The VLDB Journal (2018) 27:395-420
https://doi.org/10.1007/s00778-018-0502-0

REGULAR PAPER

@ CrossMark

Parallel trajectory similarity joins in spatial networks
Shuo Shang - Lisi Chen? - Zhewei Wei? - Christian S. Jensen* . Kai Zheng?’ - Panos Kalnis'

Received: 28 July 2017 / Revised: 19 February 2018 / Accepted: 14 March 2018 / Published online: 4 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider
two cases of trajectory similarity joins (TS-Joins), including a threshold-based join (Tb-TS-Join) and a top-k TS-Join (k-TS-
Join), where the objects are trajectories of vehicles moving in road networks. Given two sets of trajectories and a threshold 9,
the Tb-TS-Join returns all pairs of trajectories from the two sets with similarity above 6. In contrast, the k-TS-Join does not take
a threshold as a parameter, and it returns the top-k most similar trajectory pairs from the two sets. The TS-Joins target diverse
applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion
prediction. With these applications in mind, we provide purposeful definitions of similarity. To enable efficient processing
of the TS-Joins on large sets of trajectories, we develop search space pruning techniques and enable use of the parallel
processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer search framework
that lays the foundation for the algorithms for the Tb-TS-Join and the k-TS-Join that rely on different pruning techniques
to achieve efficiency. For each trajectory, the algorithms first find similar trajectories. Then they merge the results to obtain
the final result. The algorithms for the two joins exploit different upper and lower bounds on the spatiotemporal trajectory
similarity and different heuristic scheduling strategies for search space pruning. Their per-trajectory searches are independent
of each other and can be performed in parallel, and the mergings have constant cost. An empirical study with real data offers
insight in the performance of the algorithms and demonstrates that they are capable of outperforming well-designed baseline
algorithms by an order of magnitude.

Keywords Trajectory similarity join - Parallel processing - Spatial networks - Spatiotemporal databases

1 Introduction

B0 Lisi Chen . The continued proliferation of GPS-equipped mobile devices
chenlisi.cs @gmail.com . o
(e.g., vehicle navigation systems and smart phones) and
Shuo Shang

the proliferation of online map-based services (e.g., Bing
Maps', Google Maps?, and MapQuest?) enable the collection
and sharing of trajectories. For example, the sites Bikely*,

jedi.shang @gmail.com

Zhewei Wei
zhewei@ruc.edu.cn

Christian S. Jensen
csj@cs.aau.dk

Kai Zheng

zhengkai @ueste.edu.cn 4 Department of Computer Science, Aalborg University,
Panos Kalnis Aalborg, Denmark

panos.kalnis @kaust.edu.sa 5

School of Computer Science and Engineering and Big Data
Research Center, University of Electronic Science and

l
CEMSE, King Abdullah University of Science and Technology of China, Chengdu, China

Technology, Thuwal, Saudi Arabia

2 School of Computer and Information Technology, University ! hetps:/www.bing.com/maps/.
of Wollongong, Wollongong, Australia 2 https://maps.google.com/.

3

School of Information, Renmin University of China, Beijing, https://www.mapquest.com.

China 4 https://www.bikely.com/.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0502-0&domain=pdf
https://www.bing.com/maps/
https://maps.google.com/
https://www.mapquest.com
https://www.bikely.com/

396

S.Shang et al.

GPS-way-points®, Share-my-routes®, and Microsoft Geo-
life” enable such sharing, and more and more social network
sites, including Twitter3, Facebook?, and Foursquarelo, are
starting to support trajectory sharing and search. This devel-
opment motivates new studies of the management and
analysis of massive trajectory data. In these settings, trajec-
tory similarity joins (TS-Joins), including a threshold-based
TS-Join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join),
constitute fundamental functionality. Given two sets of tra-
jectories as arguments and a similarity threshold 6 as a
parameter, the Tb-TS-Join returns all pairs of trajectories
from the two sets with similarity above 6. In contrast, the k-
TS-Join does not take a similarity threshold 6 as a parameter
and it returns k most similar trajectory pairs from the two
sets. The k-TS-Join is useful in cases where a user cannot
specify a purposeful similarity threshold.

The TS-Joins may bring significant benefits to diverse
applications, including trajectory near-duplicate detection,
data cleaning [2,20], ridesharing recommendation [17,18],
friend recommendation [18], frequent trajectory-based rout-
ing [13,20], and traffic congestion prediction [27,28]. For
example, a database may contain several copies of a trajec-
tory or several similar trajectories. We may conducta T'S-Join
(self join) on the database to identify duplicate or similar tra-
jectories, thus supporting data cleaning. For example, having
found similar trajectory pairs (71,72), (71,73), (t1,74), We may
choose to retain only the representative trajectory tj. The
identification of similar trajectories of different commuters
is also useful in ridesharing recommendation and friend rec-
ommendation. For example, commuters may find potential
ridesharing partners among commuters with similar trajecto-
ries, and social networking services may identify users with
similar living trajectories and use this in friend recommenda-
tions. We may also use a TS-Join to find frequently traveled
trajectories (e.g., trajectory t joins with m other trajectories,
thus having travel frequency m + 1), which may be used
for route recommendation and in traffic analyses to predict
congestion.

To the best of our knowledge, this is the first study of a tra-
jectory similarity join that takes into account both spatial and
temporal aggregate distances. We adopt a linear combination
method (e.g., [18,19]) to combine the spatial and temporal
similarity into a spatiotemporal similarity metric. In contrast,
existing trajectory similarity joins (e.g., [2,3,6,10]) use a time
interval threshold to constrain the temporal proximity of two

3 https://www.gps-waypoints.net.

6 https://www.sharemyroutes.com/.

7 https://research.microsoft.com/en-us/projects/geolife/.
8 https://www.twitter.com/.

9 https://www.Facebook.com/.

10 https://www.Foursquare.com/.

@ Springer

trajectories (in a fixed manner) and can be assigned to two
different categories.

Studies in the first category (e.g., [3,10]) eliminate trajec-
tory pairs that are temporally further apart than a threshold.
We generalize this category of studies and compute temporal
similarity by summarizing temporal proximities of sample
point pairs from two trajectories (aggregate-distance match-
ing), thus obviating the need for a time threshold.

Studies in the other category (e.g., [2,6]) utilize a sliding
window for all trajectories and eliminate pairs of trajectories
with times that fall outside the window. For the remaining
pairs, only spatial proximity is considered. However, in the
applications that motivate our study, spatial proximity is by
itself insufficient to evaluate the relationship between differ-
ent trajectories. With the approach in the second category,
a ridesharing service may recommend a co-traveler with a
very different departure time to a traveler. Although the tra-
jectories of the travelers may be spatially close to each other,
the travelers may not be satisfied with the recommendation,
as their preferences are not fulfilled.

An example similarity join is shown in Fig. 1, where 11,
77, and t3 are trajectories and P = {11} and Q = {1, 13}.
A trajectory is a sequence of timestamped sample points
of a moving object. In the example, pi, p2, ..., pi5 are
timestamped sample points. Given a time interval (8:30,
10:30), existing sliding window-based trajectory similarity
joins (e.g., [2,6]) return trajectory pairs (71, 72) and (ty, t3)
because they are spatially close to each other. However, 11
and 1 have very different departure times, thus rendering a
result such as this of little use in ridesharing and traffic con-
gestion prediction. In the applications we target, it is difficult
to obtain an appropriate query time interval. The TS-Joins
(assuming that Sim(zy, 73) > 6 in the Tb-TS-Joinand k = 1
in the k-TS-Join) return trajectory pair (71, t3) without the
need for a query time interval, and the spatial and temporal
domains are considered appropriately in the matching.

Next, unlike existing trajectory similarity joins [2,3,6,10,
20], the TS-Joins are applied in spatial networks because
in many practical scenarios, the objects move in spatial
networks rather than in Euclidean space. In spatial net-
works, network distance is the relevant distance between two
objects, and using Euclidean distance may lead to errors. We
assume that the sample points of trajectories in sets P and
0 have been map matched to the corresponding spatial net-
work (the spatial domain) according to some map-matching
algorithm (e.g., [4,22]), and we assume that the timestamps
of all trajectory sample points are mapped to a time axis with
a 24-hour range (the temporal domain) [18].

Existing methods cannot process the TS-Joins due to three
reasons. (i) Different query spaces (Euclidean vs. network):
existing joins (e.g., [2,3,6,10,20]) are conducted in Euclidean
space rather than in a spatial network. Existing spatial indices
(e.g., the R-tree [11]) and accompanying techniques lack

https://www.gps-waypoints.net
https://www.sharemyroutes.com/
https://research.microsoft.com/en-us/projects/geolife/
https://www.twitter.com/
https://www.Facebook.com/
https://www.Foursquare.com/

Parallel trajectory similarity joins in spatial networks

397

N.Church St

%3

E University Ave

ISIBNS

E Green St

ISUrS

1SISLS

R

T

-

Mlini Union (#

= <p;,09:37>,<py, 09:40>,<p;, 09:48 >, <pg, 09:51 >, <py, 09:57 >, <p;,,

Moy

W
Carle Foundation)
=g

Hospital

E b

ISAUAN

Black Dog Smoke .-

0 St & Ale House

std e

Wester Ave 2 P
= * P <

Pr5

7
=

ek Mieo

10:02>,<p;3,10:05>,<p;y, 10:07 >

T2 = <p;, 08:35>,<p,, 08:39><ps, 08:46 >, <pg, 08:49>, <py, 09:01 >, <p;9, 09:04>,<p;3, 09:06>,<p;5,09:07 >
T3 = <p;,09:32>,<pg, 09:43>,<p;, 09:48 >, <pg, 09:51 >, <py, 09:59 >, <p;y, 10:03 > , <p;;, 10:13 >

@ : sample point in a trajectory

Fig.1 TS-Joins example

effectiveness in our setting. (ii) Different temporal match-
ing schemes (time interval vs. aggregate distance): most
existing trajectory similarity joins are time interval-based
(e.g., [2,3,6,10]), and their solutions are inapplicable of
aggregate-distance matching. They compute different results
than the TS-Joins (cf. Fig. 1). (iii) Parallel processing: an
experimental study [12] shows that existing centralized sim-
ilarity join techniques (that do not take parallel processing
into account) are inefficient when processing very large
data sets. Existing centralized trajectory similarity joins
(e.g., [2,3,6,10,20]) can process at most 500 K trajectories
(based on reported experiments), while the TS-Joins are able
to process 10 M trajectories with a reasonable runtime (e.g.,
processing 10 M x 2 M trajectories for non-self Tb-TS-Join
in 220s and for non-self k-TS-Join in 820s. The k-TS-Join
takes longer because it does not have a threshold that enables
search space pruning). A comparison between the TS-Joins
and existing studies is shown in Table 1. Section 7 covers
related work in more detail.

We initially propose a relatively straightforward approach
to the TS-Joins (Tb-TS-Join and k-TS-Join) called temporal-
first matching. We apply a hierarchical grid index in the
temporal domain. Then we refine the candidate trajectory
pairs in the same leaf node (trajectories in the same node
are temporally similar) by computing their spatiotempo-
ral similarities. By merging the results from the leaf nodes
toward the root, the join result is obtained when the root is
reached. The computations at each index level occur in par-
allel. Following this framework, we develop two algorithms,
called TF-Matching and k-TF-Matching that compute the
Tb-TS-Join and the k-TS-Join, respectively. The main dif-
ference between TF-Matching and k-TF-Matching is the
pruning techniques they employ. The trajectory-similarity
lower bound in TF-Matching is defined according to the

) : start point of a trajectory

* : destination point of a trajectory

threshold 6. In contrast, k-TF-Matching has no threshold,
so the upper and lower bounds, the pruning within a thread,
and the merging among different threads must be reworked.

The two new algorithms are enabled by four specific tech-
nical contributions: pruning in leaf nodes, pruning among
different nodes, merging, and parallel processing. The only
similarity between the proposed algorithms and the sliding
window-based trajectory similarity methods [2,6] is that the
similarity-join computation in a leaf node is equivalent to
the processing of a query issued within a temporal-matching
window (the first contribution). The optimization techniques
in sliding window-based methods cannot be used in our
algorithm because of the different query spaces (Euclidean
vs. network) and the different temporal matching schemes
(time interval vs. aggregate distance).

The temporal-first matching has three main limitations.
First, it is driven by the temporal domain and thus has
weak spatial pruning power. As a result, large numbers of
pairs must be considered. Second, while having many leaf
nodes enables more parallel processing, this also increases
the merging cost. Third, it is potentially costly to acquire
network distances when computing spatial similarities.

To process the TS-Joins more efficiently, we propose
a two-phase divide-and-conquer search framework. In the
trajectory-search phase, for each trajectory 7, we explore the
spatial and temporal domains concurrently to find trajectories
that are similar to 7. In the spatial domain, network expan-
sion [9] is adopted from each sample point of 7, while in the
temporal domain, we expand the search from each timestamp
of t. The trajectory-search processes are independent of each
other, enabling parallel processing, and the merging cost is
constant (uncorrelated to the number of threads used for par-
allel processing). The two-phase algorithm has a stronger
pruning power. The network distances for similarity com-

@ Springer

398

S.Shang et al.

Table 1 Comparison to existing

trajectory similarity joins Studies Space Temporal matching Parallel Data
[2] Euclidean Sliding window-based No 50K
[6] Euclidean Sliding window-based No 250 K
[3] Euclidean Time threshold-based No 150 K
[10] Euclidean Time threshold-based No 2K
[20] Euclidean Spatial join only No 500 K
TS-Joins Network Aggregate-distance matching Yes 10M

putation can be derived directly during the trajectory-search
process. A time complexity analysis indicates that the two-
phase approach is considerably better than the temporal-first
matching approach. Following this framework, we develop
two specific algorithms, called two-phase and k-two-phase
that compute the Tb-TS-Join and the k-TS-Join, respectively.
The main difference between two-phase and k-two-phase is
their pruning techniques. In two-phase, an upper bound on
the spatiotemporal similarity is defined and employed for
pruning the search space, and a heuristic scheduling strategy
is proposed to schedule multiple so-called query sources in
order to improve efficiency. The bound and scheduling are
defined according to threshold 6. In contrast, k-two-phase
has no threshold, so the upper and lower bounds, the pruning
within a thread, the merging among different threads, and the
heuristic search strategy must be reworked.

The present paper expands on a previous study [16].
Specifically, we propose a novel top-k TS-Join (k-TS-Join)
that retrieves the top-k most similar trajectory pairs from
two trajectory sets without taking a threshold 6 as a query
parameter. Leveraging the frameworks of the TF-Matching
and two-phase algorithms, we develop new k-TF-Matching
and k-two-phase algorithms that enable parallel processing
(cf. Sects. 3.2 and 4.2). Unlike the Tb-TS-Join, the k-TS-
Join has no threshold that it can use for pruning. Thus, we
develop new upper and lower bounds and rework the prun-
ing and scheduling within a thread and the merging among
different threads (cf. Equations 13—17, and 28-31). Next, we
add a new trajectory similarity measure that takes the visiting
sequence of sample points into account when matching tra-
jectories, and we extend the TF-Matching, k-TF-Matching,
two-phase, and k-two-phase algorithms to support this new
similarity measure (cf. Sect. 5). We also report on experi-
ments that offer insight into the performance of the two new
algorithms (cf. Sect. 6.3, Figs. 10, 11, 12, 13 and 14, including
34 subfigures) and the four extended algorithms (cf. Sect. 6.4,
Figures 15, 16, including 12 subfigures) in different settings.

To sum up, the contributions of the paper are as follows.

— We propose two novel network-based trajectory simi-
larity joins, called TB-TS-Join and k-TS-Join, that use
aggregate-distance matching to quantify similarity, thus

@ Springer

targeting applications such as trajectory near-duplicate
detection, ridesharing recommendation, route planning,
and traffic congestion prediction.

— The TS-Joins use new metrics to evaluate trajectory sim-
ilarity in the spatial and temporal domains (Sect. 2).

