
Algorithmica (2014) 69:864–883
DOI 10.1007/s00453-013-9763-6

Cache-Oblivious Hashing

Rasmus Pagh · Zhewei Wei · Ke Yi · Qin Zhang

Received: 18 May 2011 / Accepted: 27 February 2013 / Published online: 8 March 2013
© Springer Science+Business Media New York 2013

Abstract The hash table, especially its external memory version, is one of the most
important index structures in large databases. Assuming a truly random hash function,
it is known that in a standard external hash table with block size b, searching for a
particular key only takes expected average tq = 1+1/2Ω(b) disk accesses for any load
factor α bounded away from 1. However, such near-perfect performance is achieved
only when b is known and the hash table is particularly tuned for working with such a
blocking. In this paper we study if it is possible to build a cache-oblivious hash table
that works well with any blocking. Such a hash table will automatically perform well
across all levels of the memory hierarchy and does not need any hardware-specific
tuning, an important feature in autonomous databases.

We first show that linear probing, a classical collision resolution strategy for hash
tables, can be easily made cache-oblivious but it only achieves tq = 1 +Θ(α/b) even

A preliminary version of this paper was presented at the ACM Symposium on Principles of Database
Systems, 2010.
The work of Rasmus Pagh was supported by the Danish National Research Foundation, as part of the
project “Scalable Query Evaluation for Reliable Databases”. Most of the work was done while
Z. Wei and Q. Zhang were Ph.D. students at the Hong Kong University of Science and Technology.

R. Pagh
IT University of Copenhagen, Copenhagen, Denmark
e-mail: pagh@itu.dk

Z. Wei
Department of Computer Science, MADALGO (Center for Massive Data Algorithmics—A Center of
the Danish National Research Foundation), Aarhus University, Aarhus, Denmark

K. Yi (�)
Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
e-mail: yike@cse.ust.hk

Q. Zhang
Indiana University Bloomington, Bloomington, IN, USA

mailto:pagh@itu.dk
mailto:yike@cse.ust.hk

Algorithmica (2014) 69:864–883 865

if a truly random hash function is used. Then we demonstrate that the block probing
algorithm (Pagh et al. in SIAM Rev. 53(3):547–558, 2011) achieves tq = 1+1/2Ω(b),
thus matching the cache-aware bound, if the following two conditions hold: (a) b is a
power of 2; and (b) every block starts at a memory address divisible by b. Note that
the two conditions hold on a real machine, although they are not stated in the cache-
oblivious model. Interestingly, we also show that neither condition is dispensable: if
either of them is removed, the best obtainable bound is tq = 1 + O(α/b), which is
exactly what linear probing achieves.

Keywords Cache-oblivious algorithms · Hashing

1 Introduction

The hash table is one of the most fundamental index structures in databases. It stores
a set of n keys from a universe [u] in linear space, while allowing us to search for
any particular key efficiently. It is also one of the simplest data structures: Let h :
[u] → [r] be a hash function. The table has size r ≥ n and we simply store key
x in position h(x). If that position already contains some other key, one can use
various collision resolution strategies, among which chaining and linear probing are
the most common ones. In chaining, we simply store all keys that are mapped to
the same position in a list associated with that position. In linear probing, if position
h(x) is already occupied when x is being inserted, we successively probe positions
h(x),h(x) + 1, . . . , r − 1,0,1, . . . , h(x) − 1 until an empty position is found and we
will put x there. To perform a search on x, we follow the same probing sequence,
until x is found or an empty position is encountered, in which case we know that x is
not stored in the table. It is known that linear probing generally outperforms chaining
in practice due to its sequential access pattern, provided that the load factor α = n/r

is not too close to 1.
The mathematical analysis of hashing is usually considered as the birth of analysis

of algorithms [14], and it is still attracting a lot of attention nowadays. Most analyses
on hashing assume h to be a truly random function, i.e., each h(x) is independently
uniformly distributed on [r]. Under such an assumption, Knuth [14] showed that the
expected average number of probes during a search using linear probing is (averaged
over all keys):

Cn ≈ 1

2

(
1 + 1

1 − α

)
(successful search);

C′
n ≈ 1

2

(
1 +

(
1

1 − α

)2)
(unsuccessful search).

Thus, for a typical load factor α = 0.7, we expect to make 2.17 probes if the searched
key is in the table, and 6.05 probes if it is not.

In large databases, the hash table is usually stored in external memory, and data
is accessed in terms of blocks. In this setting, we care about the number of blocks
accessed (I/Os) when performing a search. The number of I/Os is clearly at most

866 Algorithmica (2014) 69:864–883

the number of probes, but such a naive analysis is too pessimistic. Interestingly,
Knuth [14] showed that the external version of linear probing has a search cost of
1+1/2Ω(b) I/Os (for both successful and unsuccessful searches), where b is the block
size. Here and further we assume that the load factor α is bounded away from 1. In the
external version of linear probing, the table consists of r/b blocks, and correspond-
ingly we use a hash function h : [u] → [r/b]. To do a search on x, we successively
access blocks h(x),h(x) + 1, . . . until x is found or a non-full block is encountered.
The intuitive explanation for this extremely close-to-one I/O cost is that since a block
has size b, we will not have a collision unless more than b keys are hashed into this
block, which happens with probability exponentially small in b. Knuth [14] actually
derived the constant in the big-Omega, showing that for reasonably large b (larger
than 10), the number of I/Os is very close to 1, much smaller than the number of
probes. Meanwhile, a natural external version of chaining also achieves the same
bound. These results basically have explained why hash tables work so well in exter-
nal memory.

These classical analyses assumed a simple two-level memory model [2], where
the (sufficiently large) external memory is partitioned into blocks of size b and are
fetched into the internal memory of size m as they are probed. Here both sizes are
measured in terms of (logu)-bit words. Starting in the late 90’s tremendous efforts
have been devoted to the design and analysis of data structures that work well not
only in a two-level memory model, but also in a memory hierarchy that consists of
any number of levels, where each level has a different capacity m and block size b.
Among them, the most successful approach is the cache-oblivious model [10] due to
its elegance and simplicity. This model actually only features two levels of memory:
a data structure is laid out in external memory and accessed in exactly the same
way as in the standard two-level model, but the additional requirement is that the
structure is unaware of the block size b, or equivalently, the structure is laid out in
external memory in a way that works for all block sizes.1 Thus a cache-oblivious
data structure automatically works in a memory hierarchy. More precisely, if we can
show that the cost of some operation on a cache-oblivious structure is f (n, b) I/Os
in the two-level model, then the number of block transfers will always be f (n, b)

between any two levels in a memory hierarchy with multiple levels, where the b

simply becomes the block size of that corresponding level. Another major benefit of
cache-oblivious algorithms and data structures is that they achieve their guaranteed
performance without any hardware-specific tuning. This is particularly important in
autonomous databases, and is in fact the main motivation of the recent efforts in
bringing cache-oblivious techniques to databases, such as EaseDB [12].

