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ABSTRACT
Database queries can be broadly classified into two cate-
gories: reporting queries and aggregation queries. The for-
mer retrieves a collection of records from the database that
match the query’s conditions, while the latter returns an
aggregate, such as count, sum, average, or max (min), of
a particular attribute of these records. Aggregation queries
are especially useful in business intelligence and data anal-
ysis applications where users are interested not in the ac-
tual records, but some statistics of them. They can also be
executed much more efficiently than reporting queries, by
embedding properly precomputed aggregates into an index.

However, reporting and aggregation queries provide only
two extremes for exploring the data. Data analysts often
need more insight into the data distribution than what those
simple aggregates provide, and yet certainly do not want the
sheer volume of data returned by reporting queries. In this
paper, we design indexing techniques that allow for extract-
ing a statistical summary of all the records in the query.
The summaries we support include frequent items, quan-
tiles, various sketches, and wavelets, all of which are of cen-
tral importance in massive data analysis. Our indexes re-
quire linear space and extract a summary with the optimal
or near-optimal query cost.

Categories and Subject Descriptors
E.1 [Data]: Data structures; F.2.2 [Analysis of algorithms
and problem complexity]: Nonnumerical algorithms and
problems

General Terms
Algorithms, theory
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Indexing, summary queries
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1. INTRODUCTION
A database system’s primary function is to answer users’

queries. These queries can be broadly classified into two cat-
egories: reporting queries and aggregation queries. The for-
mer retrieves a collection of records from the database that
match the query’s conditions, while the latter only produces
an aggregate, such as count, sum, average or max (min), of a
particular attribute of these records. With reporting queries,
the database is simply used as a data storage-retrieval tool.
Many modern business intelligence applications, however,
require ad hoc analytical queries with a rapid execution
time. Users issuing these analytical queries are interested
not in the actual records, but some statistics of them. This
has therefore led to extensive research on how to perform
aggregation queries efficiently. By augmenting a database
index (very often a B-tree) with properly precomputed ag-
gregates, aggregation queries can be answered efficiently at
query time without going through the actual data records.

However, reporting and aggregation queries provide only
two extremes for analyzing the data, by returning either
all the records matching the query condition or one (or a
few) single-valued aggregates. These simple aggregates are
not expressive enough, and data analysts often need more
insight into the data distribution. Consider the following
queries:

(Q1) In a company’s database: What is the distribution of
salaries of all employees aged between 30 and 40?

(Q2) In a search engine’s query logs: What are the most fre-
quently queried keywords between May 1 and July 1, 2010?

The analyst issuing the query is perhaps not interested in
listing all the records in the query range one by one, while
probably not happy with a simple aggregate such as aver-
age or max, either. What would be nice is some summary
on the data, which is more complex than the simple ag-
gregates, yet still much smaller than the raw query results.
Some useful summaries include the frequent items, the φ-
quantiles for, say, φ = 0.1, 0.2, . . . , 0.9, a sketch (e.g., the
Count-Min sketch [8] or the AMS sketch [4]), or some com-
pressed data representations like wavelets. All these sum-
maries are of central importance in massive data analysis,
and have been extensively studied for offline and stream-
ing data. Yet, to use the existing algorithms, one still has
to first issue a reporting query to retrieve all query results,
and then construct the desired summary afterward. This is
clearly time-consuming and wasteful.

In this paper, we propose to add a native support for sum-
mary queries in a database index, such that a summary can
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be returned in time proportional to the size of the summary
itself, not the size of the raw query results. The problem
we consider can be defined more precisely as follows. Let
D be a database containing N records. Each record p ∈ D
is associated with a query attribute Aq(p) and a summary
attribute As(p), drawing values possibly from different do-
mains. A summary query specifies a range constraint [q1, q2]
on Aq and the database returns a summary on the As at-
tribute of all records whose Aq attribute is within the range.
For example, in the query (Q1) above, Aq is “age” and As is
“salary”. Note that As and Aq could be the same attribute,
but it is more useful when they are different, as the analyst
is exploring the relationship between two attributes. Our
goal is to build an index on D so that a summary query
can be answered efficiently. As with any indexing problem,
the primary measures are the query time and the space the
index uses. The index should also work in external memory,
where it is stored in blocks of size B, and the query cost is
measured in terms of the number of blocks accessed (I/Os).
Finally, we also would like the index to support updates,
i.e., insertion and deletion of records.

1.1 Related work on indexing for aggregation
queries

In one dimension, most aggregates can be supported easily
using a binary tree (a B-tree in external memory). At each
internal node of the binary tree, we simply store the aggre-
gate of all the records below the node. This way an aggre-
gation query can be answered in O(log N) time (O(logB N)
I/Os in external memory).

In higher dimensions, the problem becomes more difficult
and has been extensively studied in both the computational
geometry and the database communities. Solutions are typ-
ically based on space-partitioning hierarchies, like partition
trees, quadtrees and R-trees, where an internal node stores
the aggregate for its subtree. There is a large body of work
on spatial data structures; please refer to the survey by
Agarwal and Erickson [2] and the book by Samet [26]. When
the data space forms an array, the data cube [13] is an effi-
cient structure for answering aggregation queries.

However, all the past research, whether in computational
geometry or databases, has only considered queries that re-
turn simple aggregates like count, sum, max (min), and very
recently top-k [1] and median [7, 18]. The problem of return-
ing complex summaries has not been addressed.

1.2 Related work on (non-indexed) summaries
There is also a vast literature on various summaries in

both the database and algorithms communities, motivated
by the fact that simple aggregates cannot well capture the
data distribution. These summaries, depending on the con-
text and community, are also called synopses, sketches, or
compressed representations. However, all past research has
focused on how to construct a summary, either offline or
in a streaming fashion, on the entire data set. No one has
considered the indexing problem where the focus is to in-
telligently compute and store auxiliary information in the
index at pre-computation time, so that a summary on a re-
quested subset of the records in the database can be built
quickly at query time. Since we cannot afford to look at all
the requested records to build the summary at query time,
this poses new challenges that past research cannot address:
All existing construction algorithms need to at least read

the data records once. The problem of how to maintain a
summary as the underlying data changes, namely under in-
sertions and deletions of records, has also been extensively
studied. But this should not be confused with our dynamic
index problem. The former maintains a single summary for
the entire dynamic data set, while the latter aims at main-
taining a dynamic structure from which a summary for any
queried subset can be extracted, which is more general than
the former. Of course for the former there often exist small-
space solutions, while for the indexing problem, we cannot
hope for sublinear space, as a query range may be small
enough so that the summary degenerates to the raw query
results.

Below we review some of the most fundamental and most
studied summaries in the literature. Let D be a bag of items,
and let fD(x) be the frequency of x in D.

Heavy hitters. A heavy hitters summary allows one to
extract all frequent items approximately, i.e., for a user-
specified 0 < φ < 1, it returns all items x with fD(x) > φ|D|
and no items with fD(x) < (φ− ε)|D|, while an item x with
(φ − ε)|D| ≤ fD(x) ≤ φ|D| may or may not be returned. A
heavy hitters summary of size O(1/ε) can be constructed in
one pass over D, using the MG algorithm [23] or the Space-
Saving algorithm [22].