— We develop two temporal-first baseline algorithms, TF-
Matching and k-TF-Mathcing, that enable parallel TB-
TS-Join and £-TS-Join processing (Sects. 3.1 and 4.1).

— We develop two-phase and k-two-phase algorithms, each
with effective pruning and scheduling techniques that
enable parallel TB-TS-Join and k-TS-Join processing
(Sects. 3.2 and 4.2).

— We extend the TF-Matching, k-TF-Matching, two-phase,
and k-two-phase algorithms to scenarios where the visit-
ing sequence of sample points is to be taken into account
when matching trajectories (Sect. 5).

— We conduct extensive experiments on large trajectory sets
that offer insight into the performance of the developed
algorithms (Sect. 6).

The rest of the paper is organized as follows. Section 2
introduces the spatial network setting and the trajectory sim-
ilarity metrics used in the paper, and it defines the problem.
The temporal-first matching and k-temporal-first matching
algorithms are covered in Sect. 3, while the two-phase and
k-two-phase algorithms are covered in Sect. 4. The two-phase
and k-two-phase algorithms are further extended to support
practical scenarios in Sect. 5, which is followed by a pre-
sentation of experimental results in Sect. 6. Related work is
covered in Sect. 7, and conclusions and research directions
are presented in Sect. 8.

2 Preliminaries
2.1 Spatial networks and trajectories

A spatial network is modeled as a connected, undirected
graph G = (V,E, F,W), where V is a vertex set and
E C {{vi,vj}lvi,v; € V Av; # v} is an edge set. A
vertex v; € V represents a road intersection or an end of a
road, and an edge e; = {v;, v;} € E represents a road seg-

Parallel trajectory similarity joins in spatial networks

399

ment that enables travel between vertices v; and v;. Function
F:VUE — Geometries maps a vertex to the point loca-
tion of the corresponding road intersection and maps an edge
to a polyline representing the corresponding road segment.
Function W : E — R assigns a real-valued weight W (e) to
an edge e that represents the corresponding road segment’s
length.

The shortest path between two vertices v; and v; is a
sequence of edges linking v; and v; such that the sum of
the edge weights is minimal. Such a path is denoted by
SP(v;, vj),andits lengthis denoted by sd (v;, v;). Euclidean
space-based spatial indices (e.g., the R-tree [11]) and accom-
panying techniques are ineffective in network environments
due to loose lower bounds. For simplicity, we assume that
the data points considered (e.g., trajectory sample points)
are located on vertices. It is straightforward to also support
data points on edges. Assume a data point p is on an edge e
with given network distances to the two end vertices e, and
ep. Then, a new vertex is created for p and edge e is replaced
by edges (eq, p) and (p, ep).

Raw trajectory samples obtained from GPS devices are
typically of the form of (longitude, latitude, time). We assume
that all trajectory sample points have already been map
matched onto the vertices of the spatial network using some
map-matching algorithm (e.g., [4,22]) and that between two
adjacent sample points p, and pp, the object movement
always follows the shortest path connecting p, and pp. A
trajectory is defined as follows.

Definition: trajectory

A trajectory t of a moving object is a finite, time-ordered
sequence (v, v2, ..., Vy), Where v; = (p;, t;), 1 € [1,n],
with p; being a sample point (equal to some vertex in G.V)
and #; being a timestamp.

The value of a timestamp is set to be within the range of
24, and the date is not taken into account because in many
practical scenarios like urban transportation, most move-
ments occur daily.

Notice that the modeling of spatial networks and trajecto-
ries align with previous studies [14,15,18,19].

2.2 Trajectory similarity functions
Given a sample point v = (v.p, v.t) and a trajectory t, the

spatial network distance d (v. p,) and the temporal distance
d(v.t, T) between v and t are defined as follows.

d(v.p,7) = min{sd(v.p, vi.p)} ()
dv.t,t) = {)nér;ﬂv.t — v;.t|} 2)

Given trajectories 71 = (vy, v2, ..., Uy) and o = (vy,
V2, ..., Uy),the spatial and temporal similarities, Simg (71, 72)
and SimT (7, 72), between them are defined as follows.

—d(v;.p,12) —d(vj.p,T1)
ZU,‘E‘E] € i-p Zvjerz e /

Sims (71, 1) =

71l [72]
3)
d(v: —d(v; .1,
' Zv,-en e—di.t,72) Zvjerz e—dj.t,71)
Simt (71, 12) =
|71l |2
4

Here, |7| denotes the number of sample points in a trajec-
tory. We extend Euclidean-based trajectory similarity [7] to
make it fit into spatial networks. We ensure that the simi-
larity measures are symmetrical, such that Simg(7y, 12) =
Simg (77, 1) and Simt(7, 73) = Simt(72, 71). In contrast,
most of existing trajectory similarity measures (e.g., [7,17,
18,21]) are asymmetrical; thus, they cannot be used directly
in the TS-Join.

Note also that spatial and temporal similarities are in the
range [0, 2]. Finally, we use a linear combination method [17-
19] to combine spatial and temporal similarities (Egs. 3
and 4), and the spatiotemporal similarity is defined as fol-
lows.

Simgt(t1, T2) = A - Simg (71, 72) + (1 — A) - Simt(7y, 72)

&)

Here, parameter A € [0, 1] controls the relative importance
of the spatial and temporal similarities. We support queries
with arbitrary values of A.

2.3 Problem definition

The two queries considered are defined as follows.
Definition: Th-TS-Join

Given sets P and Q of trajectories and a threshold 6, the
threshold-based trajectory similarity join (Tb-TS-Join) finds
the set A of all trajectory pairs from the two sets whose
spatiotemporal similarity no smaller than 6, i.e., V(7;, Tj) €
(P x Q)\A (Simst(7;, 7)) < 0).

Definition: k-TS-Join

Given sets P and Q of trajectories, the top-k trajectory
similarity join (k-TS-Join) finds a set A of k most similar tra-
jectory pairs from the two sets, i.e., |A| = kand V(z;, 7;) € A
(V(z/, 7)) € (P x Q\A (Simsr (7, 7)) = (7], T)).

The problem addressed is that of processing the two types
of join efficiently given the setting and similarity definition
provided in Sects. 2.1 and 2.2.

We initially consider the self-join scenario (i.e., P = Q)
and then cover the case P # Q in Sects. 3.1.5 and 4.1.6.

@ Springer

400

S.Shang et al.

3 Baseline algorithms

We propose two baseline algorithms, TF-Matching and k-
TF-Matching, to compute the Tb-TS-Join and k-TS-Join,
respectively.

3.1 TF-matching
3.1.1 Basicidea

Temporal-first matching (TF-Matching) is a straightforward
baseline approach to computing the Tb-TS-Join. Initially, we
index the temporal domain using a hierarchical grid struc-
ture. Then we refine trajectory pairs in the same leaf node
by computing their spatiotemporal similarities (Sects. 3.1.2
and 3.1.3). By merging the results from the leaf nodes toward
the root, the join result is obtained when the root is reached
(Sect. 3.1.4). A pair of upper and lower bounds are used to
prune the search space in the spatial and temporal domains.
The computations at each grid level can be performed in par-
allel.

3.1.2 Grid index

The grid index structure [8] is established as follows. First,
we partition the temporal domain into o equal-sized time
slots, each of which corresponds to a leaf node. Next, we
build up a tree structure in a bottom-up manner. Assume
that there are k£ nodes at the current level (initially £k =).
Then we build L%J parent nodes. We do this recursively until
there is one parent, which is the root node. The height of the
tree is [log(a)] + 1. An example is shown in Fig. 2, where
ni, ny, ..., ny3 are nodes and ns3 is the root. To find a value
for « that yields high performance, we conducted extensive
experiments when establishing the grid index.

Temporal Domain ----Level 0

grid index

-=-- Level 1
-=-- Level 2

---- Level 3
»

H time
0:00 2:00 4:00 6:00} 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

Spatial Domain

Fig.2 An example of TF-Matching

@ Springer

The temporal range range(g) of a trajectory t = (vq, v2,
..., v;j) is defined by the timestamps of its start and end sam-
ple points, i.e., range(@) = [v;.t, v;.t]. When we add a new
trajectory t to the index, it is stored in the lowest node n that
fully covers its temporal range, i.e., range(¢) < range(n) and
range(g) is not contained in the range of any child of n. If we
delete a trajectory from the index, we can simply remove it
without any other changes.

Example Consider trajectories 7; and 7o in Fig. 2, where
range(g1) = [6:15, 7:30] and range(gy) = [6 : 20,7 : 35].
We insert them into the grid index top-down. Both 71 and
7o are stored in node n4 (range(ns) = [6 : 00,8 : 00])
because range(g1) < range(na), range(¢) < range(na),
and n4 is a leaf node. Given a trajectory 13 and range(@3) =
[9 : 45,10 30], 73 is stored in ny5 (range(nis) =
[8 : 00,12 : 00]) because range(¢z) < range(nis), and
range(@3) Q range(ns), range(@3) QZ range(ng) (n5 and ne
are child nodes of n1s).

3.1.3 Upper and lower bounds

In the example in Fig. 2, trajectories 71 and t; are stored in
leaf node n4, and they are temporally close to each other.
We estimate the upper bound on the temporal similarity
Simt (71, 72) (Eq. 4) as follows.

Z e—dWi1,12) < |ti| and Z e—dvj.1,T1) < |m|

v €T] V€T

= Simr (11, T72).ub = 2 > Simr (11, T2) (6)

Here, || is the number of sample points in 7. By substituting
Eq. 6 into Eq. 5, we have that

A - Simg(ty, 72) + (1 — A) - Simr(71, 72) > 6
0—(10—-2x)-2

= Simg (1, ©2) > Iy

= LBgs,)

where LBy is a global lower bound on the spatial similarity
of all “qualified” trajectory pairs in the same leaf node, and
LBy is suitable for all leaf nodes. If Simg(z;, 72) < LBs,
the spatiotemporal similarity of (t1, t2) is less than 6, and
(1, T2) can be pruned safely.

Lemma 1 Given any two trajectories Tt and 12, we have that
Yven(dv.p,) = Igneig{d(vi-P, T™}). (3)

Proof Assume that d(v.p, 12) = sd(v.p, v'.p), where v'.p
is the sample point spatially closest to v.p among all sam-
ple points in ;. According to Eq. 1, for sample point v’.p,
we have that d(v'.p, 11) = minyeq, {sd@'.p,vi.p)} <

Parallel trajectory similarity joins in spatial networks

401

sd(v.p,v'.p) = d(v.p, 12). Therefore, we have that
d.p, 1) =dW .p, 1) > min {d (v;.p, 71)}.
ViET)

]

By substituting Eq. 8 into Eq. 3, we estimate the upper
bound Sims (71, 12).ub of the spatial similarity between 7]
and 77 as follows.

Z e—dWi.p,12) <l . e~ Miny;er, {(d(vi-p,71)}

Vi €T

= Simg (71, 72).ub
—d;.p,
Zvjerz e—dj.p.11)

—e minyierz {d(i.p,m)} +
72|

©)

According to Eq. 9, we only need to compute half of the
exact spatial similarity to get the upper bound. To compute
the minimum distance from a sample point v to a trajec-
tory t, we expand network expansion from v, and the first
scanned sample point v’ in 7 is just the sample point closest
to v (sd(v.p,v'.p) = d(v.p, t)). Assume T has m sample
points, and 7’ has n sample points, to compute the exact simi-
larity, we have to conduct (m 4-n) times network expansions.
By using Eq. 9, we only need to conduct m times network
expansions to get the upper bound on spatial similarity.

For any trajectory pair (t1, 72) in the same leaf node, if
its spatial-similarity upper bound Simg(z, 72).ub (Eq. 9) is
less than the global lower bound L Bg of the spatial similar-
ity (Eq. 7), (11, 72) cannot have a spatiotemporal similarity
that exceeds 6. Hence, (71, 72) can be pruned safely. For
the remaining trajectory pairs, we compute their exact spa-
tiotemporal similarities, and maintain the qualified pairs, i.e.,
Simgr (71, T2) > 0.

Notice that the computations in different leaf nodes are
independent. Thus, we can perform these computations in
parallel.

3.1.4 Merging

Having computed the spatiotemporal similarities of the tra-
jectory pairs in the leaf nodes, we merge the computation
results from the leaf level to the root level iteratively (bottom-
up). We merge two leaf nodes n, and ny to their parent node
n. (e.g., merging n3, n4 to ny4 in Fig. 2). Besides the qual-
ified trajectory pairs in n, and np, we also need to consider
the trajectory pairs (t, t’) in the following three cases:

(1) range(¢) C range(n,) A range(¢’) C range(n.)
(2) range(¢) C range(np) A range(¢’) C range(n.)
(3) range(p) C range(n,) A range(¢’) C range(np)

In the first two cases, we use the same lower and upper
bounds (Eqgs. 7 and 9) and pruning techniques as we use
for trajectory pairs in the same node (cf. Sect. 3.1.3). The
qualified trajectory pairs are stored in 7.

To explain the third case, we assume that 7 = (vq, v2, ...,
vi), T = (v}, V5, ..., v}),range(na) =[t1, 2], and range(np)
=13, t4]. We define the minimum temporal distance dr (t, n)
as follows.
dr(t,n) = min{|t.t.lb — n.t.ub|, |t.t.ub —n.t.lb|} (10)
Here, t.1./b and t.t.ub are the lower and upper bounds of tra-
jectory t’s timestamps, i.e., t.t.[b = vy.t and t.t.ub = v; .t,
and n.t.Ib and n.t.ub are the lower and upper bounds (left
and right boundaries) of range(n). For example, range(n4) =
[6:00,8:00],and n4.t.lb = 6 : 00 and n4.t.lb = 8 : 00.

We define the temporal-similarity upper bound SimT(z,
7’) in the following manner. Because d (v; .t, ') > dr(z, np),
we have that }° . e dit.T) < g| . emdr(mm) gpd
Dvjer e 4.0 < |¢/| . ¢=dr(T'na) By substituting them
into Eq. 4, we have

Sim{p (7, ') .ub = =4 @m) 4 e=dr(Thna), (11)

By substituting Eq. 11 into Eq. 7, the global lower bound
on the spatial similarity for trajectories in the third case is
defined as follows.

0 — (1 — 2)(Sim(, T').ub)
A

Simg(t, /) > =LBy (12)

If LB > 2, all trajectory pairs in the third case can be
pruned. Otherwise, for a trajectory pair (t, t’), if its spatial-
similarity upper bound Simgs(z, t/).ub (Eq. 9) is less than the
global lower bound L B of the spatial similarity (Eq. 12),
(t,7’) is pruned. For the remaining trajectory pairs, we
compute their exact spatiotemporal similarity and store the
qualified pairs in n.. As a result, all the qualified trajectory
pairs in [n..lb, n..ub] are found.

When merging non-leaf nodes (e.g., merging n19 and nyg
to their parent node n,5), we propose an approach that aims
to further prune the search space. Assume that t is stored in
ng, that t’ is stored in n,, and that ny and n, are descendant
nodes of n s and ng (e.g., n3 and ng are descendant nodes of
n19 and nyg). According to Egs. 11 and 7, the upper and lower
bounds of temporal similarity are computed respectively as
follows.

Sim’(z, t').ub = 2e—dr (na;ne)

0 —A-2
Simt(r, ') > ———

2 =2\
Sim/(t, t').ub < LBr & dr(ng,ne) > In (9 2A)

@ Springer

402

S.Shang et al.

Here, dr(ng4, n.) is computed according to Eq. 10. If the
minimum distance between ny and n, exceeds ln(%), we
prune all trajectory pairs {(z, ')| range(¢) C range(ng) A
range(t’) C range(n,)}.

The merging processes of different node pairs (e.g., n3 and
ng, ns, and ng) at the same level of the tree are independent.
Thus, we can again apply parallel processing. Having merged
the computation results from the leaf nodes all the way to the
root node, the solution in [0:00, 24:00] is found. Notice that
during the merging phase, we only follow the partitioning
imposed by the index to merge the data of each node; the
index structure is not updated.

