑
x ∈I (y)

c (din (y) − 1)

din (y)2
π̂i (x ,w)2.

The last equation is due to the fact that each π̂i (x ,w)2 ap-
pears exactly din (y) − 1 times in the summation. By the

induction hypothesis that E[π̂i (x ,w)2] ≤ πi (x ,w), we have

E[X3 + X4 + X5] ≤
√
c

(
1 −

1

din (y)

) ∑
x ∈I (y)

√
cπi (x ,w)

din (y)

=
√
c

(
1 −

1

din (y)

)
(SA + SB). (21)

Combining Equations (19)-(21), it follows that

E

[
π̂i+1 (y,w)2

]
≤

(
√
c +

1 −
√
c

din (y)

)
SA +

(
1 −

√
c

din (y)

)
SB

=

(
1 −

(
1 −
√
c
)
·

(
1 −

1

din (y)

))
SA +

(
1 −

√
c

din (y)

)
SB

≤ SA + SB = πi+1 (y,w).

And the lemma follows. □

B.5 Proof of Lemma 3.6
Proof. Recall that for sI (u,v),we have the estimator

ŝI (u,v) =
1

(1 −
√
c)2

∞∑
ℓ=0

j0∑
j=1

η̂π ′ℓ (u,w j)ψℓ (v,w j),

where η̂π ′ℓ (u,w j) = η̂π ℓ (u,w j) if η̂π ℓ (u,w j) >
(1−
√
c)2ε

12
and

η̂π ′ℓ (u,w j) = 0 if otherwise. η̂π ℓ (u,w j) is an estimator for

η(w j)πℓ (u,w j) computed by Monte Carlo approach, and

ψℓ (v,w j) is the reserve computed by ℓ-hop backward search.
To bound the error of ŝI (u,v), we further define

ŝ1

I (u,v) =
1

(1 −
√
c)2

∞∑
ℓ=0

j0∑
j=1

η̂π ℓ (u,w j)ψℓ (v,w j),

and

ŝ2

I (u,v) =
1

(1 −
√
c)2

∞∑
ℓ=0

j0∑
j=1

η̂π ℓ (u,w j)πℓ (v,w j).

First, we claim that ŝI (u,v) and ŝ
1

I (u,v) differ by at most
ε
6
.

More precisely, observe that η̂π ′ℓ (u,w) and η̂π ℓ (u,w) differ

by at most
(1−
√
c)2ε

6
, and thus

���ŝI (u,v)−ŝ
1

I (u,v)
��� =

∞∑
ℓ=0

j0∑
j=1

���η̂π
′
ℓ (u,w j)−η̂π ℓ (u,w j)

���ψℓ (v,w j)

(1 −
√
c)2

≤

∞∑
ℓ=0

j0∑
j=1

(1−
√
c)2ε

6
· 1 ·ψℓ (v,w j)

(1 −
√
c)2

=
ε

6

∞∑
ℓ=0

n∑
j=1

ψℓ (v,w j) ≤
ε

6

.

(22)

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1057

For the last inequality, we use the fact that the reserveψℓ (v,w j)
is at most πℓ (v,w j), and thus

∑∞
ℓ=0

∑n
j=1

ψℓ (v,w j)
≤

∑∞
ℓ=0

∑n
j=1

πℓ (v,w j) = 1.

Next, we show that ŝ1

I (u,v) and ŝ
2

I (u,v) differ by at most
ε
6
.

To see this, note that by the property of backward search, we

have
���πℓ (v,w j) −ψℓ (v,w j)

��� ≤ 2rmax =
(1−
√
c)2ε

6
for a node

w j in the index. It follows that

���ŝ
1

I (u,v)−ŝ
2

I (u,v)
���=
∞∑
ℓ=0

j0∑
j=1

η̂π ℓ (u,w j)
���ψℓ (v,w j)−πℓ (v,w j)

���
(1 −
√
c)2

≤

∞∑
ℓ=0

j0∑
j=1

η̂π ℓ (u,w j) · 1 ·
(1−
√
c)2ε

4

(1 −
√
c)2

=
ε

6

∞∑
ℓ=0

n∑
j=1

η̂π ℓ (u,w j) ≤
ε

6

.

(23)

For the last inequality, recall that Algorithm 4 increments

η̂π at most nr times, and each increment is
1

nr
.