Sketches. Various sketches have been developed as a useful
tool for summarizing massive data. In this paper, we con-
sider the two most widely used ones: the Count-Min sketch
[8] and the AMS sketch [4]. They summarize important
information about D and can be used for a variety of pur-
poses. Most notably, they can be used to estimate the join
size of two data sets, with self-join size being a special case.
Given the Count-Min sketches (resp. AMS sketches) of two
data sets D1 and D2, we can estimate |D1 � D2| within an

additive error of εF1(D1)F1(D2) (resp. ε
p

F2(D1)F2(D2))
with probability at least 1 − δ [3, 8], where Fk is the k-
th frequency moment of D: Fk(D) =

P
x fk

D(x). Note

that
p

F2(D) ≤ F1(D), so the error of the AMS sketch is
no larger. However, its size is O((1/ε2) log(1/δ)), which is
larger than the Count-Min sketch’s size O((1/ε) log(1/δ)),
so they are not strictly comparable. Which one is better
will depend on the skewness of the data sets. In particular,
since F1(D) = |D|, the error of the Count-Min sketch does
not depend on the skewness of the data, but F2(D) could
range from |D| for uniform data to |D|2 for highly skewed
data.

Quantiles. The quantiles (a.k.a. the order statistics), which
generalize the median, are important statistics about the
data distribution. Recall that the φ-quantile, for 0 < φ < 1,
of a set D of items from a totally ordered universe is the
one ranked at φ|D| in D (for convenience, for the quantile
problem it is usually assumed that there are no duplicates
in D). A quantile summary contains enough information so
that for any 0 < φ < 1, an ε-approximate φ-quantile can
be extracted, i.e., the summary returns a φ′-quantile where
φ − ε ≤ φ′ ≤ φ + ε. A quantile summary has size O(1/ε),
and can be easily computed by sorting D, and then taking
the items ranked at ε|D|, 2ε|D|, 3ε|D|, . . . , |D|.
Wavelets. Wavelet representations (or just wavelets for
short) take a different approach to approximating the data
distribution by borrowing ideas from signal processing. Sup-
pose the records in D are drawn from an ordered universe
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[u] = {1, . . . , u} and let fD = (fD(1), . . . , fD(u)) be the
frequency vector of D. Briefly speaking, in wavelet trans-
formation we take u inner products si = 〈fD,wi〉 where
wi, i = 1, . . . , u are the wavelet basis vectors (please refer to
[12, 20] for details on wavelet basis vectors). The si’s are
called the wavelet coefficients of fD. If we kept all u wavelet
coefficients, we would be able to reconstruct fD exactly, but
this would not be a “summary”. The observation is that,
for most real-world distributions, fD yields few wavelet co-
efficients with large absolute values. Thus for a parameter
k, even if we keep the k coefficients with the largest abso-
lute values, and assume all the other coefficients are zero,
we can still reconstruct fD reasonably well. In fact, it is well
known that among all the choices, retaining the k largest
(in absolute value) coefficients minimizes the �2 error be-
tween the original fD and the reconstructed one. Matias
et al. [20] were the first to apply wavelet transformation to
approximating data distributions. After that, wavelets have
been extensively studied [9, 11, 12, 15, 21, 29], and have been
shown to be highly effective at summarizing many real-world
data distributions.

All the aforementioned work studies how to construct or
maintain the summary on the given D. In our case, D is the
As attributes of all records whose Aq attributes are within
the query range. Our goal is to design an index so that the
desired summary on D can be constructed efficiently without
actually going through the elements of D.

1.3 Other related work
A few other lines of work also head to the general direc-

tion of addressing the gap between reporting all query results
and returning some simple aggregates. Lin et al. [19] and
Tao et al. [27] propose returning only a subset of the query
results, called “representatives”. But the “representatives”
do not summarize the data as we do. They also only con-
sider skyline queries. The line of work on online aggregation
[16, 17] aims at producing a random sample of the query re-
sults at early stages of long-running queries, in particular,
joins. A random sample indeed gives a rough approximation
of the data distribution, but it is much less accurate than
the summaries we consider: For heavy hitters and quantiles,
a random sample of size Θ(1/ε2) is needed [28] to achieve
the same accuracy as the O(1/ε)-sized summaries we men-
tioned earlier; for estimating join sizes, a random sample
of size Ω(

√
N) is required to achieve a constant approxi-

mation, which is much worse than using the sketches [3].
Furthermore, the key difference is that they focus on query
processing techniques for joins rather than indexing issues.
Correlated aggregates [10] aim at exploring the relationship
between two attributes. They are computed on one attribute
subject to a certain condition on the other. However, this
condition has to be specified in advance and the goal is to
compute the aggregate in the streaming setting, thus the
problem is fundamentally different from ours.

1.4 Our results
To take a unified approach we classify all the summaries

mentioned in Section 1.2 into F1-based ones and F2-based
ones. The former includes heavy hitters, the Count-Min
sketch, and quantiles, all of which provide an error guarantee
of the form εF1(D) (note that an ε-approximate quantile is
a value with a rank that is off by εF1(D) from the correct

rank). The latter includes the AMS sketch and wavelets,
both of which provide an error guarantee related to F2(D).

In Section 2 we first design a baseline solution that works
for all decomposable summaries. A summary is decompos-
able if given the summaries for t data sets (bags of elements)
D1, . . . , Dt with error parameter ε, we can combine them to-
gether into a summary on D1�· · ·�Dt with error parameter
O(ε), where � denotes multiset addition. All the F1 and F2

based summaries have this property and thus can be plugged
into this solution. Assuming that we can combine the sum-
maries with cost linear to their total size, the resulting index
has linear size and answers a summary query in O(sε log N)
time, where sε is the size of the summary returned. It
also works in external memory, with the query cost being
O( sε

B
log N) I/Os if sε ≥ B and O (log N/ log(B/sε)) I/Os

if sε < B. Note that this decomposable property has been
exploited in many other works on maintaining summaries in
the streaming context [5, 6, 8].

In Section 3 we improve upon this baseline solution by
identifying another, stronger decomposable property of the
F1 based summaries, which we call exponentially decompos-
able. The size of the index remains linear, while its query
cost improves to O(log N + sε). In external memory, the
query cost is O(logB N + sε/B) I/Os. This resembles the
classical B-tree query cost, which includes an O(logB N)
search cost and an “output” cost of O(sε/B), whereas the
output in our case is a summary of size sε. This is clearly
optimal (in the comparison model). For not-too-large sum-
maries sε = O(B), the query cost becomes just O(logB N),
the same as that for a simple aggregation query or a lookup
on a B-tree.

In Section 4, we demonstrate how various summaries have
the desired decomposable or exponentially decomposable prop-
erty and thus can be plugged into our indexes. Finally we
show how to support updates in Section 5.

2. A BASELINE SOLUTION
In this and the next section, we will describe our structures

without instantiating with any particular summary. Instead
we just use “ε-summary” as a placeholder for any summary
with error parameter ε. Let S(ε, D) denote an ε-summary on
data set D. We use sε to denote the size of an ε-summary1.