Note that the external versions of linear probing and chaining mentioned above
only work for a single b, so they are not cache-oblivious. In this paper, we investigate
whether it is possible to lay out a hash table such that its search cost matches its
cache-aware version, i.e., 1 + 1/2Ω(b) I/Os, for all block sizes b.

1Strictly speaking the structure should be unaware of both m and b. But for most data structure problems
the operations on the structure are always oblivious to m, so we only need to require that the layout works
for all b.

Algorithmica (2014) 69:864–883 867

Our Results A straightforward way of making the hash table cache-oblivious is to
simply use linear probing but ignoring the blocking altogether.2 One would expect
it to work well irrespective of the block size since it uses only sequential probes.
However, in Sect. 3 we show that its search cost is 1 + O(α/b) I/Os even assuming a
truly random hash function. In fact, we also derive the constant in the big-Oh, which
depends on Cn and C′

n. This result was first stated by Qi and Martel [22], but we
give a complete proof in Sect. 3. This is worse than its cache-aware version that is
particularly tuned to work with a single b. The gap is in some sense exponential, if
we are concerned with the fraction of keys that cannot be found with a single I/O
(note that an average search cost of tq = 1 + ε means that at most a fraction of ε keys
need two or more I/Os).

Next, we explore other collision resolution strategies to see if they work better in
the cache-oblivious model. In Sect. 4, we show that the blocked probing algorithm
[21] achieves the desired 1 + 1/2Ω(b) search cost, but under the following two condi-
tions: (a) b is a power of 2; and (b) every block starts at a memory address divisible
by b. In addition, we have analyzed the performance of blocked probing when the
hash function has limited independence: We show that with a k-wise independent
hash function, the expected I/O cost of a search is 1 + O((k−1

e2/3(1−α)2b
)(k−1)/2). Since

a k-wise independent hash function is also k′-wise independent for all k′ ≤ k, as long
as k ≥ (1 − α)2b + 1, the bound becomes 1 + 2−Ω((1−α)2b) = 1 + 2−Ω(b), matching
that of a truly random hash function.

Note that neither of the two conditions above is stated in the cache-oblivious
model, but they indeed hold on all real machines. This raises the theoretical ques-
tion of whether 1 + 1/2Ω(b) is achievable in the “true” cache-oblivious model. In
Sect. 5, we show that neither condition is dispensable. Specifically, we prove that if
the hash table is only required to work for a single b but an arbitrary shift of the
layout, or if (b) holds but the hash table is required to work for all b, then the best ob-
tainable search cost is 1 + O(α/b) I/Os, which exactly matches what linear probing
achieves. Our lower bound model allows a truly random hash function to be used and
puts no restrictions on the structure of the hash table, except that each key is treated
as an atomic element, known as the indivisibility assumption.

Related Results Hashing is perhaps one of the most studied problems in computer
science. Most work on hashing assumes a truly random function. Since such a func-
tion requires a large space to describe, there are also a lot of work on hashing us-
ing explicit and efficient hash functions [6, 21]. Meanwhile, although most work fo-
cuses on the expected search cost, there are also hashing schemes that guarantee good
worst-case search costs [9, 20]. Hashing has been well studied in the external mem-
ory model. The 1 + 1/2Ω(b) search cost holds as long as the load factor α is bounded
away from 1 [14], and there are various techniques in the database literature to keep
the load factor in a desired range, such as extensible hashing [8] or linear hashing
[17]. Jensen and Pagh [13] designed a hashing scheme that has α = 1 − O(1/

√
b)

while supporting searches with 1 + O(1/
√

b) I/Os. In all these hashing schemes a

2Chaining would perform worse cache-obliviously because the list associated with each position is not
laid out consecutively.

868 Algorithmica (2014) 69:864–883

small faction of the keys still need two or more disk accesses to retrieve. There are
other schemes that guarantee a single I/O to retrieve any key [11, 16], but they all
need the internal memory to have size m = Θ(n/b). Note that those hashing schemes
achieving tq = 1 + ε only need the internal memory to store a constant number of
blocks.

The cache-oblivious model was proposed by Frigo et al. [10], which introduces
a clean and elegant way to modelling memory hierarchies. Previous approaches at-
tempted to model a memory hierarchy directly, but did not have much success due to
the complicated models. Since then, cache-oblivious algorithms and data structures
have received a lot of attention, and most fundamental problems have been solved.
For example, cache-oblivious sorting takes O(n

b
logm/b

n
b
) I/Os [10], and a cache-

oblivious B-tree takes O(logb n) I/Os for a search [3]. Please see the survey [7] for
other results. In most cases, the cache-oblivious bounds match their cache-aware ver-
sions, and it has always be an interesting problem to see for what problems do we
have a separation between the cache-oblivious model and the cache-aware model.
Until today there have been only three separation results [1, 4, 5]; our lower bound
adds to that list, furthering our understanding of cache-obliviousness.

2 Preliminaries

Let [x] def= {0,1, . . . , x − 1}. Throughout this paper S denotes a subset of the universe

U = [u], and h will denote a hash function from U to R
def= [r]. We denote the ele-

ments of S by {x1, x2, . . . , xn}, and refer to the elements of S as keys. We let n
def= |S|

and α
def= n/r .

The classic results assume that the hash function h distributes each key x inde-
pendently uniformly on R. Such a function is called a truly random function. This
assumption is unrealistic, since to simply store a truly random hash function requires
u log r bits. To bridge the gap between hashing algorithms and their analysis, Carter
and Wegman introduced universal hashing [6]. A family H of functions from U to
R is k-wise independent if for any k distinct elements x1, . . . , xk ∈ U and h chosen
uniformly at random from H, the random variables h(x1), . . . , h(xk) are independent.
We refer to the variable

ᾱ
def= n max

x∈U,ρ∈R
Pr

h∈H

[
h(x) = ρ

]

as the maximum load of H. If H distributes hash function values of all elements
of U uniformly on R, we will have ᾱ = α, and in general ᾱ ≥ α. We assume that
all families used in this paper are uniform so we do not distinguish ᾱ from α. For
non-uniform families, all results in this paper hold if we substitute α with ᾱ.

Carter and Wegman [26] exhibited the following family of k-wise independent
hash functions where U = [p], R = [r], and p is a prime:

Hk = {
h : h(x) = ((

ak−1x
k−1 + · · · + a0

)
mod p

)
mod r, aj ∈ [p]}.