Finally, we show that ŝ2

I (u,v) approximates sI (u,v) with
error

ε
4
with target probability. Following the definition of

η̂π ℓ (u,w), we use a slightly different approach to construct

ŝ2 (u,v). For the i-th iteration, we sample a nodew and a level

ℓ with probability η(w)πℓ (u,w), and set Xi to be
πℓ (v,w j)

(1−
√
c)2 . It

can be verify that ŝ2

I (u,v) =
1

nr

∑nr
i=1

Xi . For each Xi ,

E[Xi] =

∞∑
ℓ=0

j0∑
j=1

η(w j)πℓ (u,w j)
πℓ (v,w j)

(1 −
√
c)2
= sI (u,v),

andXi ≤ maxℓ,v

{
πℓ (v,w j)

(1−
√
c)2

}
≤ 1

(1−
√
c)2 . Sincenr = Θ(log

n
δ /ε

2),

by Chernoff bound,

Pr

[
|ŝ2

I (u,v) − sI (u,v) | >
ε

6

]
≤

δ

2n
. (24)

Combining Equations (22)-(24), we prove the lemma. □

B.6 Proof of Lemma 3.7
Proof. Consider a single

√
c-walk from u. Recall that Al-

gorithm 4 first samples a node-level pair (w j , ℓ) with prob-

ability πℓ (u,w j)η(w j). If j > j0, it performs backward walk

to generate an unbiased estimator π̂ℓ (v,w) for each v ∈ V ,

and set the estimator ŝB (u,v) to be
π̂ℓ (v,w j)

(1−
√
c)2 . It follows that

E [ŝB (u,v)]=
∞∑
ℓ=0

n∑
j=j0+1

πℓ (u,w j)η(w j) ·
π̂ℓ (v,w j)

(1 −
√
c)2
=sB (u,v).

We can bound the variance Var [ŝB (u,v)] ≤ E
[
ŝB (u,v)

2

]
by

E
[
ŝB (u,v)

2

]
=

∞∑
ℓ=0

n∑
j=j0+1

πℓ (u,w j)η(w j) ·
E
[
π̂ℓ (v,w j)

2

]

(1 −
√
c)4

.

Lemma 3.5 implies that E
[
π̂ℓ (v,w j)

2

]
≤ πℓ (v,w j), and

Var [ŝB (u,v)]≤
∞∑
ℓ=0

n∑
j=j0+1

πℓ (u,w j)η(w j) ·
πℓ (v,w j)

(1 −
√
c)4
=

sB (u,v)

(1 −
√
c)2
.

Recall that for a fixed i with 1 ≤ i ≤ fr , Algorithm 4 re-

peats above sampling process dr time and use the mean over

dr =
12

(1−
√
c)2ε2

samples, denoted ŝiB (u,v), as an estimator for

sB (u,v). It follows that

Var

[
ŝiB (u,v)

]
≤

sB (u,v)

dr (1 −
√
c)2
=
ε2sB (u,v)

12

≤
ε2

12

.

By Chebyshev’s inequality, we have

Pr

[
|ŝiB (u,v) − sB (u,v) | >

ε

2

]
≤

4Var

[
ŝiB (u,v)

]

ε2
≤

1

3

.

Finally, Algorithm 4 use ŝB (u,v) = Median1≤i≤fr ŝ
i
B (u,v)

as the estimator for ŝB (u,v). By setting fr = 3 log
n
δ and

applying the Median Trick (see Lemma A.3), we have

Pr

[
|ŝB (u,v) − sB (u,v) | >

ε

2

]
≤

δ

2n
, (25)

and the lemma follows. □

B.7 Proof of Lemma 3.9
Proof. Fix the source node u and consider a nodew j and

a level ℓ. Recall that we retrieve all nodes v with ψℓ (v,w j)
from the index if and only if 1) w j is in the index, that is,

j ≤ j0, and 2) η̂π ℓ (u,w j) ≥
(1−
√
c)2ε

8
= ε

c1

Let sizeℓ (w j) =

Θ
(
nπℓ (w j)

ε

)
denote the upper bound for the index size of

w j at level ℓ, and sizeℓ (w j) =
∑∞

ℓ=0
sizeℓ (w j) = Θ

(
nπ (w j)