Internal memory structure. Based on the decompos-
able property of a summary, a baseline solution can be de-
signed using standard techniques. We first describe the in-
ternal memory structure. Sort all the N data records in the
database on the Aq attribute and partition them into N/sε

groups, each of size sε. Then we build a binary tree T on
top of these groups, where each leaf (called a fat leaf) stores
a group of sε records. For each internal node u of T , let
Tu denote the subtree of T rooted at u. We attach to u
an ε-summary on the As attribute of all records stored in
the subtree below u. Since each ε-summary has size sε and
the number of internal nodes is O(N/sε), the total size of
the structure is O(N). To answer a query [q1, q2], we do a
search on T . It is well known that any range [q1, q2] can be
decomposed into O(log(N/sε)) disjoint canonical subtrees
Tu, plus at most two fat leaves that may partially overlap.
We retrieve the ε-summaries attached to the roots of these

1Strictly speaking we should write sε,D. But as most ε-
summaries have sizes independent of D, we drop the sub-
script D for brevity.
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subtrees. For each of the fat leaves, we simply read all the sε

records stored there. Then we combine all of them into an
O(ε)-summary for the entire query using the decomposable
property. We can adjust ε by a constant factor in the con-
struction to ensure that the output is an ε-summary. The
total query time is thus the time required to combine the
O(log(N/sε)) summaries. For the Count-Min sketch and
AMS sketch, the combining time is linear in the total size of
the summaries, so the query time is O(sε log N). For the
quantile summary and heavy hitters summary the query
time becomes O(sε log N log log N)2 as we need to merge
O(log(N/sε)) sorted lists (Details in Section 4).

External memory index. The baseline solution easily
extends to external memory. If sε ≥ B, then each internal
node and fat leaf occupies Θ(sε/B) blocks, so we can simply
store each of them separately. The space is still linear and we
load O(log N) nodes on each query. The query cost becomes
O( sε

B
log N) I/Os for the Count-Min and AMS sketch and

O( sε
B

log N logM/B log N) I/Os for the quantile and heavy
hitters summary.

For sε < B, each node occupies a fraction of a block, and
we can pack multiple nodes in one block. We use a stan-
dard B-tree blocking of the tree T where each block con-
tains Θ(B/sε) nodes, except possibly the root block. Thus
each block stores a subtree of height Θ(log(B/sε)) of T .
Then standard analysis shows that the nodes we need to
access are stored in O(log N/ log(B/sε)) blocks. This im-
plies a query cost of O(logB/sε

N) I/Os for the Count-Min
and AMS sketch and O(logB/sε

N logM/B(logB/sε
N) I/Os

for the quantile and heavy hitters summary.

3. OPTIMAL INDEXINGFOR F1 BASED SUM-
MARIES

The baseline solution of the previous section is not that
impressive: Its “output” term has an extra O(log N) factor;
in external memory, we are missing the ideal O(logB N) term
which is the main benefit of block accesses.

The main bottleneck in the baseline solution is not the
search cost, but the fact that we need to assemble O(log N)
summaries, each of size sε. In the absence of additional
properties of the summary, it is impossible to make further
improvement. Fortunately, we observe that many of the F1

based summaries have what we call the exponentially decom-
posable property, which allows us to assemble summaries of
exponentially decreasing sizes. This turns out to be the key
to optimality for indexing these summaries.

Definition 1 (Exponentially decomposable). For
0 < α < 1, a summary S is α-exponentially decomposable if
there exists a constant c > 1, such that for any t multisets
D1, . . . , Dt with their sizes satisfying F1(Di) ≤ αi−1F1(D1)
for i = 1, . . . , t, given S(ε, D1),S(cε, D2) . . . ,S(ct−1ε, Dt),
(1) we can construct an O(ε)-summary for D1 � · · · � Dt;
(2) the total size of S(ε, D1), . . . ,S(ct−1ε, Dt) is O(sε) and
they can be combined in O(sε) time; and (3) for any multiset
D, the total size of S(ε, D), . . . ,S(ct−1ε, D) is O(sε).

Intuitively, since an F1 based summary S(ε, D) provides
an error bound of ε|D|, the total error from S(ε, D1), S(cε, D2),
2In fact, an alternative solution achieves query time
O(sε log N/ log log N) by issuing sε range-quantile queries
to the data structure in [7], but this solution does not work
in external memory.

. . . , S(ct−1ε, Dt) is

ε|D1| + cε|D2| + · · · + ct−1ε|Dt|
≤ ε|D1| + (cα)ε|D1| + · · · + (cα)t−1ε|D1|.

If we choose c such that cα < 1, then the error is bounded
by O(ε|D1|), satisfying (1). Meanwhile, the F1 based sum-
maries usually have size sε = Θ(1/ε), so (2) and (3) can
be satisfied, too. In Section 4 we will formally prove the
α-exponentially decomposable property for all the F1 based
summaries mentioned in Section 1.2.

3.1 Optimal internal memory structure
Let T be the binary tree built on the Aq attribute as in the

previous section. Without loss of generality we assume T is
a complete balanced binary tree; otherwise we can always
add at most N dummy records to make N/sε a power of 2
so that T is complete.

We first define some notation on T . We use S(ε, u) to de-
note the ε-summary on the As attribute of all records stored
in u’s subtree. Fix an internal node u and a descendant v
of u, let P(u, v) to be the set of nodes on the path from u
to v, excluding u. Define the left sibling set of P(u, v) to
be L(u, v) = {w | w is a left child and has a right sibling ∈
P(u, v)} and similarly the right sibling set of P(u, v) to be
R(u, v) = {w | w is a right child and has a left sibling ∈
P(u, v)}. To answer a query [q1, q2], we first locate the two
fat leaves a and b in T that contain q1 and q2, respectively.
Let u be the lowest common ancestor of a and b. We call
P(u, a) and P(u, b) the left and respectively the right query
path. We observe that the subtrees rooted at the nodes in
R(u, a) ∪ L(u, b) make up the canonical set for the query
range [q1, q2].

Focusing on R(u, a), let w1, . . . , wt be the nodes of R(u, a)
and let d1 < . . . < dt denote their depths in T (the root of
T is said to be at depth 0). Since T is a balanced binary
tree, we have F1(wi) ≤ (1/2)di−d1F1(w1) for i = 1, . . . , t.
Here we use F1(w) to denote the first frequency moment
(i.e., size) of the point set rooted at node w. Thus, if the
summary is (1/2)-exponentially decomposable, and we have
S(cdi−d1ε, wi) for i = 1, . . . , t at our disposal, we can com-
bine them and form an O(ε)-summary for all the data cov-
ered by w1, . . . , wt. We do the same for L(u, b). Finally,
the two fat leaves can always supply the exact data (it is a
summary with no error) of size O(sε) in the query range.
Plus the initial O(log N) search cost for locating R(u, a)
and L(u, b), the query time now improves to the optimal
O(log N + sε).

It only remains to show how to supply S(cdi−d1ε, wi) for
each of the wi’s. In fact, we can afford to attach to each
node u ∈ T all the summaries: S(ε, u),S(cε, u), . . .S(cqε, u)
where q is an integer such that scqε = O(1). Nicely, these
summaries still have total size O(sε) by the exponentially de-
composable property, thus the space required by each node
is still O(sε) as in the previous section, and the total space
remains linear. A schematic illustration of the overall struc-
ture is shown in Figure 1.

