Research 25: Social Network Analysis

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Influence Maximization Revisited: Efficient Reverse
Reachable Set Generation with Bound Tightened

Qintian Guo
The Chinese University of Hong Kong
qtguo@se.cuhk.edu.hk

Zhewei Wei

Renmin University of China
zhewei@ruc.edu.cn

ABSTRACT

Given a social network G with n nodes and m edges, a pos-
itive integer k, and a cascade model C, the influence maxi-
mization (IM) problem asks for k nodes in G such that the
expected number of nodes influenced by the k nodes under
cascade model C is maximized. The state-of-the-art approx-
imate solutions run in O(k(n + m)logn/e?) expected time
while returning a (1 — 1/e — €) approximate solution with at
least 1 — 1/n probability. A key phase of these IM algorithms
is the random reverse reachable (RR) set generation, and this
phase significantly affects the efficiency and scalability of
the state-of-the-art IM algorithms.

In this paper, we present a study on this key phase and
propose an efficient random RR set generation algorithm
under IC model. With the new algorithm, we show that the
expected running time of existing IM algorithms under IC
model can be improved to O(k - nlog n/€?), when for any
node v, the total weight of its incoming edges is no larger
than a constant. Moreover, existing approximate IM algo-
rithms suffer from scalability issues in high influence net-
works where the size of random RR sets is usually quite large.
We tackle this challenging issue by reducing the average size
of random RR sets without sacrificing the approximation
guarantee. The proposed solution is orders of magnitude
faster than states of the art as shown in our experiment.

“Sibo Wang and Zhewei Wei are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14—19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6735-6/20/06. .. $15.00
https://doi.org/10.1145/3318464.3389740

2167

Sibo Wang’

The Chinese University of Hong Kong
swang@se.cuhk.edu.hk

Ming Chen
Renmin University of China
chennnming@ruc.edu.cn

CCS CONCEPTS

» Mathematics of computing — Graph algorithms.

KEYWORDS

Influence Maximization; Sampling

ACM Reference Format:

Qintian Guo, Sibo Wang, Zhewei Wei, and Ming Chen. 2020. In-
fluence Maximization Revisited: Efficient Reverse Reachable Set
Generation with Bound Tightened. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3318464.3389740

1 INTRODUCTION

In social networks, cascade models the word-of-mouth effect
that users adopt certain products, take up some opinions
or receive certain information due to the influence of their
friends. Given a social network G with n nodes and m edges,
a positive integer k, and a cascade model C, the influence
maximization (IM) problem asks for k nodes in G that can
infect the largest number of nodes in cascade model C. IM
finds important applications in viral marketing, a marketing
strategy that a company provides their product freely to a
few influential users in social networks, in the hope that they
will recommend the product to their friends.

Kempe et al. [26] present the first seminal work on IM, and
show that finding k users which maximizes the influence
is NP-hard. They consider two popular cascade models, the
Independent-Cascade (IC) model and Linear-Threshold (LT)
model, and provide a general greedy algorithm that provides
(1 - 1/e — €)-approximate solutions for both cascade models.
However, the proposed solution requires Q(k-m-n-poly(1/¢))
running time and is prohibitively expensive on large social
networks. A plethora of research works then study how to
improve the efficiency of the IM problem. Most algorithms
rely on heuristics to identify those highly influential nodes
but fail to provide the desired approximation guarantee.

https://doi.org/10.1145/3318464.3389740
https://doi.org/10.1145/3318464.3389740

Research 25: Social Network Analysis

To tackle this challenging issue, Borgs et al. [8] make a
theoretical breakthrough that reduces the time complexity
to O(k(m + n)log? n/e€®), which is almost linear to the graph
size, while still providing (1 — 1/e — €)-approximation under
the Independent Cascade model. They further prove a lower
bound Q(m + n) for the expected running time on general
graphs under IC model. The key idea of their proposed so-
lution is to generate a sufficiently large number of random
reverse reachable (RR) sets, and then apply the greedy algo-
rithm to select the k nodes. A line of follow-up research work
then focuses on how to reduce the number of random reverse
reachable sets to achieve better efficiency while providing
the same approximation guarantee. The representatives in-
clude [34, 37-39]. Tang et al. [39] present TIM/TIM+, which
reduces the time complexity to O(k(m + n)e~?log n), and
further show that the idea of reverse reachable sets can be
applied to both IC and LT model. Later, Tang et al. [38] pro-
pose IMM, Nguyen et al. [34] develop SSA and D-SSA, and
Tang et al. propose OPIM-C [37] to further improve the em-
pirical efficiency by reducing the number of random RR sets
generated without improving the time complexity. This line
of RR set based solutions is shown to provide superb effi-
ciency on large scale social networks under several popular
cascade models. For instance, on Twitter network with 1.5
billion edges, OPIM-C can return an approximate answer
within 10 seconds. However, these IM algorithms, using RR
set as the backbone, suffer from scalability issues in high in-
fluence networks as evidenced by existing empirical studies
[7]. How to tackle this challenge is still an open problem.

Motivated by this, in this paper, we present an in-depth
study on the random RR set generation, the key phase for all
existing RR set based solutions. Instead of trying to reduce
the number of RR sets, we consider from a totally different
perspective, by reducing the computational cost for gener-
ating a random RR set. We improve the efficiency of RR set
generation by effective subset sampling and show that our
new RR set generation algorithm improves over the existing
RR set generation algorithm by up to an order of magnitude.
With the new algorithm, we show that the expected running
time of existing IM algorithms under IC model can be im-
proved to O(k - nlog n/€?)!, when for any node v, the total
weight of its incoming edges is no larger than a constant.
We further show that without modifying the existing RR set
generation algorithm under LT model, the time complexity
can be improved to O(k - nlog n/e?) as well.

Moreover, in high influence networks, the size of a random
RR set tends to be extremely large, and it takes prohibitive
computational and memory costs. In such scenarios, even if
we apply our new algorithm to generate the random RR sets,
it is still too expensive since the size of a random RR set is

IThe lower bound in [8] only applies to general IC model.

2168

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Table 1: Frequently used notations.

Notation | Description

G(V,E) a social network with node set V and edge set E
n,m n=|V|,and m = |E|

din(v) the in-degree of node v

I=(S) the expected influence of S

OPT}. the maximal I=(S) for any size-k seed set

SZ an optimal seed set with]IC(SZ) = OPTy

SZ the size-k seed set returned by a certain algorithm
R arandom RR set

R a set of random RR sets, that is, R = {R1, Rz, ...}
AR(S) the coverage of a seed set S with respect to R
I[(E(S) a lower bound of the expected influence of S
]IE(SZ) an upper bound of the expected influence of S

too large. To remedy this deficiency, we propose a non-trivial
two-phase solution that significantly reduces the average
size of random RR sets, making our solution practical for
high influence networks. The main idea is that we first select
a set B of b nodes as the seeds and then select the remaining
k — b nodes. When we select the remaining k — b nodes, the
RR set generation process can immediately stop when any
node in B is reached. Thus, the average size of the random RR
sets can be reduced. The main challenge is how to retain the
approximation guarantee with this idea. We show that our
proposed solution still provides the same theoretical result
as existing solutions. Experimental results demonstrate that
with our solution, the average size of random RR sets can
be reduced by up to 700x. Our solution is further up to two
orders of magnitude faster than alternatives.

2 PRELIMINARIES

2.1 Problem Definition

Let G = (V,E) be a directed graph G with n nodes and m
edges representing a social network where each node v € V
represents a user and each edge (u, v) € E represents the re-
lationship, e.g., friendship, between u and v. If (u, v) € E, we
say that u is the in-neighbor of v and v is the out-neighbor
of u. Assume that each edge e = (u, v) is associated with a
weight p(u, v) € [0, 1], denoted as the propagation probabil-
ity. Given a set S of nodes in G, we consider the following
discrete-time stochastic cascade process C which applies to
both the Independent Cascade and Linear Threshold model:

e At timestamp 0, all the nodes in set S are activated and
the remaining nodes are inactive. A node activated will
remain activated in subsequent timestamps.

o If a node is activated at timestamp i, it has a chance to
activate its out-neighbors at timestamp i + 1 according to

Research 25: Social Network Analysis

some probability distribution (depending on the cascade
model), after which it cannot activate any node.

e The influence propagation terminates when none of the
activated nodes can activate other nodes.

Let I-(S) be the number of activated nodes in G for an in-
stance C of above stochastic propagation C. We denote set
S as the seed set and I (S) as the influence of S in stochas-
tic propagation instance C, and denote Ic(S) = Ecec[Ic(S)]
as the expected influence of S under the cascade process C.
Table 1 lists the notations used frequently in this paper.

DEFINITION 1 (INFLUENCE MAXIMIZATION). Given a graph
G, a cascade model C, and an integer k, the influence maxi-
mization problem asks for a size-k seed set Sy with the largest
expected influence, i.e., Sy = arg maxg, /- Ie(S).