Algorithm 1: TF-Matching

Data: a grid indexing tree Ty, a trajectory set P, a threshold 0
Result: {(z, t/)|Simgr(z, /) > 0,Vr, 7' € P}
H <~ ¢,
for each leaf node n in T, do
compute LBg;
for each trajectory pair (t, t’), range(¢) C range(n) and
range(¢’) C range(n) do

compute Simg(z, t/).ub;

if Simg(7, t/).ub < LBg then

L prune (7, t');

compute Simgr(7, T');

if Simgt (7, /) > 6 then
10 L store (7, /) in n;

AW N =

N N A

m | H.add(n);
12 while H # () do

13 if n,n’ € H, n.parent = n’.parent then

14 merge n, n’, and n.parent;

15 compute and store qualified trajectory pairs in
n.parent;

16 H.add(n.parent);

17 H.remove(n);

18 H.remove(n');

19 if |H| = 1 then

20 L return all qualified trajectories;

The pseudocode of TF-Matching is shown in Algorithm 1.
A set H is used to maintain the processed nodes of the current
level of the tree, and the computation is bottom-up. Initially,
for each leaf node n, we compute the global lower bound
L Bg of the spatial similarity (Eq. 7) for trajectory pairs in
n (lines 1-3). Then, for each trajectory pair (z, t’) in n, we
compute its spatial similarity upper bound (Eq. 9), and if its
upper bound is less than L By, this pair is pruned (lines 4-7).
Otherwise, we compute the exact spatiotemporal similarity
of (7, t/), and if it is no less than 6, we store (t, /) in n (lines
8-10). Having refined all trajectory pairs in n, we add n to
heap H (line 11). When all leaf nodes have been added to
H, we merge the results from the leaf nodes toward the root
node. If two nodes n and n’ have the same parent node and
their child nodes are not in H, we merge the results for n,
n’, and their parent node (e.g., n3, n4, and ny4 in Fig. 2) and

@ Springer

store the qualified trajectory pairs in n. parent. Next, we add
n.parent to H, and remove n and n’ from H (lines 12-18). If
H =1, the root node is reached, and all qualified trajectory
pairs are returned (lines 19-20).

3.1.5 Complexity analysis

Let | P| denote the cardinality of trajectory set P, and let
|Tqvg | denote the average number of samples in a trajectory in
P.Weuse | V] and | E| to denote the numbers of vertices and
edgesin G. Then O (|V|log|V|+|E]) is the time complexity
of computing the network distance between a vertex and a tra-
jectory. TF-Matching follows the filter-and-refine paradigm,
and the time complexity of the filter phase is O((|V|log|V|
+IED|tavgl 1Tspl), where Ty, is the set of scanned trajec-
tory pairs. Notice that we compute the spatial upper bound
(Eq. 9) for most trajectory pairs. Only in the third merging
case (see Sect. 3.1.4), if two nodes n, and n, are sufficiently
far apart temporally, trajectory pairs (t, t’), where T € ny
and t’ € n,, can be pruned directly (i.e., it is unnecessary to
visit these pairs). Next, we have Ty, U Ty, = P2, where Tap
is the set of trajectory pairs pruned in the third merging case.

The time complexity of verifying candidates by comput-
ing their exact spatiotemporal similarities is O ((|V|log|V|
+IE|tavgl |C]), where |C| is the cardinality of the can-
didate set, C C Ty, C P2. The total time complexity
is O((IV[log|V] + |EDItavgl |Tspl) + O((IV]log|V]| +
|EDITavgl IC)) = OW(IV[log|V] + [ED|Tavgl |Tspl). In
the worst case, ie., Ty, = ¢, the time complexity is
O((IVI1og |V| + |E])|Tavg| | PI?).

We proceed to consider the case where P # Q. First,
TF-Matching supports P # Q directly. When computing
the spatiotemporal similarity in leaf nodes and merging tra-
jectories in different nodes, we only need to select trajectory
pairs from P and Q. Let |7/, < | denote the average numbers of
samples in trajectories in P and Q. Then the time complexity
of TF-Matching is O ((|V|log |V |+ |E|)|r$vg| |Ts’p|), where
Tg, UT;, = P x Q.In the worst case, the time complexity
is O((IV]1og [V | + [ED|2 |1 P] 12D

The computations for nodes at the same tree level occur
in parallel. We initially process the leaf nodes and then pro-
cess [loga] levels for merging, where « is the number of
leaf nodes. Intuitively, given multiple cores and threads, it
is possible to accelerate the computation at the leaf level by
generating many leaf nodes and processing them in paral-
lel. However, more leaf nodes also lead to more tree levels,
which increases the merging cost.

3.2 k-TF-matching algorithm
3.2.1 Basicidea

We follow the framework of TF-Matching (Sect. 3.1) and
propose a new k-TF-Matching algorithm as a baseline for

Parallel trajectory similarity joins in spatial networks

403

computing the k-TS-Join. As for TF-Matching, we index
the temporal domain using a hierarchical grid structure. We
refine trajectory pairs in the same leaf node by computing
their spatiotemporal similarities. By merging the results from
the leaf nodes toward the root, the join result is obtained when
the root is reached. Because the k-TS-Join does not have a
threshold to prune the search space (unlike the Tb-TS-Join),
we define new upper and lower bounds and rework the prun-
ing in the same grid and the merging among different grids.
We initially consider the self-join scenario (i.e., P = Q) and
it is trivial to support P # Q. For the k-TF-Matching algo-
rithm, when computing the spatiotemporal similarity in leaf
nodes and merging trajectories in different nodes, we only
need to select trajectory pairs from P and Q.

3.2.2 Pruning in leaf nodes

Initially, we randomly select a set Py of k trajectory pairs
and compute their similarities. The lowest similarity among
them is used as the global top-k lower bound LBf_1 for the
leaf level (& is the height of the tree and level 7 — 1 is the
leaf level).

LB!™' = min ({Simgr(z;,)}, (13)

(ti,t))e Py

where Py = {(t1, 7{), (12, T))s..., (Tk, Tp)}-

Then we refine trajectory pairs in the same leaf node n by
computing their spatiotemporal similarities. For a trajectory
pair (11, 12), if we know its exact spatiotemporal similar-
ity, we put it in set P'. We maintain a top-k heap P;' C
P U P! such that | P'| = k and V(t1, 12) € P}'(¥(t{, 1)) €
P U P\ P} (Simgr (71, T2) > Simgt (7], 75))). We define a
global top-k lower bound LB}, of leaf node n.

LB} = min {(Simsr(r1, 7)) (14

(t1,2)€P;

The value of LB} changes dynamically during query process-
ing. Initially P = ¢y and LB} = LB} .

By substituting Egs. 14 and 6 into Eq. 7 and by using LB}
toreplace 0, we estimate the global top-k spatial lower bound
LB, of leaf node n as

LB} =2 (1 —1)

Simg(t1, 12) >
s(t1, 2) > .

= LB, (15)

where 71 and 17 are two trajectories in the same leaf node (see
the example in Fig. 2). For each trajectory pair (71, 72), we
estimate its spatial upper bound Sims (71, 72).ub according to
Eq.9.If Simg (71, 12).ub < Lng, pair (71, 72) can be pruned
safely. For the remaining trajectory pairs, we compute their
exact spatiotemporal similarities and put them in set P

Notice that the computations in different leaf nodes are
independent. Thus, we can perform these computations in
parallel. For each leaf node n, we maintain its top-k heap P’
for the following merging operations. Because | P}'| = k, we
can guarantee that no result pair is missing.

3.2.3 Merging

Having computed the spatiotemporal similarities of the tra-
jectory pairs in the leaf nodes, we merge the results from
the leaf nodes toward the root. We merge the top-k heaps
of all leaf nodes and define a new top-k heap P, for level
h — 2 of the tree, such that V(r1, 2) € P/(¥(r{, 1)) €
U P\ P[(Simgr(t1, 72) > Simgr(t{, 75))), where n; is
a leaf node and i € [1,m]. The value of the global top-k
lower bound is updated as follows.

LBI™2 = min ({Simst(t;, 7))} (16)
(r,7))eP;

By substituting Eq. 16 into Egs. 14 and 15 and by using
the value of LBZ_2 to replace that of LBZ_ ' we get the global
top-k lower bound LBZ" and the global top-k spatial lower
bound LB; of node n.. The values of LB} and LBj; change
dynamically during query processing.

We merge two leaf nodes n, and ny, to their parent node n,
(e.g., merging n3, nq4 to n14 in Fig. 2). In addition to merging
their top-k heaps, we also need to consider the trajectory pairs
(t, t’) according to the following three cases:

(1) range(¢) C range(n,) A range(¢’) C range(n.)
(2) range(p) C range(np) A range(¢’) C range(n.)
(3) range(p) C range(n,) A range(¢’) C range(np)

For the first two cases, we use the spatial-similarity upper
bound Simg(71, 72).ub (Eq. 9) and the global top-k spatial
lower bound LBg; to prune the search space. For the remain-
ing trajectory pairs, we compute their exact spatiotemporal
similarity and store them in Py The top-k heap P, changes
correspondingly.

For the third case, by substituting Eqs. 16 and 11 into
Eq. 12 and by using the value of LBZ” to replace that of 6, the
global lower bound on the spatial similarity for trajectories
is defined as follows.

Sim/T(Tv 'L'/).ub = ede(TJlb) + eidT(t/vna)
LB} — (1 — 2)(Sim/ (7, T').ub)

A
= LB (17)

Simg(7, 7') >

It LB;,CC' > 2, all trajectory pairs in the third case can be
pruned. Otherwise, for a trajectory pair (z, t’), if its spatial-
similarity upper bound Simg(t, t/).ub (Eq. 9) is less than the

@ Springer

404

S.Shang et al.

global spatial lower bound LBL"Q;;/ (Eq. 17), (z, ') is pruned.
For the remaining trajectory pairs, we compute their exact
spatiotemporal similarity and store them in Py. The top-k
heap P;'* changes correspondingly.

When merging non-leaf nodes (e.g., merging n19 and nyg
into their parent node n5 in Fig. 2), we propose an approach
that aims to further prune the search space. Assume that t
is stored in ny, that v’ is stored in n,, that ngy and n, are
descendant nodes of n s and ng, and that nj, is the parent
node of ny and n, (e.g., n3 and ng are descendant nodes
of n19 and nyg, and n,2 is the parent node of n19 and ny).
According to Eqgs. 11 and 14, the upper and lower bounds of
temporal similarity are computed as follows.

Simy(z, t).ub = 2~ (a:ne)

A - Simg (71,) + (1 — A) - Sim7 (71, T2) > LBZh
LB" — -2
(=2
Simr(z, ').ub < LB}" < dr(ng, ne)

221
LB — 22

Thus, if the minimum distance between n; and n, exceeds

(L;"ZZ_AZA), we prune all trajectory pairs {(z, ")| range(¢) <
k

range(ng) A range(t’) C range(n,)}.

The merging processes of different node pairs (e.g., pair
n3 and n4, and pair n5 and ng) at the same level of the tree are
independent. Thus, we can again apply parallel processing.
Having merged the results from the leaf nodes all the way to
the root node, the top-k solution is found.

The pseudocode of k-TF-Matching is shown in Algo-
rithm 2. The computation is bottom-up, and # is the current
level of computation. Initially, we randomly select k tra-
jectory pairs and compute their spatiotemporal similarities.
The minimum value among them is used as the global
lower bound LBZ (Eq. 13) (lines 1-2). For each trajec-
tory pair (t, ') in the same leaf node n, we compute its
spatial similarity upper bound (Eq. 9), and if its upper
bound is less than LBY,, this pair is pruned (lines 4-7).
Otherwise, we compute the exact spatiotemporal similar-
ity of (t,7’), and if it exceeds Lng, we put it in P]f
and update the values of LB} and LB, (lines 8-10). Hav-
ing computed all nodes in level 4, we merge the top-k
heaps of all nodes at level 4 and compute the value of
LBZ_I (Eq. 16). If two nodes n; and ny at level & have
the same parent node n3, we merge the results for np,
na, and n3 by computing P;", LBZ, and Lng (lines 11—
15). If h — 1 = 0, we reach the root n3, and the top-k
heap Pk” 3 is returned. Otherwise, we compute level & — 1
(lines 16-18).

= Simr(t, 7)) > = LB?’

@ Springer

Algorithm 2: k-TF-Matching

Data: a grid indexing tree Tg, a trajectory set P
Result: top-k trajectory pairs

1 h < Tg.hight —1;

2 compute LBZ;

3 for each leaf node n in T, do

4 for each trajectory pair (t, t’), where

range(@) C range(n) and range(¢') C range(n) do

5 compute Simg(z, t’).ub;

6 if Simg(z, t’).ub < LBy, then

7 L prune (7, t');

8 compute Simgt (7, t);

9 if Simgr(7, 7') > LB, then
10 | update P, LB}, and LBY,;
11 while true do
12 compute | J,,cjoper Piand LB
13 if ny, ny € level h, ny.parent = ny.parent = n3 then
14 merge np, ny, and n3;

15 compute P*, LB}, and LBY;;
16 if » — 1 = 0 then
17 L return P"%;

18 | h<h-—1;

3.2.4 Complexity

Let Py denote the scanned trajectory set for each trajec-
tory search, and let |7,| denote the cardinality of the
scanned trajectory pairs. The time complexity of the k-
two-phase algorithm is O((|V|log|V| + |E|)|ravg||TS/p|),
where Ts’p C P x P for self join, and Ts/p C PxQ
for non-self join. The detailed procedure is the same as
Sect. 3.1.5.

Correctness: The k-TF-Matching algorithm follows the
“filter-and-refine” paradigm. We define a spatial upper bound
Simg(t, t/).ub and a global top-k lower bound LBy, (cf.
Eqgs. 9 and 15) to prune the search space in each node. When
LB, > Simg(t, t').ub, pair (z, t’) is pruned. It is clear that
the pruned pairs cannot be a solution because their upper
bounds are less than the global lower bound. Next, we refine
the candidates by computing their exact similarities, and we
find the result by merging the top-k results of all nodes.
Because (1) the trajectory pairs pruned cannot be a solu-
tion, (2) the computation in the refinement is exact, and (3)
the global top-k result is a subset of the union of the top-k
results of all nodes, the k-TF-Matching algorithm computes
a correct solution to the k-TS-Join.

4 Two-phase search

We propose a two-phase and a k-two-phase algorithms to
compute the TB-TS-Join and k-TS-Join efficiently.

Parallel trajectory similarity joins in spatial networks

405

4.1 Two-phase algorithm
4.1.1 Basicidea

TF-Matching has three main drawbacks. First, it is driven
by the temporal domain and so has weak spatial pruning
power. The algorithm has to process a large number of trajec-
tory pairs, which adversely affects the performance. Second,
more leaf nodes (more threads) lead to a higher merging
cost, which counts against parallel processing. Third, it may
need additional computation to acquire network distances to
compute spatial similarities (Egs. 1 and 3), again decreasing
performance.

To process the Tb-TS-Join more efficiently, we develop a
two-phase algorithm based on a divide-and-conquer strategy
(see Fig. 3a). (1) In the trajectory-search phase, for each tra-
jectory T € P, we explore the spatial and temporal domains
concurrently and search for trajectories close to 7. In the
spatial domain, network expansion [9] from each trajectory
sample point is used to explore the spatial network, while
in the temporal domain, we expand the search from each
timestamp of t. An upper bound on the spatiotemporal sim-
ilarity is defined to enable pruning of the search space in the
spatial and temporal domains. Moreover, a heuristic schedul-
ing strategy is proposed to schedule multiple so-called query
sources (sample points in the spatial domain, and times-
tamps in the temporal domain) effectively, which aims to
further enhance efficiency. Compared to TF-Mathcing, the

" search for close |
trajectories |
—
s:
Trajedories\@7 Merging
— /
NE—
(a)

“A time y

Vot 1 2rt,

Spatial Domain
(b)

Fig.3 An example of the two-phase algorithm. a Parallel mechanism,
b trajectory search

Temporal Domain

two-phase algorithms have a stronger pruning power. The
search process of different trajectories is independent, so the
trajectory searches can be processed in parallel. In addition,
the network distances for the similarity computation can be
derived directly during the trajectory-search processes. (2)
In the merging phase, we combine the computation results
of all trajectories and find the solution to the Tb-TS-Join. In
contrast to TF-Matching, the merging cost is now uncorre-
lated to the thread count. The two-phase algorithm has better
time complexity than the temporal-first matching algorithm.