Theorem 1. For any (1/2)-exponentially decomposable
summary, a database D of N records can be stored in an
internal memory structure of linear size so that a summary
query can be answered in O(log N + sε) time.
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· · ·

ε-summary
(3

2ε)-summary

((3
2)

2ε)-summary

· · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
Query range

Figure 1: A schematic illustration of our internal
memory structure. The grayed nodes form the
canonical decomposition of the query range, and the
grayed summaries are those we combine into the fi-
nal summary for the queried data. In this example
we use c = 3

2
.

3.2 Optimal external memory indexing
In this section we show how to achieve the O(logB N +

sε/B)-I/O query cost in external memory still with lin-
ear space. Here, the difficulty that we need to assemble
O(log N) summaries lingers. In internal memory, we man-
aged to get around it by the exponentially decomposable
property so that the total size of these summaries is O(sε).
However, they still reside in O(log N) separate nodes. If we
still use a standard B-tree blocking, for sε ≥ B we need
to access Ω(log N) blocks; for sε < B, we need to access
Ω(log N/ log(B/sε)) blocks, neither of which is optimal. Be-
low we first show how to achieve the optimal query cost by
increasing the space to super-linear, then propose a packed
structure to reduce the space back to linear.

Consider an internal node u and one of its descendants
v. Let the sibling sets R(u, v) and L(u, v) be as previously
defined. In the following we only describe how to handle
the R(u, v)’s; we will do the same for the L(u, v)’s. Suppose
R(u, v) contains nodes w1, . . . , wt at depths d1, . . . , dt. We
define the summary set for R(u, v) with error parameter ε
to be

RS(u, v, ε) = {S(ε, w1),S(cd2−d1ε, w2), . . . ,S(cdt−d1ε, wt)}.

The following two facts easily follow from the exponen-
tially decomposable property.

Fact 1. The total size of the summaries in RS(u, v, ε) is
O(sε);

Fact 2. The total size of all the summary sets RS(u, v, ε),
RS(u, v, cε),. . . , RS(u, v, ctε) is O(sε).

The indexing structure. We first build the binary tree
T as before with a fat leaf size of sε. Before attaching any
summaries, we block T in a standard B-tree fashion so that
each block stores a subtree of T of size Θ(B), except possibly
the root block which may contain 2 to B nodes of T . The
resulting blocked tree is essentially a B-tree where each leaf
occupies O(sε/B) blocks and each internal node occupies 1

Leaf size: sε

Θ(B)

O(logB)

Figure 2: The standard B-tree blocking of a binary
tree.

rB

v2

RS(rB, v2, ε)
RS(rB, v2, cε)

u

v1

RS(u, v1, ε)

Figure 3: The summaries we store for an internal
block B.

block. Please see Figure 2 for an example of the standard
B-tree blocking.

Consider an internal block B in the B-tree. Below we
describe the additional structures we attach to B. Let TB be
the binary subtree of T stored in B and let rB be the root
of TB. To achieve the optimal query cost, the summaries
attached to the nodes of TB that we need to retrieve for
answering any query must be stored consecutively, or in at
most O(1) consecutive chunks. Therefore, the idea is to store
all the summaries for a query path in TB together, which is
the reason we introduced the summary set RS(u, v, ε). The
detailed structures that we attach to B are as follows:

1. For each internal node u ∈ TB and each leaf v in u’s
subtree in TB, we store all summaries in RS(u, v, ε)
sequentially.

2. For each leaf v, we store the summaries in RS(rB, v, cjε)
sequentially, for all j = 0, . . . , q. Recall that q is an in-
teger such that scqε = O(1).

3. For the root rB, we store S(cjε, rB) for j = 0, . . . , q.

An illustration of the first and the second type of struc-
tures is shown in Figure 3. The size of the structure can be
determined as follow:
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1. For each leaf v ∈ TB, there are at most O(log B) an-
cestors of v, so there are in total O(B log B) such pairs
(u, v). For each pair we use O(sε) space, so the space
usage is O(sεB log B).

2. For each leaf v ∈ TB we use O(sε) space, so the space
usage is O(sεB).

3. For the root rB, the space usage is O(sε).

Summing up the above cases, the space for storing the
summaries of any internal block B is O(sεB log B). Note
that each internal block has fanout Θ(B), and each leaf has
size Θ(sε), so there are in total at most O(N/(Bsε)) internal
blocks, and thus the total space usage is O(N log B). Next
we show that this structure can indeed be used to answer
queries in the optimal O(logB N + sε/B) I/Os.

Query procedure. Given a query range [q1, q2], let a and b
be the two leaves containing q1 and q2, respectively. We fo-
cus on how to retrieve the necessary summaries for the right
sibling set R(u, a), where u is the lowest common ancestor
of a and b; the left sibling set L(u, b) can be handled sym-
metrically. By the previous analysis, we need exactly the
summaries in RS(u, a, ε). Recall that R(u, a) are the right
siblings of the left query path P(u, a). Let B0, . . . ,Bl be the
blocks that P(u, a) intersects from u to a. The path P(u, a)
is partitioned into l + 1 segments by these l + 1 blocks. Let
P(u, v0),P(r1, v1), . . . ,P(rl, vl = a) be the l + 1 segments,
with ri being the root of the binary tree TBi in block Bi

and vi being a leaf of TBi , i = 0, . . . , l. Let w1, . . . , wt be
the nodes in R(u, a), at depths d1, . . . , dt of T . We claim
that wi is either a node of TBk for some k ∈ {0, . . . , l}, or
a right sibling of rk for some k ∈ {0, . . . , l}, which makes
wi a root of some other block. This is because by the def-
inition of R(u, a), we know that wi is a right child whose
left sibling is in some Bk. If wi is not in Bk, it must be the
root of some other block. Recall that we need to retrieve
S(cdi−d1ε, wi) for i = 1, . . . , t. Below we show how this can
be done efficiently using our structure.

For the wi’s in the first block B0, since we have stored all
summaries in RS(u, v0, ε) sequentially for B0 (case 1.), they
can be retrieved in O(1 + sε/B) I/Os.

For any wi being the root of some other block B′ not
on the path B0, . . . ,Bl, since we have stored the summaries
S(cjε, wi) for j = 0, . . . , q for every block (case 3.), the re-
quired summary S(cdi−d1ε, wi) can be retrieved in O(1 +
scdi−d1ε/B) I/Os. Note that the number of such wi’s is
bounded by O(logB N), so the total cost for retrieving sum-
maries for these nodes is at most O(logB N + sε/B) I/Os.

The rest of the wi’s are in B1, . . . ,Bl. Consider each
Bk, k = 1, . . . , l. Recall that the segment of the path P(u, a)
in Bk is P(rk, vk), and the wi’s in Bk are exactly R(rk, vk).
We have stored RS(rk, vk, cjε) for Bk for all j (case 2.),
so no matter at which relative depths di − d1 the nodes in
R(rk, vk) start and end, we can always find the required
summary set. Retrieving the desired summary set takes
O
`
1 + s

cd′−d1ε
/B
´

I/Os, where d′ is the depth of the high-
est node in R(rk, vk). Summing over all blocks B1, . . . ,Bl,
the total cost is O(logB N + sε/B) I/Os.