This could be easily verified: observe that the family of degree k − 1 polynomials in
the finite field Zp is k-wise independent; to obtain a smaller range R = [r] we may

Algorithmica (2014) 69:864–883 869

map integers in [p] down to [r] by a modulo r operation. This operation preserves
independence, only making the family (slightly) non-uniform. Specifically, the max-
imum load ᾱ for this family is in the range [α, (1 + r/p)α]. By choosing p much
larger than r we can make ᾱ arbitrarily close to α.

3 Analysis of Linear Probing in the Cache-Oblivious Model

Linear probing while ignoring the blocking is naturally cache-oblivious. In this sec-
tion we analyze its search I/O cost, which turns out to delicately depend on Cn and
C′

n, the expected average number of probes in a successful and unsuccessful search,
respectively. Note that the equalities in the theorem below are exact, though we only
know the asymptotic formulas for Cn and C′

n.

Theorem 1 Suppose the linear probing algorithm uses a truly random hash func-
tion h. Let COn and CO ′

n denote the expected average number of I/Os for a success-
ful and an unsuccessful search, respectively. For any block size b, we have

COn = 1 + (Cn − 1)/b;
CO ′

n = 1 + (
C′

n − 1
)
/b.

Proof Let r be the size of the hash table, which is divided into r/b blocks
B0, . . . ,Br/b−1 (assuming that r is a multiple of b for simplicity). The block Bl spans
positions lb, lb + 1, . . . , lb + b − 1. Consider an unsuccessful search for a key x.
Define p(i, j), i 	= j , to be the event that the hash table has positions i through j

occupied (wrapping around when necessary). Note that the number of occupied posi-
tions is n, so p(i, j) = 0 for any j /∈ {i, i + 1, . . . , i + n − 1} (wrapping around when
necessary). By the circular symmetry of linear probing and the uniform hash function
assumption, p(0, k) is exactly the probability that an unsuccessful search for a key x

takes at least k + 2 probes. Thus we have:

C′
n = 1 +

n−1∑
k=0

p(0, k). (1)

Let pk be the probability that an unsuccessful search takes at least k + 1 I/Os.
Below we will relate pk with the p(0, k)’s. By the uniformity of the hash function h,
we assume that h(x) lies in the first block. Note that for a insertion to cost at least
k + 1 I/Os, positions h(x) through kb − 1 must be occupied. Since h(x) hits position
0 through b − 1 with same probability, we have

pk = 1

b

b−1∑
i=0

p(i, kb − 1)

= 1

b

b−1∑
i=0

p(0, kb − i − 1) (Since h is a truly random function.)

870 Algorithmica (2014) 69:864–883

Now we can compute CO ′
n as follows:

CO ′
n = 1 +

n/b∑
k=1

pk

= 1 +
n/b∑
k=1

1

b

b−1∑
i=0

p(0, kb − i − 1)

= 1 + 1

b

n−1∑
j=0

p(0, j).

Plugging in (1) to the equation and we have

CO ′
n = 1 − 1

b
+ 1

b

(
1 +

n−1∑
j=0

p(0, j)

)

= 1 − 1

b
+ C′

n

b
.

For the successful query cost COn, we relate it with CO ′
k and C′

k , the expected av-
erage number of I/Os and probes respectively of an unsuccessful search on a table of
size k for k = 0, . . . , n − 1, using the same transformation in [14]:

COn = 1

n

n−1∑
k=0

CO ′
k = 1 − 1

b
+

∑n−1
k=0 C′

k

nb
= 1 − 1

b
+ Cn

b
.

�

Combing with Knuth’s result that Cn ≈ 1
2 (1 + 1

1−α
) and C′

n ≈ 1
2 (1 + (1

1−α
)2), we

conclude that the I/O cost of directly applying linear probing in the cache-oblivious
model is 1 + Θ(α/b), which is a lot worse than its the external version that is aware
of the blocking.

4 Blocked Probing

Standard linear probing maintains the invariant that each key x is placed as close as
possible to position h(x) in the probe sequence. Blocked probing is a variant of linear
probing proposed by Pagh et al. [21], who used it to derive optimal performance (as a
function of α) assuming only 5-wise independent hash functions. In this section, we
demonstrate that blocked probing also achieves the desired 1 + 2−Ω(b) I/O bound in
the cache-oblivious model, under the assumptions that the block size b is a power of
2 and the memory blocks are b-aligned.

4.1 Algorithm Description

Let [r] = {0,1, . . . , r − 1} denote the hash table, where r is a power of two. It is also
assumed that r is fixed, i.e., there is no notion of dynamically adjusting the capacity

Algorithmica (2014) 69:864–883 871

of the hash table; at the end of this section we sketch how to handle the general
case. Suppose that the key x is stored in location ix , we define the distance measure
d(x, ix) to be the position of the most significant bit in which h(x) and ix differ (the
least significant bit is said to be at position 1), and d(x, ix) = 0 in case ix = h(x).
Let I (x, j) = {i | d(x, i) ≤ j}. Note that I (x, j) is the aligned block of size 2j that
contains h(x). The invariant of blocked probing is that each key is stored as close
as possible to h(x) in the sense that ix ∈ I (x, j) if there is sufficient space, i.e., if
the number of keys with hash values in I (x, j) is at most |I (x, j)| = 2j . Below we
describe the operations of blocked probing.

When inserting a key x, the invariant is maintained by searching, for j =
0,1,2, . . . , for a location i ∈ I (x, j) where x could be placed. For each j , we first
check if there is an empty location in I (x, j) and put x there if there is one. Other-
wise, we look for a location ix′ ∈ I (x, j) that contains a key x′ with d(x′, ix′) > j

(implying that h(x′) 	∈ I (x, j)). If there is such an x′, we swap x and x′, and continue
the insertion process with x′. If both attempts fail, we move on to the next j .

A search for x proceeds by inspecting, for j = 0,1,2, . . . , the locations of I (x, j)

until either x is found, or we do not find x but find instead an empty location or a key
x′ with d(x′, ix′) > j . In the latter cases, the invariant tells us that x is not present in
the hash table.

Deletion of a key x ∈ I (x, j)\I (x, j − 1) needs to check if there is a key stored in
I (x, j + 1)\I (x, j) that could be stored in I (x, j)—if this is the case it is copied to
the empty location, and the old copy is deleted recursively.

