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Abstract The hash table, especially its external memory version, is one of the most
important index structures in large databases. Assuming a truly random hash function,
it is known that in a standard external hash table with block size b, searching for a
particular key only takes expected average t, = 1+1/ 292() disk accesses for any load
factor « bounded away from 1. However, such near-perfect performance is achieved
only when b is known and the hash table is particularly tuned for working with such a
blocking. In this paper we study if it is possible to build a cache-oblivious hash table
that works well with any blocking. Such a hash table will automatically perform well
across all levels of the memory hierarchy and does not need any hardware-specific
tuning, an important feature in autonomous databases.

We first show that linear probing, a classical collision resolution strategy for hash
tables, can be easily made cache-oblivious but it only achieves 7, =1+ ®(a/b) even
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if a truly random hash function is used. Then we demonstrate that the block probing
algorithm (Pagh et al. in SIAM Rev. 53(3):547-558, 2011) achieves #, = 1+1/2%®),
thus matching the cache-aware bound, if the following two conditions hold: (a) b is a
power of 2; and (b) every block starts at a memory address divisible by b. Note that
the two conditions hold on a real machine, although they are not stated in the cache-
oblivious model. Interestingly, we also show that neither condition is dispensable: if
either of them is removed, the best obtainable bound is #; = 1 + O(a/b), which is
exactly what linear probing achieves.

Keywords Cache-oblivious algorithms - Hashing

1 Introduction

The hash table is one of the most fundamental index structures in databases. It stores
a set of n keys from a universe [u] in linear space, while allowing us to search for
any particular key efficiently. It is also one of the simplest data structures: Let A :
[u] — [r] be a hash function. The table has size » > n and we simply store key
x in position A(x). If that position already contains some other key, one can use
various collision resolution strategies, among which chaining and linear probing are
the most common ones. In chaining, we simply store all keys that are mapped to
the same position in a list associated with that position. In linear probing, if position
h(x) is already occupied when x is being inserted, we successively probe positions
hx),h(x)+1,...,r—1,0,1,..., h(x) — 1 until an empty position is found and we
will put x there. To perform a search on x, we follow the same probing sequence,
until x is found or an empty position is encountered, in which case we know that x is
not stored in the table. It is known that linear probing generally outperforms chaining
in practice due to its sequential access pattern, provided that the load factor « =n/r
is not too close to 1.

The mathematical analysis of hashing is usually considered as the birth of analysis
of algorithms [14], and it is still attracting a lot of attention nowadays. Most analyses
on hashing assume % to be a truly random function, i.e., each A (x) is independently
uniformly distributed on [r]. Under such an assumption, Knuth [14] showed that the
expected average number of probes during a search using linear probing is (averaged
over all keys):

1 1
Ch~-|\14+— (successful search);
2 l—«

1 1?2
Cl~ = <1 + (—) ) (unsuccessful search).
a

Thus, for a typical load factor @ = 0.7, we expect to make 2.17 probes if the searched
key is in the table, and 6.05 probes if it is not.

In large databases, the hash table is usually stored in external memory, and data
is accessed in terms of blocks. In this setting, we care about the number of blocks
accessed (I/Os) when performing a search. The number of I/Os is clearly at most
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the number of probes, but such a naive analysis is too pessimistic. Interestingly,
Knuth [14] showed that the external version of linear probing has a search cost of
1+1/ 282(®) 1/0s (for both successful and unsuccessful searches), where b is the block
size. Here and further we assume that the load factor « is bounded away from 1. In the
external version of linear probing, the table consists of r/b blocks, and correspond-
ingly we use a hash function 4 : [u] — [r/b]. To do a search on x, we successively
access blocks i(x), h(x) + 1, ... until x is found or a non-full block is encountered.
The intuitive explanation for this extremely close-to-one I/O cost is that since a block
has size b, we will not have a collision unless more than b keys are hashed into this
block, which happens with probability exponentially small in . Knuth [14] actually
derived the constant in the big-Omega, showing that for reasonably large b (larger
than 10), the number of I/Os is very close to 1, much smaller than the number of
probes. Meanwhile, a natural external version of chaining also achieves the same
bound. These results basically have explained why hash tables work so well in exter-
nal memory.

These classical analyses assumed a simple two-level memory model [2], where
the (sufficiently large) external memory is partitioned into blocks of size b and are
fetched into the internal memory of size m as they are probed. Here both sizes are
measured in terms of (logu)-bit words. Starting in the late 90’s tremendous efforts
have been devoted to the design and analysis of data structures that work well not
only in a two-level memory model, but also in a memory hierarchy that consists of
any number of levels, where each level has a different capacity m and block size b.
Among them, the most successful approach is the cache-oblivious model [10] due to
its elegance and simplicity. This model actually only features two levels of memory:
a data structure is laid out in external memory and accessed in exactly the same
way as in the standard two-level model, but the additional requirement is that the
structure is unaware of the block size b, or equivalently, the structure is laid out in
external memory in a way that works for all block sizes.! Thus a cache-oblivious
data structure automatically works in a memory hierarchy. More precisely, if we can
show that the cost of some operation on a cache-oblivious structure is f(n, b) 1/Os
in the two-level model, then the number of block transfers will always be f(n, b)
between any two levels in a memory hierarchy with multiple levels, where the b
simply becomes the block size of that corresponding level. Another major benefit of
cache-oblivious algorithms and data structures is that they achieve their guaranteed
performance without any hardware-specific tuning. This is particularly important in
autonomous databases, and is in fact the main motivation of the recent efforts in
bringing cache-oblivious techniques to databases, such as EaseDB [12].