Cascade Models. We focus on two widely adopted diffu-
sion models: the Independent Cascade (IC) model and Linear
Threshold (LT) model. Both models share the same discrete-
time cascade process as mentioned in Section 2.1 and the
main difference lies in how the inactive nodes get activated:

e IC model. Suppose node u gets activated at timestamp
i, then u has a single chance to activate its inactive out-
neighbor v with probability p(u, v) at timestamp i + 1.
LT model. In the LT model, it assumes that for each node
v: (i) the sum of the propagation probability of its incom-
ing edges is no more than 1, and (ii) a probability A, is
selected uniformly at random from [0, 1]. If v is inactive
at timestamp i, then it becomes activated at timestamp
i+ 1ifand onlyif)}, 4 p(u,v) = A,, where A is the set
of activated in-neighbor of v at timestamp i.

2.2 Existing Solutions

As mentioned in Section 1, most existing scalable IM methods
utilize a sampling technique called Reverse Influence Sampling
(RIS), proposed by Borgs et al. [8]. This technique is based on
the concept of random reverse reachable (RR) set. A random
RR set R is constructed in two steps: (i) randomly select a
node v € V; (ii) reversely sample the set R of nodes that can
activate v, such that for each node u € V, the probability
that it appears in R equals the probability that u can activate
v. This set R is denoted as a reverse reachable set of v.
Under IC model, we can generate a random RR set as
follows: Generate a directed graph g by removing each edge
e with probability 1 — p(e) independently, and denote G as
the distribution of g. Given an instance g of distribution G
and a node v, the reverse reachable set R for v in g is the set
of nodes in g that can reach v. R is a random RR set if v is
sampled uniformly at random from V. Intuitively, if a set S
is highly influential, then there is a high chance that some
nodes in S appear in the RR set of a randomly generated node

2169

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Algorithm 1: Max-Coverage-Greedy(R, k)

15, =0;

2 fori=1tok do

3 L v = argmax,, . (AR(S; U {v'})) — Ar(S;);
4 S; < S U{vk

5 return Sz;

v. Borgs et al. [8] establish the following connection between
the expected influence of S and a random RR sample.

LEMMA 1. Let S C V be a seed set and R be a random RR
set generated with diffusion model C, then

Ic[S]=n-Pr[SNR #0].

Lemma 1 indicates that we can estimate the expected influ-
ence of an arbitrary seed set S using random RR sets. We say
S covers an RR set R if S N R # (). Assume that we generate
a set R of random RR sets. Define the coverage Ag(S) of a
seed S with respect to R as the number of RR sets in R that
is covered by S. Then, n - Ag(S)/|R| provides an unbiased
estimation of the expected influence of S.

Borgs et al’s solution. With Lemma 1, Borgs et al. [8] pro-
pose a two-step method for IM. Firstly, a sufficiently large
set R of random RR sets is generated. Given a node v and
the set R, define the marginal coverage of v w.r.t a set S as:

Ar(v]S) = Ar({v} U S) = Ag(S).

Then, in the second phase of their solution, it simply applies
the standard greedy algorithm as shown in Algorithm 1
that iteratively select the node with the maximum marginal
coverage with respect to the set of selected nodes in previous
iterations. Denote this set as S; and return S as the solution.

Let SAZ be the size-k seed set that covers the largest number

of RR sets in R and S} be the optimal seed that provides
the highest expected influence. Then obviously, AR(§]‘2) >
AR(SY)- Then, the greedy algorithm guarantees that:

AR(S)) = (1= 1/0AR(S) = (1 - 1/0)AR(S)).
Borgs et al. show that S} provides a (1-1/e—€)-approximate

solution with probability at least 1 — 1/n if O(k(m +
n)e~3log? n) edges are examined in the RR set generation.

TIM+ and IMM. Tang et al. [39] present an improved algo-
rithm TIM+ , which runs in O(k - (n + m)e~2 - log n) time. The
main idea is to use Chernoff bound to decide if the number of
RR sets, instead of the number of edge examined, is sufficient
to provide an approximation guarantee. Later, Tang et al. [38]
present IMM that uses a martingale-based technique to allow
the random RR set to have some weak dependencies without
affecting the concentration bound. They apply below two
martingale-based concentration bounds tailed for IM.

Research 25: Social Network Analysis

Algorithm 2: RR set-Generation-IC(G)

1 Randomly sample a node v € V and set R as {v};

2 Add v to queue Q and mark v as activated ;

3 while Q is not empty do

4 Let u be the top element of Q. Pop it from Q;

for each in-neighbor w of u do
if w is inactivated and rand() < p(w, u) then
L Add w to R;

5
6
7
8 Add w queue Q and mark w as activated,
return R;

9

/12

LEmMmA 2 ([38]). Given a fixed number 6 of random RR sets
20c(S) - & + 22
pL)

and a seed set S, for any A > 0,
<Al <exp|——
} p(zk@yg

As shown in [38], IMM offers the same guarantee as that of
TIM+, but gains better practical performance since it reduces
the number of RR set samples and thus the query time.

Pr [AR(S) —1c(S) - g > A

< exp (—

S

P*Aﬂ&—kwy

SSA and D-SSA. All previous methods are pessimistic about
the seed set selected in the greedy algorithm and thus apply
the union bound on the possible (Z) size-k seeds for the case
when the seed set selected does not provide an approximation
guarantee. Thus, the final time complexity will depend on
k and the larger k it is, the more RR sets are required to
provide the approximation ratio. Nguyen et al. [34] propose
SSA and D-SSA to alleviate the (empirical) dependency on k
by being optimistic about the seeds selected by Algorithm
1 and then use a validation phase to verify if the chosen
seed is good or not. They claim that they provide the same
theoretical result as IMM, but Huang et al. [24] show that the
theoretical analysis of SSA and D-SSA contains loopholes that
invalidate the claimed time complexity and approximation
guarantee. Huang et al. further present SSA-Fix to reassure
the (1 — 1/e — €)-approximation guarantee with 1 — 1/n
probability and pinpoint that it is unclear how to provide
efficiency and approximation guarantee for D-SSA. Nguyen
etal. [33] further present D-SSA-Fix to restore the (1-1/e—¢)-
approximation guarantee, but the efficiency guarantee of
D-SSA-Fix is still unclear, as pointed out in [24, 37].

OPIM-C. The latest RR set based solution for IM is the OPIM-
Calgorithm [37]. OPIM-C shares a similar spirit as SSA/D-SSA
in that they are both optimistic about the selected seed set
by the greedy algorithm. In OPIM-C, they first sample a set
R1 of RR sets to select the seed set S; and derive the upper

2170

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

bound I£(Sy) of Ic(Sy). Next, they sample another set R, of
random RR sets with |R;| = |R;| and derive a lower bound
I=(S;) of Ic(S;)- The algorithm terminates as soon as

I(SP/IESY) > (1= 1/e —e),

i.e., when the algorithm provides a (1 —1/e — €)-approximate
solution. In OPIM-C, the authors present strategies to provide
a tighter upper bound IZ(S?) of Ic(S?). With tighter bounds,
the number of RR set samples can be reduced, thus improving
the running time. By applying Lemma 2, Tang et al.[37]
derive the lower bound I(5;) as follows:

2
2n; i m\| n
Ag,sHy+ - 2 2.2
R(Si) 9 2) 18] 0, @

where n; = In(1/6;) and §; is the probability that the above
lower bound fails. By applying Lemma 2, the upper bound
I£(SY) is given as follows:

2
W$=@me+%+$@-g, @

where 1, = In(1/5,) and §, is the probability that the above
upper bound fails; A% (57), an upper bound of the coverage
of SI‘: with respect to Ry, is derived as follows. Though the
optimal seed set 5 is unknown, the upper bound A% (S)
can be obtained from the construction of S; due to the sub-
modular property of coverage function A(-). Let S} be the set
that contains the first i nodes selected by running the greedy
algorithm and maxMC(S}, I) be the set of I nodes with the [
largest marginal coverage in R; with respect to S;. Then,

I2(Sp) =

AR (Sp) = 0r<n.i£1k AR (S7)+ Ag,(v]S)) .
st= vemaxMC(S;,k)

2.3 RR Set Generation

All of the above solutions focus on reducing the number of
random RR sets and are identical in how random RR sets are
generated. Instead of first generating the graph g by flipping
a coin for each edge that incurs O(m) cost, the existing RR set
generation algorithm for IC model, as shown in Algorithm 2,
starts a traversal from v following the reverse direction of its
edges. Such an approach only examines the in-coming edges
of nodes in R, and thus significantly reduces the running
cost for generating an RR set. We refer readers to [37] on
how to generate a random RR set under LT model.
According to [8, 39], a random RR set can be constructed
in O(% - Ic(v")) expected time, where Ic(v”) is the expected
influence of a node v* sampled from V where each v is sam-
pled with a probability of d;,(v)/m. However, no further
research has presented any theoretical study on this RR set
generation phase. We next present a study to fill this gap.

Research 25: Social Network Analysis

Algorithm 3: SUBSIM(G)

1 Randomly sample a node v € V and set R as {v};
2 Add v to queue Q and mark v as activated;
3 while Q is not empty do
4 Let u be the top element of Q. Pop it from Q;
5 Let uli] (i = 1,2,...) be the ith in-neighbor of u;
6 p— #(u) under WC;
7| i« [log(rand())/log(1 - p)1;
8 while i < d;;(u) do
9 w — u[i];
if w is not activated then
Add w to R;
Add w to queue Q and mark w as
activated;

| i+= [log(rand())/log(1 — p)1;

return R;

13

14

3 SUBSIM

This section presents our SUBSIM (Subset Sampling with
Influence Maximization) framework for IM. We present an
efficient RR set generation scheme under WC and Uniform IC
model in Section 3.1 and show improved theoretical results
on IM algorithms with this new scheme in Section 3.2. We
extend our SUBSIM to general IC model in Section 3.3.