ε

)
denote the upper bound for the index size ofw j . We further

define η̂π (u,w j) =
∑∞

ℓ=0
η̂π ℓ (u,w j). Note that η̂π (u,w j) is an

unbiased estimator for

∑∞
ℓ=0

η(w j)πℓ (u,w j) = η(w j)π (u,w j).
We can bound the CI (u) as

CI (u) ≤
∞∑
ℓ=0

j0∑
j=1

I

(
η̂π ℓ (u,w j) >

ε

c1

)
sizeℓ (w j),

where I
(
η̂π ℓ (u,w j) >

ε
c1

)
equals 1 if η̂π ℓ (u,w j) >

ε
c1

and

equals 0 if otherwise. Since η̂π ℓ (u,w j) ≤ η̂π (u,w j), we have

I
(
η̂π ℓ (u,w j) >

ε
c1

)
≤ I

(
η̂π (u,w j) >

ε
c1

)
, and thus

CI (u) ≤
∞∑
ℓ=0

j0∑
j=1

I

(
η̂π (u,w j) >

ε

c1

)
sizeℓ (w j)

=

j0∑
j=1

I

(
η̂π (u,w j) >

ε

c1

)
size (w j).

We now use two different approaches to bound CI (u).

First, observe that for a given u, we have
∑j0

j=1
η̂π (u,w j) ≤

1, which implies that there are at most
c1

ε node w j with

η̂π (u,w j) ≥
ε
c1

. Since size (w1) ≥ . . . ≥ size (w j0), we can

choose π (u,w1) ≥ ε, . . . π (u,w c
1

ε
) ≥ ε to maximize the

query cost CI (u). It follows that CI (u) ≤
∑ c

1

ε
j=1

size (w j) ≤

O
(∑ c

1

ε
j=1

nπ (w j)
ε

)
hence proves the first part of the lemma.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1058

For the second part, note that I
(
η̂π (u,w j) >

ε
c1

)
is bounded

by
η̂π ℓ (u,w j)

ε/c1

. It follows that

E[CI (u)] ≤ c1

j0∑
j=1

E[η̂π (u,w j)]

ε
size (w j)

= c1

j0∑
j=1

η(w j)π (u,w j)

ε
size (w j) ≤ c1

j0∑
j=1

π (u,w j)

ε
size (w j).

Here we use the fact that η̂π (u,w j) is an unbiased estimator

for η(w j)π (u,w j) and that η(w j) ≤ 1 . Taking average over

all nodes u ∈ V , we have

CI =
1

n

∑
u ∈V

CI (u) ≤
c1

n

∑
u ∈V

j0∑
j=1

π (u,w j)

ε
size (w j)

= c1

j0∑
j=1

1

n
∑
u ∈V π (u,w j)

ε
size (w j) = c1

j0∑
j=1

π (w j)

ε
size (w j).

By size (w j) = O
(
nπ (w j)

ε

)
, we haveCI = O

(
n
ε2

∑j0
j=1

π (w j)
2

)
,

and the lemma follows. □

B.8 Proof of Lemma 3.10
Proof. Next, we bound CB =

1

n
∑
v ∈V CB (u), the average

query cost for estimating the π̂ℓ (v,w) for each nodew that

is not in the Index. Given a source node u, for each node

w j with j > j0, recall that we perform πℓ (u,w j)nr backward
walk on w j to estimate π̂ℓ (v,w),v ∈ V . By Lemma 3.4, the

cost of a single backward walk onw j , regardless of the level

ℓ, can be bounded by O (nπ (w j)). Ignoring the big-Oh,

E[(u)] =
∞∑
ℓ=0

j0∑
j=1

πℓ (u,w)nr · nπ (w j) = nrn

j0∑
j=1

π (u,w)π (w j).

Taking average over all nodes u ∈ V , we have

E[CB] =
1

n

∑
u ∈V

E[CB (u)] ≤
1

n

∑
u ∈V

nrn

j0∑
j=1

π (u,w)π (w j)

= nrn

j0∑
j=1

π (w j) *
,

∑
u ∈V

π (u,w)+
-
= O *.

,

n logn

ε2

j0∑
j=1

π (w j)
2+/
-
.

The last equation is due to

∑
u ∈V π (u,w) = nπ (w). □

B.9 Proof of Theorem 3.11
Proof. We use β = 1/γ to simplify the proof. Ignor-

ing the big-Oh notation in Lemma 3.9, we have E[CI] ≤

n
ε
∑ c

1

ε
j=1

π (w j) and E[CI] ≤
n
ε2

∑j0
j=1

π (w j)
2
. Pluggingπ (w j) =

κj−β

n1−β into
n
ε
∑ c

1

ε
j=1

π (w j), and we have

E[CI] ≤
n

ε

c
1

ε∑
j=1

π (w j) =

c
1

ε∑
j=1

n · j−β

n1−βε
=
nβ ·

∑ c
1

ε
j=1

j−β

ε

= O
*..
,

nβ(
ε
c1

)
1−β
· ε

+//
-
= O

(
nβ

ε1−β · ε

)
= O

(
nβ

ε2−β

)
. (26)

Plugging π (w j) =
κj−β

n1−β into
n
ε2

∑j0
j=1

π (w j)
2
follows that

E[CI] ≤
n

ε2

j0∑
j=1

π (w j)
2 =

n

ε2

j0∑
j=1

κj−2β

n2−2β
=
κn2β−1

ε2

j0∑
j=1

j−2β .