Note that the external versions of linear probing and chaining mentioned above
only work for a single b, so they are not cache-oblivious. In this paper, we investigate
whether it is possible to lay out a hash table such that its search cost matches its
cache-aware version, i.e., 1 + 1/ 252 1/0s, for all block sizes b.

1Strictly speaking the structure should be unaware of both m and b. But for most data structure problems
the operations on the structure are always oblivious to m, so we only need to require that the layout works
for all b.
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Our Results A straightforward way of making the hash table cache-oblivious is to
simply use linear probing but ignoring the blocking altogether.”> One would expect
it to work well irrespective of the block size since it uses only sequential probes.
However, in Sect. 3 we show that its search cost is 1 + O («/b) I/Os even assuming a
truly random hash function. In fact, we also derive the constant in the big-Oh, which
depends on C, and C,. This result was first stated by Qi and Martel [22], but we
give a complete proof in Sect. 3. This is worse than its cache-aware version that is
particularly tuned to work with a single b. The gap is in some sense exponential, if
we are concerned with the fraction of keys that cannot be found with a single I/O
(note that an average search cost of z; = 1 + ¢ means that at most a fraction of ¢ keys
need two or more 1/Os).

Next, we explore other collision resolution strategies to see if they work better in
the cache-oblivious model. In Sect. 4, we show that the blocked probing algorithm
[21] achieves the desired 14 1/2) search cost, but under the following two condi-
tions: (a) b is a power of 2; and (b) every block starts at a memory address divisible
by b. In addition, we have analyzed the performance of blocked probing when the
hash function has limited independence: We show that with a k-wise independent
hash function, the expected I/O cost of a search is 1 + 0((%)("_1)/ 2. Since
a k-wise independent hash function is also k’-wise independent for all k" < k, as long
ask>(1— a)2b + 1, the bound becomes 1 + 2_9((1_“)2b) =14290) matching
that of a truly random hash function.

Note that neither of the two conditions above is stated in the cache-oblivious
model, but they indeed hold on all real machines. This raises the theoretical ques-
tion of whether 1 + 1/2%® is achievable in the “true” cache-oblivious model. In
Sect. 5, we show that neither condition is dispensable. Specifically, we prove that if
the hash table is only required to work for a single b but an arbitrary shift of the
layout, or if (b) holds but the hash table is required to work for all b, then the best ob-
tainable search cost is 1 + O («/b) 1/Os, which exactly matches what linear probing
achieves. Our lower bound model allows a truly random hash function to be used and
puts no restrictions on the structure of the hash table, except that each key is treated
as an atomic element, known as the indivisibility assumption.

Related Results Hashing is perhaps one of the most studied problems in computer
science. Most work on hashing assumes a truly random function. Since such a func-
tion requires a large space to describe, there are also a lot of work on hashing us-
ing explicit and efficient hash functions [6, 21]. Meanwhile, although most work fo-
cuses on the expected search cost, there are also hashing schemes that guarantee good
worst-case search costs [9, 20]. Hashing has been well studied in the external mem-
ory model. The 14 1/25®) search cost holds as long as the load factor « is bounded
away from 1 [14], and there are various techniques in the database literature to keep
the load factor in a desired range, such as extensible hashing [8] or linear hashing
[17]. Jensen and Pagh [13] designed a hashing scheme that has @ = 1 — 0(1/\/5)
while supporting searches with 1 + O(1/+/b) I/Os. In all these hashing schemes a

2Chaining would perform worse cache-obliviously because the list associated with each position is not
laid out consecutively.
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small faction of the keys still need two or more disk accesses to retrieve. There are
other schemes that guarantee a single I/O to retrieve any key [11, 16], but they all
need the internal memory to have size m = @ (n/b). Note that those hashing schemes
achieving 7; = 1 + ¢ only need the internal memory to store a constant number of
blocks.

The cache-oblivious model was proposed by Frigo et al. [10], which introduces
a clean and elegant way to modelling memory hierarchies. Previous approaches at-
tempted to model a memory hierarchy directly, but did not have much success due to
the complicated models. Since then, cache-oblivious algorithms and data structures
have received a lot of attention, and most fundamental problems have been solved.
For example, cache-oblivious sorting takes O (3 log,,, 3) 1/Os [10], and a cache-
oblivious B-tree takes O (log, n) I/Os for a search [3]. Please see the survey [7] for
other results. In most cases, the cache-oblivious bounds match their cache-aware ver-
sions, and it has always be an interesting problem to see for what problems do we
have a separation between the cache-oblivious model and the cache-aware model.
Until today there have been only three separation results [1, 4, 5]; our lower bound
adds to that list, furthering our understanding of cache-obliviousness.

2 Preliminaries

Let [x] &ef {0, 1,...,x — 1}. Throughout this paper S denotes a subset of the universe

U = [u], and h will denote a hash function from U to R def [r]. We denote the ele-
ments of S by {x1, x2, ..., x,}, and refer to the elements of S as keys. We let n def |S|
and o & n /r.