3.1 A New RR set Generation Scheme

In the existing RR set generation algorithm (Algorithm 2), an
expensive step is that when a node gets activated, it examines
all of its in-neighbors and tries to activate each of them once
(Algorithm 2 Line 6). In particular, it generates a random
number for each incoming edge to determine if each of its
in-coming neighbors will be activated or not. That is actually
why the time complexity of existing IM algorithms depends
on the average degree, i.e., m/n. With subset sampling, we
show algorithms such that the expected cost to sample an
edge e under IC model can be reduced to O (p(e)).

Connection with Subset Sampling. We make a connec-
tion between subset sampling with the selection of in-
neighbors. Given a set S = {x1, x3, x3, - - - , xp,} of h elements,
and each with a weight 0 < p(x;) < 1. Denote p as the
sum of all the weights, i.e., y = Zf’:l p(x;). The independent
subset sampling problem asks to sample a random subset X
such that each element x; in S will be independently added
to set R with probability p(x;). The problem of activating
the in-neighbors of a node v can be directly mapped to the
subset sampling problem. We first consider the case where
all weights are equal and denote this weight as p, which cov-
ers the scenarios of WC, where the weights of the incoming

2171

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

edges of the same node v are 1/d;,(v), and Uniform IC where
all edges have the same weight p.

When the probabilities are the same, the subset sampling
can be effectively solved with geometric distribution sam-
pling. In particular, we are interested in the event that we
successfully sample the first element from S after X trials.
The probability distribution of X follows the geometric dis-
tribution G(p) and the probability is given as follows:

Pr(X =i)=(1-p)'"" - p,

where i = 1,2,3,---.If i > h, it indicates that no element
is sampled from set S. Notice that in distribution G(p), all
trials are assumed to be independent, and therefore it still
guarantees that the sampling of each in-neighbor should be
independent. This leads to our RR set generation algorithm
for WC and Uniform IC model as shown in Algorithm 3. The
main difference from Algorithm 2 is Lines 7 and 13, where the
algorithm jumps to skip nodes that are not sampled, saving
computational costs. Assume that an h’ < h is sampled
from distribution G(p), the first A’ — 1 elements are skipped
and it directly jumps to the h’-position, sampling element
xp. Then, it continues to sample the first element from the
remaining h — h’ nodes. This process is repeated until the
sampled A’ is larger than the number of remaining elements.
Note that there exist constant time solutions [27] to sample
from distribution G(p): Given a U generated uniformly at
random from (0, 1), we can sample h’ from G(p) as

h = [log U/log(1 - p)1.
To explain, A’ = i if and only if U € [(1 — p)’, (1 — p)'™}),
which has a probability of (1—p)"™1 = (1-p)' = (1-p)"~ L -p,
i.e., following distribution G(p). Therefore, the expected cost
of the sampling phase only depends on the number of times
we do geometric sampling and we have the following lemma.

LEMMA 3. Given a set S of h elements each to be sampled
independently with probability p, then the expected cost for
sampling a subset R is O(1 +), where p = h - p.

Proor. Based on the new sampling strategy, each record is
sampled with probability p. For all h records, the probability
to sample each edge is h- p. Since we need to generate at least
one random number, the costis O(1 + h-p) = O(1 +). O

Given above results, new bounds can be derived for IM.

3.2 Influence Maximization: A New Bound

With SUBSIM for RR set generation, we show that the time
complexity of existing IM algorithms can be tightened. We
first analyze the running cost of SUBSIM for RR set gener-
ation. The running cost can be bounded by the number of
edges examined during the RR set generation. Denote 0(x)
as a function depending only on x, we have the following
lemma to bound the running cost of SUBSIM.

Research 25: Social Network Analysis

LEMMA 4. If 6 is a concave function and for any node v,
2w, v)ee P, v) < 0(din(v)), the cost to generate a random
RR set under WC and Uniform IC model can be bounded by
O0(m/n) - Ic({v*}), where v* is sampled from a distribution

OWin(®) __ 4 obability to be sampled.

where node v has oy 0

Proor. We first consider the cost to generate an RR set

R
with a fixed target node v. Let Pr[v — u] denote the prob-
ability that u is included in the RR set, i.e., u is activated in

the reverse stochastic traverse from v; let Pr[v LR (w,u)]
indicate the probability that (w, u) is examined. Then, (w, u)
is examined if and only if u is activated by v, and with the
fact that the expected cost to examine (w, u) is p(w, u) under
geometric sampling, we can derive that:

Pr[v &, (w,u)] = Prv L ul - p(w, u).

The expected cost to generate an RR set with respect to target
node v, denoted as E[R(v)], is:

ER@)] = Y. Proo (wauw)l= Y Prlo - u]-plw.u)

(w,u)€E (w,u)eE

= > Pifo Bl > pw.w) <Y 0din(w)) - Prlo B]

uev (w,u)eE uev

Now consider the cost of a random RR set, denoted as Ep.

Bp= Y ER@]< - > 0din(w) - Prlv 5 al

veV veV ueV

Further observe that Pr[v kX u] is equal to the probability
that u can influence v, denoted as Pr[u — v]. Let 8(V) =
Yiwey 0(din(w)). Then, we can derive that:

Z Z 0(din(u))

veV ueV Q(V)
_0W) 0din(w) .
== 1;/) ;Pr[u v]

Notice that),y Prlu — v] indicates the expected influ-
ence of node u. Further let node v* be a node sampled from
a distribution where each node v is sampled with probability
%. We can further derive that:
Ep < 9(’:/) Z G(Céi(ré;‘))
uev
o)

- Prlu — v]

Ie({u})

— - Te({v'}) < 0(m/n) - Te({o"))

where the last inequality is due to the concavity of the func-
tion 0. This finishes the proof. O

THEOREM 1. If 0 is a concave function and for any node
U, Xu,0)ee P, 0) < 0(din(v)), the time complexity of IM
algorithms under WC and Uniform IC model to provide a (1 —

2172

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

1/e — €)-approximate solution with 1 — 1/n probability can be
bounded by O(k - 0(m/n) - n - logn/€?).

ProoF. Note from [38] that, the number of RR sets can be
k-n-logn

bounded by O(m
influence among all seed sets with size no more than k. Then,
since Ic({v*}) < OPTy, we know that Egx = O(68(m/n)-OPTy).

Combining them together, we derive the time complexity:

), where OPTj is the largest expected

k-n-logn
OPT;
This finishes the proof.

O(ER) = O(k - O(m/n) - n-logn/e?).

-6’2
O

With Theorem 1, we immediately have the following conclu-
sions for three useful cases.

e Case 1: 0(x) = O(1). WC model falls into this case, and
the time complexity becomes O(k - n-log n/€?), improving
over existing solutions by O(m/n).

Case 2: 0(x) = O(log(x)). The time complexity becomes
O(k - log(m/n) - n - log n/€e?), which still improves over
existing solutions by O(m/n/log(m/n)).

Case 3: 0(x) = O(p - x). Uniform IC falls into this case,
and the time complexity becomes O(p-k-(m+n)-log n/e?),
improving over existing solutions by O(p).

Extensions to LT model. Notice that under LT model, the
cost to sample an edge is also proportional to its weight
[37, 38], and it naturally holds that 3, ¢/n@) p(u,v) < 1,
where IN(v) is the set of the in-neighbors of v. By following
the proof of Lemma 4 and Theorem 1, it can be easily derived
that the time complexity of existing IM algorithms under LT
model can be reduced to O(k - n - logn - €72).

3.3 Extension to General IC Model

In Section 3.1, we only discuss WC and Uniform IC, where
the weights of the incoming edges of the same node are
equal. However, in practice, the weights might be skewed,
e.g., following exponential distribution, Weibull distribution
[38], or by learning from data [19, 20]. In this section, we
discuss how to handle general IC model. We still map the
selection of in-neighbors to subset sampling and have the
following lemma from [9] to bound its expected cost.

LEMMA 5. Given a set S = {x1, %3, ,xp} of h elements
where x; is independently sampled with p; probability, the
expected running time to sample a subset X can be bounded
by O(1 + 1) with O(h) preprocessing time, where = Y, p;.

The main idea of Lemma 5 is to first divide the probability
into different buckets such that p; falls into a bucket By, if
27k > p; > 271 (resp. 2% > p;), where 0 < k < [log, h]-1
(resp. k = [log, h1). Then, in each bucket By, we first treat all
probability in the bucket to be 27%, and then apply geometric
sampling to sample a position h’. When h’ < |By|, we skip

Research 25: Social Network Analysis

h" — 1 elements (like Algorithm 3) and try to sample the
h’-th element in By.. However, we further generate a random
variable U and successfully sample the h’-the element only
if U is no larger than pj, /27 where py is the probability of
the h’-th element in By. By this strategy, the h’-th element
is still guaranteed to be sampled with 27% - pj, /27% = py,
probability. For each bucket, the expected sampling cost
increases by at most twice (For the last bucket, it increases
to at most 1/h). Therefore, the total expected cost can be
bounded by O(1 + p + log h), where the log h term comes
from sampling in O(log h) buckets.