4.2 Cache-Oblivious Analysis of Blocked Probing

We assume the block size b is a power of two, and the i-th block Bi starts at position
ib and ends at position ib + b − 1. Then for any key x, the aligned block I (x, logb)

is the block that contains h(x). Let S denote the set of keys involved in a given
operation (insertion, deletion, successful or unsuccessful search), including the key x

specified by the query or update (x may or may not be in the hash table). To bound the
expected I/O cost for an operation, define event Es(x, j) as the aligned block I (x, j)

being saturated, that is, the number of keys in S with hash value in the aligned block
I (x, j) is 2j or more. Let p(x, j) denote the probability that Es(x, j) happens. The
following lemma relates p(x, j) with Cbp , the expected I/O cost for an operation of
blocked probing.

Lemma 1 Suppose function h is drawn from a pairwise independent hash family H,
then

Cbp ≤ 1 +
log r∑

j=1+logb

2j+2

b
p(x, j).

Proof We first note that the cost of a search for key x is bounded by that of an
insertion of x, so we only need to consider insertions and deletions. Let Ef (x, j)

denote the event that the aligned block I (x, j) is full, that is, the number of keys
stored in I (x, j) is 2j . Let q(x, j) denote the probability that Ef (x, j) happens.

872 Algorithmica (2014) 69:864–883

Observe that an insertion or a deletion would visit a location outside I (x, j) only
if all positions of I (x, j) are occupied, so the probability that the operation takes at
least 2j /b I/Os is q(x, j), for j ≥ logb. To compute the expected number of blocks
involved in an operation, in addition to the first I/O that retrieves I (x, logb), we first
bound the sum of the probabilities that the operation takes at least i I/Os, for i from
2j /b to 2j+1/b − 1 for a fixed integer j ≥ logb:

i=2j+1/b−1∑
i=2j /b

Pr[Operation takes at least i I/Os] ≤
i=2j+1/b−1∑

i=2j /b

q(x, j) = 2j

b
q(x, j).

Summing over all possible values of j > logb and we have

Cbp = 1 +
∞∑

j=logb

i=2j+1/b−1∑
i=2j /b

Pr[Operation takes at least i I/Os]

≤ 1 +
∞∑

j=1+logb

2j

b
q(x, j). (2)

Next we will relate q(x, j), the probability that I (x, j) is full, with p(x, j), the prob-
ability that I (x, j) is saturated. Divide the hash table r into log(r/2b) + 1 aligned
blocks:

I = {
I (x, j),I (x, j + 1)\ I (x,j),I (x,j +2)\ I (x, j +1), . . . , I (x, r)\ I (x, r/2)

}
.

The claim is that if I (x, j) is full, then at least one of the aligned blocks in I is sat-
urated. For a proof, assume that no aligned block in I is saturated. We inductively
prove that each aligned block in I only stores keys with hash values inside it, which
immediately implies that I (x, j) is non-full, and thus leads to a contradiction. For
the first insertion the statement is true. Now suppose the statement is true after the
k-th insertion. When the (k + 1)-th insertion yk+1 comes, let I (x, l + 1) \ I (x, l)

denote the aligned block in I that contains h(yk+1). By the inductive hypothe-
sis, I (x, l + 1) \ I (x, l) only contains the keys with hash values in it, and since
I (x, l + 1) \ I (x, l) is not saturated we know that I (x, l + 1) \ I (x, l) is non-full.
Therefore the key yk+1 is stored in an empty position of I (x, l + 1) \ I (x, l), and the
induction follows.

Observe that since the hash function h is drawn from a pairwise independent fam-
ily and the fact that I (x, l+1)\I (x, l) and I (x, l) are of the same size, the probability
that the I (x, l + 1) \ I (x, l) is saturated is the same as the probability that I (x, l) is
saturated, that is, p(x, l). By a union bound we have the following inequality:

q(x, j) ≤ p(x, j) +
log r∑
l=j

p(x, l). (3)

Algorithmica (2014) 69:864–883 873

Combining (2) and (3) we have

Cbp ≤ 1 +
log r∑

j=1+logb

2j

b
q(x, j)

≤ 1 +
log r∑

j=1+logb

2j

b

(
p(x, j) +

log r∑
l=j

p(x, l)

)

= 1 +
log r∑

j=1+logb

1

b

(
2j +

j∑
l=1+log r

2l

)
p(x, j)

≤ 1 +
log r∑

j=1+logb

2j+2

b
p(x, j).

�

For a truly random hash function, p(x, j) can bounded using the Chernoff bound:
The probability that a key is hashed to I (x, j) is 2j /r , so the expected number of
keys hashed to I (x, j) is n2j /r = α2j . Recall that p(x, j) is the probability that the
number of keys hashed to I (x, j) is 2j or more, by the Chernoff bound, p(x, j) ≤
2−(1−α)2 2j−1

. Following Lemma 1, we have

Cbp ≤ 1 +
log r∑

j=1+logb

2j+2p(x, j)

= 1 +
log r∑

j=1+logb

(
2j+2/b

)
2−(1−α)2 2j−1

≤ 1 + 2−Ω((1−α)2 b).

That h is a truly random hash function is an unrealistic assumption. To analyze
blocked probing with limited independence, we need the following variant of the
Chernoff bound by Schmidt et al. [23]:

Lemma 2 [23] Let X1, . . . ,Xn be a sequence of k-wise independent random vari-
ables, that satisfy |Xi − E[Xi]| ≤ 1. Let X = ∑n

i=1 Xi with E[X] = μ, and let δ2[X]
denote the variance of X, so that δ2[X] = ∑n

i=1 δ2[Xi] (this equation holds provided
k ≥ 2). Then for any even k and C ≥ max{k, δ2[X]},

Pr[|X − μ| ≥ T] ≤
(

kC

e2/3T 2

)k/2

.

Lemmas 1 and 2 together will lead to the following result:

Theorem 2 Consider a blocked probing hash table in the cache-oblivious model
where the block size b is power of 2 and every block starts at a memory address

874 Algorithmica (2014) 69:864–883

divisible by b. Suppose the hash table has a fixed size r and the hash function h is
chosen uniformly at random from a k-wise independent hash family for odd k ≥ 5.
For any sequence of operations (insertions, deletions, and lookups), let α denote the
load factor of the hash table during a particular operation. Then the expected number
of I/Os for that operation is

Cbp = 1 + O

((
k − 1

e2/3(1 − α)2b

)(k−1)/2)
.