The classic results assume that the hash function / distributes each key x inde-
pendently uniformly on R. Such a function is called a truly random function. This
assumption is unrealistic, since to simply store a truly random hash function requires
ulogr bits. To bridge the gap between hashing algorithms and their analysis, Carter
and Wegman introduced universal hashing [6]. A family H of functions from U to
R is k-wise independent if for any k distinct elements x1, ..., xx € U and h chosen
uniformly at random from H, the random variables i (x1), ..., h(xy) are independent.
We refer to the variable

an max  Pr[h(x) =p]
xeU,peRheH
as the maximum load of H. If 'H distributes hash function values of all elements
of U uniformly on R, we will have @ = «, and in general @ > «. We assume that
all families used in this paper are uniform so we do not distinguish & from «. For
non-uniform families, all results in this paper hold if we substitute o with .
Carter and Wegman [26] exhibited the following family of k-wise independent
hash functions where U = [p], R = [r], and p is a prime:

Hi = {h hx) = ((ak_lx’“l + .- +a0) mod p) modr, aj € [p]}.

This could be easily verified: observe that the family of degree k — 1 polynomials in
the finite field Z, is k-wise independent; to obtain a smaller range R = [r] we may
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map integers in [p] down to [r] by a modulo r operation. This operation preserves
independence, only making the family (slightly) non-uniform. Specifically, the max-
imum load & for this family is in the range [«, (1 4 r/p)a]. By choosing p much
larger than r we can make « arbitrarily close to «.

3 Analysis of Linear Probing in the Cache-Oblivious Model

Linear probing while ignoring the blocking is naturally cache-oblivious. In this sec-
tion we analyze its search I/O cost, which turns out to delicately depend on C,, and
C;,, the expected average number of probes in a successful and unsuccessful search,
respectively. Note that the equalities in the theorem below are exact, though we only
know the asymptotic formulas for C,, and Cj,.

Theorem 1 Suppose the linear probing algorithm uses a truly random hash func-
tion h. Let C Oy, and C O}, denote the expected average number of I/Os for a success-
ful and an unsuccessful search, respectively. For any block size b, we have

COy =1+ (Cy —1)/b;
CO,=1+(C,—1)/b.

Proof Let r be the size of the hash table, which is divided into r/b blocks
By, ..., Byjp—1 (assuming that r is a multiple of b for simplicity). The block B; spans
positions [b,Ib 4+ 1,...,1b + b — 1. Consider an unsuccessful search for a key x.
Define p(i, j), i # j, to be the event that the hash table has positions i through j
occupied (wrapping around when necessary). Note that the number of occupied posi-
tions is n, so p(i, j) =0forany j ¢ {i,i +1,...,i +n — 1} (wrapping around when
necessary). By the circular symmetry of linear probing and the uniform hash function
assumption, p(0, k) is exactly the probability that an unsuccessful search for a key x
takes at least k + 2 probes. Thus we have:

n—1

C,=1+Y_ p0.k. (1

k=0

Let pi be the probability that an unsuccessful search takes at least k + 1 I/Os.
Below we will relate py with the p(0, k)’s. By the uniformity of the hash function #,
we assume that /4 (x) lies in the first block. Note that for a insertion to cost at least
k + 1 1/Os, positions £ (x) through kb — 1 must be occupied. Since % (x) hits position
0 through b — 1 with same probability, we have

b—1

1
= - i, kb —1
Pk bgp(z )

b—1
1
= - Z p0,kb—i—1) (Since h is a truly random function.)

b “
i=0
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Now we can compute C O, as follows:

n/b
Cop=1+> pi
k=1

n/b bl

—1+Z Zp(Okb—z—l)
k=1 i=0
n—1

=1+ Zp(o P

j =0

Plugging in (1) to the equation and we have

1 1
! — _ =
Cop=1-++7 <1+Zp(0 ])>
j=0
1 C
=1—_4-2

b + b’
For the successful query cost C O,, we relate it with C O and C;, the expected av-
erage number of I/Os and probes respectively of an unsuccessful search on a table of
size k for k =0, ...,n — 1, using the same transformation in [14]:

1 G 1 C
C0_1—— LS G il
Z k T nb » v 0

Combing with Knuth’s result that C,, & %(1 + ﬁ) and C) ~ %(1 + (ﬁ)z), we
conclude that the I/O cost of directly applying linear probing in the cache-oblivious
model is 1 + @ («/b), which is a lot worse than its the external version that is aware
of the blocking.

4 Blocked Probing

Standard linear probing maintains the invariant that each key x is placed as close as
possible to position £ (x) in the probe sequence. Blocked probing is a variant of linear
probing proposed by Pagh et al. [21], who used it to derive optimal performance (as a
function of «) assuming only 5-wise independent hash functions. In this section, we
demonstrate that blocked probing also achieves the desired 1 +27® /O bound in
the cache-oblivious model, under the assumptions that the block size b is a power of
2 and the memory blocks are b-aligned.

4.1 Algorithm Description

Let[r]={0,1,...,r — 1} denote the hash table, where r is a power of two. It is also
assumed that r is fixed, i.e., there is no notion of dynamically adjusting the capacity
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of the hash table; at the end of this section we sketch how to handle the general
case. Suppose that the key x is stored in location i,, we define the distance measure
d(x,iy) to be the position of the most significant bit in which % (x) and i, differ (the
least significant bit is said to be at position 1), and d(x,iy) = 0 in case iy = h(x).
Let I (x, j)={i|d(x,i) < j}. Note that I (x, j) is the aligned block of size 2/ that
contains i (x). The invariant of blocked probing is that each key is stored as close
as possible to #(x) in the sense that i, € I(x, j) if there is sufficient space, i.e., if
the number of keys with hash values in 7 (x, j) is at most |1 (x, j)| = 2/. Below we
describe the operations of blocked probing.