Next, we show how to further reduce the log A term. Firstly,
we calculate the probability to do at least one geometric
sampling from each bucket. Since each bucket By includes
at least one geometric sampling can be calculated as p; =
1—(1—-27%)IBx|_This can be calculated with O(log h) time as it
includes O(log h) bucket. Then, the problem becomes a new
subset set sampling problem, where we are independently
sampling each bucket By with probability p; . To avoid testing
for each bucket, an L X L table can be maintained where
T[i, j] records the probability that B; is the current sampled
bucket and B; (i < j) is the next bucket after i that will
be sampled. We can calculate the probability of table T in
O(L?) = O(log?® h) time. Also, given a current position i, we
can sample according to the probability T[i,i + 1], T[i,i +
2], - - T[i, h] in O(1) time using alias sampling [41]. Then, we
can sample the buckets first with O(1 + p) time, and sample
within each bucket next. The total cost to sample in each
bucket can be bounded by O(1 + p) time. Hence, the total cost
to sample a subset X from set S can be bounded by O(1 + p).
By Lemma 5 and Theorem 1, we have the following theorem.

THEOREM 2. If 0 is a concave function and for any node
U, Xu,0)eg P, 0) < 0(din(v)), the time complexity of IM
algorithms under general IC model can be bounded by O(k -
0(m/n)-n-log n/€?) so as to provide a (1—1/e—e)-approximate
solution with 1 — 1/n probability.

However, to achieve O(1 + p) expected running time, it
requires complicated preprocessing indices, which may ham-
per the practical performance on sparse graphs. To tackle
this issue, we present an index-free solution that runs in
O(k - log(m/n) - n - log n/€?) expected time with existing IM
algorithms if 3, ,,)cg p(4, v) = O(log(din(v))) for any node
v. The solution only requires the incoming edges of the same
node to be sorted in descending order of their weights.
Index-free method. According to [9], if the elements
X1, X2, -+, xp, of set S are sorted in descending order of their
probability (p1, pa, - - - , pn, respectively), one can do subset
sampling as follows to achieve O(1 + y + logh) expected
sampling cost. In particular, we do bucketing by their sorted
positions such that elements whose positions fall into the
range [2¥, 2¥*1) belong to bucket By. Then, for bucket By, we

2173

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Algorithm 4: HIST(G, k, €, §)

1€ =€6=¢/2,00=0,=06/2;

2 SZ = SentinelSet(G, k, €1, 61);

3 S; = IM-Sentinel(G, k, €, S}, €2, 62) ;
4 return Sl’:;

use p,« as the probability for geometric distribution G(p,«).
When h’ is sampled from G(p,«), if 25 +h" > 25*1 no element
is sampled from bucket Bg. Otherwise, it skips A’ —1 elements
and jumps to position 2% + h’. To guarantee that the probabil-
ity to sample xyx . is still p,r , 5., we further sample a random
number U and only sample element x,x;, if U is no more
than py s /pyk. Since px < pry/21, We can bound the total
expected cost to sample from each bucket to O(1 + p +log h),
where the log h term comes from the number of buckets. The
above strategy can be easily implemented without additional
indices. When 3, ,)eg p(u,v) = O(log(din(v))), the total
cost to sample the in-neighbors of node v can be bounded by
O(log(d;,(v))). We can immediately apply Theorem 1 and
obtain that existing IM algorithms can achieve a time com-
plexity of O(k - log(m/n) - n - log n/€?) when using the above
sampling strategy in RR set generation.

4 HIGHLY INFLUENTIAL SCENARIOS

In highly influential scenarios, i.e., high influence networks,
one of the biggest challenges of existing RR set based solu-
tions is that the average size of random RR sets is usually
very large, which is the main cause of high running time and
memory consumption. Therefore, one natural question is:
can we reduce the average size of random RR sets? If the an-
swer is yes, then such a new solution is likely to outperform
existing solutions. Motivated by this, we propose Hit-and-
Stop (HIST) algorithm to overcome the weakness of existing
RR set based IM algorithms by dramatically decreasing the
average size of random RR sets. In particular, a sentinel set
S,, is selected in the first phase of HIST, and with the help
of §;, subsequent RR sets can be generated efficiently in the
second phase of HIST since the generation of an RR set can
stop as soon as it reaches any node in S,. We denote this
RR set generation algorithm to terminate when it reaches a
sentinel set as RR set-with-Sentinel algorithm (Algorithm 5).
At a high level, HIST consists of two phases as follows:

e Sentinel Set Selection. This phase seeks for a size-b node
set S, that satisfies Ic(Sy) > (1 - (1 - 1/k)? —€) - Ie(SyY)
with high probability, where S} is the optimal seed set.

e IM-Sentinel. This phase computes a size-(k — b) seed set

S;_,»and returns Sy, U S} as the final result S;.

In the sentinel set selection phase, we aim to use only a small
number of samples to find a sentinel set S, of b nodes. When

Research 25: Social Network Analysis

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Algorithm 5: RR set-with-Sentinel(G, S;)

1 The steps are similar to that of Algorithm 2 except
that it terminates the traversal and returns the RR
set when a node v € S,’; is activated.

b = k, the sentinel set selection phase falls into existing
IM algorithms that provides a (1 — (1 = 1/k)¥ —¢) (= 1 -
1/e — €) approximate solution. When b < k, even though
the sentinel set selection phase cannot providea 1l —1/e — €
approximate solution, it can still provide 1 — (1 — 1/k)? — ¢
approximate solution (as we will prove in Lemma 6). When
b is sufficiently small (much smaller than k), we only need to
provide a very loose approximation for set S;, and it allows
us to use a much smaller number of random RR sets to find a
size-b seed set that provides 1 — (1 — 1/k)? — e approximate
solution compared to solving the IM problem. As we will see,
with such a loose approximation on S;, we can still provide
approximation guarantee after the second phase, i.e., the
IM-sentinel phase. To explain, we will compensate the first
phase by sampling more random RR sets in the second phase.
However, in the second phase, the generation of a random
RR set can terminate as soon as any node in sentinel set S,
is hit. Therefore, the cost to generate a random RR set can
be significantly reduced. Our HIST achieves up to 2 orders
of magnitude speedup over existing solutions, which shows
the effectiveness of our proposed solution. The pseudo-code
of the HIST algorithm is shown in Algorithm 4, which is
self-explanatory. Notice that we set €; = €; = €/2 so that the
final error can be bounded by 1 —1/e—¢; —e; = 1—1/e—€.
Similarly, we set §; = 8, = §/2 since both phases have a
failure probability of §/2, and by taking a union bound, the
failure probability of the HIST algorithm is §; + §; = §. Next,
we present more details of the two phases.

4.1 Sentinel Set Selection Phase

Algorithm 7 shows the pseudo-code for the sentinel set se-
lection phase. The main framework is similar to existing IM
algorithms in that we sample a certain number of RR sets
to see if the approximation ratio is satisfied. If not, we dou-
ble the number of RR sets and continue the steps until the
bound holds. In each iteration, we select nodes with greedy
algorithms and choose a sentinel set S; with proper size b.

Node selection with modified greedy. Algorithm 7 Lines
5-15 show the process of finding a sentinel set. If the size b is
fixed, we will include the first b nodes selected by the greedy
algorithm and make them as the candidate of the sentient set.
If this candidate set provides the approximation guarantee
(Algorithm 7 Lines 11-12), we return it as the sentinel set.
Recap that the sentinel set we select will be used to facili-
tate the second phase. In particular, any RR set in the second

2174

Algorithm 6: Revised-Greedy(G, R, k)

1 The steps are similar to that of Algorithm 1 except
Line 3: if multiple nodes have maximum marginal
coverage, choose the one with the largest out-degree.

phase will terminate when it hits a node in the sentinel set. In
the standard greedy algorithm, however, it only cares about
the marginal coverage (Ref. the definition in Section 2.2) in
each iteration, and selects the node with the maximum mar-
ginal coverage with respect to the set of nodes selected in
previous iterations. This does not differentiate two nodes
when they share the same maximum marginal coverage but
one node has a larger out-degree than the other. However, in
our case, the node with a larger out-degree is obviously more
preferred since it is more likely to be hit, especially when
we only select a sentinel set with a small size. Therefore, we
modify the greedy algorithm slightly (Algorithm 6) so as to
better achieve the goal. When two nodes share the same mar-
ginal coverage, we select the node with a larger out-degree.
Notice that this brings at most additional O(k - n - log n) cost
and does not affect the final time complexity of the HIST
algorithm. In this case, we are more likely to select influential
nodes (that get hit it selects) in Algorithm 6 compared to Al-
gorithm 1 which regards all nodes with the same importance
as long as their marginal coverage is the same.