4.1.2 Expansion search

Consider the example in Figure 3b, where 71, 12, 73, and
74 are trajectories, and we search for the trajectories close
to 71 in the spatial and temporal domains (77 is the “query
trajectory”). Trajectory 71 = (v1, va, ..., Vs), sample points
{ve, v7} € 12, and vg.p and v;.p are the samples closest
to v3.p and vs4.p. Sample points {vg, vy, ..., v12} € 13,
and vg.p, v9.p,...,v12.p are the samples closest to vj.p,
v2.p,...,V5.p.

In the spatial domain, network expansion is performed
from each sample point v;.p € 7] using Dijkstra’s algo-
rithm [9]. The explored space is a “circular” region (v;.p,
rs;), where the radius rs; is the network distance from the
center v;.p to the expansion boundary. Dijkstra’s algorithm
always selects the vertex with the minimum distance label for
expansion (initially rs; = 0). Hence, if v'.p € 7’ is the first
sample point scanned by the expansion from v.p, v'.p is the
sample point closest to v.p, i.e.,d(v.p, T') = sd(v.p, v .p).
For example, in Figure 3(b), d(v3.p, 12) = sd(v3.p, ve.p),
and d(v4.p, 12) = sd(v4.p, v7.p).

In the temporal domain, we expand the search from each
timestamp v;.t € 711. The explored space is a time range
[vi.t — rt;, vi.t 4+ rt;], where rt; is the radius of the range.
Initially r#; = 0, and then it is increased by one second (the
minimum scale of the time axis) at each time, step by step,
to form a larger scanned range until the targets are found.
Similar to the Dijkstra’s algorithm, if v'.z € ©’ is the first
timestamp scanned by the expansion from v.z, v'.t is the
timestamp closest to v.z, i.e., d(v.t, t/) = |v.t — v'.1].

If a trajectory 7 is scanned by the expansions from all
sample points in 71, we compute the spatial similarity of
(t, 1) according to Eq. 3; this type of trajectory is called
“spatially fully scanned,” e.g., t3. If a trajectory is scanned
by the expansions from a part of sample points in 77, it is
called “spatially partly scanned,” e.g., 2. If a trajectory is
unscanned by the expansions from any sample points in ty,
it is called “spatially unscanned,” e.g., 74. Similarly, in the
temporal domain, such trajectories are called “temporally
fully scanned,” “temporally partly scanned,” and “temporally
unscanned.”

@ Springer

406

S.Shang et al.

4.1.3 Upper bound computation

If a trajectory is spatially partly scanned (e.g., 72 in Fig. 3b)
or spatially unscanned (e.g., t4), for a sample pointv;.p € 11,
the lower bound on network distance between v;.p and 13 is
defined as follows.

‘ ‘ _ | sd(vi.p, v].p) if Case 1
d(vl'p3 TZ) Z d(Uz-p, TZ)lb - { rSi lf Case 2
(18)

Case 1: 75 has been scanned by the expansion from v;. p, and

vi.p € 17 is the closest point to v;.p.

Case 2: 12 has not been scanned by the expansion from v; . p.
By substituting Eq. 18 into Eq. 8, for any sample point

v;.p € 11, we have that

d(vi.p,) > min{d(v;.p, 72).Lb}. (19)

Then we merge Eqs. 18 and 19 into Eq. 3, and the spatial
similarity upper bound Simg (71, 72).ub is derived.

Z e—dWi.p.m2) < Z e—di.p.m2).lb

Vi €T| Vi €T

Z e—dW;.p.71)

vien

IA

|T2| - min{d(v;.p, 12).lb}
Vi €T

= Simg(t1, 72).ub
Y emd@ip)b
Vi ET|

IT1]
+e~ miny; er; {d(vi.p,72).10} (20)

Similarly, in the temporal domain, if a trajectory 1 is
temporally partly scanned or temporally unscanned, for a
timestamp v;.t € 11, the lower bound on the distance between
v;.t and 17 is defined as follows.

|v;.t — v].t| if Case 3
rt; if Case 4
(21)

d(vi.t,) > d;.t,).lb = {

Case 3: 12 has been scanned by the expansion from v;.¢, and

vlf.t € 17 is the point closest to v;.t.

Case 4: 1; has not been scanned by the expansion from v;.z.
We then extend Lemma 1 (Eq. 8) to apply to the temporal

domain. Specifically, by substituting Eq. 21 into Eq. 8, for

any sample point v/.f € 72, we have that

d(v}.1,72) = min{d(vi.t, 72).0b). (22)
ViET]

@ Springer

Then, we merge Eqs. 21 and 22 into Eq. 4, and the temporal
similarity upper bound Simr (71, 72).ub is derived.

Z e—d(v,-.t,rz) < Z e—d(vi.t,rz).lb

Vi €T Vi €T

Z e—d(v{.t,rl)

vien

IA

|T2] - min{d(v;.t, ©2).1b}
Vi E€ET]

= Simy (7, 72).ub
—d(v;.t,12).lb
Zvierl € ' ’

|71l

te~ min,,l.e,1 {d(v;.t,12).1b} (23)

Next, we combine the spatial and temporal similarity
upper bounds (Eqgs. 20 and 23). Thus, if a trajectory 1,
is not both spatially and temporally fully scanned, we
compute the upper bound on the spatiotemporal similarity
Simgr (71, 72).ub as follows.

Simgrt (71, 72).ub
= A-Simg(7y, 72).ub + (1 — 1) - Simy(7y, 72).ub (24)

For all partly scanned trajectories, we define a global upper
bound UB as follows.

UB = max (Simsr(t1, 72).b). (25)

€L ps

where Pj,; C P is the current set of partly scanned trajecto-
ries. The value of UB changes during query processing.

If a trajectory is unscanned in both the spatial and
temporal domains, we do not maintain its spatiotempo-
ral similarity upper bound to reduce the computation and
storage costs. Assume that trajectory 7 is the query tra-
jectory, 17 is partly scanned, and t4 is unscanned in both
domains. According to Eqs. 18 and 21, we have that
Yv; € ti(d(.p,).lb < d(vi.p,t4).lb) and Yv; €
T1(d(vi.t, 7).lb < d(vj.t, 174).lD).

Referring to Egs. 20, 23, and 24, we have Simgr
(11, ©2).ub > Simgt(7], T4).ub. Therefore, Simst (71, T4).
ub cannot be the global upper bound UB, and it is not neces-
sary to maintain the spatiotemporal similarity upper bound
on 4.

4.1.4 Scheduling strategy

We propose a heuristic strategy to schedule the expansions
from different sample points and timestamps (so-called query
sources) in the spatial and temporal domains in order to make
the search focus on trajectories that are most likely to be in
the result.

Assume T = (vi,v2,...,Uy) is the query trajectory.
We give each query source g € {vi.p, v2.p, ..., Up.p} U

Parallel trajectory similarity joins in spatial networks

407

{vy.t, va.t, ..., vy.t} a priority label g.label and maintain a
heap H of descending order on the value of g.label on the
query sources. The values of priority labels change during the
search in the two domains. We search the top-ranked query
source until a new query source takes its place. The priority
label is defined as follows.

g.label = Z {Simgr(z, 7’).ub) (26)

T'€Pps\q.s

Here, P,; C P is the set of spatially and temporally partly
scanned trajectories, and ¢g.s is the set of trajectories that
have been scanned from query source g. For example, in
Fig. 3b, 71 is a query trajectory and vi.p, va2.p, ..., Vs5.p
are query sources in the spatial domain. We have that
v1.p.s = {‘173}, v.p.s = {'[3}, v3.p.s = {'L'z, ‘L'3}, V4.p.§ =
{2, 13}, and vs.p.s = {r3}. Trajectory 1» is spatially
partly scanned, 73 is spatially fully scanned and temporally
partly scanned, and t4 is temporally partly scanned. Thus,
Pps = {12, 13, 14}. For query source vy.p.s, Pps\v1.p.s =
{2, 13, u}\{r3} = {m, ©}, and for query source v3.p.s,
Pps\v3.p.s = {12, 13, T4}\ {12, 13} = {74}

The priority label represents the significance of a query
source during search. The main goal of the scheduling strat-
egy is to transform trajectories from “partly scanned” to
“fully scanned” as soon as possible [17,18]. Thus, the pri-
ority g.s of a query source should be proportional to its
“margin,” i.e., the size of Pps\q.s. For example, in Fig. 3b,
Pps\v1.p.s = {12, 14}; thus, the margin of v;.p is 2. More-
over, a trajectory with a higher spatiotemporal-similarity
upper bound (Eq. 24) is more likely to be the solution. So,
VT € Pps\gq.s, the value of Simgr (71, T).ub is proportional
to the priority of query source q.

4.1.5 Filter, refine, and merging

If the global upper bound UB of the partly scanned trajecto-
ries is smaller than the value of threshold 6, the expansion in
the spatial and temporal domains terminates, and all trajec-
tories that are not fully scanned in the two domains can be
pruned safely. For each fully scanned trajectory 7, we have
the exact values of d(v;.p, t) and d(v;.t, T) for all sample
points v; in t1; thus, we can further refine the spatial, tempo-
ral, and spatiotemporal upper bounds (refer to Egs. 20, 23,
and 24).

We place all fully scanned trajectories in a candidate set
C(11) for trajectory 1. For each trajectory T € C(ty), (7, 71)
is a potential qualified trajectory pair. For (71, t), we main-
tain a parameter defined as follows.

—d(v;.p,T) —d(v;.1,7)
Dver © P n 2yen &

V(ti, 1) =
71l 71l

Notice that the value of V (71, 7) can be derived from Egs. 20
and 23 directly.

Having processed the nearest neighbor searches for all
trajectories in P, we merge the results. For each trajectory
T € P, we maintain a candidate set C (7). For a trajectory
pair (71, 12),if 1 € C(12) and 7o € C(t1), we compute their
exact spatiotemporal similarity:

Simgt (71, ©2) = V(71, 72) + V (72, T1)
—d(v;.p,T —d (v .t,T
B Zv,en e (vi.p,12) N ZU,‘E‘L’] e (vi 2)
[71] [T1]
—d(;.p,T —d(v;.t,t
ZU/'E'L’Ze) i-P R Zvjerze (! v

|2 |2

27)

Then we compare Simgt(7], 72) to threshold 6. If Simgt
(11, 2) > 0, (11, T2) is a qualified pair. Otherwise, we prune
it. For other cases, i.e., 11 ¢ C(12) or 1o ¢ C(11), (71, T2)
cannot be a qualified trajectory, and it is pruned.

The two-phase algorithm is based on a divide-and-conquer
strategy. First, for each trajectory 7 in P, we retrieve the tra-
jectories spatiotemporally close to t. The trajectory-search
phase is detailed in Algorithm 3. Since the search processes
for different trajectories are independent, we can process the
searches in parallel. Second, we merge the results of the indi-
vidual searches, i.e., candidate sets, to obtain the final result.
Unlike for TF-Matching, the merging cost of the two-phase
algorithm is uncorrelated to the thread count. The merging
process is detailed in Algorithm 4.

In Algorithm 3, the query arguments are a trajectory
and a threshold 6, and the query result is a candidate set for
7. Initially, we select the top-ranked item ¢ from heap H
as the current-search query source. Then we search using g.
Each newly scanned trajectory T’ (z/ has not been scanned
by the expansion from ¢) is added to a scanned trajectory set
q.s. If T/ is unscanned, we also add it to the partly scanned
trajectory set P,y (lines 1-9). Next, we update the spa-
tiotemporal similarity upper bound Simgt(z, t/).ub (refer
to Eq. 24). If t’ is not fully scanned in the two domains,
then if Simgr(t, t’).ub > UB, we update the value of
UB to that of Simgr(z, t/).ub (lines 10-13). If 7’ is fully
scanned, we remove it from P,,. If Simgr(z, t/).ub was
used as UB before, we also update the value of UB. If
Simgr (7, 7/).ub > 6, we add t’ to the candidate set for t
(lines 14-18). If UB < 0, the query returns the candidate set
C(7) (lines 19-20). If g is not the top-ranked query source
in H, we update it so that this is the case (lines 21-22).

Algorithm 4 merges the candidate sets iteratively. For
each trajectory 7’ in C(t), we check whether 7 belongs to
C (7). If so, we compute the exact spatiotemporal similarity
Simgr(7, t’) (refer to Eq. 27), and then we remove t from
C(t'). If Simgr(t, ') > 0, we add the pair (t, t’) to result
set A. Finally, result set A is returned.

@ Springer

408

S.Shang et al.

Algorithm 3: Trajectory Search Algorithm

Data: a trajectory t and a threshold 6
Result: candidate set C(7)

1 H < {v.p,v2.p, ..., vg.p} U{vit, vpt, ..., vig|-t);
2 Vg € H (g.label <— 0), UB < 0;
3 g < H.top;
4 while true do
5 search(q);
6 for each newly scanned trajectory " do
7 q.s.add(t');
8 if " ¢ Py, then
9 L Pps.add(z');
10 update Simgr(z, T').ub;
11 if ©’ is not fully scanned then
12 if Simgr (7, t/).ub > UB then
13 L UB < Simgsr(t, T').ub;
14 if ©’ is fully scanned then
15 Pps.remove(t);
16 update UB;
17 if Simgr (7, v/).ub > 6 then
18 L C(1).add(z)
19 if UB < 6 then
20 L return C(7);
21 if ¢ # H.top then
22 L q < H.top;

Algorithm 4: Merging Algorithm
Data: {C(7)|Vt € P}, 0
Result: A = {(z, t)|Sims7(7, ") > 0,V1r,7' € P }
1 for each trajectory t in P do
2 for each v’ in C(t) do
3 if 7 € C(7/) then
4 compute Simgr(7, T');
5 C(t).remove(t);
6
7
8
9

if Simsr(z, 7’) > 6 then
L A.add(t, t');

else
L break;

10 return A;

4.1.6 Complexity analysis

Let Py denote the set of scanned, partly or fully, trajectories
for each trajectory search. Let | 7,,¢| denote the average num-
ber of samples in a trajectory in P. Then O(|V|log |V |+|E])
is the time complexity of computing the network distance
between a sample point and a trajectory by using Dijkstra’s
algorithm [9].

According to Egs. 20, 23, and 24, the maximum spatial and
temporal expansion radiuses rs and rt are inversely propor-
tional to threshold 6. Assuming the trajectories are uniformly
distributed in the spatial and temporal domains, it follows
that | Py| is inversely proportional to threshold 6. Thus, | Py |

@ Springer

is sensitive to the value of threshold 6 and the pruning effec-
tiveness.

The time complexity of the trajectory search phase is
O(((IV[log|VI[+IEDI|tavg|+1PoDIP]) = OV [log|V |+
|ED|Tavg| |P| + |P| |Pgl). For each trajectory, the trajec-
tory search complexity is O((|V]log |V + |E])|tauvgl), and
|Pg| is the number of scanned trajectories. There are |P|
trajectories in total. The time complexity of the merging
phase is O (| P||C|), where |C]| is the cardinality of the can-
didate set for each trajectory. Since C € Py C P, the time
complexity of the two-phase algorithm is O((|V|log|V| +
|EDITavg| [P|+1P] |Po])+O(P||C]) = O((|V|log |V|+
|ED|Tavgl [P|+|P] [Pgl). If 0 is sufficiently large, the time
complexity is close to O((|V|log [V| + |ED|tavg| | P]).