When inserting a key x, the invariant is maintained by searching, for j =
0,1,2,..., for a location i € I(x, j) where x could be placed. For each j, we first
check if there is an empty location in / (x, j) and put x there if there is one. Other-
wise, we look for a location i,/ € I (x, j) that contains a key x” with d(x',iy) > j
(implying that 2(x") & I (x, j)). If there is such an x’, we swap x and x’, and continue
the insertion process with x’. If both attempts fail, we move on to the next j.

A search for x proceeds by inspecting, for j =0, 1, 2, ..., the locations of I (x, j)
until either x is found, or we do not find x but find instead an empty location or a key
x" with d(x’, i) > j. In the latter cases, the invariant tells us that x is not present in
the hash table.

Deletion of akey x € I (x, j)\I (x, j — 1) needs to check if there is a key stored in
I(x,j+ D\I(x, j) that could be stored in I (x, j)—if this is the case it is copied to
the empty location, and the old copy is deleted recursively.

4.2 Cache-Oblivious Analysis of Blocked Probing

We assume the block size b is a power of two, and the i-th block B; starts at position
ib and ends at position ib + b — 1. Then for any key x, the aligned block I (x, logb)
is the block that contains /(x). Let S denote the set of keys involved in a given
operation (insertion, deletion, successful or unsuccessful search), including the key x
specified by the query or update (x may or may not be in the hash table). To bound the
expected I/O cost for an operation, define event & (x, j) as the aligned block I (x, j)
being saturated, that is, the number of keys in S with hash value in the aligned block
I(x, j) is 2/ or more. Let p(x, j) denote the probability that & (x, j) happens. The
following lemma relates p(x, j) with Cp,p, the expected I/O cost for an operation of
blocked probing.

Lemma 1 Suppose function h is drawn from a pairwise independent hash family H,
then

logr 2j+2
Cp, <1 —_— s J)-
=1+ DB C)
j=1+logb

Proof We first note that the cost of a search for key x is bounded by that of an
insertion of x, so we only need to consider insertions and deletions. Let £7(x, j)
denote the event that the aligned block I (x, j) is full, that is, the number of keys
stored in I(x, j) is 2/. Let ¢(x, j) denote the probability that £ £(x, j) happens.
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Observe that an insertion or a deletion would visit a location outside 7 (x, j) only
if all positions of I(x, j) are occupied, so the probability that the operation takes at
least 2/ /b 1/Os is g (x, j), for j > logh. To compute the expected number of blocks
involved in an operation, in addition to the first I/O that retrieves I (x, logb), we first
bound the sum of the probabilities that the operation takes at least i I/Os, for i from
2/ /b to 271 /b — 1 for a fixed integer j > logb:

i=2/t1/p—1 i=2/*1/p—1 2i
Z Pr[Operation takes at least i I/Os] < Z q(x, j)= ?q(x, J).
i=2J /b i=27/b

Summing over all possible values of j > logb and we have

0o i=2/t1/bp—1
Cpp=1+ Z Z Pr[Operation takes at least i I/Os]
j=logh i=2i/b

o] 2J
=1+ ), At 2)
j=l+logb

Next we will relate g (x, j), the probability that 7 (x, j) is full, with p(x, j), the prob-
ability that I (x, j) is saturated. Divide the hash table r into log(r/2?) + 1 aligned
blocks:

T={ICx, ). 1(x, j+ D\, ) I, j+2DN\NI(x, j+ 1D, T, )\ (x,r/2)}.

The claim is that if 7 (x, j) is full, then at least one of the aligned blocks in 7 is sat-
urated. For a proof, assume that no aligned block in 7 is saturated. We inductively
prove that each aligned block in Z only stores keys with hash values inside it, which
immediately implies that 7 (x, j) is non-full, and thus leads to a contradiction. For
the first insertion the statement is true. Now suppose the statement is true after the
k-th insertion. When the (k + 1)-th insertion yx4; comes, let I(x,/ + 1)\ I(x,])
denote the aligned block in 7 that contains i(yx+1). By the inductive hypothe-
sis, I(x,l + 1)\ I(x,l) only contains the keys with hash values in it, and since
I(x,l+ 1)\ I(x,]) is not saturated we know that I (x,! + 1) \ I/(x,1) is non-full.
Therefore the key yi41 is stored in an empty position of 7(x,l+ 1) \ /(x,[), and the
induction follows.