Choosing the sentinel set S; with proper size. A naive
way to determine the size of the sentinel set is to choose
a constant and apply it to all choice of k. However, such a
strategy may not make full use of the pruning power of the
sentinel set. Therefore, we aim to automate the process of the
choice of b. Notice that there is a trade-off between the size b
and the speedup of the query efficiency. On the one hand, if b
is too small, we have less chance to hit the sentinel set in the
second phase, providing inferior speedup. Hence, we hope
that the size b to be as large as possible. On the other hand, if
b is too large, it is similar to solving the original IM problem.
Hence, a small sample size will not help provide the required
approximation ratio. To get a good trade-off of these two,
i.e., the cost of sampling in the first phase and the benefit
we can bring to the second phase, we provide a solution to
automatically find the choice of b as large as possible that
can satisfy the constraint given the generated RR sets. To
explain, given the set R; of RR sets, we first apply Algorithm
6 to select a seed set S}, and we denote S, (1 < a < k) as the
set of nodes selected by the first a iterations in the modified
greedy algorithm. Then, we apply Equation 2 to derive an
upper bound IZ(S?) for Ic(S7). However, we can not use R;
to derive a lower bound of Ic(S},). To explain, the selected
set S depends on R; and we cannot apply the concentration
bounds to S};. Therefore, we apply the concentration bound

Research 25: Social Network Analysis

Algorithm 7: SentinelSet(G, k, €1, 61)

[

Set 8y =3 -In(1/8;) and 6,45 according to Eqn. 3;
2 Generate random RR sets Ry with |R;| = 6y;

Imax < rlogz 9’16['% 5

4 fori=11t0in., do

5 Generate a size-k seed set S; by invoking
Algorithm 6 with R; as the input;

6 Estimate the lower bound]AIE:(SZ) based on the

result of Line 5, where a € {1...k};

w

7 Compute [7(S}) by Eqn. 2, setting §, = Siilax ;

8 Let b be the maximum a such that
TS/ > (1 - (1= 1) —e):

9 Generate a set R, of random RR sets with
|R2| = |R1] by invoking RR set-with-Sentinel ;

10 Compute I-(S;) by Eqn. 1; set §; = 6iri1ax;

1| AfIZ(S;)/IE(SY) > (1- (1 -)" — &) then

12 L return SZ;

13 Increase the size of R, to 4|R;| and compute
I=(S}) again;

14 if 12(S;)/IE(S) > (1= (1 - %)b — €;) then

15 L return SZ;

16 | double the size of Ry;

17 return SZ;

to derive an estimation of the lower bound on I¢(S%), denoted
as [(Sy), as if Ry and S were independent. Then, we select
the maximum a (Algorithm 7 Line 8) such that:

ﬁaxv%wpzu—u—%w—q»

and set b to this maximum a. However, since this is only
an estimation of the lower bound, we generate another set
R2 of RR set and R; is independent of S . Then, we can apply
concentration bound to derive the lower bound I(S;) using
Equation 1. Given I(S;), we are able to check if 5 satisfies
the approximation ratio (Algorithm 7 Line 11), i.e.,

(SIS 2 (1 - (1-)7 - ey)

If the approximation ratio is not satisfied, with the existing
paradigm, we will simply double the size of R; and repeat
above process. However, since now we are only to estimate
the influence of S;, we can stop when any node in this set is
hit. Hence, the RR set-with-Sentinel algorithm can be applied
here and tends to save much time. To take this advantage,
if we find that S; violates the approximation guarantee, we
first increase the size of R, and try to provide a tighter lower
bound I(S;) for S; (Algorithm 7 Lines 13-15). We increase

2175

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

the size of R, until |R;| = 4 - |R;| and stop increasing after-
wards since it actually indicates that S, we selected is most
likely not good enough to provide the approximation ratio.
Therefore, we select another set SZ by doubling the size of
R1 (Algorithm 7 Line 16) and repeat the whole process until
we find the seed set S; satisfying the approximation ratio.

Stopping condition. We now give the following lemma to
establish the stopping condition of Algorithm 7. It provides
a bound on the number of random RR sets required in R in
the sentinel set selection phase.

LEMMA 6. Let Ry be the set of random RR sets generated by
Algorithm 7 and S, be a size-b node set selected by Algorithm
6 on R;. Given €’ and &', if the size of R; satisfies
2

on ((1 - xb)\/ln 24 \/(1 —xP)(In () +1n 2)
e - Ic(SY)

[R1] >

wherex =1 — % then with at least 1 — §’ probability,
Ie(S;) = (1= (1= 1/k)" =)l (SP).

Further notice that the size of R, solely depends on Ry, and is
only constant times the size of R;, and therefore we omit its
discussion. According to Lemma 6, by replacing Ic(S7) with &,
ln (Z) with In (Z), 1—xb with 1, and setting ¢’ = €;, 8" = 6,/3,
we define the maximum number of random RR sets 0,,, as:

2n (\/ln 5% + \/(ln (Z) +1n 5%))

That is, if the size of the set Ry is 0,,4x, the seed set SZ
selected by Algorithm 6 guarantees (1 — (1 — 1/k)? — &)
approximation of Ic(S?) with at least 1 — 6;/3 probability.
The reason of choosing the probability of 1 — §;/3, rather
than 1 — §;, will be explained shortly.

In terms of the initial setting, for a random variable in the
range of [0, 1] with an expectation to be y, the Monte-Carlo
method requires at least 31n (1/8)/u/€? [16] so as to provide
an estimation of y with e-relative error guarantee. Hence,
we set the initial number 6 to be 31n(1/6;) (Algorithm 7
Line 1), which is the case when the random variable has an
expectation of 1 and the relative error is close to 1.

2

emax

Failure probability. Here we explain why Algorithm 7
ensures (1 — (1 — 1/k)? — ¢;) approximation with at least
1 — &;1. The algorithm has at most i, iterations. In the
last iteration, no matter whether I(S;)/I£(S7) reaches the
approximation threshold or not, it returns S, as the fi-
nal seed set. As shown in Lemma 6, 0,,,x RR samples en-
sure that the failure probability of S; being unqualified, i.e.
Ie(Sy) < (1-(1- 1/k)? - €1)lc(Sy), is less than 6, /3. In each
of the first iy, 4, — 1 iterations, by the union bound, the failure

Research 25: Social Network Analysis

probability that the algorithm terminates with an unqualified
& Lo 8 _ 25
max 6imux 31max

is computed twice at most). The total failure probability of
the first i,,qx — 1 iterations is at most 28; /3. Therefore, the
failure probability of Algorithm 7 is at most J;.

set S; is at most z; (the lower bound

4.2 IM-Sentinel Phase

Algorithm 8 shows the pseudo-code of the IM-Sentinel phase.
In this phase, we apply Algorithm 5 to sample random RR sets
and immediately terminate when the RR set reaches a node
in §;. For the remaining parts, they are similar to that of the
first phase. In particular, Algorithm 8 initializes the sample
size of the RR sets to be 31n(1/§;) and set the maximum
number of RR set according to Equation 4 (Algorithm 8 Line
1). Then, in each iteration, it samples a set R; and a set R, of
random RR sets with equal size. It uses R; to find the seed
set S by invoking Algorithm 6 and derives the upper bound
[£(SY) (Algorithm 8 Lines 5-8), and uses the other set R, to
derive the lower bound I(S;) (Algorithm 8 Line 9). When
the approximation ratio is satisfied, we return the seed set
S; (Algorithm 8 Line 10-11). Otherwise, we double the size
of R; and R, and repeat the above process.

The main difference is that, when generating R; and Ry,
we can apply Algorithm 5 to effectively reduce the size of
a random RR set. Besides, when we feed R; to Algorithm 6
to greedily select the remaining k — b nodes, we remove the
RR sets that hit any node in S since such RR sets will bring
zero marginal coverage to other nodes (Algorithm 8 Line 5).

Stopping condition. Here we provide another lemma to
bound the size of R; in Algorithm 8.

LEMMA 7. Let S, be the seed set returned by Algorithm 7.
Given ¢’ and &', if the number of the set Ry satisfies

2n - (\/ln 3+ \/(1 —1/e)(In (Z:Z) +In3)
}IC(S,?)E/Z

2

>

[Ri| >

then with at least 1 — 8’ probability, the selected S; _, satisfies
I[c(SZ V) Slt—b) >(1-1/e—¢ — 6’)1[@(5;3).

According to Lemma 7, we replace I[C(Sz) with k, set §’ =
d2/3, €’ = €3, and define the maximum number of RR sets in
the IM-Sentinel phase as

2
2n - (\/ln 5% + \/(1 —1/e)(In (Z:i) +In 6%)

2
€k

max = . (4)
That is, if the size of R; is Opnax, the seed set S _, obtained
in Algorithm 8 Line 6 guarantees Ic(S; US;) > (1-1/e—
€1 — €2)Ic(SY) with at least 1 — 8,/3 probability.

2176

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Algorithm 8: IM-Sentinel(G, k, €, SZ, €,02)

1 Set 6y = 3 -1In(1/6;) and 0,,,4x according to Eqn. 4;

2 Generate R; and R, with |R;| = |Rz| = 6 by
utilizing RR set-with-Sentinel;

Imax < rlogz 979% 5

fori=11toin., do

73'1 — {R:RERl,RﬂSZ =0};

Select a size-(k — b) seed set S; _, by invoking
Algorithm 6 on R;;

* % % .
Sp S, US; s

w

8 Compute [(S7) by Eqn. 2 with Ry; set 3, = 3i52
9 Compute I=(S;) by Eqn. 1 with R,; set §; = 3ii2ax;

10 if I2(S;)/1E(S7) > (1 —1/e — €) then
L return SZ;
double the size of Ry and R; by utilizing RR

set-with-Sentinel;

11

12

return S;;

Failure probability. Like the analysis of Algorithm 7, the
total failure probability of the first i,;, 4, — 1 iterations is 28, /3.
Taking the failure probability of 8, /3 in the last iteration into
consideration, the failure probability of Algorithm 8 is &,.