We proceed to consider the case where P # Q. The two-
phase algorithm conducts trajectory searches and maintains
candidate sets for all trajectories in P and Q. The time com-
plexity of the trajectory-search phase is O((|V|log|V| +
|EDITavgl [P1+ |P| [Pol + (IV[1og V] +E]ITavg| 101 +
101 Qo) = O((IV[Iog|V] + |ED|tavgl (1P| + 12D +
|P| |Po| + |0l |Qgl). For the merging phase, the time com-
plexity remains O(|P| |C,|) (or O(1Q] 1C41)). Cp € Qo <
Q,and C; € Py C P. The time complexity of the two-
phase algorithm is then O((|V|log|V| + |E]D|tauve|(|P] +
1OD+ P[Pyl +1011Qel + [P ICp) = O((IVIlog|V]+
|EDITavg (1P 419D + 1P| [Po] +1Q| | Q6l), which is sen-
sitive to the pruning effectiveness.

In the worst case, the time complexity of the two-phase
algorithmis O((|V|log |V |+ |E])|Tavg| [P+ | P|%), which
is better than that of TF-Matching, whichis O (|V|log |V |+
ED|Tavg] [P 12). In addition, the superiority of the two-phase
algorithm stems from the following two points.

First, in the filter phase, TF-Matching has to visit and
compute spatial upper bounds for the most trajectory pairs,
including all trajectory pairs in leaf nodes. Only in the third
merging case (see Sect. 3.1.4), if two nodes ny and n, are suf-
ficiently far apart temporally, trajectory pairs (z, t’), where
T € ng and T’ € n,, can be pruned directly (i.e., these pairs
need not be visited). All other trajectory pairs must be vis-
ited for bound computation. The pruning in TF-Matching
simply serves to save computations when computing exact
similarities between pairs of trajectories—the algorithm still
needs to visit most of them. Next, in the two-phase algorithm,
| Pg| is sensitive to the value of threshold 6 and the pruning
effectiveness. Here, it is not necessary to compute bounds
for unscanned trajectories (no need to visit them). More-
over, TF-Matching is driven by the temporal domain and has
weak spatial pruning power, while the two-phase algorithm
exploits effective spatiotemporal bounds. The resulting prun-
ing effectiveness is shown in Tables 3, 4, 5 and 6 (Sects. 6.2.1
and 6.3.1).

Second, TF-Matching only partially supports parallel pro-
cessing, i.e., only the computations for the nodes at the same

Parallel trajectory similarity joins in spatial networks

409

tree level can be processed in parallel. Initially, we process
the leaf nodes and then process [log(c)] upper levels for
merging, where o is the number of leaf nodes. Intuitively,
given multiple cores and threads, it is possible to accelerate
the computation at the leaf level by generating many leaf
nodes and processing them in parallel. However, more leaf
nodes also yields more tree levels, which increases the merg-
ing cost (the computation is done at each tree level, and there
are ([log(a)] 4 1) levels). In contrast, the trajectory-search
processes of the two-phase algorithm are independent of each
other, and the merging cost is constant (uncorrelated to the
number of threads used for parallel processing). Therefore,
the trajectory-search processes of the two-phase algorithm
can be performed fully in parallel (the computation is con-
ducted only at one time).

4.2 k-two-phase algorithm
4.2.1 Basicidea

k-TF-Matching has similar drawbacks to TF-Matching: weak
spatial pruning power, a higher merging cost, and additional
computation to acquire network distances to compute spa-
tial similarities. To process the k-TS-Join more efficiently,
we thus follow the framework of the two-phase algorithm
(Sect. 4.1) and develop a new k-two-phase algorithm (see
Fig. 3a). We define a pair of new upper and lower bounds to
prune the search space effectively in the spatial and temporal
domains. The network distances for the similarity compu-
tation can be derived directly during the trajectory-search
processes. The search process of different trajectories is
independent, so the trajectory searches can be processed in
parallel. In contrast to k-TF-Matching, it is not necessary to
compute the spatiotemporal similarity of k randomly selected
trajectories (refer to Eq. 13) in the k-two-phase algorithm. In
addition, the merging cost of k-two-phase is uncorrelated to
the thread count. The k-two-phase algorithm has better time
complexity than the k-TF-Matching algorithm.

We initially consider the self-join scenario (i.e., P = Q)
and it is trivial to support P # Q. We only need to conduct
trajectory searches for all trajectories in P and Q and to
maintain candidate sets for all of them.

4.2.2 Lower bound

Let |P| denote the number of trajectories in set P, and
let m denote the number of threads. Then each thread will
process (lmﬂl or ﬂmLﬁ — 1 trajectory searches. Trajectory
search is performed in the spatial and temporal domains (see
Sect. 4.1.2). Assuming that t is a “query trajectory” (e.g., 71
in Fig. 3b) then if a trajectory t’ is fully scanned in the spatial
and temporal domains (e.g., t3 in Fig. 3b), we compute its
spatial lower bound Simg(z, t/).Ib as follows.

—d(vi.p,7’ —d(vj.p,7)
Lyer © vi-p.7) Zvjeﬂ e

Simg(z, T/) = -
| [7'|
ZU'EI/ eid(v'i.p’t)
J
and 7l >0
—d(v;.p,t)
-
= Simg(z, 7’) > ZU‘EW—l = Simg(t, t).1b
T
(28)
—d(vi 1,7 —d(vj.t,7)
Simr(z, 7') = Yyere M0 Yy
’ 7] I7/|
Zver’ e—d(v/-.t,r)
J
and — >0
—d(v;.t,7")
ZU‘ET €

= Simr(t, 7)) > = Simr(z, v/).Ib,

7|
(29)

where v; and v; are sample points in trajectories 7 and 7’.
By combining the spatial and temporal lower bounds, the
spatiotemporal lower bound is defined as follows.

Simgt (7, ').lb = A-Sims(z, t/).Ib+(1—1)-Simt(z, T/).Ib
(30)

For each thread ¢, we store fully scanned trajectory pairs
(e.g., (r, t/)) in set Py. We maintain a top-k heap Pkc
to contain the trajectory pairs with top-k lower bounds
such that |P{| = k and Y(7;,7)) € H(V(tj,r]’.) €
P\ P{(Simsr(7;, 7/).1b > Simgr(t;, r}).lb)). We define
a global spatiotemporal lower bound LB, of thread c as fol-
lows.

LB, = min ({Simsr(z, 7/).1b}, (31)
i

(r,7")€P,

where LB, changes dynamically during query processing.
Notice that LB, is only valid when |H| = k, to guarantee
that no solution is missing.

For partly scanned trajectories, we compute their global
upper bound UB according to Eq. 25. If the value of UB
is less than that of LB., the expansions in the spatial and
temporal domains terminate, and all trajectories that are not
fully scanned in the two domains can be pruned safely. Then,
we merge the results according to the approach of the two-
phase algorithm (see Sect. 4.1.5).

The k-two-phase algorithm is based on a divide-and-
conquer strategy. For each trajectory t in P, we retrieve the
trajectories spatiotemporally close to t. Because the search
processes for different trajectories are independent, we can
process the searches in parallel. The trajectory search in the
same thread is detailed in Algorithm 5. The merging phase

@ Springer

410

S.Shang et al.

Algorithm 5: Trajectory Search in A Thread

Data: query trajectories in thread c;
Result: candidate sets C(t), VT € ¢

1 P,f <~ @, LB. < 0; LB < LBy;
2 for each query trajectory T € ¢ do
3 while true do
4 search(t);
5 7’ is a newly scanned trajectory;
6 if t’/ is not fully scanned then
7 if Simgr (7, v/).ub > UB then
8 L UB <« Simgr(7, 7/).ub;
9 if ©’ is fully scanned then
10 update UB;
11 compute Simgr(z, t/).1b;
12 if Simgr (7, t/).Ib > LB, then
13 L update Pf, and LB;
14 if |P]| = k then
15 if Simgr (7, v/).ub > LB, then
16 L L C(1).add(z’)
17 if UB < LB, then
18 L break;

19 return candidate sets C(t),Vt € ¢

is the same as that of the two-phase algorithm (see Algo-
rithm 4).

In Algorithm 5, the query arguments are the query tra-
jectories in thread c, and the query results are the candidate
sets for all query trajectories. Initially, the top-k heap P
is set to @, LB, is set to 0, and the value of LB is set to
that of LBy (line 1). We search each query trajectory 7 in
thread c. For each newly scanned trajectory t’, we compute
its spatiotemporal upper bound Simgt(z, t/).ub, and if its
value exceeds that of UB, UB is updated to Simgr(z, t/).ub
(Egs. 24 and 25) (lines 2-8). If 7’ is fully scanned, we update
the value of UB and compute the value of Simgr(z, t).lb
(Eq. 30). If Simgy(z, T/).Ib exceeds LB., we update top-k
set P; (lines 9-13). If the size of P reaches k, LB, is valid.
If Simgr(7, t/).ub > LB., we add 7’ to the candidate set
for T (lines 14-16). If UB < LB,, search process for query
trajectory t terminates (lines 17—18). Finally, candidate sets
C (1), V1 € c are returned (line 19).

4.2.3 Complexity

Let Py denote the scanned trajectory set for each trajectory
search, and let |C| denote the cardinality of the candidate set
for each query trajectory. The time complexity of the k-two-
phase algorithmis O ((|V[1log |V [+|E])|Tavg| |P|+| P[] Ps])
for self join, and is O ((|V |1log |V |+ |E)|tave (|1 P]+10]) +
|P||Ps| + 0] |Qsl) for non-self join, where P and Qg are
set of scanned trajectories for each trajectory search.

@ Springer

Correctness Similar to the k-TF-Matching algorithm,
the k-two-phase algorithm follows the “filter-and-refine”
paradigm. We define a global upper bound UB and a global
lower bound LB, (cf. Egs. 25 and 31) of the spatiotemporal
similarity to prune the search space. When LB, > UB, the
search terminates. It is clear that not fully-scanned trajecto-
ries cannot be a solution because their global upper bound is
less than the global lower bound of the fully scanned trajec-
tories, meaning that they can be pruned safely. Second, we
refine the candidates by computing their exact similarities,
and we obtain the result by merging the top-k results of all
threads. Because (1) the trajectory pairs pruned in the filtering
cannot be in the result, (2) the computation in the refinement
is exact, and (3) the global top-k result is a subset of the union
of the top-k results of all threads, the k-two-phase algorithm
computes the k-TS-Join correctly.

5 Extension

We first propose a new sequence similarity measure that takes
the visiting sequence of sample points into account when
matching trajectories. Then we extend the TF-Matching,
k-TF-Matching, two-phase, and k-two-phase algorithms to
support the new measure.

5.1 Sequence similarity measure

Given trajectories 11 = (v1, V2, ..., Uy) and 10 = (v1, v2,

., Up), the spatial and temporal aggregate distances Sy,
(11, 1) and Ty, (71, T2) (taking the visiting sequence of tra-
jectory sample points into account) [7,17,18] from 71 to 75
are defined as follows.

e—sd(rl .head.p,t2.head.p)

+Saist (T1.1ail, 1)

Saist (T1, T2) = max (32)

Saist (11, T2.tail)
e—|ti-head.1—13.head.1]

+1yis: (T1-tail, o)

Tyis: (11, T2) = max (33)

Taisi (t1, T2.tail)

Here x.head is the first sample point of %, (e.g., 71.head =
v1) and *.tail is the trajectory obtained by removing the
head from *. (e.g., 71 .tail = (vz, v3, ..., vy)). The distances
Saist (11, T2) and Ty (11, T2) are asymmetrical.

By combining the spatial distances Sy;s (71, 72) and
Saist (12, T1) and the temporal distances Ty (71, T2) and
Taist (12, T1), we define the spatial and temporal similarities
Simg (71, 2) and Sim{.(z1, 72) as follows.

Parallel trajectory similarity joins in spatial networks 41
Simg(ty, 1) = Sist (71, 72) + Sist (T2, T1) (34) Eq. 36 into Eq. 14, we have that
71l |72
. Taist(t1, 12) | Taise(72, T1) n i imQ
Sim&(z1, 72) = is o L Ldis - (35) LB} “ ,Igl)réP,f{SlmST(n’)} (38)

These similarity measures are symmetrical, i.e., Simg (11, ™)
= Simg(t2, 1) and Simy.(71, 72) = Sim} (72, 71).

By substituting Egs. 34 and 35 into Equation 5, the spa-
tiotemporal sequence similarity Simg.(z1, 72) that takes the
visiting sequence into account is defined as follows.

Simgr(t1, 72) = A - Simg(t1, 72) + (1 — &) - Sim}(7y, 72)
(36)

Our search framework can support all aggregate-distance-
based similarity measures in spatial networks, including
BCT [7], NNT [21], network-based BCT [17], and network-
based spatiotemporal BCT with a sequence [18], because the
framework is based on network expansion and uses bounds
calculated using network distances. Variants of these simi-
larity measures, such as sequenced BCT or NNT, can also
be supported. Notice that these similarity measures cannot
be used in the TS-Join directly because (1) the original BCT
and NNT are based on Euclidean space, and (2) all of them
are asymmetrical. We extend them into spatial networks and
make them symmetrical according to Egs. 3 and 4.

5.2 Temporal-first matching
5.2.1 TF-matching algorithm

For each leaf node n, we compute the spatial similarity
Simg(z1, 12) for each trajectory pair (71, 72) € n (Eq. 34).
By substituting the value of Sim‘s’(tl, 77) into Eq. 7, we have
that

0—(1—2)-2

Sim(z, ') > = LBY (37)

If Simg(tl,) < LBY, trajectory pair (1, 72) is pruned.
Otherwise, we compute the exact spatiotemporal similarity
Sim‘s’T(rl , T2) and compare its value to threshold 6.

The TF-Matching algorithm that takes into account the
visiting sequence of trajectory sample points is obtained by
applying Eqgs. 32-37 in Algorithm 1.

5.2.2 k-TF-matching

Initially, we randomly select a set Py of k trajectory pairs and
compute their similarities. We then use the minimum simi-
larity as the global top-k lower bound LBZ -1 By substituting

We use the value of LB} to replace that of 6 in Eq. 37 and
have that

LB} — (1 — 1)(Sim{(t, t').ub)

— LBY
N S

(39)

. /
Simg(z, ') >

For each leaf node n, we compute the spatial similarity
Simg (1, 12) for each trajectory pair (71, 72) € n (Eq. 34). If
Sim‘s’(rl,) < LBgl, pair (1, 12) is pruned. Otherwise, we
compute the exact spatiotemporal similarity Simgy(z1, 72)
and compare its value to threshold LBy

The k-TF-Matching algorithm that takes into account the
visiting sequence of trajectory sample points is obtained by
applying Egs. 32-39 in Algorithm 2.

5.3 Two-phase search
5.3.1 Two-phase algorithm

Given two trajectory sample points v; € T and v; € 7/, the
lower bounds of the network and temporal distances between
v;.p and v;.p are defined as follows.

sd(v;.p,vj.p) if Case 5

rs; if Case 6 (40)

sd(vi.p,vj.p).lb = {

Case 5: v; has been scanned by the expansion from v;.p.
Case 6: v; has not been scanned by the expansion from v;.p.

|vi.t —vj.r] if Case 7

rt; if Case 8 @1

d(v;.t, vj.t).lb = {

Case 7: v; has been scanned by the expansion from v;.f.
Case 8: v; has not been scanned by the expansion from v;.z.

By substituting Eqs. 40 and 41 into Eqs. 32 and 33, we
have the upper bounds on the spatial and temporal aggregate
distances S;;s: (11, T2) and Ty, (71, T2).

e—sd(tl .head.p,t2.head.p).lb

+Saist (T1.tail, 1)

Saist(T1, T2).ub = max (42)

Saist (11, T2-tail)
e—di.t,vj.0).lb

+Tyise (t1.tail, v)

Taist(t1, T2) = max 43)

Tyis: (1, T2.2ail)

@ Springer

412

S.Shang et al.