Proof Consider an operation on key x. We need to bound p(x, j), the probabil-
ity that the aligned block I (x, j) is saturated, for j ≥ logb. Let Xi denote the
random variable indicating that the i-th key has hash value in I (x, j). Note that
X1, . . . ,Xn are (k − 1)-wise independent, and for each Xi we have E[Xi] = 2j /r

and δ2[Xi] = 2j /r(1−2j /r) ≤ 2j /r . It follows that E[X] = ∑n
i=1 E[Xi] = 2j n/r =

α2j and δ2[X] = ∑n
i=1 δ2[Xi] ≤ 2j n/r = α2j . Setting μ = α2j , T = (1 − α)2j ,

C = 2j ≥ max{k, δ2[X]} in Lemma 2, we derive a bound on p(x, j):

p(x, j) = Pr
[
X − α2j ≥ (1 − α)2j

] ≤
(

k − 1

e2/3(1 − α)22j

)(k−1)/2

. (4)

Plugging (4) into Lemma 1:

Cbp ≤ 1 +
log r∑

j=1+logb

(
2j+2/b

)
p(x, j)

≤ 1 +
log r∑

j=1+logb

2j+2

b
·
(

k − 1

e2/3(1 − α)22j

)(k−1)/2

≤ 1 + O

((
k − 1

e2/3(1 − α)2b

)(k−1)/2)
.

The last inequality uses that fact that the terms in the sum are geometrically decreas-
ing when k ≥ 5, and hence the sum is dominated by the first term. �

Remark Since a k-wise independent hash function is also k′-wise independent for all
k′ ≥ k, the bound in Theorem 2 is actually 1 + O(min5≤k′≤k(

k′−1
e2/3(1−α)2b

)(k
′−1)/2).

Theorem 2 immediately leads to the following corollaries.

5-Wise Independence The minimum independence allowed in Theorem 2 is 5. In
this case

Cbp = 1 + O

(
1

b2

)
.

Note that the dependence on the block size b is asymptotically better than 1+Θ(1/b).

Algorithmica (2014) 69:864–883 875

Ω(b)-Wise Independence To achieve the same bound as that of the truly random
hash function, it suffices to have k ≥ k′ = (1 − α)2b + 1. By Theorem 2, it follows
that

Cbp = 1 + O

((
k′ − 1

e2/3(1 − α)2b

)(k′−1)/2)

= 1 + O
((

e2/3)−(1−α)2b/2)
≤ 1 + 2−Ω((1−α)2b).

4.3 Cache-Oblivious Dynamic Hash Tables

The standard doubling/halving strategy can be used to maintain the load factor α in
the range 1/2 − ε/2 ≤ α ≤ 1 − ε as we insert and delete keys in the hash table where
ε > 0 is any small constant. In such a range the expected I/O cost per operation is
1 + 1/2Ω(b) I/Os using the blocked probing scheme described above. In particular,
we always use a hash table of size r that is a power of 2. Let g : [u] → [u] be a
“mother” hash function. When the table’s size is r , we take the log r least significant
bits of g(x) as h(x). When α = n/r goes beyond the range [1/2 − ε/2,1 − ε] we
double or halve r accordingly. This can be done in a simple scan of the hash table
in amortized O(1/b) I/Os per key, by simply inserting keys in the order they occur
in the table. The analysis uses the fact that the keys to be inserted in a block in the
resized hash table are (w.h.p.) in at most two blocks in the original hash table. We
omit the rather standard analysis.

However, the above solution has a poor space utilization. A number of methods
have been proposed that maintain a higher load factor, and also allow the rehashing to
be done incrementally; see [15] for an overview. To our best knowledge these meth-
ods are all cache-aware—however, we now describe how they can be made cache-
oblivious while maintaining the load factor of α = 1 − Θ(ε). Suppose initially r is a
power of 2 and n > (1 − 2ε)r . Adjust ε so that εr is also a power of 2; this will not
change ε by more than a factor of 2. The idea is to split the hash table into 1/ε parts
using hashing (say, by looking at the first log(1/ε) bits of the mother hash function),
where each part is handled by a cache-oblivious hash table of size εr which stores
at most (1 − ε)εr keys. As n changes, the number of parts also changes to maintain
the overall load factor at α = 1 − Θ(ε). Now this situation is analogous to a standard
cache-aware hash table with “block size” being equal to (1 − ε)εr , and parts corre-
sponding to blocks. So we may use any cache-aware method that resizes a standard
hash table, such as linear hashing [17]. These resizing techniques will split or merge
parts as needed, and cost is O(1/b) I/Os per insertion/deletion amortized. When r

doubles or halves, we rebuild the entire hash table using a new part size εr . The
cache-aware resizing techniques ensures that only 1 + 1/2Ω(b′) parts are accessed
upon a query in expectation, where b′ is the part size b′ = (1 − ε)εr . Within each
part, our cache-oblivious scheme accesses 1 + 1/2Ω(b) blocks. So as long as r � b,
the overall query cost is still 1 + 1/2Ω(b) I/Os, as desired.

In summary, we can dynamically update our cache-oblivious hash table while
maintaining a high load factor. The additional resizing cost is only O(1/b) I/Os amor-
tized.

876 Algorithmica (2014) 69:864–883

Theorem 3 In the cache-oblivious model where the block size b is a power of 2 and
every block starts at a memory address divisible by b, there is a dynamic hash table
that supports queries in expected average tq = 1 + 1/2Ω(b) I/Os, and insertions and
deletions of keys in expected amortized 1 + O(1/b) I/Os. The load factor can be
maintained at α ≥ 1 − ε for any constant ε > 0.

Remark If a k-wise independent hash family is used, the bound on tq in the above
theorem will be replaced by the bound in Theorem 2.

5 Lower Bounds

In this section, we show that the two conditions that the analysis of blocked probing
depends upon are both necessary to achieve a 1 + 1/2Ω(b) search cost. Specifically,
we prove that when either condition is removed, the best obtainable bound for the
expected average cost of a successful search is 1 + O(α/b) I/Os. The lower bound
proofs allow α to be asymptotically small, so it means that we cannot hope to do a
lot better even with super-linear space.

5.1 The Model

Before we present the exact lower bound statements let us first be more precise about
our model. Let U = [u] be the universe. The hard input we consider here is a random
input in which each key is drawn from U uniformly and independently. Let Iu be such
a random input, and I be the set of all inputs. We will bound from below the expected
average cost of a successful search on Iu where the average is taken over all keys
in Iu. We will only consider deterministic hash tables; the lower bounds also hold
for randomized hash tables by invoking Yao’s minimax principle [19] because we are
using a random input. The hash table can employ any hash functions to distribute the
input. We assume u > n3, then with probability 1 −O(1/n) all keys in Iu are distinct
by the birthday paradox.