5 THEORETICAL ANALYSIS

In this section, we provide the proofs of Lemma 6 and 7.

Proof of Lemma 6. We first give three lemmas that will be
used in the proof of Lemma 6.

LEMMA 8. Let S, be the seed set selected by Algorithm 6. Let
x = (1-1/k), then Ag(S}) > (1-x") AR(SY).

Proor. We denote S]’f(l < j < b) as the set of nodes
selected in the first j iterations of the modified greedy algo-
rithm and let S; = 0. Let Ag(v|S) be the marginal coverage
of a node v in R with respect to a seed set S. Using the
submodularity of coverage function Ag(-),

AR(SD) < AR(S; USY) < Ag(S)) + Z AR(0]S])
vES,‘z\S]*f
< AR(S)) + k (AR(S)11) = AR(S)))

Define y; = AR(Sy) — AR(S}). We have yju1 < (1-1)y;

Recursively, we have that:
AR(SR) = AR(Sy) < x” (AR(SY) = AR(Sp)) = x"AR(SP)-

It then can be rearranged as Ax(S;) > (1 - xb)ArR(S,‘C’). O

Research 25: Social Network Analysis

Denote the size of R as 0. Since 7Ax(S}) is an unbiased
estimator of Ic(Sy). If 0 is large enough, 5A®(S}) should be
close to Ic(S?), as shown in the following lemma.

LEMMA 9. Given 6], €/, and 0; = %, if0 > 04,
]Ic(sk) €

FAR(SY) = (1 — €)Ic(SY) holds with 1 — & probability.

Refer to [6] for the proof of Lemma 9. If 0 is large, 5A®(S;)
is close to I[C(S). Based on Lemmas 8-9, we have:

5 AR(S]) = (1 —x)(1 — €)Ic(S?).)

Hence, it is possible for us to build a connection between
Ic(S,) and Ic(Sy), which is the following lemma.

LEMMA 10. Given 6,, €] < €', if Equation 5 holds and
W AN n 1
_2(1 x%)-n (ln(b)+ln5é)
Ic(S9) - (¢ = (1= xb) - €])?
then with at least 1 - 6;, we havelc(S;) > (1 - xb - €)le(Sy)-

>0

Refer to [6] for the proof of Lemma 10.

Now we give the proof of Lemma 6. Based on Lemma 9
and Lemma 10 and by the union bound, if 8 > max(6y, 0,), it
holds that Ic(S;) > (1-x —e’)]I@(S") with at least 1-6; -6,
probability. Set 6] =06, =205"/2 and 0, = 0,, denoted as 0’,

we have

2n ((1 - xb)\/ln £+ \/(1 -x)(n(}) +In &
= €’ - Ic(SY)

Hence, if 0 > 0’, S, satisfies Ic(S;) >
with at least 1 — §’ probablhty

2

(1-x" = ee(SP)

Proof of Lemma 7. We first give several lemmas that will
be used in the proof of Lemma 7.

LEMMA 11. Let S, be the seed set returned by Algorithm 7.
Let S;_, be the seed set generated in Algorithm 8 Line 6 on
a set R of random RR sets. Then we have Ag(S, U S;_,) >

(1- xk‘b)Ayg(SZ) + xk‘bAR(SZ), wherex = 1-1/k.
ProOOF. Let S*(l < j < k — b) be the set of nodes selected
in the first j 1terat10ns of the generation of Sk b and M;(1 <
j < k —b) be aunion ofS* and S], ie M; = S* u S;. By the
submodularity property of coverage function AR('),

AR(SY) < AR(S] U M;) < Ar(M;) + Z Ar(v|M;)
vES\M;
< AR(M)) + k (Ar(Mj11) — Ar(M;)) .
AR(SY)— Ar(M;). Then we have: ;.1 < (1-

xy;j. Recursively, we have yr_, < xk=b
of y;j and M;, we derive that:

Yo = AR(SD) = AR(Sy), yi—b = AR(SY) — AR(S, U Si_p).

Let Yj = %))/} =

Yo By the definition

2177

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

= Ag(S; USE_ ;) = (1= x*P)AR(S) + x* P AR(S]).

The lemma is proved. m|
2nln
mpen i
the size of R, denoted as 0, is larger than 0, it follows that
FAR(SY) = (1 — €))le(Sy) with at least 1 —] probability.
In fact, at this moment (0 > 01), 5Ar(S}) is close to I(Sy).
That is the following lemma.

According to Lemma 9, given 6], €, and 6; =

LEmMMA 12. Given €] and 6], if 8 > 0y, it holds that
7AR(S;) = 1c(S;) — €]1c(SY) with at least 1 — 8] probability.

Proor. Define a random variable x; for each R; € R, such
that x; = 1if S; N R; # 0, and x; = 0 if otherwise. Define
p =1c(S;)/n. Obviously, Ic(S7) > Ic(S;) = np. We have

Pr [g - AR(Sy) - Ie(S}) < —eiﬂc(S;?)]

) ﬂc< 0, e1o(52)\? b,
| Sy <o (TR 21
<o ([y pgl) <a

The lemma follows.

Combining Lemma 11 and 12, we have that:

LemMma 13. Given 6], €/, if 0 > 0, andIc(S;) > (1 —xb -
EI)JIC(S"), then with at least 1 — 25, we have

9 “AR(S,US;) = (1—1/e—e —€)lc(S)). (6)

Proor. Based on Lemma 11,
0 CAR(S; U S ,) 2 (1= xF")AR(SY) + x* P AR(S})
> (1-x*")(1 - eDIe(S)+

xkb ((1—x — e)In(S?) -

=(1-x*

€1e(5p))
“Penle(Sp) = (1—x* — e — e)I(S)).

When 6 > 0, both 5AR(SY) > (1-¢€)Ic(SY) and FAR(S) >
Ie(S;)—eIc(SY) hold W1th atleast 1— 4] probability. By union
bound the fallure probability is 25;. The lemma follows. O

—E —X

Let ¢’ be the error threshold in the IM-sentinel phase.
LEMMA 14. Given §,, €] < €', and
— . n-b L
2(1-1/e) n(ln() +1n %)
Ie(SP)(e’ — €])? ’
if Equation 6 holds and 6 > 0,, then

922

Ie(S, US;_,) = (1—1/e—e —€)lc(Sy).

Research 25: Social Network Analysis

Refer to [6] for the proof of Lemma 14.

Now we prove Lemma 7. Lemmas 13 and 14 hold with
1 - 26] and 1 — §; probability, respectively. By union bound,
if 0 > max(6,, 0,), with 1— 28] — 6, probability, we have that:

HC(SZ U Slt—b) >(1-1/e—¢€ — 6’)]1@(5;3).
65 =6'/3, 0, = 6, denoted as 0, we have:

By setting]
2
2n - (\/ln 3+ \/(1 —1/e)(In (Z:Z) +In3)
0" = .
}I(c(sz)E'Z

The lemma follows.

6 ADDITIONAL RELATED WORK

There has been a large body of research on IM, e.g., [11-15,
17, 20-22, 25, 26, 28, 29, 31, 35, 42], in the literature. Kempe
et al. [26] present the first seminal work on IM, and show
that finding k users that maximize the influence is NP-hard.
They provide a greedy algorithm that provides (1 — 1/e — €)-
approximate solution, which requires Q(k - m - n - poly(1/¢))
running time, and is too expensive on large social networks.
A plethora of research works, e.g., [7, 12-14, 17, 21, 22, 25, 35],
study how to improve the efficiency of the IM problem. Most
algorithms are heuristic and fail to provide approximation
guarantee. The states of the art are the RR set based solutions
[8, 34, 37-39], as discussed in Section 2.2, which provide
superb efficiency and a strong theoretical guarantee.
Besides, a plethora of research work focuses on more prac-
tical scenarios rather than the classic IM. For instance, topic-
aware IM, by taking consideration of the topic propagated, is
studied by [29, 32]. Time-aware IM, which considers a time
constraint during the diffusion process, is studied in [18, 30].
Competitive IM [10, 31] considers the scenarios where sev-
eral competitors spread their influences in the same social
networks simultaneously and their diffusion interferes with
each other. There also exist studies on IM under budget
constraints [32], constraint to user groups [40], and under
adaptive settings [23, 36]. These are orthogonal to our study.

7 EXPERIMENTS

This section evaluates our solutions against alternatives. All
experiments are conducted on a Linux machine with an Intel
Xeon CPU clocked at 2.70GHz and 200 GB memory.