By substituting Eqs. 42 and 43 into Eqs. 24 and 25, the
upper bound on spatiotemporal similarity Simg(ty, 72).ub
and the global upper bound UB? are derived.

The two-phase algorithm that takes into account the vis-
iting sequence of sample points is obtained by applying
Egs. 32-36 and 4043 in Algorithms 3 and 4.

5.3.2 k-two-phase algorithm

By submitting Eqs. 34 and 35 into Egs. 28, 29, and 30, the
lower bounds on the spatial, temporal, and spatiotemporal
similarities are obtained as follows.

Saist (T1, T2)

Sim¢(z, t).lb = ———= (44)
|71
T .
Sim(z, t').lb = —d”’l(”|) (45)
7]
Simgr(z, t).lb = & - Simg(t, t').lb
+ (1= 2) - Sim(z,).Ib (46)

The k-two-phase algorithm that takes into account the vis-
iting sequence of sample points is obtained by applying
Eqgs. 32-36 and 4046 in Algorithms 4 and 5.

6 Experimental study

We report on experiments with real trajectory data that offer
insight into the properties of the developed algorithms.

6.1 Settings

We use two spatial networks, namely the Beijing Road Net-
work (BRN) and the New York Road Network (NRN)!L,
which contain 28,342 vertices and 27,690 edges, and 95,581
vertices and 260,855 edges, respectively. The graphs are
stored using adjacency lists. In BRN, we use a real taxi tra-
jectory data set collected by the T-drive project [24,25] 12,
while in NRN, we use a real taxi trajectory data set from
New York'!. Each trajectory in NRN denotes a taxi trip, and
their average length (number of vertices) is ~ 80. The origi-
nal trajectories in BRN are very long, often lasting days. We
divide these trajectories into hour-long sub-trajectories, giv-
ing them an average length of ~ 72. The intent is to create
trips with a realistic length and duration.

In the experiments, the indexing structure of the two TF-
Matching algorithms (cf. Sect. 3) and the spatial networks
of the two two-phase algorithms (when running Dijkstra’s

! https://publish.illinois.edu/dbwork/open-data/.

12 https://www.microsoft.com/en-us/research/publication/t-drive-
trajectory-data-sample/.

@ Springer

expansion [9], cf. Sect. 4) are memory resident, as the mem-
ory occupied are 42 MB and 57 MB for BRN and 51 MB and
68 MB for NRN. Trajectories are also memory resident for
both algorithms, and they occupy 506 MB for BRN and 3.9
GB for NRN. All algorithms are implemented in Java and
run on a cluster with 10 data nodes. Each node is equipped
with two Intel® Xeon® Processors E5-2620 v3 (2.4GHz)
and 128GB RAM. To account for the case where the trajec-
tory data does not fit in main memory, we also consider a
disk-resident approach and report its performance in Fig. 5
(Figs.4,and 6,7, 8,9 concern the memory-based algorithms).

For the TF-Matching algorithms, for each node we store
the ids (entries) of the trajectories that overlap the timespan
indicated by the node. For the two-phase algorithms, for each
vertex in the network, we store the ids (entries) of the trajec-
tories that contain the vertex. The ids in each node are stored
in ascending order in an ArrayList. We use a B+-tree to index
trajectories on their ids. When we visit a node/vertex, we first
traverse the corresponding ArrayList and retrieve the ids of
the trajectories stored in the node/vertex. Next, we traverse
the B+-tree and load all of the pages that contain the tra-
jectories stored in the node/vertex. To improve the loading
efficiency, we use a 1GB LRU buffer to store the retrieved
pages.

Unless stated otherwise, experimental results are averaged
over 10 independent trails using different query inputs. The
main performance metrics are runtime and the number of tra-
jectory visits. The number of trajectory visits (during query
processing) is used as a metric since it reflects the number
of data accesses. Since a trajectory may be visited several
times, the number of trajectory visits may exceed the value
of |P| or |Q|. In multi-threaded executions, the runtime is
the maximum runtime among all individual threads.

We study the performance of the non-self joins, i.e.,
P # Q, in Sects. 6.2.2-6.2.5 and 6.3.2-6.2.5 and of self
joins in Sects. 6.2.5-6.2.6 and 6.2.5-6.3.6. Trajectories in P
and Q are selected randomly from real data sets. The parame-
ter settings are listed in Table 2. Because computing network
distances online is time-consuming, we pre-computed the all-
pair shortest path distances in the graph (for the TF-Matching
algorithms only, not for the two-phase algorithms). The pre-
computation is processed in parallel with 120 threads. For
BRN, the computation runtime is ~ 5 min, and the storage
space of computation results is ~ 4 G. For NRN, the compu-
tation runtime is ~2h, and the storage space of computation
results is ~40 G. We denote the accelerated TF-Matchings
(Sect. 3) by “TF-A” and “k-TF-A” in subsequent figures. The
two-phase algorithms (Sect. 4) are denoted by “two-phase”
and “k-two-phase,” and the two-phase algorithms without
the heuristic scheduling strategy are denoted by “two-phase-
w/o-h” and “k-two-phase-w/o-h.”

By default, the grid indexes in TF-Matching and k-TF-
Matching employ a uniform leaf node partitioning scheme.

https://publish.illinois.edu/dbwork/open-data/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

Parallel trajectory similarity joins in spatial networks

413

Table2 Parameter settings

NRN BRN
Trajectory cardinality 1,000,000~ 50,000-200,000/ default
|P| 10,000,000/default 100,000
1,000,000
Trajectory cardinality 500,000- 25,000-100,000/ default
10| 2,000,000/default 50,000
500,000
Threshold 6 1.3-1.9/default 1.9 1.3-1.9/default 1.9

Preference parameter A

Thread count m

0.1-0.9/default 0.5

24—144/default 24 for
the Tb-TS-Join,
72—-144/default 120 for
the k-TS-Join

10-50/ default 10

0.1-0.9/default 0.5
24—144/default 24

10-50/ default 10

We conduct experiments to find the best such partitioning.
When aleaf node is set to 1 h in BRN and to 15 min in NRN,
and each node (including leaf and non-leaf nodes) contains at
most 6560 trajectories in BRN and at most 15,265 trajectories
in NRN, the index performs the best. We also consider a bal-
anced partitioning scheme, where each leaf node contains the
same or similar numbers of trajectories. When the index con-
tains 32 leaf nodes in BRN and 196 leaf nodes in NRN, and
each leaf node contains 1032 trajectories in BRN and 3875
trajectories in NRN on average, the index performs the best.
The algorithms using the balanced partitioning method are
denoted by “TF-A-balance” and “k-TF-A-balance.” Accord-
ing to the experimental results in Figs. 4, 5,6, 7, 8,9, 10, 11,
12, 13 and 14, the performance of TF-Matching is improved
by around 20% when using balanced partitioning.

6.2 Performance of the Th-TS-Join
6.2.1 Pruning effectiveness

First, we study the pruning effectiveness of the algorithms
using the default settings. The experimental results are shown
in Tables 3 (non-self join) and 4 (self join), with the reported
candidate and pruning ratios defined as follows.

2|C]

Candidate ratio = @‘] o
Plol if non—self join

if self join

Pruning ratio = 1 — Candidate ratio, a7

where C is the candidate set. Comparing the pruning and
candidate ratios of TF-Matching to those of the two-phase
algorithm, we see that the candidate ratio of the two-phase
algorithm is only 54.5-58.8% of that of TF-Matching and
that, with the help of the heuristic scheduling strategy, the
candidate ratio is improved by a factor of 40-50%.

Table 3 Pruning effectiveness for non-self Tb-TS-Join

TF Two-phase Two-phase-w/o-h

Candidate ratio (BRN) 0.17 0.10 0.14
Pruning ratio (BRN) 0.83 0.90 0.86
Candidate ratio (NRN) 0.12 0.04 0.06
Pruning ratio (NRN) 0.88 0.96 0.94

Table 4 Pruning effectiveness for self Tb-TS-Join

TF two-phase two-phase-w/o-h
Candidate ratio (BRN) 0.11 0.06 0.09
Pruning ratio (BRN) 0.89 0.94 0.91
Candidate ratio (NRN) 0.08 0.03 0.04
Pruning ratio (NRN) 0.92 0.97 0.96

6.2.2 Effect of trajectory cardinalities

Figure 4 shows the effect of trajectory cardinalities | P | and
| O| on the performance of the algorithms. Intuitively, a larger
|P| (or |Q]) causes more trajectory pairs to be processed
(refer to the complexity analysis in Sects. 3.1.5 and 4.1.6),
meaning that the runtime and the number of trajectory visits
are expected to be higher for all algorithms. We see that
the two-phase algorithm outperforms TF-Matching (TF-A
and TF-A-balance) by almost an order of magnitude; and we
see that the heuristic strategy can further improve the two-
phase algorithm by almost a factor of 50% in terms of both
runtime and the number of trajectory visits. The two-phase
algorithm is able to process 1 M trajectories (| P| = 1 M and
|Q] = 0.5M) in 38 s and 10 M trajectories (| P| = 10 M and
|Q] = 0.5M) in 252 s on the default 24 threads (see Fig. 4b).

The runtime is not fully aligned with the number of tra-
jectory visits because the algorithms expend computational
effort on maintaining the bounds used to prune the search

@ Springer

S.Shang et al.

two-phase —¥— two-phase —¥—
two-phase-w/o-h - - - two-phase-w/o-h - -[- -
—_ TF-A -l —_ TF-A -l
Z 10 TF-A-balance —A-- = TF-A-balance —A--
o o 1200
£ E 1000
g g 800
& 2 600
400
- - 200 g7
50K 100K 150K 200K IM 4M ™ 10M
Cardinality |P| Cardinality |P|
(@ (b)
—~ two-phase —K— — two-phase —¥—
X two-phase-w/o-h - -[- - ¥ two-phase-w/o-h - -[5- -
z TF-A B Z 10000 TE-A B
B TF-A-balance — 4 B TF-A-balance —4A--
R = 8000
> >
= > 6000
8 8
-i -i 4000
& 2000 g
& = g
50K 100K 150K 200K M 4M ™ 10M
Cardinality [P| Cardinality |P|
(0 (d)
20 800
two-phase —¥— two-phase —¥—
two-phase- w/o h - two-phase-w/o- h O--
—~ 15 B 600 TF-. ‘W
) TF-A- ba]ance —i =z TF-A- balance A
5} o ”
= E
=} =}
= =)
= =
&~ [~

25K 50K 75K 100K 0.5M 1.0M 1.5M 2.0M

Cardinality |Q| Cardinality |Q|
(e) ®
—_ two-phase —¥— —~ two-phase —¥—
¥ 300 two-phase- w/o h - % two-phase-w/o-h - -[J- -
P TF-A B P TE-A B
= TF-A-balance —&-- %4000 TF-A-balance —4--
> >
0
E g 300
£ £ 2000
2 2 o
= = 1000
= = -
25K 50K 75K 100K 0.5M 1.oOM 1.5M 2.0M

Cardinality Q| Cardinality |Q|

(® (h)

Fig.4 Effect of trajectory cardinalities | P| and |Q|. a BRN, b NRN, ¢
BRN, d NRN, e BRN, f NRN, g BRN, h NRN

two-phase —¥— two-phase —¥—
two-phase-w/o-h - - - two-phase-w/o-h - -} -
— TF-A -l — TE-A -l
IOBT TF-A-balance —A-- @ TF-A-balance —A--
o o I
£ £ ’
= =
[~ [~4
50K 100K 150K 200K M M ™ 10M
Cardinality [P| Cardinality [P|
(a) (b)
20 1000
two-phase —K— two-phase —¥—
two-phase-w/o-h - -} - 800 two-phase-w/o-h - -[J- -
—~ 15 TF-A -l —_ TF-A -l
) TF-A-balance —£4-- Ko TF-A-balance
@ o
E E
=} g=}
= =)
= =
[~ 4
25K 50K 75K 100K 0.5M 1.0M 1.5M 2.0M
Cardinality |Q| Cardinality |Q|
(0 (d)

Fig.5 Effect of disk-based storage. a BRN, b NRN, ¢ BRN, d NRN

@ Springer

space. The resulting cost may offset the benefits of the reduc-
tion in the number of trajectory visits. In particular, the filter
phase of TF-Matching computes and maintain bounds for
almost all trajectory pairs.

Figure 5 shows the performance of the disk-based algo-
rithms. Their performance patterns are similar to those of
the memory-based algorithms (Fig. 4). The disk-based algo-
rithms may need longer runtime because of disk I/O, but the
query can still be processed in reasonable runtime (e.g., pro-
cessing 10 M x 0.5 M trajectories on the default 24 threads
in 300s, see Fig. 5b). Notice that the number of trajectory
visits is independent of where the data are stored.

6.2.3 Effect of threshold ¢

Next, we vary the threshold 6 in Fig. 6. For the two-phase
algorithm, a larger 6 leads to higher pruning effectiveness
(refer to Eq. 4.1.6). Thus, the larger 6 becomes, the smaller
the search space becomes, and the required runtime and the
number of trajectory visits are expected to decrease corre-
spondingly. When 6 = 1.9, the two-phase algorithm is able
to process 1 M trajectories (|P| = 1 M and |Q| = 0.5 M)
in 38s. In TF-Matching, a larger 6 does not help prune the
search space (refer to Sect. 3.1.5), and only slightly fewer
trajectories are visited when 6 increases. In contrast, a larger
0 is useful in reducing the similarity computation (see Eq. 7).
Thus, the runtime of TF-A and TF-A-balance decrease when
0 increases.

6.2.4 Effect of A

Figure 7 shows the effect of varying the preference param-
eter A on efficiency. Parameter A enables adjusting the relative
preference of spatial and temporal similarity (see Eq. 5).

. two-phase —¥— 800 two-| phase —k—
o b two-phase-w/o-h - -[J- - two-phase-w/o-h - -[J- -
= TF-A - P TF-A B
Z 00 m TF-A-balance —£&-- L 600 A" TF-A-balance —4A--
o . Q
£ £
.g g 400
4 4
200
1.30 145 1.60 1.75 1.90 1.30 1.45 1.60 1.75 1.90
Threshold Threshold
(@ (b)
two-phase —¥— 4000 two-phase —¥—
250 two-phase-w/o-h - -[-]- - two-phase-w/o-h - - -
TF-A -l TF-A W
200 TF-A-balance —2&-- 3000 TF-A-balance —A--

150 200087

1003~

50 1000

Number of Visited Trajectories
Number of Visited Trajectories

1.30 1.45 1.60 1.75 1.90 1.30 1.45 1.60 1.75 1.90
Threshold Threshold
(© (d)

Fig.6 Effect of threshold 6. a BRN, b NRN, ¢ BRN, d NRN

Parallel trajectory similarity joins in spatial networks

415

two-phase —¥— two-phase —K—
60 two-phase-w/o-h - -} - 250 two-phase-w/o-h - [} -
F-A -l TF-A 8-

TF-
TF-A-balance — &~

F-A -
TF-A-balance —

Runtime (s)
Runtime (s)
2

0.1 03 0.5 0.7 0.9 0.1 03 0.5 0.7 0.9
Preference parameter Preference parameter

(@) (b)
—~ " lwo-ph;ase ok = l{m-phase‘%
E‘l 200 two-phase-w/o-h - - - \M, two-phase-w/o-h - - -
z TF-A - z TF-A -
B TF-A-balance —&-- b TF-balance —4A--
S = 2000
= 2 1500 e
S S g B R
i i 1000
5] S 500h . ggeo--- EEEEE & TEES
= = ===
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Preference parameter Preference parameter
(c) (d)
Fig.7 Effect of . a BRN, b NRN, ¢ BRN, d NRN
6000 ™ ™ ™ ™
two-phase —¥— two-phase —K—
5000 two-phase-w/o-h - - - two-phase-w/o-h - -[- -
TF-A B TF-A B
TF-A-balance —24--

4000 TF-A-balance —A--

Runtime (s)
Runtime (s)

48 72 96 120 144 48 72 96 120 144

Number of Threads Number of Threads
(a) (b)

Fig.8 Effect of thread count m. a Non-self join, b self join

When A = 1, the TS-Join is in the spatial domain only, and
when A = 0, only temporal similarity is considered. Fig. 7
shows that the spatial domain needs more search effort than
the temporal domain.