Observe that since the hash function 4 is drawn from a pairwise independent fam-
ily and the fact that I (x,/+1)\ I (x, /) and I (x, /) are of the same size, the probability
that the 7 (x,l + 1) \ I(x,[) is saturated is the same as the probability that 7 (x,/) is
saturated, that is, p(x, /). By a union bound we have the following inequality:

logr
q(x. j) <ple. )+ Y px,D). 3)

I=j
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Combining (2) and (3) we have

logr 9
Cop=l+ D 4 ))

j=l+logh

logr j logr
<i+ ) ((x,j>+2p(x,l)>

j= 1+10gb I=j

logr
=1+ > (z/+ Z zl> (x, /)

Jj=1+log b I=1+logr

logr j+2
i+ > k)

Jj=1+logb O

For a truly random hash function, p(x, j) can bounded using the Chernoff bound:
The probability that a key is hashed to I (x, j) is 2//r, so the expected number of
keys hashed to I (x, j) is n2/ /r = a2/. Recall that p(x, j) is the probability that the
number of keys hashed to I (x, j) is 2J or more, by the Chernoff bound, p(x, j) <
2_(1_"‘)2 2/ . Following Lemma 1, we have

logr

Cop <1+ Y 2/%2p(x, j)
j=1+logb

logr

=14 Z 2/+2/b —(1—a)?2/7!
j=l+logb

<1+2720=)b)
That % is a truly random hash function is an unrealistic assumption. To analyze

blocked probing with limited independence, we need the following variant of the
Chernoff bound by Schmidt et al. [23]:

Lemma 2 [23] Let X1, ..., X, be a sequence of k-wise independent random vari-
ables, that satisfy | X; — E[X;]| <1.Let X = Z?:] X; with E[X] = u, and let 82[X]

denote the variance of X, so that 82[X] = Z?:l 82[X;] (this equation holds provided
k > 2). Then for any even k and C > max{k, 82[X]},

kC k/2
Pr| X —pu|>T] < (W) .

Lemmas 1 and 2 together will lead to the following result:

Theorem 2 Consider a blocked probing hash table in the cache-oblivious model
where the block size b is power of 2 and every block starts at a memory address
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divisible by b. Suppose the hash table has a fixed size r and the hash function h is
chosen uniformly at random from a k-wise independent hash family for odd k > 5.
For any sequence of operations (insertions, deletions, and lookups), let a denote the
load factor of the hash table during a particular operation. Then the expected number
of I/Os for that operation is

k—1 (k—1)/2
Cop=14+0|| =5——— .
=T <<e2/3(1 —a>2b> )

Proof Consider an operation on key x. We need to bound p(x, j), the probabil-
ity that the aligned block I(x, j) is saturated, for j > logb. Let X; denote the
random variable indicating that the i-th key has hash value in 7 (x, j). Note that
X1,..., X, are (k — 1)-wise independent and for each X; we have E[X;] = 2f/r
and 82[)( 1=27/r(1=27/r) < 2J/r It follows that E[X] =) "7 _ 1E[X 1=2/n/r =
a2/ and 82[X] = YV_, 82 (X1 < 2/n/r = a2/. Setting p = a2/, T = (1 — a)2/,
Cc=2/> max{k, 62[X]} in Lemma 2, we derive a bound on p(x, j):
k—1 (k=1)/2
) 4)

plx, j)=Pr[X —a2/ > (1 —a)2/] < (m

Plugging (4) into Lemma 1:

logr
p <1+ > (277b)p(x. )
j=l+logb
logr 2Ji+2 ( k—1 )(k—l)/2
<1+ : :
= 2/3(1 — )2
j=1+logh e*>(1—e)=2/

1 k=172
=+ 0<<e2/3(1 —a>2b> )

The last inequality uses that fact that the terms in the sum are geometrically decreas-
ing when k > 5, and hence the sum is dominated by the first term. O

Remark Since a k-wise independent hash function is also k’-wise independent for all
k' > k, the bound in Theorem 2 is actually 1 + O(min55k/5k(ez/3ﬁ;_lxw,)(k/_l)/2).

Theorem 2 immediately leads to the following corollaries.

5-Wise Independence The minimum independence allowed in Theorem 2 is 5. In

this case
1
Cbp =1 + [0) b2

Note that the dependence on the block size b is asymptotically better than 1 4+ & (1/b).
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§2(b)-Wise Independence To achieve the same bound as that of the truly random
hash function, it suffices to have k > k' = (1 — «)2b + 1. By Theorem 2, it follows

that
Cop=1+0 Lt WA
o = 231 —a)2b

= 1+ 0((2?) 0P

<142 RW-0)b)

4.3 Cache-Oblivious Dynamic Hash Tables

The standard doubling/halving strategy can be used to maintain the load factor « in
the range 1/2 —¢/2 <o <1 — ¢ as we insert and delete keys in the hash table where
& > 0 is any small constant. In such a range the expected I/O cost per operation is
1 4+ 1/2%®) 1/0s using the blocked probing scheme described above. In particular,
we always use a hash table of size r that is a power of 2. Let g : [u] — [u] be a
“mother” hash function. When the table’s size is r, we take the logr least significant
bits of g(x) as i(x). When o = n/r goes beyond the range [1/2 —¢/2,1 — &] we
double or halve r accordingly. This can be done in a simple scan of the hash table
in amortized O (1/b) I/Os per key, by simply inserting keys in the order they occur
in the table. The analysis uses the fact that the keys to be inserted in a block in the
resized hash table are (w.h.p.) in at most two blocks in the original hash table. We
omit the rather standard analysis.