Reducing the size to linear. The structure above has a
super-linear size O(N log B). Next we show how to reduce
its size back to O(N) while not affecting the optimal query
cost.

u

ur = w1ul

u′

kh

h

w2

w3

S(ε, w1)S(cε, w2)S(c2ε, w3)
One summary for each
node in u′’s subtree

Figure 4: A schematic illustration of our packed
structure.

Observe that the log B factor comes from case 1., where
we store RS(u, v, ε) for each internal node u and each leaf
v in u’s subtree in u’s block B. Focus on B and the binary
tree TB stored in it. Abusing notation, we use Tu to de-
note the subtree rooted at u in TB. Assume Tu has height
h (in TB). Our idea is to pack the RS(u, v, ε)’s for some
leaves v ∈ Tu to reduce the space usage. Let ul and ur

be the left and right child of u, respectively. The first ob-
servation is that we only need to store RS(u, v, ε) for each
leaf v in ul’s subtree. This is because for any leaf v in ur’s
subtree, the sibling set R(u, v) is the same as R(ur, v), so
RS(u, v, ε) = RS(ur, v, ε), which will be stored when con-
sidering ur in place of u. For any leaf v in ul’s subtree,
observe that the highest node in R(u, v) is ur. This means
for a node w ∈ R(u, v) with height i in tree Tu, the summary
for w in RS(u, v, ε) is S(ch−i−1ε, w). Let u′ be an internal
node in ul’s subtree, and suppose u′ has kh leaves below it.
We will decide later the value of kh and, thus, the height
log kh at which u′ is chosen (the leaves are defined to be at
height 0). We do the following for each u′ at height log kh in
ul’s subtree. Instead of storing the summary set RS(u, v, ε)
for each leaf v in u′’s subtree, we store RS(u, u′, ε), which
is the common prefix of all the RS(u, v, ε)’s, together with
a summary for each of the nodes in u′’s subtree. More pre-
cisely, for each node w in u′’s subtree, if its height is i, we
store a summary S(ch−i−1ε, w). All these summaries below
u′ are stored sequentially. A schematic illustration of our
packed structure is shown in Figure 4.

Recall that all the summary sets we store in case 1. are
used to cover the top portion of the query path P(u, v0) in
block B0, i.e., RS(u, v0, ε). Clearly the packed structure still
serves this purpose: We first find the u′ which has v0 as one
of its descendants. Then we load RS(u, u′, ε), followed by
the summaries S(ch−i−1, w) required in RS(u, v0, ε). Load-
ing RS(u, u′, ε) still takes O(1+sε/B) I/Os, but loading the
remaining individual summaries may incur many I/Os since
they may not be stored sequentially. Nevertheless, if we en-
sure that all the individual summaries below u′ have total
size O(sε), then loading any subset of them does not take
more than O(1 + sε/B) I/Os. Note that there are kh/2i

nodes at height i in u′s subtree, the total size of all sum-
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maries below u′ is

log khX
i=0

kh

2i
sch−i−1ε. (1)

Thus it is sufficient to choose kh such that (1) is Θ(sε).
Note that such a kh always exists3: When kh = 1, (1) is
sch−1ε = O(sε); when kh takes the maximum possible value
kh = 2h−1, the last term (when i = h) in the summation of
(1) is sε, so (1) is at least Ω(sε); every time kh doubles, (1)
increases by at most O(sε).

It only remains to show that by employing the packed
structure, the space usage for a block is indeed O(Bsε). For
a node u at height h in TB, the number of u′’s at height log kh

under u is 2h/kh. For each such u′, storing RS(u, u′, ε), as
well as all the individual summaries below u′, takes O(sε)
space. So the space required for node u is O(2hsε/kh).
There are O(B/2h) nodes u at height h. Thus the total
space required is

O

 
log BX
h=1

2hsε/kh · B/2h

!
= O

 
log BX
h=1

Bsε/kh

!
.

Note that the choice of kh implies that

sε/kh = O

 
log khX
i=0

1

2i
sch−i−1ε

!
= O

 
h−1X
i=0

1

2i
sch−i−1ε

!
,

so the total size of the packed structures in B is bounded by

log BX
h=1

Bsε/kh ≤ B

log BX
h=0

h−1X
i=0

1

2i
sch−i−1ε

= B

log BX
h=0

h−1X
i=0

1

2h−i−1
sciε

≤ B

log BX
i=0

sciε

log BX
h=i

1

2h−i−1

≤ 2B

log BX
i=0

sciε

= O(Bsε).

Theorem 2. For any (1/2)-exponentially decomposable
summary, a database D of N records can be stored in an ex-
ternal memory index of linear size so that a summary query
can be answered in O(logB N + sε/B) I/Os.

Remark. One technical subtlety is that the O(sε) combin-
ing time in internal memory does not guarantee that we can
combine the O(log N) summaries in O(sε/B) I/Os in exter-
nal memory. However if the merging algorithm only makes
linear scans on the summaries, then this is not a problem,
as we shall see in Section 4.

4. SUMMARIES
In this section we demonstrate the decomposable or expo-

nentially decomposable properties for the summaries men-
tioned in Section 1.2. Thus, they can be used in our indexes
in Section 2 and 3.
3We define kh in this implicit way for its generality. When
instantiating into specific summaries, there are often closed
forms for kh. For example when sε = Θ(1/ε) and 1 < c < 2,
kh = Θ(ch).

4.1 Heavy hitters
Given a multiset D, let fD(x) be the frequency of x in D.

The MG summary [23] with error parameter ε consists of
sε = 1/ε items and their associated counters. For any item x
in the counter set, the MG summary maintains an estimated
count f̂D(x) such that fD(x) − εF1(D) ≤ f̂D(x) ≤ fD(x);
for any item x not in the counter set, it is guaranteed that
fD(x) ≤ εF1(D). Thus in either case, the MG summary pro-

vides an additive εF1(D) error: fD(x) − εF1(D) ≤ f̂D(x) ≤
fD(x) for any x. The SpaceSaving summary is very similar
to the MG summary except that the SpaceSaving summary
provides an f̂D(x) overestimating fD(x): fD(x) ≤ f̂D(x) <
fD(x) + εF1(D). Thus they clearly solve the heavy hitters
problem.

The MG summary is clearly decomposable. Below we
show that it is also α-exponentially decomposable for any
0 < α < 1. The same proof also works for the SpaceSaving
summary.

Consider t multisets D1, . . . , Dt with F1(Di) ≤ αi−1F1(D1)
for i = 1, . . . , t. We set c = 1/

√
α > 1. Given a series of

MG summaries S(ε, D1), S(cε, D2), . . . , S(ct−1ε, Dt), we
combine them by adding up the counters for the same item.
Note that the total size of these summaries is bounded by

t−1X
j=0

scjε =

t−1X
j=0

1

cjε
= O(1/ε) = O(sε).