For β < 1/2, we have
∑j0

j=1
j−2β = O (j

1−2β
0

) = O (n1−2β), and

thus E[CI] = O
(
n2β−1

ε2
· n1−2β

)
= O

(
1

ε2

)
. For β = 1/2, we

have

∑j0
j=1

j−2β = O (log j0). Since log j0 ≤ logn and n2β−1 =

1, we have E[CI] = O
(
n2β−1

ε2
· log j0

)
= O

(
logn
ε2

)
. For β >

1/2, we have
∑j0

j=1
j−2β = O (1) and consequently E[CI] =

O
(
n2β−1

ε2

)
. Combining Equation (26) and above analysis, we

have the following equation:

E[CI] =




O (1

ε2
), for β < 1/2;

O (
logn
ε2

), for β = 1/2;

O
(
min

{
n2β−1

ε2
, nβ
ε2−β

})
, for β > 1/2.

(27)

By Lemma 3.10 and the assumption π (w j) =
κj−β

n1−β , we

have E[CB] = O
(
c1n2β−1

logn
ε2

∑n
j=j0+1

j−2β
)
. For j < 1/2, we

have

∑n
j=j0+1

j−2β = O (n1−2β). Thus

E[CB] = O

(
n2β−1

logn

ε2
· n1−2β

)
= O

(
logn

ε2

)
.

For j = 1/2, we have

∑n
j=j0+1

j−2β = O (logn), and thus

E[CB] = O
(

logn log
n
δ

ε2

)
. For j > 1/2, we have

∑n
j=j0+1

j−2β =

O (j
1−2β
o). Plugging j0 ≤ n

(
ε ¯d

) 1

1−β
follows that

E[CB] = O

(
n2β−1

logn

ε2
·

(
n(ε ¯d)

1

1−β

)
1−2β

)
= O

(
logn

ε2
· (ε ¯d)

1−2β
1−β

)
= O *

,

logn

ε
1

1−β ¯d
2β−1

1−β

+
-
.

By ε ≥ log

1−β
2β−1 n/n1−β ¯d

2β−1

β
and δ > 1

nΩ(1) , it follows that

log
n
δ /ε

1

1−β ¯d
2β−1

1−β ≤ n2β−1

ε2
and logn/ε

1

1−β ¯d
2β−1

1−β ≤ nβ
ε2−β , and

thus E[CB] is bounded by O
(
min

{
n2β−1

ε2
, nβ
ε2−β

})
for β > 1/2.

In summary, we have

E[CB] =




O (
log

n
δ

ε2
), for β < 1/2;

O (
logn log

n
δ

ε2
), for β = 1/2;

O
(
min

{
n2β−1

ε2
, nβ
ε2−β

})
, for β > 1/2.

(28)

Combing CF , CI , CB and β = 1/γ , the theorem follows. □

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1059

	Abstract
	1 Introduction
	2 Preliminaries
	3 PRSim algorithm
	3.1 SimRank and -hop RPPR
	3.2 Computing Last Meeting Probability
	3.3 Precomputing RPPR to Hub Nodes
	3.4 Sampling RPPR to Non-Hub Nodes
	3.5 Putting Things Together

	4 Related Work
	5 Experiments
	5.1 Experimental Settings
	5.2 Experiments on Real-World Graphs
	5.3 Experiments on Synthetic Data Sets

	6 Conclusions
	7 ACKNOWLEDGEMENTS
	References
	A Inequalities
	A.1 Chernoff Bound
	A.2 Chebyshev's Inequality
	A.3 Median Trick
	A.4 Partial sum of Riemann zeta function

	B Proofs
	B.1 Proof of Lemma 3.2
	B.2 Proof of Lemma 3.3
	B.3 Proof of Lemma 3.4
	B.4 Proof of Lemma 3.5
	B.5 Proof of Lemma 3.6
	B.6 Proof of Lemma 3.7
	B.7 Proof of Lemma 3.9
	B.8 Proof of Lemma 3.10
	B.9 Proof of Theorem 3.11