However, the above solution has a poor space utilization. A number of methods
have been proposed that maintain a higher load factor, and also allow the rehashing to
be done incrementally; see [15] for an overview. To our best knowledge these meth-
ods are all cache-aware—however, we now describe how they can be made cache-
oblivious while maintaining the load factor of « = 1 — @ (¢). Suppose initially r is a
power of 2 and n > (1 — 2¢)r. Adjust ¢ so that er is also a power of 2; this will not
change ¢ by more than a factor of 2. The idea is to split the hash table into 1/¢ parts
using hashing (say, by looking at the first log(1/¢) bits of the mother hash function),
where each part is handled by a cache-oblivious hash table of size er which stores
at most (1 — ¢)er keys. As n changes, the number of parts also changes to maintain
the overall load factor at « = 1 — @ (¢). Now this situation is analogous to a standard
cache-aware hash table with “block size” being equal to (1 — ¢)er, and parts corre-
sponding to blocks. So we may use any cache-aware method that resizes a standard
hash table, such as linear hashing [17]. These resizing techniques will split or merge
parts as needed, and cost is O(1/b) I/Os per insertion/deletion amortized. When r
doubles or halves, we rebuild the entire hash table using a new part size er. The
cache-aware resizing techniques ensures that only 1 + 1/2% @ parts are accessed
upon a query in expectation, where &’ is the part size b’ = (1 — ¢)er. Within each
part, our cache-oblivious scheme accesses 1 4 1/2%() blocks. So as long as r > b,
the overall query cost is still 1 4+ 1/2°®) 1/Os, as desired.

In summary, we can dynamically update our cache-oblivious hash table while
maintaining a high load factor. The additional resizing cost is only O (1/b) I/Os amor-
tized.
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Theorem 3 In the cache-oblivious model where the block size b is a power of 2 and
every block starts at a memory address divisible by b, there is a dynamic hash table
that supports queries in expected average t; =1+ 1/ 22®) [/0s, and insertions and
deletions of keys in expected amortized 1 + O(1/b) I/Os. The load factor can be
maintained at o« > 1 — ¢ for any constant ¢ > 0.

Remark 1f a k-wise independent hash family is used, the bound on #, in the above
theorem will be replaced by the bound in Theorem 2.

5 Lower Bounds

In this section, we show that the two conditions that the analysis of blocked probing
depends upon are both necessary to achieve a 1 + 1/2%®) search cost. Specifically,
we prove that when either condition is removed, the best obtainable bound for the
expected average cost of a successful search is 1 4+ O(«/b) 1I/Os. The lower bound
proofs allow « to be asymptotically small, so it means that we cannot hope to do a
lot better even with super-linear space.

5.1 The Model

Before we present the exact lower bound statements let us first be more precise about
our model. Let U = [u] be the universe. The hard input we consider here is a random
input in which each key is drawn from U uniformly and independently. Let I, be such
arandom input, and Z be the set of all inputs. We will bound from below the expected
average cost of a successful search on I, where the average is taken over all keys
in I,. We will only consider deterministic hash tables; the lower bounds also hold
for randomized hash tables by invoking Yao’s minimax principle [19] because we are
using a random input. The hash table can employ any hash functions to distribute the
input. We assume u > n>, then with probability 1 — O(1/n) all keys in I are distinct
by the birthday paradox.

We assume that all the n keys are stored in a table of size r on external memory,’
possibly with duplication. We model the search algorithm by two functions f, g :
[u] — [r]. For any x € [u], f(x) is the position where the algorithm makes its first
probe, while g(x) is the position of the last probe, where key x (or one of its copies)
must be located. Note that the internal memory must be able to hold the description
of f, thus any deterministic hash table can employ a family F of at most 2" 1°¢# such
functions. Although the particular f used by the hash table of course can depend on
the input /,, the family F has to be fixed in advance. We do not have any restrictions
on g, as it is possible for the search algorithm to evaluate g after accessing external
memory, except that all g(x)’s are distinct for the n keys.

The table is partitioned into blocks of size b. For any x such that f(x) # g(x),
define g’(x) to be g(x) if f(x) < g(x) and g(x) + 1 if f(x) > g(x). Then if g’(x)
is the first position of a block, at least two blocks must have been accessed, though

3Here we do not allow keys to be stored in internal memory: since the memory holds at most m keys, it
does not affect the average search cost as long as n is sufficiently larger than m.
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Fig.1 When two I/Os are needed

the reverse is not necessarily true; please refer to Fig. 1. For lower bound purposes
we will assume optimistically that the search for x needs two I/Os if g’(x) is the first
position of a block, and one I/O otherwise. Note that after this abstraction, the search
cost is completely characterized by the functions f, g and the blocking.

We will consider the following two blocking models. In the boundary-oblivious
model, the hash table knows the block size b but not their boundaries. More precisely,
how the keys are stored in the table is allowed to depend on b, but the layout should
work for any shifting s, namely when each block spans the positions from ib — s to
(i+1Db—s—1fors=0,1,...,b— 1.1In the block-size-oblivious model, the blocks
always start at positions that are multiples of b but the layout is required to work for
allb=1,...,r. Below we will show that in either model, the best possible expected
average cost of a successful search is 1 + O («/b) 1/Os.

5.2 Good Inputs and Bad Inputs

Forany I € Z, f € F, define ny(I) = Ziemﬂ{x el | f(x) =i} — 1). Intuitively,
1 r(I) is the number of the overflowed keys; since each position i can only hold one
key, at least ny (/) keys in I need a second probe when the hash table uses f to
decide its first probe. We say an input I € T is bad with respect to f if ny(I) >
gn, otherwise it is good. Let Zy be the set of all bad inputs with respect to f, and
Zr = () er Ly which is the set of inputs that are bad with respect to all f € . In
our lower bounds we will actually focus only on the bad inputs Z#. The following
technical lemma ensures that almost all inputs are in Zr.