In order to analyze the error in the combined summary, let
fj(x) denote the true frequency of item x in Dj and f̂j(x)
be the estimator of fj(x) in S(cj−1ε, Dj). The combined

summary uses
Pt

j=1 f̂j(x) to estimate the true frequency of

x, which is
Pt

j=1 fj(x). Note that

fj(x) ≥ f̂j(x) ≥ fj(x) − cj−1εF1(Dj)

for j = 1, . . . , t. Summing up the first inequality over all j
yields

Pt
j=1 fj(x) ≥

Pt
j=1 f̂j(x). For the second inequality,

we have

tX
j=1

f̂j(x) ≥
tX

j=1

fj(x) −
tX

j=1

cj−1εF1(Dj)

≥
tX

j=1

fj(x) −
tX

j=1

(
α√
α

)j−1εF1(D1)

≥
tX

j=1

fj(x) − εF1(D1)
tX

j=1

(
√

α)j−1

=

tX
j=1

fj(x) − O(εF1(D1)).

Therefore the error bound is O(εF1(D1)) = O(ε(F1(D1 �
· · · � Dt)).

To combine the summaries we require that each summary
maintains its (item, counter) pairs in the increasing order of
items (we impose an arbitrary ordering if the items are from
an unordered domain). In this case each summary can be
viewed as a sorted list and we can merge the t sorted lists into
a single list, where the counters for the same item are added
up. Note that if each summary is of size sε, then we need to
employ a t-way merging algorithm and it takes O(sεt log t)
time in internal memory and O( sεt

B
logM/B t) I/Os in ex-

ternal memory. However, when the sizes of the t summaries
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form a geometrically decreasing sequence, we can repeatedly
perform two-way merges in a bottom-up fashion with linear
total cost. The merging algorithm starts with an empty
list, at step i, it merges the current list with the summary
S(εt+1−i, Dt+1−i). Note that in this process every counter
of S(εj , Dj) is merged j times, but since the size of S(εj , Dj)
is 1

cj−1ε
, the total running time is bounded by

tX
j=1

j

cj−1ε
= O

„
1

ε

«
= O(sε).

In external memory we can perform the same trick and
achieve the O(sε/B) I/O bound if the smallest summary
S(ct−1ε, Dt) has size 1

ct−1ε
> B; otherwise we can take the

smallest k summaries, where k is the maximum number such
that the smallest k summaries can fit in one block, and merge
them in the main memory. In either case, we can merge the
t summaries in sε/B I/Os.

4.2 Quantiles
Recall that in the ε-approximate quantile problem, we are

given a set D of N items from a totally ordered universe,
and the goal is to have a summary S(ε, D) from which for
any 0 < φ < 1, a record with rank in [(φ − ε)N, (φ + ε)N ]
can be extracted. It is easy to obtain a quantile summary of
size O(1/ε): We simply sort D and take an item every εN
consecutive items. Given any rank r = φN , there is always
an element within rank [r − εN, r + εN ].

Below we show that quantile summaries are α-exponentially
decomposable. Suppose we are given a series of such quan-
tile summaries S(ε1, D1),S(ε2, D2), . . . ,S(εt, Dt), for data
sets D1, . . . , Dt. We combine them by sorting all the items
in these summaries. We claim this forms an approximate
quantile summary for D = D1 ∪ · · · ∪ Dt with error at
most

Pt
j=1 εjF1(Dj), that is, given a rank r, we can find

an item in the combined summary whose rank is in [r −Pt
j=1 εjF1(Dj), r +

Pt
j=1 εjF1(Dj)] in D. For an element

x in the combined summary, let yj and zj be the two con-
secutive elements in S(εj , Dj) such that yj ≤ x ≤ zj . We
define rmin

j (x) to be the rank of yj in Dj and rmax
j (x) to be

rank of zj in Dj . In other words, rmin
j (x) (resp. rmax

j (x))
is the minimum (resp. maximum) possible rank of x in Dj .
We state the following lemma that describes the properties
of rmin

j (x) and rmax
j (x):

Lemma 1. (1) For an element x in the combined sum-
mary,

tX
j=1

rmax
j (x) −

tX
j=1

rmin
j (x) ≤

tX
j=1

εjF1(Dj).

(2) For two consecutive elements x1 ≤ x2 in the combined
summary,

tX
j=1

rmin
j (x2) −

tX
j=1

rmin
j (x1) ≤

tX
j=1

εjF1(Dj).

Proof. Since rmax
j (x) and rmin

j (x) are the local ranks of
two consecutive elements in S(εj , Dj), we have rmax

j (x) −
rmin

j (x) ≤ εjF1(Dj). Taking summation over all j, part
(1) of the lemma follows. We also note that if x1 and
x2 are consecutive in the combined summary, rmin

j (x1) and

rmin
j (x2) are local ranks of either the same element or two

consecutive elements of S(εj , Dj). In either case we have
rmin

j (x2)− rmin
j (x1) ≤ εjF1(Dj). Summing over all j proves

part (2) of the lemma.

Now for each element x in the combined summary, we
compute the global minimum rank rmin(x) =

Pt
j=1 rmin

j (x).
Note that all these global ranks can be computed by scan-
ning the combined summary in sorted order. Given a query
rank r, we find the smallest element x with rmin(x) ≥ r −Pt

j=1 εjF1(Dj). We claim that the actual rank of x in D is

in the range [r −
Pt

j=1 εjF1(Dj), r +
Pt

j=1 εjF1(Dj)]. In-
deed, we observe that the actual rank of x in set D is in
the range [

Pt
j=1 rmin

j (x),
Pt

j=1 rmax
j (x)] so we only need to

prove that this range is contained by [r−
Pt

j=1 εjF1(Dj), r+Pt
j=1 εjF1(Dj)]. The left side trivially follows from the

choice of x. For the right side, let x′ be the largest element
in the new summary such that x′ ≤ x. By the choice of x,
we have

Pt
j=1 rmin

j (x′) < r −
Pt

j=1 εjF1(Dj). By Lemma 1

we have
Pt

j=1 rmin
j (x) −

Pt
j=1 rmin

j (x′) ≤
Pt

j=1 εjF1(Dj)

and
Pt

j=1 rmax
j (x) −

Pt
j=1 rmin

j (x) ≤
Pt

j=1 εjF1(Pj). Sum-

ming up these three inequalities yields
Pt

j=1 rmax
j (x) ≤ r +Pt

j=1 εjF1(Dj), so the claim follows.
For α-exponentially decomposability, the t data sets have

F1(Di) ≤ αi−1F1(D1) for i = 1, . . . , t. We choose c =
1/

√
α > 1. The summaries S(ε1, D1),S(ε2, D2), . . . ,S(εt, Dt)

have εi = ci−1ε. Therefore we can combine them with error

tX
j=1

cj−1εF1(Dj) ≤
tX

j=1

„
α√
α

«j−1

εF1(D1)

= εF1(D1)
tX

j=1

`√
α
´j−1

= O(εF1(D1))

= O(εF1(D1 ∪ · · · ∪ Dt)).

To combine the t summaries, we notice that we are essen-
tially merging k sorted lists with geometrically decreasing
sizes, so we can adapt the algorithm in Section 4.1. The
cost of merging the t summaries is therefore O(sε) in inter-
nal memory and O(sε/B) I/Os in external memory. The
size of combined summary is

tX
j=1

1

cj−1ε
= O

„
1

ε

«
= O(sε).