6.2.5 Effect of thread count m

We study the effect of thread count m on the efficiency
of the algorithms using large trajectory data sets in NRN
(JP] = 10 M and |Q| = 2M for non-self Tb-TS-Join and
|P| = 10 M for self Tb-TS-Join). The results are shown in
Fig. 8.

We see that the two-phase algorithm outperforms TF-
Matching by almost an order of magnitude in term of runtime.
For the non-self join, the two-phase algorithm is able to pro-
cess 10 M x 2 M trajectories with 144 threads in 220 s, while
for the self join, the two-phase algorithm is able to process
10 M x 10 M trajectories with 144 threads in 480s.

In Fig. 8, we increase the thread count m from 48 to 144 (3
times). This improves the runtime of the two-phase algorithm
by a factor of 2.3-2.6, while the runtime of TF-Matching
(TF-A and TF-A-balance) is improved by a factor of around
1.9. The main reason for the smaller improvement is that

more threads (more leaf nodes) lead to a higher merging cost
(cf. Sect. 3.1.5).

6.2.6 Performance of the self Tb-TS-Join

Figure 9 shows the runtime and number of trajectory visits for
the self Tb-TS-Join when varying the trajectory cardinality,
the similarity threshold, and the preference parameter. The
trends of the figures are similar to those of the non-self Tb-
TS-Join. The two-phase algorithm outperforms TF-Matching
(TF-A and TF-A-balance) by almost an order of magnitude
in terms of both runtime and the number of trajectory visits,
and the heuristic search strategy improves the efficiency by
almost a factor of 50%.

6.3 Performance of the k-TS-Join
6.3.1 Pruning effectiveness

We study the pruning effectiveness of the algorithms using
the default settings. The experimental results are shown in
Tables 5 (non-self k-TS-Join) and 6 (self k-TS-Join). Com-
paring the pruning and candidate ratios of k-TF-Matching
to those of the k-two-phase algorithm, we see that the candi-
date ratio of the k-two-phase algorithm is only 47.3-63.6% of
that of k-TF-Matching and that, with the help of the heuristic
scheduling strategy, the candidate ratio is improved by a fac-
tor of 21.4-38.8%. The pruning effectiveness of k-TS-Join
is a little bit weaker than that of Tb-TS-Join (cf. Tables 3
and 4) because k-TS-Join has no user-specified threshold to
help the pruning.

6.3.2 Effect of k

Figure 10 shows the effect of k£ on the performance of the
algorithms. Intuitively, a larger k causes a larger candidate
set and more trajectory pairs to be processed, meaning that
the runtime and the number of trajectory visits are expected
to increase for all algorithms. We see that k-two-phase out-
performs k-TF-Matching (k-TF-A and k-TF-A-balance) by
almost an order of magnitude; and we see that the heuristic
strategy can improve the two-phase algorithm by almost a
factor of 40% in terms of both runtime and the number of
trajectory visits.

6.3.3 Effects of |P|, |Q|,and A

Figure 11 shows the effects of | P|, |Q|, and A on the per-
formance of the k-TS-Join. The trends are similar to those of
the Tb-TS-Join, and it is evident that the k-two-phase algo-
rithm has a clear advantage over the other algorithms. The
k-two-phase algorithm is able to process 1 M trajectories
(JP]=1Mand |Q| = 0.5 M) in 142s and 10 M trajectories

@ Springer

416 S.Shang et al.
40
two-phase + two-phase —K— ~ 300k two-phase —¥— o two-phase —¥—
two-phase-w/o-h - two-phase-w/o-h - -[- - % two-phase-w/o-h - -[- - % two-phase-w/o-h - -[- -
30 TE-A - l~ . TF-A B & 2 TE-A -l P TE-A -l
) TF-A-balance — 24+ Z 2000 TF-A-balance —24- Z 200k TF-A-balance — 24 B 5000 TF-A-balance — 24+
> > Rz 2 Y
>
£ 2 E 160 a E . 2. 4000 n i 1
2 g 1200 - 5 -2 2 3000
b4 2 -
2 1 & 800 g 100k S, 2000
400 - ; ; 1000 J -
50K 100K 150K 200K IM 4M ™ 10M 50K 100K 150K 200K M 4M ™ 10M
Cardinality [P| Cardinality [P| Cardinality [P| Cardinality |P|
(a) (b) (c) (d)
» n
2 .2
5 8
two-phase —k— 1400 two-phase —kK— 5 two-phase —X— 31 two-phase —X—
o o
40 two-phase- w/o h - E], - 1200 K- two-phase-w/o-h - E], - = two-phase-w/o-h - E], - = two-phase-w/o-h - E], -
—_ F-A -l —_ TF-A -l s TE-A -l = 2400k . TF-A -l
) - TF-A-balance —A Z 1000 TF-A-balance —24- = TF-A-balance — 24 = TF-A-balance — 4+
S > = 150k = 2000k
k- 2 800 2 £ 1600k
= =] .4 4
g £ 6000H. = <1200k
& & 400 “ S 800k
: 200 }; _a_‘é 400k
1.30 1.45 1.60 1.75 1.90 1.30 1.45 1.60 1.75 1.90 2 1.30 1.45 1.60 1.75 1.90 2 1.30 1.45 1.60 1.75 1.90
Threshold Threshold Threshold Threshold
(e) ® (2 ()
15 400
two-phase —¥— two-phase —¥— two-phase —¥— two-phase —¥—
two-phase-w/o-h - -[]- - two-phase-w/o-h - -[]- - @ two-phase-w/o-h - -[]- - @ two-phase-w/o-h - -[]- -
— TF-A - — 300 TE-A - = TE-A - 5 1500k TE-A -
Z 10 TE-A-balance — 4) TF-A-balance — 24 S TF-A-balance — 24 B TF-A-balance — 24+
E ::_) e = 120k =
g g .. e B 2 kB EEE S e
5 E] ’ 8 8
& &~ . = 60k ‘T 500kpg-----BF - BT
---------- S &
=30k =

0.1

03

0.5 0.7

Preference parameter

(@

0.9

0.1

0.3 0.5 0.7 0.9

Preference parameter

1)

0.1

0.3

0.5 0.7 0.9

Preference parameter

(k)

0.1

03

0.5 0.7

Preference parameter

U]

Fig.9 Performance of the self Tb-TS-Join. a BRN, b NRN, ¢ BRN, d NRN, e BRN, f NRN, g BRN, h NRN, i BRN, j NRN, k BRN, I NRN

Table 5 Pruning effectiveness
for non-self k-TS-Join

Table 6 Pruning effectiveness
for self k-TS-Join

(1P| =
(see Fig. 11b).

k-TF k-two-phase k-two-phase-w/o-h
Candidate ratio (BRN) 0.38 0.18 0.25
Pruning ratio (BRN) 0.62 0.82 0.75
Candidate ratio (NRN) 0.31 0.16 0.20
Pruning ratio (NRN) 0.69 0.84 0.80
k-TF k-two-phase k-two-phase-w/o-h
Candidate ratio (BRN) 0.22 0.14 0.17
Pruning ratio (BRN) 0.78 0.86 0.83
Candidate ratio (NRN) 0.17 0.09 0.11
Pruning ratio (NRN) 0.83 091 0.89

10 M and | Q| = 0.5 M) in 971 s using 120 threads

6.3.4 Effect of disk-based storage

Figure 12 shows the performance of the disk-based algo-
rithms. Their performance patterns are similar to those of the
memory-based algorithms (Fig. 11). The disk-based algo-
rithms need more runtime because of disk I/O, but the query

@ Springer

can still be processed in reasonable time (e.g., processing
10 M x 0.5 M trajectories in around 1184 s using 120 threads,
see Fig. 12b).

6.3.5 Effect of thread count m

We study the effect of thread count m on the efficiency
of the algorithms using large trajectory data sets in NRN
(|P] = 10 M and | Q| = 2 M for the non-self k-TS-Join and

Parallel trajectory similarity joins in spatial networks

30
k-two-phase —K—
k-two-phase-w/o-h - I -
. k-TF-A -l
Z 20 k-TF-A-balance —2A-
5
£
=
=
-4
—~ k-two-phase —¥—
X k-two-phase-w/o-h - - -
200 5
a8
2
= 150
>~ T A e----
S 100
o 7!
o
‘= 50
&
&=
10 20 30 40 50
k

Runtime (s)

Trajectory Visits (K)

k-two-phase —K—
k-two-phase-w/o-h - -[- -
k-TF-A -
k-TF-A-balance

800
600
400
200
10 20 30 40 50
k

k-TF-A -
k-TF-balance

10 20 30

k

(@)

40 50

Fig. 10 Effect of k. a BRN, b NRN, ¢ BRN, d NRN

|P| = 10 M for the self k-TS-Join). The results are shown
in Fig. 13 (note the logarithmic y-axis in Fig. 13b). We see
that the k-two-phase algorithm outperforms k-TF-Matching
by almost an order of magnitude in term of runtime. For
the non-self join, the two-phase algorithm is able to process
10 M x 2 M trajectories with 144 threads in 820 s, while for

k-two-phase —¥—
k-two-phase-w/o-h - - -

k-TE-A B

) I TF-A-balance — 4
5 30
£
=
=
=
=2
50K 100K 150K 200K
Cardinality |P|
(@)
60 k-two-phase —X—
k-two-phase-w/o-h - - -
. k-TE-A -H-
z k-TF-A-balance —&--
o 40
£
5
E]
2 20
25K 50K 75K 100K
Cardinality |Q|
(e)
30
k-two-phase —¥—
k-two-phase-w/o-h - -[]- -
. k-TE-A -H-
<20 k-TF-A-balance — £~
@
£
5
=
=
~
0.1 0.3 0.5 0.7 0.9
Preference parameter
.
(@
Fi

Runtime (s)

Runtime (s)

Runtime (s)

k-two-phase —¥—

k-two-phase-w/o-h - -[-
k-TF-A W

A

k-TF-A-balance —
.

Cardinality [P|

(b)

k-two-phase —¥—
2500 k-two-phase-w/o-h - [} -
k-TF-A -l

2000 k-TF-A-balance — &+
1500
1000
500

0.5M 1.0M 1.5M 2.0M
Cardinality |Q|

1000

k-two-phase —¥—

800 k-two-phase-w/o-h - -[- -

k-TF-A B

k-TF-A-balance — &

0.1

0.3 0.5 0.7 0.9

Preference parameter

@

40

30

20

Runtime (s)

k-two-phase —¥—
k-two-phase-w/o-h - -[- -
k-TF-A -l
k-TF-A-balance — 2

100K
Cardinality |P|

(@)

150K

200K

40

Runtime (s)

k-two-phase —¥—
k-two-phase-w/o-h - -] -
k-TF-A -l
k-TF-A-balance —&A--

25K

50K 75K
Cardinality |Q|

(c)

100K

417
k-two-phase —¥—
k-two-phase-w/o-h - - -
= KTEA B
Z K-TF-A-balagge —A--
T 3000 8]
E
g
E]
=
4
Cardinality |P|
k-two-phase —¥—
2500 k-two-phase-w/o-h - -[- -
o K-TF-A B
22000 k-TF-A-balance —A--
P
£ 1500
=]
g 1000
-4

500

1.0M
Cardinality |Q|

(d)

1.5M 2.0M

Fig. 12 Effect of disk-based storage. a BRN, b NRN, ¢ BRN, d NRN

the self join, the k-two-phase algorithm is able to process
10 M x 10 M trajectories with 144 threads in 1750s.

In Fig. 13, we increase the thread count m from 72 to
144 (2 times). This improves the runtime of the k-two-phase
algorithm by a factor of 1.62-1.66, while the runtime of
k-TF-Matching (k-TF-A and k-TF-A-balance) is improved
by a factor of around 1.2. The main reason for the smaller

Trajectory Visits (K) Trajectory Visits (K)

Trajectory Visits (K)

k-two-phase —¥—
k-two-phase-w/o-h - -[=- -
k-TF-A -l
k-TF-A-balance — 2+

50K

100K 150K
Cardinality |P|

(c)

200K

300

k-two-phase —¥—
k-two-phase-w/o-h - - -
k-TF-A -
k-TF-A-balance — &+

25K

50K 75K
Cardinality |Q|

(@

100K

k-two-phase —K—
k-two-phase-w/o-h - -[J- -
K-TF-A B

0.1

0.3
Preference parameter

(k)

0.5 0.7

0.9

Trajectory Visits (K) Trajectory Visits (K)

Trajectory Visits (K)

k-two-phase —¥—
k-two-phase-w/o-h - - -
10000 k-TF-A -l
k-TF-A-balance —&--
8000
6000
4000
2000
M 4M ™ 10M
Cardinality |P|
k-two-phase —K—
k-two-phase-w/o-h - - -
-TF-A -l
4000 k-TF-A-balance —&--
3000
2000
1000
0.5M 1.0M 1.5M 2.0M
Cardinality |Q|
k-two-phase —K—
k-two-phase-w/o-h - - -
k-TF-A -l
k-TF-balance —&--
2000 [
1500 | n:
[B
1000°F
E-----
500 X

0.3 0.5
Preference parameter

()

0.7 0.9

g.11 Effects of | P|,|Q], and 1. a BRN, b NRN, ¢ BRN, d NRN, e BRN, f NRN, g BRN, h NRN, i BRN, j NRN, k BRN, I NRN

@ Springer

418

S.Shang et al.

k-two-phase —K— k-two-phase —¥—
k-two-phase-w/o-h - -} - k-two-{ phdse -w/o-h - - -
— K-TF-A B _ CIRPA B
=z 5000 k-TF-A-balance —&--) k-TF-A-balance — &+
2 4000 o
E £ 10000
g 3000 E ow
& 2000 & 100
1000 10
1
72 96 120 144 72 96 120 144
Number of Threads Number of Threads
(a) (b)
Fig. 13 Effect of thread count m. a Non-self join, b self join

improvement is that more threads (more leaf nodes) leads to
a higher merging cost (cf. Sects. 3.1.5 and 3.2.3).