Lemma 3 For n > cmlogu/a? where c is some sufficiently large constant and o =
w(n~1?), Iy is a bad input with respect to all f € F with probability 1 — o(1) as
n— oo.

The general idea of the proof is the following: We first show that for a particular
f and a random I, the probability that I, is good with respect to f is e~ @n
Thus by a union bound, I is good for at least one f € F with probability at most
e=2@@n) _gmlogu_go ag long as n is large enough, I, will be bad with respect to all
f € F with high probability.

We need the following bin-ball game, which models the way how f works on a
uniformly random input:

A Bin-Ball Game Ina (n,r, ,é) bin-ball game, we throw n balls into r bins inde-
pendently at random. The probability that a ball goes to the j-th bin is 8;, where
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,5 = (Bo, ..., Br—1) is a prefixed distribution. Let Z denote the number of empty bins
after n balls are thrown in.

Lemma 4 In an (n,r, ,3) bin-ball game, Pr[Z <r —n + n] < e R n). where
a=n/r.

Proof Note that if E is the uniform distribution, the problem is known as the occu-
pancy problem and the lemma can be proved using properties of martingales [19].
The same proof actually also holds for a nonuniform 8, so we just sketch it here:

Let Z; be the expectation of Z before any ball is thrown in, and let the random
variable Z; be the expectation of Z after the i-th ball is thrown in, fori =1, ..., n.
Note that Z;,i > 1 is a random variable, where randomness comes from the first
i balls. In particular we have Zy = E[Z] and Z, = Z. It can be verified that the
sequence Zy, Z1, ..., Z, is a martingale, and that |Z; | — Z;| < 1 forall 0 <i < n.
Therefore by Azuma’s inequality, we get

Pr[Z <E[Z] — an'/?] <2¢74/2,

Note that

n Zr(])ﬂl _ 111
e e R

-1 -2

e, @ D=2,
2 2 6n

Setting A = (§n — 5 — %(xz)n_l/2 = Q2(an'/?), we have E[Z] — An!/? >

r —n+ gn, hence the lemma. O

Now we are ready to prove Lemma 3.

Proof of Lemma 3 Consider a particular f : [u] — [r] and a random input Iy.
The probability that a randomly chosen key x from [u] has f(x) =i is exactly
| £~1(i)|/u. This is exactly an (n,r, B) bin-ball game where ; = | f~'(i)|/u. Let
Z be the number of empty bins at the end of such a bin-ball game. Note that we
have n¢(I) =n — (r — Z), which, by Lemma 3, does not exceed %n with probability
at most e % ("‘2"). Since there are 21984 different f’s in F, by a union bound, the
probability that I is good for at least one f € F is at most e ~* (@) pmlogu Thyg if
n > cmlogu/a? for some sufficiently large ¢, this probability is e™* (@n) — o(1). O

5.3 Lower Bound for the Boundary-Oblivious Model

Now we prove the lower bound for the boundary-oblivious model, where the layout
is required to work for any shifting s.

Theorem 4 For any fixed block size b, consider any hash table that stores n uni-
formly random keys. There exists some shifting s for which the hash table has an
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expected average successful search cost at least 1 + s, for n sufficiently large and
a=wnhY 2).

Proof Consider any input / € Z. Suppose that the hash table uses f; € F and g; on
input /. Define y (s, I) to be the number of keys in I that need at least two I/Os to
search when the shifting is s, i.e., those keys x with f7(x) # g7(x) and g} (x) =ib—s
for some integer i. Note that the average search cost on [ is at least 1 4+ y (s, I)/n,
and the expected average search cost on a random 1, is at least 1 + Ey[y (s, Iy)]/n,
which we will show to be greater than 1 + 7.

Consider any I € Zr. Since [ is bad for all f € F, it is also bad for f;. Thus
there are at least %n keys x in I with f7(x) # g;(x). For these keys, g’l (x) is defined
and there is exactly one s such that g} (x) = ib — s for some integer i. To show that
there is a shift s with large search cost on average, we sum up y (s, /) for s from O to
b — 1 and get Zf;é y(s,I) = §n. By Lemma 3, I, belongs to Zx with probability
1—0(1),so

b—1 b—1
> Euly (s, )] =Eu [Z y (s, Iu)} = (1=o()3n = <n.
s=0 s=0

By the pigeonhole principle, we must have one s such that Ey[y (s, Iu)] > 5, and
the lemma is proved. O

5.4 Lower Bound for the Block-Size-Oblivious Model

Next we give the lower bound under the block-size-oblivious model, in which the
block boundaries are always multiples of b, but the layout of the hash table is required
to work with any b. Since it is not possible to prove a lower bound of the form 1 +
£2(a/b) for all b (that would be a lower bound in the cache-aware model), instead we
show that 1 + o(«/b) is not achievable, i.e., the following is false: “Ve Ing Iby Vn >
noVb > by, the cost is at most 1 4+ €« /b.” In particular, we show that this statement is
false for € = %

Theorem 5 Consider any hash table that stores n uniformly random keys. For any
by, there exists a block size b > by on which the expected average success search cost
on n keys is at least 1 + 175, for any n sufficiently large and a = w((loglog n)~1/2).