We assume that all the n keys are stored in a table of size r on external memory,3

possibly with duplication. We model the search algorithm by two functions f,g :
[u] → [r]. For any x ∈ [u], f (x) is the position where the algorithm makes its first
probe, while g(x) is the position of the last probe, where key x (or one of its copies)
must be located. Note that the internal memory must be able to hold the description
of f , thus any deterministic hash table can employ a family F of at most 2m logu such
functions. Although the particular f used by the hash table of course can depend on
the input Iu, the family F has to be fixed in advance. We do not have any restrictions
on g, as it is possible for the search algorithm to evaluate g after accessing external
memory, except that all g(x)’s are distinct for the n keys.

The table is partitioned into blocks of size b. For any x such that f (x) 	= g(x),
define g′(x) to be g(x) if f (x) < g(x) and g(x) + 1 if f (x) > g(x). Then if g′(x)

is the first position of a block, at least two blocks must have been accessed, though

3Here we do not allow keys to be stored in internal memory: since the memory holds at most m keys, it
does not affect the average search cost as long as n is sufficiently larger than m.

Algorithmica (2014) 69:864–883 877

Fig. 1 When two I/Os are needed

the reverse is not necessarily true; please refer to Fig. 1. For lower bound purposes
we will assume optimistically that the search for x needs two I/Os if g′(x) is the first
position of a block, and one I/O otherwise. Note that after this abstraction, the search
cost is completely characterized by the functions f,g and the blocking.

We will consider the following two blocking models. In the boundary-oblivious
model, the hash table knows the block size b but not their boundaries. More precisely,
how the keys are stored in the table is allowed to depend on b, but the layout should
work for any shifting s, namely when each block spans the positions from ib − s to
(i + 1)b − s − 1 for s = 0,1, . . . , b − 1. In the block-size-oblivious model, the blocks
always start at positions that are multiples of b but the layout is required to work for
all b = 1, . . . , r . Below we will show that in either model, the best possible expected
average cost of a successful search is 1 + O(α/b) I/Os.

5.2 Good Inputs and Bad Inputs

For any I ∈ I, f ∈ F , define ηf (I) = ∑
i∈[r](|{x ∈ I | f (x) = i}| − 1). Intuitively,

ηf (I) is the number of the overflowed keys; since each position i can only hold one
key, at least ηf (I) keys in I need a second probe when the hash table uses f to
decide its first probe. We say an input I ∈ I is bad with respect to f if ηf (I) ≥
α
4 n, otherwise it is good. Let If be the set of all bad inputs with respect to f , and

IF = ⋂
f ∈F If which is the set of inputs that are bad with respect to all f ∈ F . In

our lower bounds we will actually focus only on the bad inputs IF . The following
technical lemma ensures that almost all inputs are in IF .

Lemma 3 For n > cm logu/α2 where c is some sufficiently large constant and α =
ω(n−1/2), Iu is a bad input with respect to all f ∈ F with probability 1 − o(1) as
n → ∞.

The general idea of the proof is the following: We first show that for a particular
f and a random Iu, the probability that Iu is good with respect to f is e−Ω(α2n).
Thus by a union bound, Iu is good for at least one f ∈ F with probability at most
e−Ω(α2n) · 2m logu. So as long as n is large enough, Iu will be bad with respect to all
f ∈ F with high probability.

We need the following bin-ball game, which models the way how f works on a
uniformly random input:

A Bin-Ball Game In a (n, r, �β) bin-ball game, we throw n balls into r bins inde-
pendently at random. The probability that a ball goes to the j -th bin is βj , where

878 Algorithmica (2014) 69:864–883

�β = (β0, . . . , βr−1) is a prefixed distribution. Let Z denote the number of empty bins
after n balls are thrown in.

Lemma 4 In an (n, r, �β) bin-ball game, Pr[Z ≤ r − n + α
4 n] ≤ e−Ω(α2n), where

α = n/r .

Proof Note that if �β is the uniform distribution, the problem is known as the occu-
pancy problem and the lemma can be proved using properties of martingales [19].
The same proof actually also holds for a nonuniform �β , so we just sketch it here:

Let Z0 be the expectation of Z before any ball is thrown in, and let the random
variable Zi be the expectation of Z after the i-th ball is thrown in, for i = 1, . . . , n.
Note that Zi, i ≥ 1 is a random variable, where randomness comes from the first
i balls. In particular we have Z0 = E[Z] and Zn = Z. It can be verified that the
sequence Z0,Z1, . . . ,Zn is a martingale, and that |Zi+1 − Zi | ≤ 1 for all 0 ≤ i < n.
Therefore by Azuma’s inequality, we get

Pr
[
Z ≤ E[Z] − λn1/2] ≤ 2e−λ2/2.

Note that

E[Z] =
r−1∑
i=0

(1 − βi)
n ≥ r

(
r − ∑r−1

i=0 βi

r

)n

= r

(
1 − 1

r

)n

≥ r − n + α

2
n − α

2
− (n − 1)(n − 2)

6n
α2.

Setting λ = (α
4 n − α

2 − (n−1)(n−2)
6n

α2)n−1/2 = Ω(αn1/2), we have E[Z] − λn1/2 ≥
r − n + α

4 n, hence the lemma. �

Now we are ready to prove Lemma 3.

Proof of Lemma 3 Consider a particular f : [u] → [r] and a random input Iu.
The probability that a randomly chosen key x from [u] has f (x) = i is exactly
|f −1(i)|/u. This is exactly an (n, r, �β) bin-ball game where βi = |f −1(i)|/u. Let
Z be the number of empty bins at the end of such a bin-ball game. Note that we
have ηf (I) = n − (r − Z), which, by Lemma 3, does not exceed α

4 n with probability

at most e−Ω(α2n). Since there are 2m logu different f ’s in F , by a union bound, the
probability that Iu is good for at least one f ∈ F is at most e−Ω(α2n) · 2m logu. Thus if
n > cm logu/α2 for some sufficiently large c, this probability is e−Ω(α2n) = o(1). �

5.3 Lower Bound for the Boundary-Oblivious Model

Now we prove the lower bound for the boundary-oblivious model, where the layout
is required to work for any shifting s.

Theorem 4 For any fixed block size b, consider any hash table that stores n uni-
formly random keys. There exists some shifting s for which the hash table has an

Algorithmica (2014) 69:864–883 879

expected average successful search cost at least 1 + α
5b

, for n sufficiently large and
α = ω(n−1/2).

Proof Consider any input I ∈ I . Suppose that the hash table uses fI ∈ F and gI on
input I . Define γ (s, I) to be the number of keys in I that need at least two I/Os to
search when the shifting is s, i.e., those keys x with fI (x) 	= gI (x) and g′

I (x) = ib−s

for some integer i. Note that the average search cost on I is at least 1 + γ (s, I)/n,
and the expected average search cost on a random Iu is at least 1 + Eu[γ (s, Iu)]/n,
which we will show to be greater than 1 + α

5b
.