4.3 The Count-Min sketch
Given a multiset D where the items are drawn from a

universe [u] = {1, . . . , u}. Let fD(x) be the frequency of
x in D. The Count-Min sketch makes use of a 2-universal
hash function h : [u] → [1/ε] and a collection of 1/ε counters
C[1], . . . , C[1/ε]. Then it computes C[j] =

P
h(x)=j fD(x)

for j = 1, . . . , 1/ε. A single collection of 1/ε counters achieve
a constant success probability for a variety of estimation
purposes, and the probability can be boosted to 1 − δ by
using O(log(1/δ)) copies with independent hash functions.
Here we only show the decomposability of a single copy; the
same result also holds for O(log(1/δ)) copies.

Given multiple Count-Min sketches with the same h (hence
the same number of counters), they can be easily combined
by adding up the corresponding counters. So the Count-Min
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sketch is decomposable. However, for exponentially decom-
posability we are dealing with t Count-Min sketches with
exponentially increasing ε’s, hence different hash functions,
so they cannot be easily combined. Thus we simply put
them together without combining any counters. Although
the resulting summary is not a true Count-Min sketch, we
argue that it can be used to serve all the purposes a Count-
Min is supposed to serve.

More precisely, for t data sets D1, . . . , Dt with F1(Di) ≤
αi−1F1(D1), we have t Count-Min sketches S(ε, D1), . . . ,
S(ct−1ε, Dt). The i-th sketch S(cj−1ε, Dt) uses a hash func-
tion hi : [u] → [1/cj−1ε]. Again we set c = 1/

√
α. Note that

the total size of all the sketches is O(1/ε + 1/cε + 1/c2ε +
· · · ) = O(1/ε) = O(sε), so we only need to show that the er-
ror is the same as what a Count-Min sketch S(ε, D1�· · ·�Dt)
would provide. Below we consider the problem of estimat-
ing inner products (join sizes), which has other applications,
such as point queries and self-join sizes, as special cases.

Let fi denote the frequency vector of Di, and let f =Pt
i=1 fi be the frequency vector of D = D1 � . . . � Dt. The

goal is to estimate inner product 〈f ,g〉 where g is the fre-
quency vector of some other data set. Note that when g is
a standard basic vector (i.e., containing only one “1”), 〈f ,g〉
becomes a point query; when g = f , 〈f ,g〉 is the self-join
size of f . We distinguish between two cases: (1) g is given
explicitly; and (2) g is also represented by a summary re-
turned by our index, i.e., a collection of t Count-Min sketches
S(ε, G1), . . . , S(ct−1ε, Gt), where g =

Pt
i=1 gi and gi is the

frequency vector of Gi. Recall that the Count-Min sketch
estimates 〈f ,g〉 with an additive error of εF1(f)F1(g), and
we will show that we can do the same when f is represented
by the collection of t Count-Min sketches.

Inner product with an explicit vector. For a g given
explicitly, we can construct a Count-Min sketch S(ci−1ε,g)
for g with hash function hi, for i = 1, . . . , t. We observe
that 〈f ,g〉 can be expressed as

Pt
i=1〈fi,g〉, and 〈fi,g〉 can

be estimated using S(ci−1ε, Di) and S(ci−1ε,g) as described
in [8] since they use the same hash function. The error is
ci−1ε||fi||1||g||1 ≤ (cα)i−1ε||f1||1||g||1. For c = 1/

√
α, the

total error is bounded by

tX
i=1

α(i−1)/2ε||f1||1||g||1 = O(ε||f1||1||g||1) = O (εF1(f)F1(g)) ,

as desired.

Inner product with a vector returned by a summary
query. Next we consider the case where g is also represented
by a series4 of t Count-Min sketches S(ε, G1), . . . ,S(ct−1ε, Gt)
with F1(Gi) ≥ αi−1F1(G1). We will show how to estimate
〈f ,g〉 using the two series of sketches. This will allow the
user to estimate the join size between the results of two
queries. Note that this includes the special case of estimat-
ing the self-join size of f .

In this case we will inevitably face the problem of pairing
two sketches of different sizes. To do so we need more insight
into the hash functions used. Suppose 1/ε is a power of 2.

4More precisely, g is represented by two such series: one
from the left query path and one from the right query path,
and so is f . But we can decompose 〈f ,g〉 into 4 subproblems
by considering the cross product of these series, where each
subproblem involves only a single series of sketches for either
f or g.

Let p be a prime within the range [u, 2u] and a, b be random
numbers uniformly chosen from {0, . . . , p−1}. If we use the
following 2-universal hash functions:

hi(x) = ((ax + b) mod p)) mod
1

2i−1ε
, i = 1, . . . , log(1/ε),

then we observe that each bucket of hi+1 is partitioned into
two buckets of hi. This means that given a Count-Min
sketch S(2i−1ε, D) constructed with hi, one can convert it
to a Count-Min sketch S(2j−1ε, D) constructed with hj for
any j ≥ i. Thus two sketches of different sizes can still be
used together by reducing the size of the larger one to match
that of the smaller one. Of course we will only get the er-
ror guarantee of the smaller sketch, but this will not be a
problem as we show later.

Now, set c = 2 and we have the sketches S(2i−1ε, Di) and
S(2i−1ε, Gi) with hash function hi, for i = 1, . . . , log(1/ε).
We express 〈f ,g〉 as

〈f ,g〉 =

*
tX

i=1

fi,
tX

i=1

gi

+
=

tX
i=1

〈fi,gi〉+
X
i<j

〈fi,gj〉+
X
i<j

〈gi, fj〉.

First, 〈fi,gi〉 can be estimated using S(2i−1ε, Di) and
S(2i−1ε, Gi). The error is at most 2i−1εF1(Di)F1(Gi) ≤
(2α2)i−1εF1(D1)F1(G1). It follows that

Pt
i=1〈fi,gi〉 can

be estimated with error
Pt

i=1(2α2)i−1εF1(D1)F1(G1). For

α < 1/
√

2, this error is bounded by O(εF1(D1)F1(G1)).
For 〈fi,gj〉 with i < j, we first convert S(2i−1ε, Di) to

S(2j−1ε, Di), and do the estimation with S(2j−1ε, Gi), which
gives us an error of 2j−1εF1(Di)F1(Gi). Therefore the error
of estimating

P
i<j〈fi,gj〉 can be bounded by

X
i<j

2j−1ε||fi||1||gj ||1 =

t−1X
i=1

ε||fi||1
tX

j=i+1

2j−1||gj ||1

≤
t−1X
i=1

2iε||fi||1
tX

j=i+1

(2α)j−i−1||g1||1

=

t−1X
i=1

2iε||fi||1||g1||1
tX

j=i+1

(2α)j−i−1.

For constant α < 1/2, we have
Pt

j=i+1(2α)j−i−1 = O(1), so

the error of estimating
P

i<j〈fi,gj〉 is at most

O

 
t−1X
i=1

2i−1ε||fi||1||g1||1
!

≤ O

 
t−1X
i=1

(2α2)i−1ε||f1||1||g1||1
!

= O(ε||f1||1||g1||1).