Algorithms. We compare our solutions against the three
state-of-the-art solutions, IMM, SSA and OPIM-C, which all
adopt the vanilla RR set generation algorithm (Algorithm 2).
The C++ implementations of these solutions are available
at [3], [5] and [4], respectively. For our solution, we first
implement based on the existing state-of-the-art OPIM-C and
integrate our SUBSIM framework for RR set generation. We
further implement two versions of HIST, one with vanilla RR

2178

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Table 2: Summary of datasets (M = 10°, B = 10°)

Dataset Type n m
Pokec directed 1.6M | 30.6M
Orkut undirected | 3.1M | 117.2M

Twitter directed | 41.7M 1.5B

Friendster | undirected | 65.6M 1.8B

set generation algorithm and one with SUBSIM framework
for RR set generation. We implement all of our algorithms
in C++ and compile all algorithms with full optimization.
We repeat each algorithm five times and report the average
running time as the query performance. We omit the result
if the algorithm consumes more than 200GB memory.

Datasets. We evaluate our experiments on four benchmark
datasets that are publicly available at [1, 2]. The summary of
these four datasets is shown in Table 2.

Parameter Settings. Recap that all the algorithms include
an error parameter € and a failure probability parameter §.
Following previous work [37], we sete = 0.1and § = 1/n for
all solutions in the experiments. To examine the effectiveness
of our SUBSIM, we compare our SUBSIM against the vanilla
RR set generation algorithm under IC model with different
distribution settings. We first test on WC model, where the
weight of an edge (w, u) is set as 1/d;,(u). Then we test the
case when the weight of edges follows skewed distributions,
in particular, exponential distribution and Weibull distribu-
tion. For exponential distribution, the probability density
function (PDF)is f(x) = Ae™**. We set A = 1 and sample the
weight of each edge with this setting. For each node v, we
scale the sum of the weights of its incoming edges to 1. For
Weibull distribution, the PDF is f(x) = 4 - (%)a_1 e~ (x/b)*
Following previous studies [38], we sample a and b from
[0, 10] uniformly at random for each edge e. For each node
v, we scale the sum of the weight of its incoming edges to 1.

We then examine the effectiveness of HIST in high influ-
ence networks, where the average size of random RR sets
tends to be quite large. We design our experiments by varying
the average size of random RR sets under two settings. The
first setting, dubbed as WC variant, is similar to WC model ex-
cept that we introduce a constant § > 1 such that the weight
of an edge (w, u) is setas min{1, 6/d;,(u)}. By changing 60, we
are able to vary the average size of random RR sets. We then
vary 0 on each dataset such that the average size of random
RR sets is approximately {50, 400, 1000, 4000, 8000, 32000}.
We denote the setting as 059, 8400, 01, Osx, O3k, O32K, respec-
tively. The second setting is the Uniform IC setting where
all edges have the same weight p. We vary the weight p on
each dataset such that the average size of random RR sets is
approximately {50, 400, 1000, 4000, 8000, 32000}. We denote

the setting as pso, paoo, P1k, Pak- Psk- P32k, respectively.

Research 25: Social Network Analysis

MM —F— SSA —O—

Running time (s) Running time (s)

10!

10° :M

5001000 1500 2000 1

107

110 50 100 200 1050 100 200 500 1000 1500 2000

OPIM-C —X—

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

SUBSIM —~F—

Running time (s) Running time (s)

\S=aues

110 50 100 200 500 1000 1500 2000 1

k
(c) Twitter

7

1050 100 200 500 1000 1500 2000

k
(d) Friendster

Figure 1: Varying k: Running time of IM algorithms under WC model.
HIST []

Number of RR sets
100

k k
(a) Pokec (b) Orkut
SUBSIM [___] Vanilla [FEEEE]

s Running time (s)

5 Running time (s)
0 10

100

Pokec Pokec

(b) Weibull distribution

Figure 2: Skewed distribution: RR set generation cost.

Orkut

Twitter Friendster

(a) Exponential distribution

7.1 Effectiveness of SUBSIM

In the first set of experiments, we examine the effectiveness
of SUBSIM against IMM, SSA, and OPIM-C under WC set-
ting. Figure 1 reports the average running time on the four
datasets. The first observation is that SUBSIM consistently
outperforms alternatives on all the tested datasets. Com-
pared to OPIM-C, even though we only modify the RR set
generation algorithm, SUBSIM is still up to 15x faster than
OPIM-C on Twitter. SUBSIM further outperforms SSA (resp.
IMM) by up to an order (resp. three orders) of magnitude.
In the second set of experiments, we consider the skewed
distribution settings, i.e., when the edges follow the expo-
nential or Weibull distribution. We omit the results for IM
algorithms since the experimental result follows a similar
trend. Instead, we focus on comparing the cost of the vanilla
RR set generation algorithm, denoted as vanilla, with that of
our SUBSIM for RR set generation. We generate 2% x 1000
random RR sets on each dataset using the vanilla algorithm
and our SUBSIM, and report their running time. As shown in
Figure 2, SUBSIM consistently keeps its advantage on all four
tested datasets and achieves up to 38x (resp. 25x) speedup
over vanilla under exponential (resp. Weibull) distribution.

7.2 Effectiveness of HIST

Our first set of experiments examines the performance of
our HIST when k varies under WC variant setting. We
fix 0 and set it to 04k for each dataset, and vary k with
{1, 10, 50, 100, 200, 500, 1000, 1500, 2000}. Figure 4 shows the
average running time of HIST (with vanilla RR set generation
algorithm), HIST+SUBSIM (with SUBSIM for RR set genera-
tion), and OPIM-C. We observe that with the increase of size

2179

OPIM-C [EEE]

Average Size of RR sets
10t

100

Pokec

Pokec Orkut Twitter Friendster

(a) Number of RR sets
Figure 3: Statistics of RR sets.

Orkut Twitter Friendster

(b) Average size of RR sets

k, the benefit of applying our HIST algorithm becomes more
significant, and HIST is at least an order of magnitude faster
than OPIM-C. HIST+SUBSIM further achieves up to an order
of magnitude speedup over HIST since HIST+SUBSIM adopts
SUBSIM for RR set generation. Figure 5 shows the expected
influence when we increase k from 1 to 2000 with 0, setting.
The expected influence gains a significant increase when we
increase k from 1 to 2000 on all four datasets.

In our second set of experiments, we vary the average
size of random RR sets under WC variant setting. We fix
k = 200 and vary 0 with 950, 9400, 91[(, 94](, 931{, 932[(on each
dataset. Figure 6 shows the running time of our solutions
against OPIM-C. We can observe that even when the average
size of random RR sets is around 50, our HIST is already as
competitive as OPIM-C. When the size of random RR sets
further increases, HIST shows a more significant advantage
and is up to two orders of magnitude faster than OPIM-C
when 6 = 05,k. Besides, SUBSIM+HIST is always two orders
of magnitude faster than OPIM-C when 0 = 05;x.

In our third set of experiments, we vary the average size
of random RR sets under Uniform IC setting. We fix k =
200 and vary p with {Pso,P400,P1K,P4K,P8K,P32K}- Figure 7
shows the running time of all three algorithms. We can see
that even when the average size of RR sets is around 50,
HIST is already several times faster than OPIM-C. When
p is set to psax, HIST (resp. HIST+SUBSIM) is at least an
order (resp. two orders) of magnitude faster than OPIM-C.
We also examine the effectiveness of our solutions when k
varies under Uniform IC setting. The result is similar to our
findings under WC variant setting and is omitted.

In the last set of experiments, we report some statistics
of RR sets with our HIST under WC variant setting with

Research 25: Social Network Analysis

Running time (s) Running time (s)

10°

10°
10
102 &
10' 10' W]
]

10° 10

1 10 50 100 200 500 1000 1500 2000 1 10 50100 200 500 1000 1500 2000
k k
(a) Pokec (b) Orkut

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Running time (s)

s Running time (s)
10

3
" M 10* EM
" [\S\S\S—E—E}—E—E—E . H\H/G\S'G\Q—S
F~o—6—¢ o o 86 64 ’

110 50 100 200 500 1000 1500 2000 110 50 100 200 500 1000 1500 2000

k k
(c) Twitter (d) Friendster

10'

0

10

Figure 4: Varying k: Running time under WC variant setting.

SUBSIM+HIST —&—

. Expected Influence o Expected Influence
0o 10

1 10 50 100 200 500 1000 1500 2000 1 10 50 100 200 500 1000 1500 2000
k k
(a) Pokec (b) Orkut

HIST —H——

OPIM-C —>—

Expected Influence . Expected Influence
10

110 50 100 200 500 1000 1500 2000 110 50 100 200 500 1000 1500 2000

k k
(c) Twitter (d) Friendster

Figure 5: Varying k: Expected influence under WC variant setting.

N Running time (s) . Running time (s)
) 10

10°

10°

850 00 Ok Ok Bk Oy 050 G0 Bk Ok Ok Ok

0 0
(a) Pokec (b) Orkut

ot Running time (s) Running time (s)

,
10

" %ﬁ

102 10° & y

' I S i T

10
10°

850 G0 Bk Ok Bk Ok 850 00 Ok O Bk Oy

0 0
(c) Twitter (d) Friendster

Figure 6: Varying 0: Running time under WC variant setting,.