Consider any I ∈ IF . Since I is bad for all f ∈ F , it is also bad for fI . Thus
there are at least α

4 n keys x in I with fI (x) 	= gI (x). For these keys, g′
I (x) is defined

and there is exactly one s such that g′
I (x) = ib − s for some integer i. To show that

there is a shift s with large search cost on average, we sum up γ (s, I) for s from 0 to
b − 1 and get

∑b−1
s=0 γ (s, I) ≥ α

4 n. By Lemma 3, Iu belongs to IF with probability
1 − o(1), so

b−1∑
s=0

Eu
[
γ (s, Iu)

] = Eu

[
b−1∑
s=0

γ (s, Iu)

]
≥ (

1 − o(1)
)α

4
n ≥ α

5
n.

By the pigeonhole principle, we must have one s such that Eu[γ (s, Iu)] ≥ αn
5b

, and
the lemma is proved. �

5.4 Lower Bound for the Block-Size-Oblivious Model

Next we give the lower bound under the block-size-oblivious model, in which the
block boundaries are always multiples of b, but the layout of the hash table is required
to work with any b. Since it is not possible to prove a lower bound of the form 1 +
Ω(α/b) for all b (that would be a lower bound in the cache-aware model), instead we
show that 1 + o(α/b) is not achievable, i.e., the following is false: “∀ε ∃n0 ∃b0 ∀n >

n0∀b > b0, the cost is at most 1 + εα/b.” In particular, we show that this statement is
false for ε = 1

17 .

Theorem 5 Consider any hash table that stores n uniformly random keys. For any
b0, there exists a block size b ≥ b0 on which the expected average success search cost
on n keys is at least 1 + α

17b
, for any n sufficiently large and α = ω((log logn)−1/2).

We follow the same framework as in the proof of Theorem 4. Let ρ(b, I) be the
number of keys x in I with fI (x) 	= gI (x) and b|g′

I (x); these keys need two I/Os
to search when the block size is b in the block-size-oblivious model. On a random
Iu, the expected average search cost is 1 + Eu[ρ(b, Iu)]/n. From here suppose we
were to continue to follow the proof of Theorem 4 and consider the summation of
Eu[ρ(b, Iu)] over all b ∈ {b0, b0 + 1, . . . , r}. Each x contributes 1 to the summa-
tion when b = g′

I (x), so we still have
∑r

b=b0
Eu[ρ(b, Iu)] = Ω(αn). This, unfortu-

nately, only guarantees the existence of a b such that Eu[ρ(b, Iu)] is at least Ω(αn
r

) or
Ω(αn

b log r
), where the latter uses the fact that

∑r
b=b0

1/b = Θ(log r). Neither is strong
enough to give us the desired lower bound. Below we show how we prove Theorem 5
by restricting b to the primes and a much more careful analysis.

880 Algorithmica (2014) 69:864–883

Lemma 5 Let Pk be the set of all primes that are smaller than k, and let P = Pr −Pb0

be the set of all primes that are in the range [b0, r). For α = ω((log logn)−1/2), we
have

Eu

[∑
b∈P

ρ(b, Iu)

]
=

∑
b∈P

Eu
[
ρ(b, Iu)

]
>

(
1 − o(1)

) α

16
n log log r,

as n → ∞.

Note that Lemma 5 implies that there must be a b ∈ P such that E[ρ(b, Iu)] ≥
α

17b
n, proving Theorem 5, since otherwise we would have

∑
b∈P

E
[
ρ(b, Iu)

] ≤ α

17
n

∑
b∈P

1

b
≤ α

17
n
(
log log r + O(1)

)
.

Here we use the following approximation for the prime harmonic series [24]:

∑
b∈Pr

1

b
= log log r + O(1).

Thus
∑

b∈P E[ρ(b, Iu)] ≤ α
17n(log log r + O(1)), contradicting Lemma 5.

In the rest of this subsection we prove Lemma 5. We need the following fact from
number theory. Let μ(s) denote the number of distinct prime factors of s.

Lemma 6 [24] Let ξ(r) → ∞. Then

∣∣{l ≤ r : |μ(l) − log log r| > ξ(r)
√

log log r
}∣∣ = O

(
r

ξ2(r)

)
.

Proof of Lemma 5 By Lemma 3 we know that Iu belongs to IF with probability
1 − o(1), so it suffices to prove that for any I ∈ IF ,

∑
b∈P

ρ(b, I) >
(
1 − o(1)

) α

16
n log log r.

Consider any I ∈ IF . Let G be the set of distinct g′
I (x)’s for the keys x ∈ I .

Let μP (s) be the number of distinct prime factors of s that are in P . By definition
μPb0

(s) is the number of distinct prime factors of s that are in Pb0 , and it follows that
μ(s) = μPb0

(s) + μP (s). Note that ρ(b, I) is at least the number of multiples of b in
G, so we have

∑
b∈P

ρ(b, I) ≥
∑
l∈G

μP (l) =
∑
l∈G

μ(l) −
∑
l∈G

μPb0
(l). (5)

Next we show that
∑

l∈G μ(l) is large. Firstly, observe that

|G| > α

8
n. (6)

Algorithmica (2014) 69:864–883 881

This is because I is bad for fI , so at least α
4 n keys in I have fI (x) 	= gI (x) and thus

their g′
I (x)’s are defined. The gI (x)’s for these keys must be distinct, and each g′

I (x)

is either gI (x) or gI (x)+ 1, so there are at least α
8 n distinct g′

I (x)’s for the keys in I .

Secondly, by choosing ξ(r) = (log log r)1/4√
α

in Lemma 6 we get:

∣∣∣∣
{
l ≤ r : μ(l) ≤

(
1 − 1√

α(log log r)1/4

)
log log r

}∣∣∣∣
= O

(
αr√

log log r

)
.

Since we require α = ω(1√
log logn

) which implies αr√
log log r

= αn

α
√

log log r
= o(α

8 n) and
1√

α(log log r)1/4 = o(1), it holds that for at least |G| − o(1)α
8 n distinct l ∈ G,

μ(l) >
(
1 − o(1)

)
log log r. (7)

By inequalities (6) and (7), we have

∑
l∈G

μ(l) >
(
1 − o(1)

)α

8
n log log r. (8)

It remains to upper bound
∑

l∈G μPb0
(l). Note that for any b ∈ Pb0 , the number of

integers in [r] that are divisible by b is at most r/b, so each b will be counted at most
r/b times in

∑
l∈G μPb0

(l). Hence,

∑
l∈G

μPb0
(l) ≤

∑
b∈Pb0

r/b = r
(
log logb0 + O(1)

)
.