We can similarly bound
P

i<j〈gi, fj〉 = O(ε||f1||1||g1||1).
This proves that Count-Min sketch is α-exponentially de-

composable for any constant 0 < α < 1/2. One technicality
is that our data structures only support 1/2-exponentially
decomposable summaries as described in Section 3. This is
caused by the use of a binary tree T . To get around the
problem, we replace the binary tree T with a ternary tree,
so that subtree sizes decrease by a factor of 3 from a level to
the one below. Now the left query path may have two nodes
on each level in the canonical decomposition of the query
range, and so does the right query path. This results in 4
series of sketches for representing f and g. But this does not
affect our analysis by more than a constant factor as argued
earlier.
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Remark. One technical subtlety is that, since we are now
making O(log2 N) estimations, in order to be able to add up
the errors, we need all the estimations to succeed, i.e., stay
within the claimed error bounds. To achieve a 1 − δ overall
success probability, each individual estimation should suc-
ceed with probability 1 − δ/ log2 N , by the union bound.
Thus each Count-Min sketch S(ci−1ε, Di) we use should
have size O((1/ci−1ε) log( log N

δ
)).

4.4 The AMS sketch and wavelets
Given a multiset D in which the frequency of x is fD(x),

the AMS sketch computes O((1/ε2) log(1/δ)) counters Yi =P
x hi(x)fD(x), where each hi : [u] → {+1,−1} is a uni-

form 4-wise independent hash function (Dobra and Rusu [25]
show that some 3-wise independent hash functions also suf-
fice). The AMS sketch is clearly decomposable. But since it
provides an error guarantee depending on F2(D), it is not ex-
ponentially decomposable. Intuitively, the size of a data set
could drop by a constant factor without reducing its F2 sig-
nificantly. More precisely, for two data sets D1 and D2 with
F1(D2) ≤ αF1(D1) for a constant α < 1, F2(D1) − F2(D2)
may be o(F2(D1)). Thus the AMS sketch can only be used
in the baseline solution of Section 2.

Gilbert et al. [12] have shown that an AMS sketch of an
appropriate size also incorporates enough information from
which we can build a wavelet representation of the under-
lying data set. Thus, the baseline index of Section 2 can
also be used to return a wavelet representation for the data
records in the query range.

5. HANDLING UPDATES
If the summary itself supports updates, our indexes also

support updates. In particular, the MG summary [23], the
GK summary for quantiles [14] support insertions, while the
Count-Min sketch and the AMS sketch support both inser-
tions and deletions. The corresponding summary indexes
then also support insertions or both insertions and deletions.
In this section we briefly describe how we handle updates for
the two internal memory structures in Section 2 and 3. The
techniques are quite standard [24], so we just sketch the
high-level ideas. The external memory indexes also support
updates; the details will appear in the full version of the
paper.

The baseline structure. We first assume that the struc-
ture of the binary tree T remains unchanged during updates,
then we show how to maintain its balance dynamically. We
will show how to handle insertions; deletions can be han-
dled similarly, provided that the summary itself supports
deletions.

To do an insertion, we first search down the tree T us-
ing the new record’s Aq attribute and locate the fat leaf v
where the new record should reside. Then we insert it into
v. This new insertion affects all the summaries attached to
the O(log N) nodes on the path from the root of T to v.
For each such node u, a summary on all the items stored
below u is attached, so we need to insert the new record
to the summary as well. Assuming the update cost for a
single summary is O(μ), the total cost of this insertion is
O(μ log N).

We can maintain the structure of T using a weight-balanced
tree and partial rebuildings [24]. For any node u ∈ T , the
weight of u is defined to be the number of records stored

below u. Then we restrict the weight of a node u at height
i to vary on the order of Θ(2isε). The fanout of each node
of T may not be 2 any more, but the weight constraint
ensures that it is still a constant. After inserting a new
record into a leaf v, the weight constraints at the ancestors
of v might be violated. Then we find the highest node u
where this happens, and simply rebuild the whole subtree
rooted at the parent of u. Suppose the parent of u is at
height i. We rebuild the subtree level by level. At level
j, there are 2i−j summaries we need to build, each on a
data set of size O(sε2

j). So building each summary by sim-
ply inserting the records into an initially empty summary
takes O(μsε2

j) time. This is O(μsε2
i) in total for level j.

Summing over all i levels, the total cost of the rebuilding
is O(μsε2

i · i) = O(μsε2
i log N). After the rebuilding, the

weight of u decreases by Θ(2isε), so the cost of the rebuilding
can be charged to this weight decrease. Since every insertion
increases the weights of O(log N) nodes by one, the cost of all
the rebuildings converts to an O(μsε2

i log N/2isε · log N) =
O(μ log2 N) cost per insertion amortized.

Theorem 3. If the summary can be updated in O(μ) time,
the baseline internal memory structure can be updated in
O(μ log2 N) time amortized.

Remark. In the above rebuilding algorithm, we do not as-
sume any properties of the summary. In fact, for all the sum-
maries considered in this paper, they do not have to be built
from scratch for every level. Instead, the summaries at all
levels can be constructed more efficiently in O(μsε2

i) time.
This will reduce the amortized update cost to O(μ log N).
Details will appear in the full version of the paper.

The optimal internal memory structure for F1 based
summaries. The update procedure for the optimal inter-
nal memory structure of Theorem 1 is almost the same as
the baseline solution, except that at each node, we now have
O(log sε) summaries with exponentially decreasing sizes. This
adds an O(log sε) factor to the cost of updating all affected
summaries upon each insertion, as well as the partial re-
building cost. Thus we have:

Theorem 4. If the summary can be updated in O(μ) time,
the optimal internal memory structure of Theorem 1 can be
updated in O(μ log2 N log sε) time amortized.

Remark. The above theorem does not assume any special
properties of the summary. Again for all the summaries
considered in this paper, the update time can be improved
to O(μ log N log sε). Details will appear in the full version
of the paper.

6. FUTURE DIRECTIONS
In this paper, we presented some initial positive results on

supporting summary queries natively in a database system,
that many useful summaries can be extracted with almost
the same cost as computing simple aggregates. There are
many interesting directions to explore:

1. Our index for the F2 based summaries does not have
the optimal query cost. Can we improve it to optimal?
In fact, we can partition the data in terms of F2 so
that the F2 based summaries are also exponentially
decomposable, but we meet some technical difficulties
since the resulting tree T is not balanced.
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2. We have only considered the case where there is only
one query attribute. In general there could be more
than one query attribute and the query range could be
any spatial constraint. For example, one could ask the
following queries:

(Q3) Return a summary on the salaries of all employees
aged between 20 and 30 with ranks below VP.

(Q4) Return a summary on the household income dis-
tribution for the area within 50 miles from Washing-
ton, DC.

In the most general and challenging case, one could
consider any SELECT-FROM-WHERE aggregate SQL query
and replace the aggregate operator with a summary op-
erator.

3. Likewise, the summary could also involve more than
one attribute. When the user is interested in the joint
distribution of two or more attributes, or the spatial
distribution of the query results, a multi-dimensional
summary would be very useful. An example is

(Q5) What is the geographical distribution of house-
holds with annual income below $50,000?

Note how this query serves the complementing pur-
pose of (Q4). To summarize multi-dimensional data,
one could consider the multi-dimensional extensions of
quantiles and wavelets, as well as geometric summaries
such as ε-approximations and various clusterings. The
former is useful for multiple relational attributes, while
the latter is more suitable for summarizing geometric
distributions as in (Q5).
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