6.3.6 Performance of the self k-TS-Join

Figure 14 shows the runtime and number of trajectory visits
for the self k-TS-Join when varying trajectory cardinality,
k, and preference parameter «. The trends of the figures are
similar to those for the non-self k-TS-Join (cf. Figs. 10— 12).
The k-two-phase algorithm outperforms k-TF-Matching (k-
TF-A and k-TF-A-balance) by almost an order of magnitude
in terms of both runtime and trajectory visits, and the heuristic
search strategy improves the efficiency by almost a factor of
40%.

two-phase —¥— 2800 k-two-phase —K—
two-phase-w/o-h - - - 2400 k-two-phase-w/o-h - {J- -
— TF-A B — K-TE-A B
Z 100 TF-A-balance — 4 & 2000 K-TE-A-balance —4-- 4
@ Q
£ 80 g 1600 - B
s 60 = 1200 I
=1 = AL
&40 &~ 800 =
20 400 - .
50K 100K 150K 200K IM 4M ™ 10M
Cardinality |P| Cardinality [P|
() (b)
k-two-phase —¥— k-two-phase —¥—
k-two-phase- w/o h - -~ k-two-phase- w/o h - -
. 400 ol
. F-A . KCTE-A B
) k—TF—A—ba]ancc A K M KTF-A-balance —&r--
o o 300 A i K
£ £ - o
= = -
§ Es 200y -
~ ~ .-
100
10 20 30 40 50
k k
(e) ®
400
50 k-two-phase —¥— k-two-phase —k—
k-two-phase-w/o-h - -[J- - k-two-phase-w/o-h - -[- -
k-TF-A ---W--- 300 k-TF-A ---#---
Ohe k-TF-A-balance —£&- =z k-TF-A-balance — &
%) Q
£ E 200
=) =
g g
= =
~ & 100
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Preference parameter Preference parameter
. .
@ @

6.4 TS-Join performance with sequence similarity

We conducted experiments to study the performance of pro-
cessing the sequential TB-TS-Join and k-TS-Join (when
using the sequence similarity measure presented in Sect. 5).
The experimental results are shown in Figs. 15 and 16.
Compared to the original TB-TS-Join and k-TS-Join, the
sequential TB-TS-Join and k-TS-Join needs more compu-
tational efforts to compute the upper and lower bounds and
the priority labels, which is due to the more complex distance
measures. Therefore, more time and trajectory accesses are
incurred. However, the trends observed in Figs. 15 and 16 are
still similar to those observed for the original TB-TS-Join and
k-TS-Join in Figs. 4, 5, 6,7, 8,9, 10, 11, 12, 13 and 14. In
Figures 15 and 16, the two-phase (k-two-phase) algorithm is
still able to outperform the TF-Matching (k-TF-Matching)
algorithm by almost an order of magnitude in term of both
runtime and trajectory visits. The sequence similarity two-
phase and the sequence similarity k-two-phase algorithms
are able to process 10 M x 2 M trajectories with 144 threads
in 250 and 840s.

— 300 k-two-phase —¥— o k-two-phase —K—
\% k-two-phase-w/o-h - -[J- - \% k-two-phase-w/o-h - -[- -
® k-TF-A -l » 10000 k-TF-A -l
F 200 k-TF-A-balance — 4+ B k-TF-A-balance — 4+
= s K
g 2y £
|5} - |53
Q Q
2 =
it &
= =

50K 100K 150K 200K M 4M ™ 10M

Cardinality [P| Cardinality [P|
(0 (d)

o k-two-phase —K— o k-two-phase —K—
X k-two-phase- w/o h - - X k-two-phase-w/o-h - -[}- -
z F-A B 2 1500 k-TF-A - B
7 k—TF—A—balancc —A = k—TF—A—balancc —A
> >
[[
8)
Q Q
QL QL
g =
= =

10 20 30 40 50 10 20 30 40 50

k k

o k-two-phase —X¥— o k-two-] phdse ——
\% k-two-phase-w/o-h - -[J- - ;\ﬁ k-two-phase-w/o-h - -[J- -
P K-TF-A - Z 1500 K-TF-A -l
7 k-TF-A-balance — 4+ 7 k-TF-A-balance — 4
> >
[[
e e
Q Q
Q Q
= =
S S
= =

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Preference parameter Preference parameter

Fig. 14 Performance of the self k-TS-Join. a BRN, b NRN, ¢ BRN, d NRN, e BRN, f NRN, g BRN, h NRN, i BRN, j NRN, k BRN,] NRN

@ Springer

Parallel trajectory similarity joins in spatial networks

419

two- -phase —K— tWo-| phase —K—
two-phase-w/o-h - (- - two-phase-w/o-h - -[}- -
—_ TF-A --H- —_ 2
Z 10 TF-A-balance A @ TF-A-baldnce A
5] o 1200 u
£ £ 1000
g £ 800 A
=~ Z 600
400 = - - E
200 gL
50K 100K 150K 200K M 4M ™ 10M
Cardinality |P| Cardinality |P|
(@) (b)
—~ two- -phase T o two-| phase —K—
X two-phase-w/o-h - -[- - ¥ two-phase-w/o-h - -[- -
@ TF-A -l » 10000 TF-A -
= TF-A-balance —4-- B TF-A-balance —4--
= = 8000
= >
= > 6000
§ 5
153 o 4000
.2 2
& S 2000 g
& = :
50K 100K 150K 200K M aM ™ 10M
Cardinality |P| Cardinality |P|
(c) (d)
two-phase —K— two-phase —K—
two-phase-w/o-h - - - two-phase-w/o-h - -[J- -
TF-A -1 TF-A -1
= 5000 TF-A-balance —£&-- =z TF-A-balance —£&--
o o
£ g SIS
.=} 3=} N
g g
[~ [~4
1

72 96 120 144 48 72 96 120 144

Number of Threads Number of Threads
(e) ®

Fig. 15 Performance for TB-TS-Join with a sequence. a BRN, b NRN,

¢ BRN, d NRN, e non-self join, f self join

k-two-phase —K— k-two-phase —¥—
40 k-two-] phdsL -w/o-h - - - k-two-] phdsL w/o-h - -[F -

—~ TF-A B — TF-A B
N k-TF-A-balance —be z k-TF-A-balance — A
o 30 - %)
£ £
3=} =
EL E
[~ 4

50K 100K 150K 200K M 4M ™ 10M

Cardinality [P| Cardinality |P|
(a) (b)
—~ "k-two- phase —k— —~ " ketwo- phase ——
< k-two-| pha:e -w/o-h - -[- - % k-two-phase-w/o-h - -} -
§2) k-TF-A -l @2 10000 k-TF-A -l
7 k-TF-A-balance —4-- B $000 k-TF-A-balance —&A--
> >
> > 6000
2 2
|33 o 4000
2 =
£ g 2000 g~
= & g
50K 100K 150K 200K M 4M ™ 10M
Cardinality |P| Cardinality |P|
(c) (d)
k-two-phase —¥— k-two-phase —¥—
k-two-phase-w/o-h - -[- - k-two-phase-w/o-h - -[J- -
— k-TF-A W — K-TF-A -l
2 5000 k-TF-A-balance —A-- @ k-TF-A-balance —&A--
o Q
E 4000 E 10000
.=} g=|
£ 3000 £ 1000
& 20000 T
1000 10
N N 1 N N
72 96 120 144 72 96 120 144
Number of Threads Number of Threads
(e) ®

Fig. 16 Performance for k-TS-Join with a sequence. a BRN, b NRN,

¢ BRN, d NRN, e non-self join, f self join

6.5 Summary

An empirical study with real data offers insight in the per-
formance of the algorithms (cf. Algorithm 1-5) and provides
evidence that the two-phase and k-two-phase algorithms (cf.
Algorithms 3, 4, and 5) typically are capable of outperform-
ing well-designed baseline algorithms (TF-Matching and
k-TF-Matching, cf. Algorithms 1 and 2) by an order of mag-
nitude.

7 Related work
7.1 Trajectory similarity search

Trajectory similarity search [7,17,18,26] typically involves a
definition step and a query processing step. First, a similarity
function is defined to evaluate the spatial and temporal simi-
larities between two trajectories, typically taking into account
spatial proximity and curve similarity. Second, an efficient
algorithm is developed to retrieve trajectories spatiotempo-
rally close to a query trajectory. Several trajectory similarity
functions are proposed for different applications. For exam-
ple, BCT [7] considers trajectory search in Euclidean space,
and UOTS [17] and ATSQ [26] extend these to the spatial
and textual domains, while PTM [18] extends them into spa-
tial and temporal domains. Next, several similarity functions
exist for trajectory or time-series data, including Dynamic
Time Warping [23], Longest Common Subsequence [1], and
Edit Distance on Real sequence [5]. The definition of BCT [7]
is most similar to the one we use. Both studies target routing
and ridesharing/carpooling. We extend the Euclidean-based
BCT to spatial networks, and we also offer a symmetri-
cal definition. In contrast, most existing trajectory similarity
functions [7,17,18] are asymmetrical; thus, they cannot be
used directly in the TS-Joins.

7.2 Trajectory similarity join

Most existing studies on trajectory similarity join (e.g.,
[2,3,6,10]) use a time interval threshold to constrain the tem-
poral proximity of two trajectories and can be classified into
two categories. Studies in the first category (e.g., [3,10])
eliminate trajectory pairs with sample point pairs with time
intervals that exceed the threshold. Our study generalizes
studies in this category in that we eliminate the time-interval
threshold. Studies in the other category (e.g., [2,6]) apply
a sliding window to all trajectories. Here, pairs of trajec-
tories must fall into a sliding window to be candidate join
results. In contrast, the TS-Joins use spatiotemporal similar-
ity, taking into account both spatial and temporal aggregate
distances. Thus, the existing time interval-based solutions
are not suitable for the TS-Joins (e.g., the temporal-first

@ Springer

420

S.Shang et al.

matching, cf. Sect. 3). Moreover, in contrast to most existing
trajectory join studies (e.g., [2,3,6,10,20]), the TS-Joins are
applied in spatial networks because in many practical scenar-
ios, objects (e.g., commuters and vehicles) move in spatial
networks (e.g., road networks) rather than in a Euclidean
space. Thus, spatial indices (e.g., the R-tree [11]) and cor-
responding optimizations are not effective in our setting.
In addition, existing trajectory similarity join studies (e.g.,
[2,3,6,10,20]) are not taking steps to exploit the parallelism in
modern processors. According to an experimental study [12],
most existing similarity join algorithms cannot achieve high
performance for really large data sets, making it relevant
to pursue parallel algorithms for very large data sets. To
address this issue, we introduce parallelism to the temporal-
first matching and the two-phase algorithm to process the
TS-Joins efficiently on very large trajectory data sets.

8 Conclusion and future work

We present and study novel trajectory similarity joins (TS-
Joins) in spatial networks, including a threshold-based TS-
Join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), that
target diverse applications such as trajectory duplicate detec-
tion, data cleaning, ridesharing/carpooling recommendation,
and traffic congestion prediction. To process the TS-Joins
efficiently, two-phase and k-two-phase algorithms are devel-
oped based on a divide-and-conquer strategy. The algorithms
are equipped with upper and lower bounds and a heuris-
tic scheduling strategy that enable effective pruning of the
search space. The performance of the TS-Joins is investi-
gated through extensive experiments on very large trajectory
data. Two research directions are of particular interest. The
first is to study how to select a larger initial lower bound for
the k-TS-Join online. The second is to study system-level
optimizations in the TS-Joins.

References

1. Agrawal, R., Lin, K., Sawhney, H.S., Shim, K.: Fast similarity
search in the presence of noise, scaling, and translation in time-
series databases. In: VLDB, pp. 490-501 (1995)

2. Bakalov, P, Hadjieleftheriou, M., Keogh, E.J., Tsotras, V.J.: Effi-
cient trajectory joins using symbolic representations. In: MDM,
pp. 86-93 (2005)

3. Bakalov, P, Tsotras, V.J.: Continuous spatiotemporal trajectory
joins. In: GSN, pp. 109-128 (2006)

4. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching
vehicle tracking data. In: VLDB, pp. 853-864 (2005)

5. Chen, L., Ozsu, M.T., Oria, V.: Robust and fast similarity search
for moving object trajectories. In: SIGMOD, pp. 491-502 (2005)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

. Chen, Y., Patel, J.M.: Design and evaluation of trajectory join algo-

rithms. In: ACM-GIS, pp. 266275 (2009)

. Chen,Z.,Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajec-

tories by locations: an efficiency study. In: SIGMOD, pp. 255-266
(2010)

. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Compu-

tational Geometry: Algorithms and Applications. Springer, Berlin
(2008)

. Dijkstra, E.-W.: A note on two problems in connection with graphs.

Numer. Math. 1, 269-271 (1959)

Ding, H., Trajcevski, G., Scheuermann, P.: Efficient similarity join
of large sets of moving object trajectories. In: TIME, pp. 79-87
(2008)

Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. In: SIGMOD, pp. 47-57 (1984)

Jiang, Y., Li, G., Feng, J., Li, W.: String similarity joins: an exper-
imental evaluation. PVLDB 7(8), 625-636 (2014)

Luo, W., Tan, H., Chen, L., Ni, L.M.: Finding time period-based
most frequent path in big trajectory data. In: SIGMOD, pp. 713—
724 (2013)

Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching
trajectories by regions of interest. IEEE Trans. Knowl. Data Eng.
29(7), 1549-1562 (2017)

Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P.:
Collective travel planning in spatial networks. IEEE Trans. Knowl.
Data Eng. 28(5), 1132-1146 (2016)

Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis,
P.: Trajectory similarity join in spatial networks. PVLDB 10(11),
1178-1189 (2017)

Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User
oriented trajectory search for trip recommendation. In: EDBT, pp.
156-167 (2012)

Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou,
X.: Personalized trajectory matching in spatial networks. VLDB J.
23(3), 449468 (2014)

Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P,, Li, G.,
Wen, J.: Discovery of path nearby clusters in spatial networks.
IEEE Trans. Knowl. Data Eng. 27(6), 1505-1518 (2015)

Ta, N., Li, G., Xie, Y., Li, C., Hao, S., Feng, J.: Signature-based
trajectory similarity join. IEEE Trans. Knowl. Data Eng. 29(4),
870-883 (2017)

Tang, L.A., Zheng, Y., Xie, X., Yuan, J., Yu, X., Han, J.: Retrieving
k-nearest neighboring trajectories by a set of point locations. In:
SSTD, pp. 223-241 (2011)

Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-
matching speed: localizing global curve-matching algorithms. In:
SSDBM, pp. 379-388 (2006)

Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar
time sequences under time warping. In: ICDE, pp. 201-208 (1998)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from
the physical world. In: SIGKDD, pp. 316-324 (2011)

Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang,
Y.: T-drive: driving directions based on taxi trajectories. In: ACM
SIGSPATIAL, pp. 99-108 (2010)

Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search
for activity trajectories. In: ICDE, pp. 230-241 (2013)

Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online dis-
covery of gathering patterns over trajectories. IEEE Trans. Knowl.
Data Eng. 26(8), 1974-1988 (2014)

. Zhou, J., Tung, A.K.H.,Wu, W., Ng, W.S.: A “semi-lazy” approach

to probabilistic path prediction. In: SIGKDD, pp. 748-756 (2013)

	Parallel trajectory similarity joins in spatial networks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Spatial networks and trajectories
	2.2 Trajectory similarity functions
	2.3 Problem definition

	3 Baseline algorithms
	3.1 TF-matching
	3.1.1 Basic idea
	3.1.2 Grid index
	3.1.3 Upper and lower bounds
	3.1.4 Merging
	3.1.5 Complexity analysis

	3.2 k-TF-matching algorithm
	3.2.1 Basic idea
	3.2.2 Pruning in leaf nodes
	3.2.3 Merging
	3.2.4 Complexity

	4 Two-phase search
	4.1 Two-phase algorithm
	4.1.1 Basic idea
	4.1.2 Expansion search
	4.1.3 Upper bound computation
	4.1.4 Scheduling strategy
	4.1.5 Filter, refine, and merging
	4.1.6 Complexity analysis

	4.2 k-two-phase algorithm
	4.2.1 Basic idea
	4.2.2 Lower bound
	4.2.3 Complexity

	5 Extension
	5.1 Sequence similarity measure
	5.2 Temporal-first matching
	5.2.1 TF-matching algorithm
	5.2.2 k-TF-matching

	5.3 Two-phase search
	5.3.1 Two-phase algorithm
	5.3.2 k-two-phase algorithm

	6 Experimental study
	6.1 Settings
	6.2 Performance of the Tb-TS-Join
	6.2.1 Pruning effectiveness
	6.2.2 Effect of trajectory cardinalities
	6.2.3 Effect of threshold θ
	6.2.4 Effect of λ
	6.2.5 Effect of thread count m
	6.2.6 Performance of the self Tb-TS-Join

	6.3 Performance of the k-TS-Join
	6.3.1 Pruning effectiveness
	6.3.2 Effect of k
	6.3.3 Effects of |P|, |Q|, and λ
	6.3.4 Effect of disk-based storage
	6.3.5 Effect of thread count m
	6.3.6 Performance of the self k-TS-Join

	6.4 TS-Join performance with sequence similarity
	6.5 Summary

	7 Related work
	7.1 Trajectory similarity search
	7.2 Trajectory similarity join

	8 Conclusion and future work
	References