Therefore, as long as α ≥
√

32 log logb0
log logn

>

√
16 log logb0
log logn/α

, we have

log logb0 <
α2

16
log log

n

α
,

so
∑
l∈G

μPb0
(l) <

α

16
n log log r + O(r)

= (
1 + o(1)

) α

16
n log log r. (9)

Finally, combining (5), (9), and (8) completes the proof. �

5.5 Lower Bounds on Updates

Our lower bounds in this paper are concerned with the query cost only. How about
updates? The blocked probing algorithm in Sect. 4 has an amortized update cost of
1+O(1/b) I/Os, but can we improve it to o(1) I/Os, possibly by buffering the updates

882 Algorithmica (2014) 69:864–883

in internal memory and write them to external memory in batches? A recent result by
Wei et al. [27] has eliminated this possibility by proving a 1 − 1/2Ω(b) lower bound
(in the cache-aware model) on the amortized update cost if the successful query cost
is to be tq = 1 + 1/2Ω(b). Even more recently, Verbin and Zhang proved [25] that if
tq is o(logb logn n) for both successful and unsuccessful queries, then the amortized
update cost has to be at least 0.99 I/O. These results show that for external hashing,
buffering is essentially useless and modifying the hash table on disk directly is the
only way to perform updates.

6 Open Problems

An interesting open question is, although we have proved a matching lower bound in
the cache-oblivious model, we do not yet know if tq = 1 + 1/2Ω(b) is optimal in the
cache-aware model (or in the cache-oblivious model with the two more conditions).
It is known that we can achieve tq = 1 (namely, perfect hashing) with an internal
memory of size m = Θ(n/b) [11, 16, 18]. On the other hand, external linear probing
and blocked probing achieve tq = 1 + 1/2Ω(b) with only m = Θ(b). There seems to
be a tradeoff between m and tq but this tradeoff is yet to be understood.

References

1. Afshani, P., Hamilton, C., Zeh, N.: Cache-oblivious range reporting with optimal queries requires
superlinear space. Discrete Comput. Geom. 45(4), 824–850 (2011)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun.
ACM 31(9), 1116–1127 (1988)

3. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. SIAM J. Comput. 35(2),
341–358 (2005)

4. Bender, M.A., Brodal, G.S., Fagerberg, R., Ge, D., He, S., Hu, H., Iacono, J., López-Ortiz, A.: The
cost of cache-oblivious searching. Algorithmica 61(2), 463–505 (2010)

5. Brodal, G.S., Fagerberg, R.: On the limits of cache-obliviousness. In: Proc. ACM Symposium on
Theory of Computing, pp. 307–315 (2003)

6. Carter, J., Wegman, M.: Universal classes of hash functions. J. Comput. Syst. Sci. 18, 143–154 (1979)
7. Demaine, E.: Cache-oblivious algorithms and data structures. In: EEF Summer School on Massive

Datasets. Springer, Berlin (2002)
8. Fagin, R., Nievergelt, J., Pippenger, N., Strong, H.: Extendible hashing—a fast access method for

dynamic files. ACM Trans. Database Syst. 4(3), 315–344 (1979)
9. Fredman, M.L., Komlos, J., Szemeredi, E.: Storing a sparse table with o(1) worst -case access time.

In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 165–170 (1982)
10. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proc. IEEE

Symposium on Foundations of Computer Science, pp. 285–298 (1999)
11. Gonnet, G.H., Larson, P.-Å.: External hashing with limited internal storage. J. ACM 35(1), 161–184

(1988)
12. He, B., Luo, Q.: Cache-oblivious databases: limitations and opportunities. ACM Trans. Database Syst.

33(2), 8 (2008)
13. Jensen, M.S., Pagh, R.: Optimality in external memory hashing. Algorithmica 52(3), 403–411 (2008)
14. Knuth, D.E.: Sorting and Searching. The Art of Computer Programming, vol. 3. Addison-Wesley,

Reading (1973)
15. Larson, P.-A.: Dynamic hash tables. Commun. ACM 31(4), 446–457 (1988)
16. Larson, P.-A.: Linear hashing with separators—a dynamic hashing scheme achieving one-access re-

trieval. ACM Trans. Database Syst. 13(3), 366–388 (1988)

Algorithmica (2014) 69:864–883 883

17. Litwin, W.: Linear hashing: a new tool for file and table addressing. In: Proc. International Conference
on Very Large Data Bases, pp. 212–223 (1980)

18. Mairson, H.G.: The effect of table expansion on the program complexity of perfect hash functions.
BIT Numer. Math. 32(3), 430–440 (1992)

19. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
20. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51, 122–144 (2004)
21. Pagh, A., Pagh, R., Ružić, M.: Linear probing with 5-wise independence. SIAM Rev. 53(3), 547–558

(2011)
22. Qi, H., Martel, C.U.: Design and analysis of hashing algorithms with cache effects. Technical report,

UC, Davis (1998)
23. Schmidt, J., Siegel, A., Srinivasan, A.: Chernoff–Hoeffding bounds for applications with limited in-

dependence. SIAM J. Discrete Math. 8, 223 (1995)
24. Tenenbaum, G.: Introduction to analytic and probabilistic number theory. Cambridge Univ. Press,

Cambridge (1995)
25. Verbin, E., Zhang, Q.: The limits of buffering: a tight lower bound for dynamic membership in the

external memory model. In: Proc. ACM Symposium on Theory of Computing, pp. 447–456 (2010)
26. Wegman, M., Carter, J.: New hash functions and their use in authentication and set equality. J. Com-

put. Syst. Sci. 22(3), 265–279 (1981)
27. Wei, Z., Yi, K., Zhang, Q.: Dynamic external hashing: the limit of buffering. In: Proc. ACM Sympo-

sium on Parallelism in Algorithms and Architectures, pp. 253–259 (2009)

	Cache-Oblivious Hashing
	Abstract
	Introduction
	Our Results
	Related Results

	Preliminaries
	Analysis of Linear Probing in the Cache-Oblivious Model
	Blocked Probing
	Algorithm Description
	Cache-Oblivious Analysis of Blocked Probing
	5-Wise Independence
	Omega(b)-Wise Independence

	Cache-Oblivious Dynamic Hash Tables

	Lower Bounds
	The Model
	Good Inputs and Bad Inputs
	A Bin-Ball Game

	Lower Bound for the Boundary-Oblivious Model
	Lower Bound for the Block-Size-Oblivious Model
	Lower Bounds on Updates

	Open Problems
	References