We follow the same framework as in the proof of Theorem 4. Let p (b, I) be the
number of keys x in I with f7(x) # g;(x) and b|g (x); these keys need two I/Os
to search when the block size is b in the block-size-oblivious model. On a random
I, the expected average search cost is 1 + Ey[p(b, Iy)]/n. From here suppose we
were to continue to follow the proof of Theorem 4 and consider the summation of
Eulp(b, Iy)] over all b € {by, by + 1,...,r}. Each x contributes 1 to the summa-
tion when b = g (x), so we still have er7=b0 Eulp (b, I)] = £2(an). This, unfortu-
nately, only guarantees the existence of a b such that Ey[p (b, Iy)] is at least .Q("’r—”) or
2 (57057 )» Where the latter uses the fact that ) 7, _, 1/b = © (logr). Neither is strong
enouglgn to give us the desired lower bound. Below we show how we prove Theorem 5
by restricting b to the primes and a much more careful analysis.
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Lemma 5 Let Py be the set of all primes that are smaller than k, and let P = P, — Py,
be the set of all primes that are in the range [by, r). For o = w((log logn)*l/z), we
have

Ey [Z o(b, 1..)} =Y Eu[p®. I)]> (1 - 0(1))%” loglogr,

beP beP

asn— oQ.

Note that Lemma 5 implies that there must be a b € P such that E[p (b, I)] >
%n, proving Theorem 5, since otherwise we would have

1
Y Elpt. ] =n Yy 5=

beP beP

n(loglogr + O(1)).

:I52

Here we use the following approximation for the prime harmonic series [24]:

1
Z 5= loglogr 4+ O(1).
beP,

Thus ) ;. p Elp(b, In)] < 5n(loglogr + O(1)), contradicting Lemma 5.
In the rest of this subsection we prove Lemma 5. We need the following fact from
number theory. Let w(s) denote the number of distinct prime factors of s.

Lemma 6 [24] Let £(r) — oco. Then
I <r:|u@) —loglogr| > £(r)y/loglogr}| = 0(#)
r

Proof of Lemma 5 By Lemma 3 we know that I, belongs to Zx with probability
1 —o(1), so it suffices to prove that for any I € Zr,

Zp(b N> (1 —0(1))—nloglogr
beP

Consider any I € Zr. Let G be the set of distinct g (x)’s for the keys x € I.
Let pp(s) be the number of distinct prime factors of s that are in P. By definition
WPy, () is the number of distinct prime factors of s that are in Py, and it follows that
nis)=nun Py, (s) + np(s). Note that p(b, I) is at least the number of multiples of b in
G, so we have

Do, D= up® =) ud) =Y up, . )

beP leG leG leG

Next we show that ), u(l) is large. Firstly, observe that
o
|G| > i 6)
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This is because / is bad for f7, so at least §n keys in I have fj(x) # g;(x) and thus
their g} (x)’s are defined. The g7 (x)’s for these keys must be distinct, and each g/ (x)
is either g;(x) or g7 (x) + 1, so there are at least %n distinct g’I (x)’s for the keys in 1.

(loglog /4
Ja

Secondly, by choosing &(r) = in Lemma 6 we get:

1
=m0 2 (1= gy oo

ar
=0 ——).
<«/10glogr>

1 : . : ar _ an (%
w( Jioaloen ) which implies Jloglorr — avioghoer — o(gn) and

m =o0(1), it holds that for at least |G| — 0(1)%11 distinct [ € G,

Since we require o =

u(l) > (1 - 0(1)) loglogr. @)
By inequalities (6) and (7), we have
Y wy> (1 —o(l))%nloglogr. ®)
leG

It remains to upper bound } ;. i p,, (). Note that for any b € Py, the number of
integers in [r] that are divisible by b is at most /b, so each b will be counted at most
r/btimesin )", 4 WPy, (). Hence,

Zupbo (= Y r/b=r(logloghy + O(1)).

leG beP;,O

we have

321log log by \/ 161oglog by

Therefore, as long as « > \/ Toglogn Toglogn o *

2
loglogby < l loglog E,
16 o

SO
o
Zupho () < 1 nloglogr + O(r)
leG
o
= (1 +0(1))Enloglogr. O]
Finally, combining (5), (9), and (8) completes the proof. Il

5.5 Lower Bounds on Updates
Our lower bounds in this paper are concerned with the query cost only. How about

updates? The blocked probing algorithm in Sect. 4 has an amortized update cost of
14 O(1/b) I/Os, but can we improve it to o(1) I/Os, possibly by buffering the updates
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in internal memory and write them to external memory in batches? A recent result by
Wei et al. [27] has eliminated this possibility by proving a 1 — 1/2%® lower bound
(in the cache-aware model) on the amortized update cost if the successful query cost
istobet, =1+1/ 252() Even more recently, Verbin and Zhang proved [25] that if
tg is 0(1ogy e, 1) for both successful and unsuccessful queries, then the amortized
update cost has to be at least 0.99 1/0. These results show that for external hashing,
buffering is essentially useless and modifying the hash table on disk directly is the
only way to perform updates.

6 Open Problems

An interesting open question is, although we have proved a matching lower bound in
the cache-oblivious model, we do not yet know if 7, = 1 4 1/22® is optimal in the
cache-aware model (or in the cache-oblivious model with the two more conditions).
It is known that we can achieve 7, =1 (namely, perfect hashing) with an internal
memory of size m = ®(n/b) [11, 16, 18]. On the other hand, external linear probing
and blocked probing achieve 7, =1+ 1 /2%2®) with only m = © (b). There seems to
be a tradeoff between m and ¢, but this tradeoff is yet to be understood.
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