SUBSIM+HIST —&—

s Running time (s) . Running time (s)
10° 10

10°
v // /w
102
10! J 88— —e—
E 10 w

10° 10°
Psp Pao Pik Pak Pk Pk Py Pao Pk Pk Pk Pak

P P
(a) Pokec (b) Orkut

HIST ——F—

OPIM-C —X—

S Running time (s) . Running time (s)
10° 10

"
10 W 10t
10 s
10
5 [M
w58 g—a
1ol —o—o——e——o— 10 M

1

10
Pso Pao Pik Pak Pgk P3k Pso Paoo Pik Pak Pgk P3k

P P
(c) Twitter (d) Friendster

Figure 7: Varying p: Running time under Uniform IC setting.

k = 2000 and 0 = 0. Figure 3(a) reports the number of RR
sets generated in the sentinel set selection phase of HIST. We
compare with the number of RR sets generated by OPIM-C
and we observe that the number of random RR sets required
by our HIST is two orders of magnitude smaller than that
required by OPIM-C in most datasets. Figure 3(b) reports
the average size of random RR sets generated by our HIST
against OPIM-C. Observe that the average size of random RR
sets with HIST is reduced by up to 700x. To explain, when a
node in the sentinel set is met, the RR set generation with
HIST can immediately stop, reducing the size of RR sets.

In summary, the result indicates that the larger the average
size of random RR sets are, the more effective our HIST and
HIST+SUBSIM are. In high influence networks, the average

size of random RR sets tends to be large and our proposed
solutions are preferred choices.

8 CONCLUSION

This paper presents SUBSIM, an efficient framework for RR
set generation. We further present HIST to further tackle the
challenging scalability issues in high influence networks.

9 ACKNOWLEDGMENTS
Sibo Wang is supported by Hong Kong RGC ECS Grant No.
24203419, CUHK Direct Grant No. 4055114, and a CUHK

University Startup Grant. Zhewei Wei is supported by NSFC
Grant No. 61832017, No. 61972401 and No. 61932001.

2180

Research 25: Social Network Analysis

REFERENCES

[10

[11

[12

(13

(14

(15

(16

[17

(18

(19

[20

(21

[22

— =

—

= =

[

—

[

=

= =

—

—

2013. KONECT Datasets. http://konect.uni-koblenz.de/.

2014. SNAP Datasets. http://snap.stanford.edu/data.

2015. IMM code. https://sourceforge.net/projects/im-imm/.

2017. OPIM-C code. https://github.com/tangj90/OPIM.

2017. SSA code. https://github.com/hungnt55/Stop-and-Stare.

2020. SUMSIM technical report. https://sites.google.com/site/
sigmod2020subsimtr/.

Akhil Arora, Sainyam Galhotra, and Sayan Ranu. 2017. Debunking the
Myths of Influence Maximization: An In-Depth Benchmarking Study.
In SIGMOD. 651-666.

Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan
Lucier. 2014. Maximizing Social Influence in Nearly Optimal Time. In
SODA. 946-957.

Karl Bringmann and Konstantinos Panagiotou. 2017. Efficient Sam-
pling Methods for Discrete Distributions. Algorithmica 79, 2 (2017),
484-508.

Ceren Budak, Divyakant Agrawal, and Amr E]l Abbadi. 2011. Limiting
the spread of misinformation in social networks. In WWW. 665-674.
Shuo Chen, Ju Fan, Guoliang Li, Jianhua Feng, Kian-Lee Tan, and Jinhui
Tang. 2015. Online Topic-Aware Influence Maximization. PVLDB 8, 6
(2015), 666-677.

Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maxi-
mization for prevalent viral marketing in large-scale social networks.
In SIGKDD. 1029-1038.

Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maxi-
mization in social networks. In SIGKDD. 199-208.

Sugi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi
Cheng. 2014. IMRank: influence maximization via finding self-
consistent ranking. In SIGIR. 475-484.

Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck.
2014. Sketch-based Influence Maximization and Computation: Scaling
up with Guarantees. In CIKM. 629-638.

Paul Dagum, Richard M. Karp, Michael Luby, and Sheldon M. Ross.
1995. An Optimal Algorithm for Monte Carlo Estimation (Extended
Abstract). In FOCS. 142-149.

Sainyam Galhotra, Akhil Arora, and Shourya Roy. 2016. Holistic
Influence Maximization: Combining Scalability and Efficiency with
Opinion-Aware Models. In SIGMOD. 743-758.

Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schélkopf.
2011. Uncovering the Temporal Dynamics of Diffusion Networks. In
ICML. 561-568.

Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2010. Learn-
ing influence probabilities in social networks. In WSDM. 241-250.
Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2011. A
Data-Based Approach to Social Influence Maximization. PVLDB 5, 1
(2011), 73-84.

Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. 2011. CELF++:
optimizing the greedy algorithm for influence maximization in social
networks. In WWW. 47-48.

Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. 2011. SIMPATH:
An Efficient Algorithm for Influence Maximization under the Linear
Threshold Model. In ICDM. 211-220.

2181

[23]

[24]

[25]
[26]

[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Kai Han, Keke Huang, Xiaokui Xiao, Jing Tang, Aixin Sun, and Xueyan
Tang. 2018. Efficient Algorithms for Adaptive Influence Maximization.
PVLDB 11, 9 (2018), 1029-1040.

Keke Huang, Sibo Wang, Glenn S. Bevilacqua, Xiaokui Xiao, and Laks
V.S. Lakshmanan. 2017. Revisiting the Stop-and-Stare Algorithms for
Influence Maximization. PVLDB 10, 9 (2017), 913-924.

Kyomin Jung, Wooram Heo, and Wei Chen. 2012. IRIE: Scalable and
Robust Influence Maximization in Social Networks. In ICDM. 918-923.
David Kempe, Jon M. Kleinberg, and Eva Tardos. 2003. Maximizing the
spread of influence through a social network. In SIGKDD. 137-146.
Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3.
Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart.
2015. Online Influence Maximization. In SIGKDD. 645-654.

Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. 2015. Real-time
Targeted Influence Maximization for Online Advertisements. PVLDB
8, 10 (2015), 1070-1081.

Bo Liu, Gao Cong, Dong Xu, and Yifeng Zeng. 2012. Time constrained
influence maximization in social networks. In ICDM. 439-448.

Wei Lu, Wei Chen, and Laks V. S. Lakshmanan. 2015. From Com-
petition to Complementarity: Comparative Influence Diffusion and
Maximization. PVLDB 9, 2 (2015), 60-71.

Hung T. Nguyen, Thang N. Dinh, and My T. Thai. 2016. Cost-aware
Targeted Viral Marketing in billion-scale networks. In INFOCOM. 1-9.
Hung T. Nguyen, Thang N. Dinh, and My T. Thai. 2018. Revisiting of
‘Revisiting the Stop-and-Stare Algorithms for Influence Maximization’.
In CSoNet. 273-285.

Hung T. Nguyen, My T. Thai, and Thang N. Dinh. 2016. Stop-and-Stare:
Optimal Sampling Algorithms for Viral Marketing in Billion-scale
Networks. In SIGMOD. 695-710.

Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi
Kawarabayashi. 2014. Fast and Accurate Influence Maximization on
Large Networks with Pruned Monte-Carlo Simulations. In AAAL 138-
144.

Jing Tang, Keke Huang, Xiaokui Xiao, Laks V. S. Lakshmanan, Xueyan
Tang, Aixin Sun, and Andrew Lim. 2019. Efficient Approximation
Algorithms for Adaptive Seed Minimization. In SIGMOD. 1096-1113.
Jing Tang, Xueyan Tang, Xiaokui Xiao, and Junsong Yuan. 2018. Online
Processing Algorithms for Influence Maximization. In SIGMOD. 991-
1005.

Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence Maxi-
mization in Near-Linear Time: A Martingale Approach. In SIGMOD.
1539-1554.

Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maxi-
mization: near-optimal time complexity meets practical efficiency. In
SIGMOD. 75-86.

Rajan Udwani. 2018. Multi-objective Maximization of Monotone Sub-
modular Functions with Cardinality Constraint. In NeurIPS. 9513—
9524.

Alastair J. Walker. 1977. An Efficient Method for Generating Discrete
Random Variables with General Distributions. ACM Trans. Math. Softw.
3,3 (1977), 253-256.

Yanhao Wang, Qi Fan, Yuchen Li, and Kian-Lee Tan. 2017. Real-Time
Influence Maximization on Dynamic Social Streams. PVLDB 10, 7
(2017), 805-816.

http://konect.uni-koblenz.de/
http://snap.stanford.edu/data
https://sourceforge.net/projects/im-imm/
https://github.com/tangj90/OPIM
https://github.com/hungnt55/Stop-and-Stare
https://sites.google.com/site/sigmod2020subsimtr/
https://sites.google.com/site/sigmod2020subsimtr/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing Solutions
	2.3 RR Set Generation

	3 SUBSIM
	3.1 A New RR set Generation Scheme
	3.2 Influence Maximization: A New Bound
	3.3 Extension to General IC Model

	4 Highly Influential Scenarios
	4.1 Sentinel Set Selection Phase
	4.2 IM-Sentinel Phase

	5 Theoretical Analysis
	6 Additional Related Work
	7 Experiments
	7.1 Effectiveness of SUBSIM
	7.2 Effectiveness of HIST

	8 Conclusion
	9 ACKNOWLEDGMENTS
	References

